WO2006080480A1 - Fluid transport device and fluid transporter - Google Patents

Fluid transport device and fluid transporter Download PDF

Info

Publication number
WO2006080480A1
WO2006080480A1 PCT/JP2006/301398 JP2006301398W WO2006080480A1 WO 2006080480 A1 WO2006080480 A1 WO 2006080480A1 JP 2006301398 W JP2006301398 W JP 2006301398W WO 2006080480 A1 WO2006080480 A1 WO 2006080480A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
tube
transport device
pressing
rotating plate
Prior art date
Application number
PCT/JP2006/301398
Other languages
French (fr)
Japanese (ja)
Inventor
Hajime Miyazaki
Kazuo Kawasumi
Kenichi Ushikoshi
Original Assignee
Seiko Epson Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corporation filed Critical Seiko Epson Corporation
Priority to US11/795,994 priority Critical patent/US7950908B2/en
Publication of WO2006080480A1 publication Critical patent/WO2006080480A1/en
Priority to US12/617,771 priority patent/US8157546B2/en
Priority to US13/412,066 priority patent/US8834138B2/en
Priority to US13/890,466 priority patent/US8858201B2/en
Priority to US13/890,504 priority patent/US20130243633A1/en
Priority to US14/017,440 priority patent/US20140003984A1/en
Priority to US14/134,519 priority patent/US8888473B2/en
Priority to US14/134,459 priority patent/US9309880B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/08Machines, pumps, or pumping installations having flexible working members having tubular flexible members
    • F04B43/082Machines, pumps, or pumping installations having flexible working members having tubular flexible members the tubular flexible member being pressed against a wall by a number of elements, each having an alternating movement in a direction perpendicular to the axes of the tubular member and each having its own driving mechanism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/14212Pumping with an aspiration and an expulsion action
    • A61M5/14232Roller pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/12Machines, pumps, or pumping installations having flexible working members having peristaltic action
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/12Machines, pumps, or pumping installations having flexible working members having peristaltic action
    • F04B43/1253Machines, pumps, or pumping installations having flexible working members having peristaltic action by using two or more rollers as squeezing elements, the rollers moving on an arc of a circle during squeezing

Definitions

  • the present invention relates to a fluid transport device and a fluid transport device including the fluid transport device.
  • a plurality of rollers provided on concentric circles on the periphery of the rotor, and a tube that flows fluid between the tube receiving members are mounted, and the rotor is rotated.
  • a peristaltic fluid transport device in which the roller sequentially presses the tube to flow the fluid.
  • a tube that allows fluid to flow between a plurality of rollers provided at the peripheral edge of the rotor and two backings is mounted.
  • a peristaltic fluid transport device is also known in which a roller presses the chip in sequence by rotating the rotor, and the fluid transport device is also known.
  • the first motor module is configured to overlap the roller and the second motor module (US Pat. No. 3, 1 7 7 7 4 2).
  • the rotor rotates while the tube is directly pressed by the roller and transports the fluid. It may be stretched in the direction of rotation, and the size of the fluid flow part of the tube (inner diameter of the tube) will change with respect to the initial size. Can be difficult.
  • the housing includes a fluid transport device, a drive control circuit, a display unit, and an operation unit. It is difficult.
  • the present invention has been made to solve these problems, and an object of the present invention is to provide a thin and small fluid transport device that maintains a stable flow rate and a fluid transport device including the fluid transport device.
  • the fluid transport device includes an elastic tube, a tube frame having a tube guide wall for mounting the tube in an arc shape, a rotating plate disposed inside the tube, and between the tube and the rotating plate.
  • the pressing shaft presses the tube in a substantially right angle direction, so that the tube is not stretched, and this does not change the inner diameter of the tube (fluid flow part). Therefore, a stable flow rate can be obtained.
  • the flow rate can be freely adjusted by arbitrarily setting the number of pressing shafts and strokes. Can be provided.
  • the roller rotates in the direction opposite to the rotation direction of the rotating plate by the frictional force with the pressing shaft. Accordingly, the frictional resistance is reduced, and the driving force of the rotating plate can be reduced. Details will be described in an embodiment described later. Since the torque generated by the motor as the drive source of the rotating plate may be small, it is possible to reduce the size, and the fluid transport device can also be reduced in size.
