WO2006082122A1 - Method and device for filling pressure vessels with non-liquefied gases or gas mixtures - Google Patents

Method and device for filling pressure vessels with non-liquefied gases or gas mixtures Download PDF

Info

Publication number
WO2006082122A1
WO2006082122A1 PCT/EP2006/050166 EP2006050166W WO2006082122A1 WO 2006082122 A1 WO2006082122 A1 WO 2006082122A1 EP 2006050166 W EP2006050166 W EP 2006050166W WO 2006082122 A1 WO2006082122 A1 WO 2006082122A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
filling
filling gas
heat exchanger
pressure
Prior art date
Application number
PCT/EP2006/050166
Other languages
German (de)
French (fr)
Inventor
Herrmann Grabhorn
Friedhelm Herzog
Original Assignee
Messer Group Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messer Group Gmbh filed Critical Messer Group Gmbh
Priority to AT06707704T priority Critical patent/ATE519065T1/en
Priority to EP06707704A priority patent/EP1846691B1/en
Publication of WO2006082122A1 publication Critical patent/WO2006082122A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/06Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with compressed gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • F17C13/025Special adaptations of indicating, measuring, or monitoring equipment having the pressure as the parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • F17C13/026Special adaptations of indicating, measuring, or monitoring equipment having the temperature as the parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/016Noble gases (Ar, Kr, Xe)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/016Noble gases (Ar, Kr, Xe)
    • F17C2221/017Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/046Localisation of the removal point in the liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/036Very high pressure, i.e. above 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0121Propulsion of the fluid by gravity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0157Compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0306Heat exchange with the fluid by heating using the same fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0339Heat exchange with the fluid by cooling using the same fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0341Heat exchange with the fluid by cooling using another fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • F17C2227/0393Localisation of heat exchange separate using a vaporiser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/03Control means
    • F17C2250/032Control means using computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/043Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0439Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0443Flow or movement of content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/02Mixing fluids
    • F17C2265/025Mixing fluids different fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0181Airbags

Definitions

  • the invention relates to a method and a device for filling of pressure vessels with cold gas or gas mixture, in which a Füügas or a component of Gregasgemisches stored in a reservoir at low temperatures in the liquefied state and fed to a pressure vessel for filling.
  • compressors have mainly been used for pressure storage of gases, which allow an operating pressure in the pressure vessel of about 200 bar.
  • the compressors are very complex in construction and operation, also recent applications, such as applications in the fuel tent technology or gas generators for airbags, the need for much higher pressures of 700 bar or more.
  • Such pressures can not be realized with conventional compression technology or only with unreasonably high costs.
  • the known methods have the disadvantage that during the fusing process, condensation or freezing of the filling gas or a filling gas component can occur. While the condensation in the interior of the pressure vessel to be filled is usually unproblematic or even intended, freezing of the gas in the supply lines to the pressure vessel can lead to closure of the supply line.
  • the filling gas stored in the liquid state can be vaporized and heated by means of a heat exchanger before it is fed to the pressure vessel.
  • the disadvantage of this is that the temperature of the vaporized filling gas is difficult to control, which results in a deterioration of the result.
  • Object of the present invention is therefore to provide a way to fill pressure vessels with cold, non-liquefied gas, in which a condensation or freezing of the filling gas or a Brownkomponente is reliably avoided.
  • the vaporized filling gas is thus cooled by the heat exchange with the still liquid Füilgas and then fed to the pressure vessel to be filled.
  • the filling gas is at least as much energy supplied as it corresponds to its enthalpy of vaporization.
  • this enthalpy of vaporization can not be removed from it, however.
  • the temperature of the vaporized filling gas approaches the temperature of the still liquid fill gas, without the vaporized filling gas condensing again.
  • the degree of convergence of the temperatures of the vaporized Füälgases to the still liquid filling gas depends inter alia on the structure of the heat exchanger, the heating power used for heating the gas and the flow rate.
  • the temperatures are the same and the energy contents of the evaporated or still liquid filling gas differ only by the enthalpy of vaporization. It does not matter, in a soft way, the amount of energy corresponding to the enthalpy of evaporation is supplied to the filling gas.
  • a thermal contact with another medium, either fluidly separated on heat exchanger surfaces or without material separation, such as by mixing, is considered as well as an active heating, for example by an electric or other heating device, or a combination of different heaters.
  • the heating power and / or the flow rate of the fill gas through the heat exchanger for heating the filling gas in dependence on the temperature of the filling gas. This keeps the heating costs as low as possible.
  • the temperature used as a control variable can be detected in the heat exchanger, in a connecting line between the thermally interconnected sections of the heat exchanger or in a filling line, downstream of the heat exchanger.
  • the proportion of still liquid gas can be measured at the filling gas and taken as an output for adjusting the heating power.
  • the measurement of the liquid fraction is preferably carried out in the region of the outlet of the first section of the heat exchanger.
  • a further advantageous embodiment of the method according to the invention provides that the fill gas is released before it is fed to the pressure vessel. Due to the boiling point depression occurring during the expansion, it is thus avoided that condensation of the fill gas occurs due to a sudden pressure fluctuation in the lines.
  • a particularly advantageous variant for the vaporization of the filling gas is to heat the filling gas to be vaporized leaving the heat exchanger by admixing a warmer additional gas of the same or a different composition. The energy required for evaporation receives the fill gas from the admixed additional gas.
  • the object of the invention is also achieved in a device for loading of Druck hereer ⁇ with cold gas or gas mixture in which a F ⁇ llgas or a component of a filling gas mixture stored in a reservoir in the liquefied state and fed to a pressure vessel for filling, achieved in that between reservoir and A heat exchanger with thermally interconnected sections is provided pressure vessel, wherein a first portion of the heat exchanger via a Brownzutechnisch with the reservoir and a second section via a Medabtechnisch with the Bef ⁇ 1 ⁇ 4il boots is fluidly connected and between the first and the second section is a connecting line and means for Heating the filling gas is provided.
  • the filling gas or the filling gas component thus first passes through the first section of a heat exchanger and is at least partially evaporated by the thermal contact with the vaporized filling gas from the second section of the heat exchanger.
  • the device for heating the filling gas which may be arranged within the first section of the heat exchanger or in the connecting line between the two sections of the heat exchanger, causes the supply of energy to the filling gas, which corresponds at least to the enthalpy of vaporization.
  • the temperature of the vaporized filling gas is approximated to the temperature of the still liquid filling gas,
  • a controllable heating device is provided as means for heating the filling gas, which is data-connected with sensors for detecting physical parameters of the filling gas, such as temperature or pressure.
  • An expedient embodiment of the device according to the invention provides that a pressure stage is arranged in the connecting line and / or in the Gregasabieitung.
  • the pressure stage which is, for example, a pressure reducer or a controllable throttle valve, ensures the maintenance of the gaseous state of the downstream of the pressure stage filling gas also in the case of pressure fluctuations in the Medgaszutechnisch to be filled pressure vessel due to the lowered due to the relaxation boiling point.
  • the heating power of the filling gas can also be set to a value which is lower than the enthalpy of vaporization, provided that the requirement is satisfied that the filling gas is in the gaseous state at the reduced pressure and the energy supplied to it.
  • the connecting line with a gas supply flow s- connected, by means of which an additional gas can be fed into the nursieitung.
  • an additional gas can be fed into the nursieitung.
  • the additional gas can also be used to heat the filling gas.
  • the device 1 shown schematically in the drawing (Fig.) Is used to fill pressure vessels 2 in a Be Scholi dressed 3 with a filling gas mixture.
  • the Be Schoglali skills 3 itself is a known device, as it is described for example in WO 02/066884.
  • the components of the filling gas mixture - in the embodiment argon (Ar) and helium (He) - are stored in storage containers 4,5. While in the reservoir 5 helium is stored under pressure in the gaseous state at temperatures of, for example, 20 ° C, the argon is in the reservoir 4 in the cryogenic, liquefied state.
  • the storage containers 4, 5 are commercially available containers for the storage of gases, which in a known manner are not shown here with fittings, such as shut-off valves, pressure relief valves, pressure reducers and the like. are equipped dergl.
  • the reservoir 4 is fluidly connected via a thermally insulated Medgaszu Arthur 6 with a heat exchanger 7.
  • the heat exchanger 7 comprises two fluidically separated sections, here referred to as primary section 8 and secondary section 9, which are thermally connected to each other via a heat exchanger surface 10. While the primary section 8 of the heat exchanger 7 is fluidly connected to the Golfgaszu effet 8, the secondary section 9 is connected via a likewise thermally insulated Greengasab réelle 12 with the filling device 3 and thus the pressure vessels 2 to be filled.
  • the primary section 8 of the heat exchanger 7 has an output which is flow-connected via a connecting line 13 to an input of the secondary section 9. At or in the connecting line 13, the devices described below are provided.
  • an electric heater 15 is arranged to heat the filling gas.
  • the heating device 15 is provided with a measuring and control device 14, by means of which the output to the Füilgas heating power is regulated in dependence on the temperature of the filling gas.
  • the temperature of the filling gas used as a controlled variable is measured by means of a sensor 16 in a section of the connecting line 13 located downstream of the heating device 15.
  • an arrangement 17 is provided in the embodiment for reducing pressure, by means of which the pressure of the filling gas can be lowered by a predetermined value.
  • the arrangement 17 may be, for example, a pressure reducer or a controllable throttle valve. Downstream of the arrangement 17 opens into the connecting line 13 at a junction 18, a gas supply 19, which is connected to the reservoir 5 for a further filling gas component, helium in the exemplary embodiment, flow-connected. In the gas supply line 19, an arrangement 20 is also provided for reducing pressure. Furthermore, 16 shut-off valves 22,23 are arranged in the connecting line 13 and the gas supply line.
  • the device 1 When operating the device 1 is provided as a filling gas liquefied argon from the reservoir 4 via the Gregaszutechnisch 6 the primary section 8 of the Heat exchanger 7 supplied. There takes place due to the thermal contact with the secondary portion 9 of the heat exchanger 7, an at least partial evaporation of the filling gas. Subsequently, the filling gas of the heater 15 is supplied, which supplies the filling gas with an energy which corresponds at least to the enthalpy of vaporization, ie, at the latest downstream of the Schuein ⁇ chtung 15, the filling gas is completely evaporated.
  • the vaporized FülSgas is passed into the secondary section 9 of the heat exchanger 7 and reaches there on the heat exchanger surface 10 in thermal contact with the still liquid filling gas in the primary section 8 of the heat exchanger 7. Due to the thermal contact, the gaseous filling gas cools down in the Idealfail down to the temperature of the still liquid filling gas, but can not condense due to the temperature and pressure conditions itself. The filling gas is thus in a very cold, but gaseous state.
  • the filling gas is supplied to the pressure vessels 2 via the isolated Gregasabtechnisch 12 for filling
  • a provided in the Füligasabtechnisch 12 pressure buffer 22 serves to dampen possible pressure fluctuations in the Füilgasabtechnisch 12, which may arise during the filling of the pressure vessel 2, and to equalize the Be Stirlivorgang overall.
  • the filling gas in the pressure vessels 2 gradually heats up to ambient temperature and increases its pressure considerably. If, for example, the pressure vessels 2 to be filled are cooled, for example with liquid nitrogen, and thus condenses the gas inside the pressure vessel 2 during filling, pressures can be achieved after closure of the pressure vessel 2 and its subsequent heating to ambient temperature, which reduces the inlet pressure by several hundred times exceed.
  • Even pressure vessels designed for maximum pressures can be filled with gas whose pressure during filling is in the range of atmospheric pressure or only a few bar (10 ° Pa).
  • the energy necessary for the evaporation is then transferred to the filling gas in whole or in part from the additional filling gas component.
  • the filling gas mixture then passes into the secondary section 9 of the heat exchanger 7, where it is cooled as described above and passed to the filling device 3.
  • the boiling point of the additional filling gas component stored in the storage tank 5 should be lower than that of the filling gas stored in the storage tank 4. If this is not the case, it must be ensured that the cooling of the filling gas mixture in the heat exchanger 7 does not result in the condensation of the additional filling gas component. This is achieved in that in this case the system, for example by means of the heater 15, a correspondingly higher energy is supplied, which prevents the condensation of the additional Füilgaskomponente.
  • the additional fill gas component or further filling gas components can also be added to the filling gas at another point (not shown here), in particular downstream of the secondary section 9 of the heat exchanger 7.
  • the pressure of the filling gas in the connecting line to the arrangement 17 is reduced. Due to the boiling point reduction associated with the pressure drop, it is ensured that condensation is always reliably prevented even in the case of pressure fluctuations in the filling gas discharge line 12.
  • the device 1 is therefore particularly suitable for filling of gas generators for airbags. LIST OF REFERENCE NUMBERS

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

In order to be able to achieve high pressures, pressure vessels are filled according to the principle of 'cold filling', i.e. the filler gas is filled into the pressure vessel in a cold state. Once the pressure vessel is filled and the gas is heated to ambient pressure, the pressure in the pressure vessels multiplies several times. A problem that often occurs is that during filling the filler gas or a component of the filler gas mixture freezes out, thereby resulting in a malfunction of the filling device. For this purpose, the filler gas is transported to the pressure vessel to be charged in a cold yet gaseous state. The filler gas is supplied to a heat exchanger in a liquefied state and is then evaporated. The evaporated filler gas or the gas component are returned to the heat exchanger, where it thermally contacts the still liquid filler gas and is cooled to at least approximately the temperature of the liquid filler gas. The gas treated in this manner is very cold but at the same time available in a gaseous state of matter.

Description

Verfahren und Vorrichtung zum Befüllen von Druckbehältern mit nicht verflüssigten Gasen oder Gasgemischen Method and device for filling pressure vessels with non-liquefied gases or gas mixtures
Die Erfindung betrifft ein Verfahren sowie eine Vorrichtung zum Befüllen von Druckbehäftern mit kaltem Gas oder Gasgemisch, bei dem ein Füügas oder eine Komponente eines Füllgasgemisches in einem Vorratsbehälter bei tiefen Temperaturen im verflüssigten Zustand gelagert und einem Druckbehälter zur Befüllung zugeführt wird.The invention relates to a method and a device for filling of pressure vessels with cold gas or gas mixture, in which a Füügas or a component of Füllgasgemisches stored in a reservoir at low temperatures in the liquefied state and fed to a pressure vessel for filling.
Um Gase mit einer hohen Speicherdichte lagern zu können, erfolgt die Speicherung entweder in flüssigem Zustand oder gasförmig unter hohen Drücken. Die Lagerung im flüssigen Zustand ermöglicht zwar eine sehr hohe Speicherdichte, sie ist jedoch nur unter Inkaufnahme mehr oder minder großer Abdampfverluste möglich, die auch bei gut wärmeisolierten Behältern unvermeidlich sind.In order to store gases with a high storage density, storage takes place either in the liquid state or in gaseous form under high pressures. Although the storage in the liquid state allows a very high storage density, but it is only at the cost of more or less large evaporation losses possible, which are unavoidable even with well-insulated containers.
Zur Druckspeicherung von Gasen wurden bislang überwiegend Kompressoren eingesetzt, die einen Betriebsdruck im Druckbehälter von etwa 200 bar erlauben. Die Kompressoren sind jedoch in Bau und Betrieb sehr aufwendig, zudem führen neuere Anwendungen, beispielsweise Anwendungen in der Brennstoffzeltentechnik oder Gasgeneratoren für Airbags, zum Bedürfnis nach weitaus höheren Drücken von 700 bar oder mehr. Derartige Drücke sind mit konventioneller Kornpressionstechnik nicht oder nur mit unvertretbar hohem Aufwand zu realisieren.Up to now compressors have mainly been used for pressure storage of gases, which allow an operating pressure in the pressure vessel of about 200 bar. However, the compressors are very complex in construction and operation, also recent applications, such as applications in the fuel tent technology or gas generators for airbags, the need for much higher pressures of 700 bar or more. Such pressures can not be realized with conventional compression technology or only with unreasonably high costs.
Aus der EP 0 033 386 A1 und der WO 99/05465 sind Verfahren zum Befüllen von Druckbehältern bekannt, bei dem das Füligas vor der Zuführung an den zu befülienden Druckbehälter verflüssigt oder auf eine Temperatur, die nur geringfügig über seiner Siedetemperatur liegt, gekühlt wird. Als bevorzugtes Kühlmittel dient dabei flüssiger Stickstoff, Aus der WO 02/066884 AI ist ein weiter verbessertes Verfahren bekannt, bei dem auch der Druckbehälter vor und/oder während der Zuführung des kalten oder verflüssigten Füllgases gekühlt wird, beispielsweise durch Eintauchen in ein Bad in flüssigem Stickstoff. Nach Beenden des Befüllvorgangs wird der Druckbehälter druckdicht verschlossen. Da sich das Gasvolumen mit dem Abkühlen - bei gleich bleibendem Druck - ungefähr proportional zur Temperatur verhält, gelingt auf diese Weise eine Vergrößerung der effektiven Speicherkapazität um einen Faktor von ca. 2-3. Mit dem Aufwärmen des Gases steigt der Druck im Druckbehäiter sehr stark an. Diese Verfahren sind beispieisweise geeignet, um DruckbehäSter, die für Drücke von 70öbar oder mehr zugelassen sind, kostengünstig zu befüilen. Insbesondere eignet sich dieses Verfahren zum Befüilen kleinvolumiger Tanks, insbesondere Gasgeneratoren für Airbags, Kraftstoffbehälter für gasbetriebene Fahrzeuge oder Brennstoffzellensysteme.From EP 0 033 386 A1 and WO 99/05465 methods for filling pressure vessels are known in which the Füligas is liquefied before being fed to the pressurized container to be geflienden or cooled to a temperature which is only slightly above its boiling temperature. From WO 02/066884 AI a further improved method is known in which the pressure vessel is cooled before and / or during the supply of cold or liquefied filling gas, for example by immersion in a bath in liquid Nitrogen. After completion of the filling process, the pressure vessel is sealed pressure-tight. Since the gas volume with the cooling - while maintaining the pressure - approximately proportional to the temperature behaves, succeeds in this way an increase in the effective storage capacity by a factor of about 2-3. As the gas warms up, the pressure in the pressure vessel rises sharply. These methods are suitable, for example, to inexpensively handle pressure vessels approved for pressures of 70 bar or more. In particular, this method is suitable for affirming small-volume tanks, in particular gas generators for airbags, fuel tanks for gas-powered vehicles or fuel cell systems.
Die bekannten Verfahren haben den Nachteil, dass es beim Befüilvorgang zum Kondensieren oder Ausfrieren des Füllgases bzw. einer Füligaskomponente kommen kann. Während die Kondensation im Innern des zu befüllenden Druckbehällers in der Regel unproblematisch oder sogar gewollt ist, kann ein Ausfrieren des Gases in den Zuleitungen zum Druckbehälter zum Verschluss der Zuleitung führen.The known methods have the disadvantage that during the fusing process, condensation or freezing of the filling gas or a filling gas component can occur. While the condensation in the interior of the pressure vessel to be filled is usually unproblematic or even intended, freezing of the gas in the supply lines to the pressure vessel can lead to closure of the supply line.
Um ein Ausfrieren des Füllgases zu vermeiden, kann das im flüssigen Zustand gespeicherte Füllgas vor seiner Zuführung an den Druckbehälter mittels eines Wärmetauschers verdampft und aufgeheizt werden. Der Nachteil hiervon ist, dass die Temperatur des verdampften Füllgases nur schwer zu kontrollieren ist, wodurch es zu einer Beeinträchtigung des Fϋliergebnisses kommt.In order to avoid freezing of the filling gas, the filling gas stored in the liquid state can be vaporized and heated by means of a heat exchanger before it is fed to the pressure vessel. The disadvantage of this is that the temperature of the vaporized filling gas is difficult to control, which results in a deterioration of the result.