  • At least one of the plurality of pressing shafts closes the tube.
  • the fluid when operating the fluid transport device, since at least one pressing shaft closes the tube, the fluid can flow continuously.
  • the fluid transporter of the present invention includes an elastic tube, a tube frame having a tube guide wall for mounting the tube in an arc shape, a rotating plate disposed inside the tube, and the tube And a plurality of pressing shafts arranged radially between the rotating plates, and a plurality of rollers arranged on the upper surface of the rotating plate at equal intervals on a concentric circle with respect to the rotation center of the rotating plate.
  • a fluid transport device characterized in that the fluid is flowed from the fluid inflow side to the fluid outflow side by sequentially pressing the pressure shafts of the fluid, and a fluid storage container for storing the fluid is communicated by the tube. It is characterized by that.
  • the fluid transport device having the above-described structure
  • the above-described effects are achieved, and the fluid transport device and the fluid storage container are communicated by the tube. Accordingly, the fluid container can be easily exchanged, so that it is easy to handle and the fluid transportation device can be used repeatedly, so that there is an economic effect.
  • the fluid transporter according to the present invention is characterized in that the fluid transport device and the fluid container are formed in parallel in a planar direction in a housing. '
  • the fluid transport device and the fluid storage container are arranged so as not to overlap each other, it is possible to reduce the size without increasing the thickness.
  • the fluid transport device and the housing for the fluid container are formed as one, the cost can be reduced.
  • the fluid transporter is provided with an opening for conducting the inside and outside of the fluid container, and a breathable film is attached to the opening.
  • the fluid container is sealed so that the fluid does not leak.
  • the fluid container becomes negative with respect to the external pressure (atmospheric pressure), and the fluid flow It may be possible to prevent Therefore, by providing an opening that is closed with a gas-permeable film or the like, the inside of the fluid storage container can be set to a pressure that is about the same as the atmospheric pressure: the fluid can flow smoothly. '' Industrial applicability
  • the fluid transport device and fluid transporter of the present invention can be installed in various mechanical devices, inside the device, or outside the device, and can be used for water, saline, etc.
  • Chemicals: Oils Aromatic liquids, can be used for transporting fluids such as ink and gas.
  • the fluid transporter alone can be used for fluid flow and supply, but is not limited to this. Brief Description of Drawings
  • FIG. 1 is a perspective view showing an external appearance of a fluid transporter according to Embodiment 1 of the present invention.
  • FIG. 2 is a plan view showing a fluid transportation device according to Embodiment 1 of the present invention.
  • FIG. 3 is a cross-sectional view showing a fluid transportation device according to Embodiment 1 of the present invention.
  • FIG. 4 is a partial plan view showing a fluid transport device ′ according to Embodiment 2 of the present invention.
  • FIG. 5 is a cross-sectional view showing a fluid transportation device according to Embodiment 2 of the present invention.
  • FIG. 6 is a plan view showing the shape of a rotary pressing plate according to Embodiment 2 of the present invention.
  • FIG. 7 is an exploded perspective view showing a fluid transporter according to Embodiment 3 of the present invention.
  • Embodiment 1 of the present invention will be described.
  • FIG. 1 is a perspective view showing an appearance of the fluid transporter according to the first embodiment.
  • a fluid transporter 10 is composed of a fluid transporting device 20 that transports fluid by a peristaltic motion, and a pack-shaped fluid storage container 90 that stores fluid.
  • the fluid transport device 20 and the fluid container 90 are communicated with each other by a tube 80.
  • the fluid storage container 90 is made of a synthetic resin having flexibility, and is formed of a silicon-based resin in the present embodiment. -One end of the fluid storage container 9.0 is provided with a tube holding part 92, and the tube 8.0 is compressed or heated. Welding-ma.-fe is a means of adhesion, etc., fluid: is leaking, and is leaking. ,,
  • the fluid used in the present invention includes water, saline, chemicals, oils, aromatics, fluids such as ink, and gas.
  • One end of the tube 80 communicates with the inside of the fluid container 90, passes through the fluid transport device 20, extends to the outside of the fluid transport device 20, and is in the fluid container 90.