Aufgabe der vorliegenden Erfindung ist es demnach, eine Möglichkeit zur Befüllung von Druckbehältern mit kaltem, nicht verflüssigtem Gas anzugeben, bei dem eine Kondensation oder ein Ausfrieren des Füllgases oder einer Füllgaskomponente zuverlässig vermieden wird.Object of the present invention is therefore to provide a way to fill pressure vessels with cold, non-liquefied gas, in which a condensation or freezing of the filling gas or a Füllgaskomponente is reliably avoided.
Gelöst ist diese Aufgabe bei einem Verfahren der eingangs genannten Art dadurch, dass das Füllgas oder die Füllgaskomponente aus dem Vorratsbehälter vor seiner Zuführung an den Druckbehälter im verflüssigten Zustand einem Wärmetauscher zugeführt, verdampft und das verdampfte Füllgas bzw. die verdampfte Füllgaskomponente an Wärmetauscherflächen des Wärmetauschers in thermischen Kontakt mit dem verflüssigten Füilgas bzw. der verflüssigten Füllgaskomponente aus dem Vorratsbehälter gebracht wird.This problem is solved in a method of the type mentioned in that the filling gas or Füllgaskomponente supplied from the reservoir prior to its delivery to the pressure vessel in the liquefied state a heat exchanger, and evaporates the vaporized filling gas or vaporized Füllgaskomponente heat exchanger surfaces of the heat exchanger in thermal contact with the liquefied Füilgas or the liquefied Füllgaskomponente is brought from the reservoir.
Das verdampfte Füllgas wird also durch den Wärmetausch mit dem noch flüssigen Füilgas abgekühlt und anschließend dem zu befüllenden Druckbehälter zugeleitet. Bei der Verdampfung wird dem Füllgas mindestens so viel Energie zugeführt, wie es seiner Verdampfungsenthalpie entspricht. Bei der Abkühlung durch den Wärmekontakt mit dem noch flüssigen Füligas kann ihm diese Verdampfungsenthalpie jedoch nicht mehr entzogen werden. Die Temperatur des verdampften Füllgases nähert sich der Temperatur des noch flüssigen Füilgases an, ohne dass das verdampfte Füllgas dabei wieder kondensiert. Der Grad der Annäherung der Temperaturen des verdampften Füälgases an das noch flüssige Füllgas hängt dabei unter anderem vom Aufbau des Wärmetauschers, von der zur Erwärmung des Gases eingesetzten Heizleistung und der Durchflussmenge ab. Im - unter realistischen Bedingungen freilich nicht völlig erreichbaren - Idealfall sind die Temperaturen gleich und die Energieinhalte des verdampften bzw. noch flüssigen Füllgases unterscheiden sich nur um die Verdampfungsenthalpie. Es spielt dabei keine Rolle, auf weiche Weise die der Verdampfungsenthalpie entsprechende Energiemenge dem Füllgas zugeführt wird. Ein Wärmekontakt mit einem weiteren Medium, entweder strömungstechnisch getrennt an Wärmetauscherflächen oder ohne stoffliche Trennung, etwa durch Mischung, kommt dafür ebenso in Betracht wie eine aktive Beheizung, beispielsweise durch eine elektrische oder sonstige Heizeinrichtung, oder eine Kombination verschiedener Heizeinrichtungen.The vaporized filling gas is thus cooled by the heat exchange with the still liquid Füilgas and then fed to the pressure vessel to be filled. During evaporation, the filling gas is at least as much energy supplied as it corresponds to its enthalpy of vaporization. During cooling by the thermal contact with the still liquid Füligas this enthalpy of vaporization can not be removed from it, however. The temperature of the vaporized filling gas approaches the temperature of the still liquid fill gas, without the vaporized filling gas condensing again. The degree of convergence of the temperatures of the vaporized Füälgases to the still liquid filling gas depends inter alia on the structure of the heat exchanger, the heating power used for heating the gas and the flow rate. In the ideal case, which is of course not fully achievable under realistic conditions, the temperatures are the same and the energy contents of the evaporated or still liquid filling gas differ only by the enthalpy of vaporization. It does not matter, in a soft way, the amount of energy corresponding to the enthalpy of evaporation is supplied to the filling gas. A thermal contact with another medium, either fluidly separated on heat exchanger surfaces or without material separation, such as by mixing, is considered as well as an active heating, for example by an electric or other heating device, or a combination of different heaters.
Um die Temperatur des verdampften Gases so gering wie möglich zu halten, ist es zweckmäßig, die Heizleistung und/oder die Durchflussmenge des Füilgases durch den Wärmetauscher zur Erwärmung des Füllgases in Abhängigkeit von der Temperatur des Füllgases zu regeln. Dadurch werden die Heizkosten so gering wie möglich gehalten. Die als Regelgröße eingesetzte Temperatur kann dabei im Wärmetauscher, in einer Verbindungsleitung zwischen den thermisch miteinander verbundenen Abschnitten des Wärmetauschers oder in einer Füllleitung, stromab vom Wärmetauscher, erfasst werden. Alternativ kann auch der Anteil noch flüssigen Gases am Füllgas gemessen und als Ausgangsgröße zur Einstellung der Heizleistung genommen werden. Die Messung des Flüssiganteils erfolgt dabei bevorzugt im Bereich des Ausgangs des ersten Abschnitts des Wärmetauschers.In order to keep the temperature of the vaporized gas as low as possible, it is expedient to regulate the heating power and / or the flow rate of the fill gas through the heat exchanger for heating the filling gas in dependence on the temperature of the filling gas. This keeps the heating costs as low as possible. The temperature used as a control variable can be detected in the heat exchanger, in a connecting line between the thermally interconnected sections of the heat exchanger or in a filling line, downstream of the heat exchanger. Alternatively, the proportion of still liquid gas can be measured at the filling gas and taken as an output for adjusting the heating power. The measurement of the liquid fraction is preferably carried out in the region of the outlet of the first section of the heat exchanger.
Eine weitere vorteilhafte Ausgestaltung des erfindungsgemäßen Verfahrens sieht vor, dass das Füilgas vor seiner Zuführung an den Druckbehälter entspannt wird. Aufgrund der bei der Entspannung eintretenden Siedepunktserniedrigung wird so vermieden, dass aufgrund einer plötzlichen Druckschwankung in den Leitungen eine Kondensation des Füilgases auftritt. Eine besonders vorteilhafte Variante zur Verdampfung des Füligases besteht darin, das aus dem Wärmetauscher austretende, zu verdampfende Füllgas durch Beimischen eines wärmeren Zusatzgases der gleichen oder einer anderen Zusammensetzung aufzuheizen. Die zur Verdampfung erforderliche Energie erhält das Füilgas vom beigemischten Zusatzgas.A further advantageous embodiment of the method according to the invention provides that the fill gas is released before it is fed to the pressure vessel. Due to the boiling point depression occurring during the expansion, it is thus avoided that condensation of the fill gas occurs due to a sudden pressure fluctuation in the lines. A particularly advantageous variant for the vaporization of the filling gas is to heat the filling gas to be vaporized leaving the heat exchanger by admixing a warmer additional gas of the same or a different composition. The energy required for evaporation receives the fill gas from the admixed additional gas.