  • the fluid contained in the container is transported to the outside by the fluid transport device 20.
  • the fluid transport device 20 has a lower lid 8 2, a pump unit frame 3 1, a tube frame 3 2, and an upper lid 8 1 that are stacked one on top of the other and fixed screws 9 5. (In FIG. 1, the upper lid fixing screw is shown) etc. It is integrated by.
  • This fluid transport device 2 0 The rotary extrusion mechanism for transporting the fluid is stored in the interior of the machine.
  • the lower lid 8 2, the pump unit frame 3 1, the tube frame 3 2, the upper lid 8 1, and the fluid storage container 90 are excellent in biocompatibility when the fluid transporter 10 is attached to a living body. It is preferable to employ a synthetic resin such as a material such as polysulfone or urethane. ,
  • FIG. 2 is a plan view showing a mechanism for transporting the fluid of the fluid transport device 20 according to the present embodiment
  • FIG. 3 is a cross-sectional view showing the AA section of FIG. Note that FIG. 2 shows a state in which the upper lid 8 1 is seen through for easy understanding of the explanation. 2 and 3, the fluid transport device 20 has a peristaltic motion to the tube 80 as a basic configuration, and a pump unit 30 as a rotary extrusion mechanism that transports fluid, and a pump unit 3.
  • the pump unit 30 and the pump drive unit 60 are stacked in a cross-sectional direction; they are T-configured (see Fig. 3). _
  • the pump drive unit 60 includes a plate-shaped first machine frame 61, a second-machine frame 62, and a first machine frame 63, and is provided between the machine frames.
  • a step motor employed in a quartz watch or the like is employed, and a coil block 70 is disposed outside the pump unit 30.
  • a stator magnetically joined to the coil block 70 and a rotor are provided inside the stator, and are rotated based on a signal from a drive circuit (not shown).
  • a predetermined drive pattern is stored in advance in the drive circuit, and the step motor is driven by a signal based on this drive pattern.
  • the battery as a drive circuit and a drive source is arranged in a space formed by the first machine casing 61 and the lower lid 82, and the battery is a coil probe. 70 and the transmission wheel, which will be described later. Further, as described above, since the lower lid 82 is screwed and fixed by the fixing screw 96, the battery can be easily replaced if the lower lid 82 is removed.
  • the rotation of the rotor is reduced to a predetermined reduction ratio by a plurality of transmission wheels (not shown) and transmitted to the first transmission wheel 71.
  • the transmission first wheel 71 is pivotally supported between a bearing 7 7 provided in the second machine casing 62 and a transmission second axle 7 2 planted in the third machine casing 63.
  • the rotation of the first transmission wheel 7 1 goes through the third transmission wheel 7 3 (not shown), the fourth transmission wheel 7 4 and the fifth transmission wheel 7 5 through the center of the pump boot 30 Is transmitted to the rotating wheel wheel 5 6 located at.
  • the transmission fourth wheel 7 4 is loosely fitted on the central shaft portion of the transmission second wheel shaft 7 2, and the transmission fifth wheel 7 5 is loosely fitted on the support shaft 6 1 A provided on the first machine casing 61. ing.
  • the pump drive unit 60 the first machine frame 61 is screwed and fixed inside the ring-shaped pump unit frame 31 by a fixing screw (not shown), and the second machine frame 6 2 and the third machine frame 6 are connected. 3 are fixedly screwed to the first machine and the frame 61 by fixing screws (not shown), each having a predetermined interval.
  • the pump drive unit 6'0 is unitized except for the transmission fifth wheel 75.
  • a pop-up unit 3.0 is installed on top of this pump-driven unit 60 b .
  • the pump unit 30 has, as a basic structure, a rotating plate wheel 56 rotated by a rotational force transmitted from the pump drive unit 60, and a rotating plate.
  • a rotating plate 7 6 that rotates integrally with the car 5 6, four rollers 5 0 5 3 provided on the upper surface of the peripheral portion of the rotating plate 7 6, and eight provided radially from the rotation center of the rotating plate 7 6
  • the pressing shaft 4 0 4 7 and the tube 8 0 through which the fluid flows are provided.