Die Aufgabe der Erfindung wird auch bei einer Vorrichtung zum Befallen von Druckbehälterπ mit kaltem Gas oder Gasgemisch, bei dem ein Fϋllgas oder eine Komponente eines Füllgasgemisches in einem Vorratsbehälter im verflüssigten Zustand gelagert und zur Befüllung einem Druckbehälter zugeführt wird, dadurch gelöst, dass zwischen Vorratsbehälter und Druckbehälter ein Wärmetauscher mit thermisch miteinander verbundenen Abschnitten vorgesehen ist, wobei ein erster Abschnitt des Wärmetauschers über eine Füllgaszuleitung mit dem Vorratsbehälter und ein zweiter Abschnitt über eine Füllgasableitung mit der Befüileinrichtung strömungsverbunden ist und zwischen dem ersten und dem zweiten Abschnitt eine Verbindungsleitung besteht und eine Einrichtung zum Erwärmen des Füllgases vorgesehen ist.The object of the invention is also achieved in a device for loading of Druckbehälterπ with cold gas or gas mixture in which a Fϋllgas or a component of a filling gas mixture stored in a reservoir in the liquefied state and fed to a pressure vessel for filling, achieved in that between reservoir and A heat exchanger with thermally interconnected sections is provided pressure vessel, wherein a first portion of the heat exchanger via a Füllgaszuleitung with the reservoir and a second section via a Füllgasableitung with the Befüileinrichtung is fluidly connected and between the first and the second section is a connecting line and means for Heating the filling gas is provided.
Das Füllgas bzw. die Füllgaskomponente durchläuft also zunächst den ersten Abschnitt eines Wärmetauschers und wird durch den thermischen Kontakt mit dem verdampften Füllgas aus dem zweiten Abschnitt des Wärmetauschers zumindest teilweise verdampft. Die Einrichtung zum Erwärmen des Füllgases, die innerhalb des ersten Abschnitts des Wärmetauschers oder in der Verbindungsleitung zwischen den beiden Abschnitten des Wärmetauschers angeordnet sein kann, bewirkt die Zuführung einer Energie an das Füllgas, die zumindest der Verdampfungsenthalpie entspricht. Im zweiten Abschnitt des Wärmetauschers, der mit dem ersten Abschnitt thermisch verbunden ist, wird die Temperatur des verdampften Füllgases an die Temperatur des noch flüssigen Füllgases angenähert,The filling gas or the filling gas component thus first passes through the first section of a heat exchanger and is at least partially evaporated by the thermal contact with the vaporized filling gas from the second section of the heat exchanger. The device for heating the filling gas, which may be arranged within the first section of the heat exchanger or in the connecting line between the two sections of the heat exchanger, causes the supply of energy to the filling gas, which corresponds at least to the enthalpy of vaporization. In the second section of the heat exchanger, which is thermally connected to the first section, the temperature of the vaporized filling gas is approximated to the temperature of the still liquid filling gas,
Vorteilhafterweise ist als Einrichtung zum Erwärmen des Füllgases eine regelbare Heizeinrichtung vorgesehen, die mit Sensoren zum Erfassen physikalischer Parameter des Füllgases, wie Temperatur oder Druck, datenverbunden ist. Eine zweckmäßige Ausführungsform der erfindungsgemäßen Vorrichtung sieht vor, dass in der Verbindungsleitung und/oder in der Füllgasabieitung eine Druckstufe angeordnet ist. Die Druckstufe, bei der es sich beispielsweise um einen Druckminderer oder ein regelbares Drosselventil handelt, sichert aufgrund des infolge der Entspannung erniedrigten Siedepunkts die Aufrechterhaltung des gasförmigen Aggregatszustandes des strömungsabwärts von der Druckstufe vorliegenden Füllgases auch im Falle von Druckschwankungen in der Füllgaszuleitung zum zu befüllenden Druckbehälter. Durch den Einbau der Druckstufe kann auch die Heizleistung des Füllgases auf einen Wert eingestellt werden, ύer geringer als die Verdampfuπgsenthalpie ist, sofern die Forderung erfüllt ist, dass das Füllgas bei dem erniedrigten Druck und der ihm zugeführten Energie im gasförmigen Zustand vorliegt.Advantageously, a controllable heating device is provided as means for heating the filling gas, which is data-connected with sensors for detecting physical parameters of the filling gas, such as temperature or pressure. An expedient embodiment of the device according to the invention provides that a pressure stage is arranged in the connecting line and / or in the Füllgasabieitung. The pressure stage, which is, for example, a pressure reducer or a controllable throttle valve, ensures the maintenance of the gaseous state of the downstream of the pressure stage filling gas also in the case of pressure fluctuations in the Füllgaszuleitung to be filled pressure vessel due to the lowered due to the relaxation boiling point. By installing the pressure stage, the heating power of the filling gas can also be set to a value which is lower than the enthalpy of vaporization, provided that the requirement is satisfied that the filling gas is in the gaseous state at the reduced pressure and the energy supplied to it.
Vorteilhafterweise ist die Verbindungsleitung mit einer Gaszuleitung Strömung s- verbunden, mittels der ein Zusatzgas in die Verbindungsieitung einspeisbar ist. Auf diese Weise können insbesondere Füllgasgemische auf einfache Weise und ohne die Gefahr der Kondensation einer Füligaskomponente hergestellt werden. Das Zusatzgas kann dabei auch zur Erwärmung des Füllgases eingesetzt werden.Advantageously, the connecting line with a gas supply flow s- connected, by means of which an additional gas can be fed into the Verbindungsieitung. In this way, in particular filling gas mixtures can be prepared in a simple manner and without the risk of condensation of a Füligaskomponente. The additional gas can also be used to heat the filling gas.
Anhand der Zeichnung soll ein Ausführungsbeispiel der Erfindung näher erläutert werden.Reference to the drawings, an embodiment of the invention will be explained in more detail.
Die in der Zeichnung (Fig.) schematisch dargestellte Vorrichtung 1 dient zur Befüllung von Druckbehältern 2 in einer Befülieinrichtung 3 mit einem Füllgasgemisch.The device 1 shown schematically in the drawing (Fig.) Is used to fill pressure vessels 2 in a Befülieinrichtung 3 with a filling gas mixture.
Bei der Befülieinrichtung 3 selbst handelt es sich um eine an sich bekannte Einrichtung, wie sie sie beispielsweise in der WO 02/066884 beschrieben ist. Die Komponenten des Füllgasgemisches — im Ausführungsbeispiel Argon (Ar) und Helium (He) - werden in Vorratsbehältern 4,5 gespeichert. Während im Vorratsbehälter 5 Helium unter Druck im gasförmigen Zustand bei Temperaturen von beispielsweise 20°C gespeichert wird, liegt das Argon im Vorratsbehälter 4 im tiefkalten, verflüssigten Zustand vor. Bei den Vorratsbehältern 4,5 handelt es sich im übrigen um handelsübliche Behälter zur Speicherung von Gasen, die in bekannter Weise mit hier nicht gezeigten Armaturen, wie Absperrventilen, Überdruckventilen, Druckminderen u. dergl. ausgerüstet sind. Der Vorratsbehälter 4 ist über eine thermisch isolierte Füllgaszuleitung 6 mit einem Wärmetauscher 7 strömungsverbunden. Der Wärmetauscher 7 umfasst zwei strömungstechnisch voneinander getrennte Abschnitte, hier als Primärabschnitt 8 bzw. Sekundärabschnitt 9 bezeichnet, die über eine Wärmetauscherfläche 10 miteinander thermisch verbunden sind. Während der Primärabschnitt 8 des Wärmetauschers 7 mit der Füllgaszuleitung 8 strömungsverbunden ist, ist der Sekundärabschnitt 9 über eine ebenfalls thermisch isolierte Füllgasableitung 12 mit der Befülleinrichtung 3 und damit den zu befüllenden Druckbehältern 2 verbunden. Der Primärabschnilt 8 des Wärmetauschers 7 weist einen Ausgang auf, der über eine Verbindungsleitung 13 mit einem Eingang des Sekundärabschnitts 9 strömungsverbunden ist. An bzw. in der Verbindungsleitung 13 sind die im Folgenden beschriebenen Einrichtungen vorgesehen.The Befülieinrichtung 3 itself is a known device, as it is described for example in WO 02/066884. The components of the filling gas mixture - in the embodiment argon (Ar) and helium (He) - are stored in storage containers 4,5. While in the reservoir 5 helium is stored under pressure in the gaseous state at temperatures of, for example, 20 ° C, the argon is in the reservoir 4 in the cryogenic, liquefied state. Incidentally, the storage containers 4, 5 are commercially available containers for the storage of gases, which in a known manner are not shown here with fittings, such as shut-off valves, pressure relief valves, pressure reducers and the like. are equipped dergl. The reservoir 4 is fluidly connected via a thermally insulated Füllgaszuleitung 6 with a heat exchanger 7. The heat exchanger 7 comprises two fluidically separated sections, here referred to as primary section 8 and secondary section 9, which are thermally connected to each other via a heat exchanger surface 10. While the primary section 8 of the heat exchanger 7 is fluidly connected to the Füllgaszuleitung 8, the secondary section 9 is connected via a likewise thermally insulated Füllgasableitung 12 with the filling device 3 and thus the pressure vessels 2 to be filled. The primary section 8 of the heat exchanger 7 has an output which is flow-connected via a connecting line 13 to an input of the secondary section 9. At or in the connecting line 13, the devices described below are provided.
In der Nähe des Ausgangs von Primärabschnitt 8 des Wärmetauschers 7, beispielsweise unmittelbar am Ausgang des Primärabschnitts 8. ist in der Verbindungsieitung 13 eine elektrische Heizeinrichtung 15 zur Beheizung des Füllgases angeordnet. Die Heizeineinrichtung 15 ist mit einer Mess- und Regeleinrichtung 14 versehen, mittels der die an das Füilgas abgegebene Heizleistung in Abhängigkeit von der Temperatur des Füllgases geregelt wird. Die als Regelgröße eingesetzte Temperatur des Füllgases wird dabei mittels eines Sensors 16 in einem von der Heizeinrichtung 15 stromabwärts gelegenen Abschnitt der Verbindungsleitung 13 gemessen. Stromabwärts von der Heizeinrichtung 15 ist im Ausführungsbeispiel eine Anordnung 17 zur Druckreduzierung vorgesehen, mittels der der Druck des Füllgases um einen vorbestimmten Wert erniedrigt werden kann. Bei der Anordnung 17 kann es sich beispielsweise um einen Druckminderer oder ein regelbares Drosselventil handeln. Stromabwärts von der Anordnung 17 mündet in die Verbindungsleitung 13 an einer Verbindungsstelle 18 eine Gaszuleitung 19 ein, die mit dem Vorratsbehälter 5 für eine weitere Füllgaskomponente, im Ausführungsbeispiel Helium, strömungsverbunden ist. In der Gaszuleitung 19 ist gleichfalls eine Anordnung 20 zur Druckreduzierung vorgesehen. Weiterhin sind in der Verbindungsleitung 13 und der Gaszuleitung 16 Absperrventile 22,23 angeordnet.In the vicinity of the output of the primary section 8 of the heat exchanger 7, for example, directly at the output of the primary section 8. In the Verbindungsieitung 13, an electric heater 15 is arranged to heat the filling gas. The heating device 15 is provided with a measuring and control device 14, by means of which the output to the Füilgas heating power is regulated in dependence on the temperature of the filling gas. The temperature of the filling gas used as a controlled variable is measured by means of a sensor 16 in a section of the connecting line 13 located downstream of the heating device 15. Downstream of the heater 15, an arrangement 17 is provided in the embodiment for reducing pressure, by means of which the pressure of the filling gas can be lowered by a predetermined value. The arrangement 17 may be, for example, a pressure reducer or a controllable throttle valve. Downstream of the arrangement 17 opens into the connecting line 13 at a junction 18, a gas supply 19, which is connected to the reservoir 5 for a further filling gas component, helium in the exemplary embodiment, flow-connected. In the gas supply line 19, an arrangement 20 is also provided for reducing pressure. Furthermore, 16 shut-off valves 22,23 are arranged in the connecting line 13 and the gas supply line.
Beim Betrieb der Vorrichtung 1 wird als Füllgas vorgesehenes verflüssigtes Argon aus dem Vorratsbehälter 4 über die Füllgaszuleitung 6 dem Primärabschnitt 8 des Wärmetauschers 7 zugeführt. Dort erfolgt aufgrund des thermischen Kontakts mit dem Sekundärabschnitt 9 des Wärmetauschers 7 eine zumindest teilweise Verdampfung des Füllgases. Im Anschluss daran wird das Füllgas der Heizeinrichtung 15 zugeführt, die dem Füllgas eine Energie zuführt, die zumindest der Verdampfungsenthalpie entspricht, d.h. spätestens stromab von der Heizeinήchtung 15 ist das Füllgas vollständig verdampft. Über die Verbindungsleitung 13 wird das verdampfte FülSgas in den Sekundärabschnitt 9 des Wärmetauschers 7 geleitet und gelangt dort an der Wärmetauscherfläche 10 in thermischen Kontakt mit dem noch flüssigen Füllgas im Primärabschnitt 8 des Wärmetauschers 7. Aufgrund des thermischen Kontakts kühlt sich das gasförmige Füllgas ab, im Idealfail bis auf die Temperatur des noch flüssigen Füllgases ab, kann jedoch aufgrund der Temperatur- und Druckverhältnisse selbst nicht kondensieren. Das Füllgas befindet sich also in einem sehr kalten, jedoch gasförmigen Zustand. In diesem Zustand wird das Füllgas den Druckbehäitern 2 über die isolierte Füllgasableitung 12 zur Befüllung zugeführt, Ein in der Füligasableitung 12 vorgesehener Druckpuffer 22 dient dabei dazu, mögliche Druckschwankungen in der Füilgasableitung 12, die bei der Befüllung der Druckbehälter 2 entstehen können, zu dämpfen und den Befülivorgang insgesamt zu vergleichmäßigen. Nach Beendigung des Befüllvorgangs und dem Verschließen der Druckbehälter 2 erwärmt sich das Füllgas in den Druckbehältern 2 allmählich bis auf Umgebungstemperatur und erhöht seinen Druck erheblich. Werden beispielsweise die zu befallenden Druckbehälter 2 ihrerseits - etwa mit Flüssigstickstoff - gekühlt und kondensiert somit das Gas im Innern der Druckbehälter 2 während der Befüllung, können nach Verschließen der Druckbehälter 2 und ihrer anschließenden Erwärmung auf Umgebungstemperatur Drücke erzielt werden, die den Eingangsdruck um das Mehrhundertfache übersteigen. Selbst für Höchstdrücke ausgelegte Druckbehälter können so mit Gas befüllt werden, dessen Druck bei der Befüllung im Bereich des Atmosphärendrucks oder nur wenige bar (10 ° Pa) beträgt.When operating the device 1 is provided as a filling gas liquefied argon from the reservoir 4 via the Füllgaszuleitung 6 the primary section 8 of the Heat exchanger 7 supplied. There takes place due to the thermal contact with the secondary portion 9 of the heat exchanger 7, an at least partial evaporation of the filling gas. Subsequently, the filling gas of the heater 15 is supplied, which supplies the filling gas with an energy which corresponds at least to the enthalpy of vaporization, ie, at the latest downstream of the Heizeinήchtung 15, the filling gas is completely evaporated. Via the connecting line 13, the vaporized FülSgas is passed into the secondary section 9 of the heat exchanger 7 and reaches there on the heat exchanger surface 10 in thermal contact with the still liquid filling gas in the primary section 8 of the heat exchanger 7. Due to the thermal contact, the gaseous filling gas cools down in the Idealfail down to the temperature of the still liquid filling gas, but can not condense due to the temperature and pressure conditions itself. The filling gas is thus in a very cold, but gaseous state. In this state, the filling gas is supplied to the pressure vessels 2 via the isolated Füllgasableitung 12 for filling, A provided in the Füligasableitung 12 pressure buffer 22 serves to dampen possible pressure fluctuations in the Füilgasableitung 12, which may arise during the filling of the pressure vessel 2, and to equalize the Befülivorgang overall. After completion of the filling and the closing of the pressure vessel 2, the filling gas in the pressure vessels 2 gradually heats up to ambient temperature and increases its pressure considerably. If, for example, the pressure vessels 2 to be filled are cooled, for example with liquid nitrogen, and thus condenses the gas inside the pressure vessel 2 during filling, pressures can be achieved after closure of the pressure vessel 2 and its subsequent heating to ambient temperature, which reduces the inlet pressure by several hundred times exceed. Even pressure vessels designed for maximum pressures can be filled with gas whose pressure during filling is in the range of atmospheric pressure or only a few bar (10 ° Pa).