  • the rotating plate 76 is made of a disk-shaped plate member, and the rotating wheel wheel 56 is fixed at the center. Rotational force is transmitted from the transmission fifth wheel 75 to this' rotating wheel wheel 56, and the rotating plate 76 rotates around the transmission second wheel shaft 72. Rotating plate The center hole of the car 5 6 is inserted into the transmission second axle 7 2, and the rotary wheel 5 6 is supported by the transmission second axle 7 2 and the bearing 5 7 provided on the upper cover 8 1. ing.
  • a roller support shaft 5 5 is planted on the outer periphery of the rotary plate ⁇ 6.
  • Four rollers 55 are provided at equal distances (concentric circles) from the rotation center of the rotating plate 76 and at equal intervals in the plane direction (90 degree intervals).
  • the roller support shaft 5 5 is press-fitted from the lower side of the rotating plate 7 6, and the roller shaft 5 4 is press-fitted into the roller support shaft 5 5 from the opposite side across the rotating plate 7 6.
  • roller 50 is inserted into the roller shaft 5: and is locked by the C ring 5 8.
  • the roller 50 has a loose-fitting relationship with the roller shaft 54 and can freely rotate.
  • the rollers 50 to 53 are also arranged at an equal distance from the rotation center of the rotating plate 76.
  • a ring-shaped slide frame 34 is provided on the outer periphery of the rotating plate 76 having these rollers 50 to 53.
  • This slide frame 3 4 also coincides with the rotation center of the rotating plate 76, and the position is accurately regulated and fixed by a positioning member (not shown). Screwed onto frame 6.1 (see Fig. 2). In the slide frame 34, eight holes that penetrate from the center radially to the outside are opened, and the pressing shafts 40 to 47 are inserted into the holes, respectively.
  • the pressing shafts 40 to 47 are set to dimensions that can move in the axial direction.
  • the angle formed by the axial center of the pressing shaft 40 and the axial center of the pressing shaft 47 is set to 90 degrees or more.
  • the pressing shaft 4 3 is formed with a hook-shaped pressing portion 4 3 A at one end and a pressing portion 4 3 B rounded into a hemisphere at the other end.
  • the pressing part 4 3 B is pressed by the roller 50 and the pressing part 4 3 A presses the tube 80 against the tube guide wall 3 2 B to squeeze and flow the fluid. It is a structure.
  • the tube 80 is not pressed (indicated by a two-dot chain line in FIG. 3).
  • a ring-shaped tube frame 3 2 is further provided on the outer periphery of the slide frame 3 4.
  • the tube frame 3 2 also has a center coincident with the rotation center of the rotating plate 5 7 6 as with the slide frame 3 4.
  • a tube-shaped tube mounting portion 3 2 A for mounting the tube 80 is formed on the inner peripheral portion of the tube frame 3 2.
  • the tube mounting portion 3 2 A and the pressing portion 4 3 of the pressing shaft 4 3 The position of the tube 80 in the plane direction is restricted between the position A and A.
  • the tube 80 is formed into the form shown in FIG. 2 by the tube guide groove (not shown) provided in the slide frame 3 4 and the tube frame 3 2. It is installed.
  • the pressing shaft 40 4 7 extends radially from the rotation center of the rotating plate 76, and the tube guide wall 3 2 B to which the tube 80 is pressed is also concentric with the rotating center of the rotating plate 76. Thus, the tube 80 is pressed in a substantially right angle direction by the pressing shaft 4 0 15 4 7. '"
  • the slide frame 34 is formed with a tip presser 35 that partially protrudes in the direction of the upper surface of the tube 8'0 so that the tube 80 is not lifted up.
  • This tube presser. 3 5 is arranged in multiple places between the press shafts 4 0 4 7 to press the tube 8—0 (between three places in Fig. 2). Leaked. 20 '). .
  • the fluid transport device 20 includes the above-described pump drive unit 60 and the pump unit 30 superimposed on each other so that the tube frame 3 2 is fixed to the fixed shaft 33 supported by the pump unit frame.
  • the upper lid 8 1 is passed through and fixed by screwing with fixing screws 9 5.
  • the lower lid 8 2 is screwed together by a fixing screw 96 and is integrally formed.