Zur Herstellung eines Füllgasgemisches, im Ausführungsbeispiel eines Argon- Helium- Gemisches, wird eine zusätzliche Füllgaskomponente - im Beispiel Heiium - aus dem Vorratsbehälter 5 über die Gaszuleitung 19 in die Verbindungsleitung 13 eingespeist und vermischt sich dort mit dem verdampften Füllgas - im Beispiel Argon. Durch eine geeignete Einstellung bzw. Auswahl der Anordnungen 17. 20 zur Druckreduzierung wird ein gewünschtes Mischungsverhältnis zwischen den Komponenten eingestellt. Mitteis der Absperrventile 22,23 kann die Zufuhr einer Füllgaskomponente zeitweise auch vollständig unterbunden werden. Weist die über die Gaszuleitung 19 zugeführte zusätzliche Füllgaskomponente eine höhere Temperatur als die Siedetemperatur des Füilgases im Vorratsbehälter 4, kann auf den Einsatz der Heizeinrichtung 15 ganz oder teilweise verzichtet werden. Die zur Verdampfung notwendige Energie wird dem Füllgas dann ganz oder teilweise von der zusätzlichen Füllgaskomponente übertragen. Das Füllgasgemisch gelangt anschließend in den Sekundärabschnitt 9 des Wärmetauschers 7, wird dort wie zuvor beschrieben abgekühlt und zur Befülleinrichtung 3 geleitet. Bei der zuvor beschriebenen Anordnung sollte der Siedepunkt der im Vorratsbehäiter 5 gespeicherten zusätzlichen Füllgaskomponente niedriger sein als der des im Vorratsbehälter 4 gespeicherten Füllgases. Ist dies nicht der Fall, muss gewährleistet werden, dass es bei der Abkühlung des Füllgasgemlsches im Wärmetauscher 7 nicht zur Kondensation der zusätzlichen Füllgaskomponente kommt. Dies wird dadurch erreicht, dass in diesem Fall dem System, beispielsweise mittels der Heizeinrichtung 15, eine entsprechend höhere Energie zugeführt wird, die die Kondensation der zusätzlichen Füilgaskomponente verhindert.To produce a filling gas mixture, in the exemplary embodiment of an argon-helium mixture, an additional filling gas component - in the example Heiium - fed from the reservoir 5 via the gas supply line 19 in the connecting line 13 and mixes there with the vaporized filler gas - in the example argon. By a suitable adjustment or selection of the arrangements 17. 20 for pressure reduction, a desired mixing ratio between the components is set. Mitteis the shut-off valves 22,23, the supply of a Füllgaskomponente temporarily be completely prevented. If the additional filling gas component supplied via the gas feed line 19 has a higher temperature than the boiling temperature of the fill gas in the storage container 4, the use of the heating device 15 can be completely or partially dispensed with. The energy necessary for the evaporation is then transferred to the filling gas in whole or in part from the additional filling gas component. The filling gas mixture then passes into the secondary section 9 of the heat exchanger 7, where it is cooled as described above and passed to the filling device 3. In the above-described arrangement, the boiling point of the additional filling gas component stored in the storage tank 5 should be lower than that of the filling gas stored in the storage tank 4. If this is not the case, it must be ensured that the cooling of the filling gas mixture in the heat exchanger 7 does not result in the condensation of the additional filling gas component. This is achieved in that in this case the system, for example by means of the heater 15, a correspondingly higher energy is supplied, which prevents the condensation of the additional Füilgaskomponente.
Die zusätzliche Füilgaskomponente oder weitere Füllgaskomponenten, können im Rahmen der Erfindung dem Füllgas auch an anderer - hier nicht gezeigter - Stelle hinzugeführt werden, insbesondere stromabwärts vom Sekundärabschnitt 9 des Wärmetauschers 7.In the context of the invention, the additional fill gas component or further filling gas components can also be added to the filling gas at another point (not shown here), in particular downstream of the secondary section 9 of the heat exchanger 7.
Im Ausführungsbeispiel wird der Druck des Füllgases in der Verbindungsleitung an der Anordnung 17 reduziert. Aufgrund der mit dem Druckabfall verbundenen Siedepunktserniedrigung wird gewährleistet, dass auch im Falle von Druckschwankungen in der Füllgasableitung 12 eine Kondensation stets zuverlässig verhindert wird.In the exemplary embodiment, the pressure of the filling gas in the connecting line to the arrangement 17 is reduced. Due to the boiling point reduction associated with the pressure drop, it is ensured that condensation is always reliably prevented even in the case of pressure fluctuations in the filling gas discharge line 12.
Durch die Befüllung der Druckbehälter 2 mit sehr kaltem gasförmigem Füllgas oder Füiigasgemisch können nach Abschluss des Befüllvorgangs, dem Verschließen der Druckbehälter und der anschließenden Erwärmung der Druckbehälter 2 auf Umgebungstemperatur ohne großen apparativen Aufwand in den Druckbehäitem 2 Drücke von /OObar und mehr erzielt werden. Die Vorrichtung 1 ist damit besonders geeignet zum Befülien von Gasgeneratoren für Airbags geeignet. BezugszeichenlisteBy filling the pressure vessel 2 with very cold gaseous filling gas or Füiigasgemisch 2 pressures of / OObar and more can be achieved after completion of the filling process, the closing of the pressure vessel and the subsequent heating of the pressure vessel 2 to ambient temperature without great equipment expense in the Druckbehäitem. The device 1 is therefore particularly suitable for filling of gas generators for airbags. LIST OF REFERENCE NUMBERS
1. Vorrichtung1. Device
2. Druckbehäfter2. Pressurized container
3. Befülieinrichtung3. Befülieinrichtung
4. Vorratsbehälter4. Storage container
5. Vorratsbehälter5. Reservoir
6. FülSgasleituπg6. FülSgasleituπg
7. Wärmetauscher7. Heat exchanger
8. Primärabschnitt (des Wärmetauschers)8. primary section (of the heat exchanger)
9. Sekundärabschnitt (des Wärmetauschers)9. secondary section (of the heat exchanger)
10. Wärmetauscherfläche 11 —10. Heat exchanger surface 11 -
12. Füllgasableitung12. Fill gas discharge
13. Verbindungslettung13. Linking rescue
14. Mess- und Regeleinrichtung14. Measuring and control device
15. Heizeinrichtung15. Heating device
16. Temperatursensor16. Temperature sensor
17. Anordnung zur Druckreduzierung17. Arrangement for reducing pressure
18. Verbindungsstelle18. Junction
19. Gaszuleitung19. Gas supply
20. Anordnung zur Druckreduzierung20. Arrangement for reducing pressure
21 . -21. -
22. Druckpuffer22. Print buffer
23. Absperrventil23. shut-off valve
24. Absperrventil 24th stop valve

Claims

Patentansprüche claims
1. Verfahren zum Befϋllen von Druckbehältern mit kaltem Gas oder Gasgemisch, bei dem ein Füllgas oder eine Komponente eines Füligasgemisches in einem Vorratsbehälter (4) bei tiefen Temperaturen im verflüssigten Zustand gelagert und einem Druckbehälter (2) zur Befüllung zugeführt wird, dadurch gekennzeichnet, dass das Füllgas oder die Füllgaskomponente aus dem Vorratsbehälter (4) vor seiner Zuführung an den Druckbehälter (2) im verflüssigten Zustand einem Wärmelauscher (7) zugeführt, verdampft und das verdampfte Füilgas bzw. die verdampfte Füllgaskomponente an Wärmetauscherflächen (10) des Wärmetauschers (7) in thermischen Kontakt mit dem verflüssigten Füllgas bzw. der verflüssigten Füllgaskomponente aus dem Vorratsbehälter (4) gebracht wird.1. A method for filling pressure vessels with cold gas or gas mixture in which a filling gas or a component of a Füligasgemisches stored in a reservoir (4) at low temperatures in the liquefied state and a pressure vessel (2) is fed to the filling, characterized in that the filling gas or the filling gas component from the storage container (4) is supplied to a heat exchanger (7) in the liquefied state before it is fed to the pressure vessel (2), and the vaporized filling gas or the vaporized filling gas component is heated at heat exchanger surfaces (10) of the heat exchanger (7). brought into thermal contact with the liquefied filling gas or the liquefied filling gas component from the reservoir (4).
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Erwärmung des Füllgases und/oder der Mengendurchfluss des Fϋllgases durch den Wärmetauscher (7) in Abhängigkeit von der Temperatur des Füllgases geregelt wird.2. The method according to claim 1, characterized in that the heating of the filling gas and / or the mass flow of Fϋllgases by the heat exchanger (7) is regulated in dependence on the temperature of the filling gas.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Füllgas vor seiner Zuführung an den Druckbehälter (2) entspannt wird.3. The method according to claim 1 or 2, characterized in that the filling gas is expanded before it is fed to the pressure vessel (2).
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Erwärmung des Füllgases durch die Beimischung eines Zusatzgases erfolgt.4. The method according to any one of the preceding claims, characterized in that the heating of the filling gas is effected by the admixture of an additional gas.
5. Vorrichtung zum Befallen von Druckbehältern mit kaltem Gas oder Gasgemisch, bei dem ein Füllgas oder eine Komponente eines Füllgasgemisches in einem Vorratsbehälter (4)im verflüssigten Zustand gelagert und zur Befüllung einem Druckbehälter (2) zugeführt wird, dadurch gekennzeichnet, dass zwischen Vorratsbehälter (4) und Druckbehälter (2) ein Wärmetauscher (7) mit thermisch miteinander verbundenen Abschnitten (8,9) vorgesehen ist, wobei ein erster Abschnitt (8) des Wärmetauschers über eine Füllgas∑uleitung (6) mit dem Vorratsbehälter (4) und ein zweiter Abschnitt (9) über eine Füllgasableitung (12) mit der Befülleinrichtung (3) strömungsverfaunden ist und zwischen dem ersten Abschnitt (8) und dem zweiten Abschnitt (9) eine Verbindungsleitung (13) besteht, und eine Einrichtung (15) zum Erwärmen des Füligases vorgesehen ist.5. A device for filling pressure vessels with cold gas or gas mixture, in which a filling gas or a component of a filling gas mixture stored in a reservoir (4) in the liquefied state and for filling a pressure vessel (2) is supplied, characterized in that between reservoir ( 4) and pressure vessel (2) a heat exchanger (7) with thermally interconnected sections (8,9) is provided, wherein a first section (8) of the heat exchanger via a FüllgasΣuleitung (6) with the reservoir (4) and a second section (9) via a Füllgasableitung (12) with the filling device (3) is strömungsverfaunden and between the first section ( 8) and the second section (9) is a connecting line (13), and means (15) for heating the filling gas is provided.
6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass als Einrichtung (15) zum Erwärmen des Füllgases eine regelbare Heizeinrichtung vorgesehen ist, die mit Sensoren (16) zum Erfassen physikalischer Parameter des FüSIgases, wie Temperatur oder Druck, datenverbunden ist.6. The device according to claim 5, characterized in that as means (15) for heating the filling gas, a controllable heating device is provided, which is data-connected with sensors (16) for detecting physical parameters of the FüSIgases, such as temperature or pressure.
7. Vorrichtung nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass in der Verbindungsleitung (13) und/oder in der Füllgasableitung eine Drucksiufe (17) angeordnet ist.7. Apparatus according to claim 5 or 6, characterized in that in the connecting line (13) and / or in the Füllgasableitung a Drucksiufe (17) is arranged.
8. Vorrichtung nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass die Verbindungsleitung (13) mit einer Gaszuleitung (20) strömungsverbunden ist, mitteis der ein Zusat∑gas in die Verbindungsleitung (13) einspeisbar ist, 8. Device according to one of claims 5 to 7, characterized in that the connecting line (13) with a gas supply line (20) is fluidly connected, Mitteis a ZusatΣgas in the connecting line (13) can be fed,
PCT/EP2006/050166 2005-02-02 2006-01-11 Method and device for filling pressure vessels with non-liquefied gases or gas mixtures WO2006082122A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AT06707704T ATE519065T1 (en) 2005-02-02 2006-01-11 METHOD AND DEVICE FOR FILLING PRESSURE VESSELS WITH NON-LIQUEFIED GASES OR GAS MIXTURES
EP06707704A EP1846691B1 (en) 2005-02-02 2006-01-11 Method and device for filling pressure vessels with non-liquefied gases or gas mixtures

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005004665.7 2005-02-02
DE102005004665A DE102005004665A1 (en) 2005-02-02 2005-02-02 Method and device for filling pressure vessels with non-liquefied gases or gas mixtures

Publications (1)

Publication Number Publication Date
WO2006082122A1 true WO2006082122A1 (en) 2006-08-10

Family

ID=36063688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/050166 WO2006082122A1 (en) 2005-02-02 2006-01-11 Method and device for filling pressure vessels with non-liquefied gases or gas mixtures

Country Status (4)

Country Link
EP (1) EP1846691B1 (en)
AT (1) ATE519065T1 (en)
DE (1) DE102005004665A1 (en)
WO (1) WO2006082122A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008013084A1 (en) * 2008-03-07 2009-09-24 Messer Group Gmbh Apparatus and method for removing gas from a container
US20140366575A1 (en) * 2011-10-11 2014-12-18 Taiyo Nippon Sanso Corporation Low-temperature gas supply device, heat transfer medium-cooling device, and low-temperature reaction control device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104132237B (en) * 2014-08-18 2016-03-30 国家电网公司 Mix insulation gas low temperature making-up air device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0033386A1 (en) 1980-01-31 1981-08-12 Messer Griesheim Gmbh Process for transporting and storing permanent gases
WO1999005465A1 (en) 1997-07-24 1999-02-04 Winterlab Limited Process for preparing ice substitutes
DE19817324A1 (en) * 1998-04-18 1999-10-21 Messer Griesheim Gmbh Method for storing of cooled liquefied fuel gases, e.g. methane, hydrogen, etc.
WO2002066884A1 (en) 2001-02-20 2002-08-29 Messer Griesheim Gmbh Method and device for filling pressure containers with low-boiling permanent gases or gas mixtures
DE10119115A1 (en) * 2001-04-19 2002-10-31 Messer Griesheim Gmbh pressure vessel
US20030021743A1 (en) 2001-06-15 2003-01-30 Wikstrom Jon P. Fuel cell refueling station and system
WO2005043033A1 (en) * 2003-10-17 2005-05-12 L'AIR LIQUIDE Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation Method for filling a pressure vessel with gas
WO2005059431A1 (en) * 2003-12-19 2005-06-30 Messer Group Gmbh Method for filling compressed-gas containers

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1466790B1 (en) * 1964-12-18 1971-01-21 Cvi Corp Medical probe for cold surgery treatment
US3720057A (en) * 1971-04-15 1973-03-13 Black Sivalls & Bryson Inc Method of continuously vaporizing and superheating liquefied cryogenic fluid
CA1013582A (en) * 1973-08-24 1977-07-12 Joseph A. Connell In flight jet engine starter
DE19506486C2 (en) * 1995-02-24 2003-02-20 Messer Griesheim Gmbh Device for evaporating cryogenic media
US6941771B2 (en) * 2002-04-03 2005-09-13 Howe-Baker Engineers, Ltd. Liquid natural gas processing
DE10242159B4 (en) * 2002-09-11 2006-08-03 Air Liquide Deutschland Gmbh Mobile gas filling station

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0033386A1 (en) 1980-01-31 1981-08-12 Messer Griesheim Gmbh Process for transporting and storing permanent gases
WO1999005465A1 (en) 1997-07-24 1999-02-04 Winterlab Limited Process for preparing ice substitutes
DE19817324A1 (en) * 1998-04-18 1999-10-21 Messer Griesheim Gmbh Method for storing of cooled liquefied fuel gases, e.g. methane, hydrogen, etc.
WO2002066884A1 (en) 2001-02-20 2002-08-29 Messer Griesheim Gmbh Method and device for filling pressure containers with low-boiling permanent gases or gas mixtures
DE10107895A1 (en) * 2001-02-20 2002-09-05 Messer Griesheim Gmbh Method and device for filling pressure vessels with low-boiling permanent gases or gas mixtures
DE10119115A1 (en) * 2001-04-19 2002-10-31 Messer Griesheim Gmbh pressure vessel
US20030021743A1 (en) 2001-06-15 2003-01-30 Wikstrom Jon P. Fuel cell refueling station and system
WO2005043033A1 (en) * 2003-10-17 2005-05-12 L'AIR LIQUIDE Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation Method for filling a pressure vessel with gas
WO2005059431A1 (en) * 2003-12-19 2005-06-30 Messer Group Gmbh Method for filling compressed-gas containers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008013084A1 (en) * 2008-03-07 2009-09-24 Messer Group Gmbh Apparatus and method for removing gas from a container
US20140366575A1 (en) * 2011-10-11 2014-12-18 Taiyo Nippon Sanso Corporation Low-temperature gas supply device, heat transfer medium-cooling device, and low-temperature reaction control device

Also Published As

Publication number Publication date
EP1846691A1 (en) 2007-10-24
EP1846691B1 (en) 2011-08-03
ATE519065T1 (en) 2011-08-15
DE102005004665A1 (en) 2006-08-10

Similar Documents

Publication Publication Date Title
DE69838370T2 (en) Delivery system for a cryogenic fluid under high pressure
DE102010020476B4 (en) Use of a device for storing, decanting and/or transporting cryogenic liquefied combustible gas in a vehicle
EP1717510B1 (en) System and method for filling a vessel with a gas or a gas mixture
EP2035739B1 (en) Method for operating a device for filling a container with cryogenically stored fuel
DE112019005717T5 (en) FLUID BYPASS PROCESS AND SYSTEM FOR CONTROLLING THE TEMPERATURE OF A NON-PETROLEUM FUEL
EP2863103B1 (en) Device and method for supercooling carbon dioxide
WO2022106053A1 (en) Method and conveying device
EP2076707B1 (en) Apparatus for the rapid filling of compressed gas containers
EP1846691B1 (en) Method and device for filling pressure vessels with non-liquefied gases or gas mixtures
WO2017148604A1 (en) Method for cooling a first cryogenic pressure vessel
EP3236132A1 (en) Tank system
DE10040679A1 (en) Device and method for pressure-controlled supply from a liquid gas tank
EP1381807B1 (en) Pressure container
DE102017008210B4 (en) Device and method for filling a mobile refrigerant tank with a cryogenic refrigerant
DE102007003827B4 (en) Method for operating a liquid hydrogen storage tank
WO2019233676A1 (en) Device for the temperature pressure relief of a fuel tank
EP3444520A1 (en) Cooling of an exhaust system of liquefied gas for driving of machines, installations or vehicles
EP3450819B1 (en) Method for filling a mobile coolant tank with a cryogenic coolant
DE19645492C1 (en) System and method for maintaining or increasing pressure in a cryogenic tank
EP4107422A1 (en) Apparatus and method for generating a temperature-controlled cold gas stream
WO2013182907A2 (en) Process and device for regasifying low-temperature liquefied gas
DE102019134166A1 (en) Fuel supply system and motor vehicle
DE102018201327A1 (en) Method for removing fuel from a pressure vessel system with several pressure vessels and pressure vessel system
WO2023025410A1 (en) Method and conveying device
EP4392703A1 (en) Method and conveying device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006707704

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2006707704

Country of ref document: EP