  • the drive unit 60 rotates in the direction of fluid flow (in the direction of the arrow in the figure), that is, counterclockwise in this embodiment.
  • the roller 50 will be described as an example. Before the outermost circumference of the roller 50 crosses the pressing shaft 4 0, the pressing shaft 4 ⁇ 0 is in an open state.
  • the rotating plate 76 rotates and the pressing shaft 40 moves in the direction of the tube 80 from the position where the outermost circumference of the roller 50 (shown by the locus C in the figure) contacts the end of the pressing shaft 40. , Start pressing tube ⁇ .
  • the angle between the pressing shafts 40 and 47 is set to 90 degrees or more.
  • the shaft 47 is pressed by the roller 51 and closes the tube 80.
  • the roller 50 sequentially presses against the pressing shafts 4 1, 4 2, 4 3.
  • the rotation center of the rotating plate 76, the rotation center of the roller, and the axial center line of the pressing shaft become a straight line, the pressing amount becomes maximum, and then the roller gradually moves away from the pressing shaft.
  • the tube 80 is released from the pressing of the pressing shaft.
  • the motion of pressing the tube 80 sequentially is called a peristaltic motion, and the fluid is transported by squeezing the tube 80 by this peristaltic motion.
  • a device that uses this peristaltic motion to transport fluid is called a peristaltic fluid transport device.
  • the rollers 50 to 53 press the pressing shafts 4 0 to 4 7 one after another, but as described above, the pressing shafts 40 and ..4 Since the angle formed by 7 is 90 degrees or more, at least one of the shafts is pressed and the shaft '8' is closed. : No. ...., ....: .. Also, the rollers 5 0 to 5 3 are opposite to the rotating direction of the rotating plate 7 6 when pressing the pressing shafts 4 0 to 4 7. Since it is rotated by the friction force in the 'direction, that is, in the clockwise direction, the friction force with the pressing shafts 40 to 4 7 is reduced.
  • the pressing shafts 40 to 47 press the tube 80 in a substantially right angle direction, so that the tube 80 is not stretched. Since the fluid flow part does not change, a stable flow rate can be obtained. In addition, since the pressing shafts 40 to 4 7 are pressed by the rollers 50 to 53, the flow rate can be adjusted freely by setting the number of pressing shafts and the stroke as desired.
  • the fluid transport device 20 and the fluid transport device can be easily provided.
  • rollers 50 to 53 rotate in the direction opposite to the rotating direction of the rotating plate 7 6 when pressing the pressings 40 to 47, so the frictional resistance is reduced and the driving force of the rotating plate 7 6 is reduced. Since the generated torque of the motor as the drive source of the rotating plate 76 may be small, it is possible to reduce the size, and from this, the fluid transport device 20 can also be reduced in size. .
  • the fluid transport device 20 and the fluid storage container 90 are communicated with each other through the tube 80, the fluid storage container 90 can be easily replaced, and therefore, it is easy to handle. Since the fluid transport device 20 can be used repeatedly, there is also an economic effect.
  • Embodiment 2 is the above-described embodiment, where 1 is the mouth, and the structure in which the pressing shaft is pressed against the tube 80, instead of the roller, the rotating pressing plate '1 0 0
  • the rotary pressing plate 100 is rotated to press the pressing shaft. Therefore, the structure of the rotary pressing plate 100 will be mainly described, the description of other common parts will be omitted, and the same parts as those in Embodiment 1 will be described with the same reference numerals.
  • FIG. 4 is a partial plan view of the fluid transport device 20 according to the second embodiment
  • FIG. 5 is a cross-sectional view showing a BB cross section of FIG. Since the structure of the pump drive unit 60 in the second embodiment is the same as that in the first embodiment, the description thereof is omitted.
  • a rotary pressing plate 100 (see FIG. 4) having 4 ′ protrusions is provided on the upper surface of the rotary plate 76.
  • Rotating pressure plate 1 0 0 Are mounted using the four roller support shafts 5 5 to which the rollers 50 to 5 3 described in Embodiment 1 (see FIG. 3) are attached as guide shafts. It is locked with.
  • the rotary pressing plate 100 is rotated together with the rotary plate 7 6 with the same rotation center as that of the rotary plate 7 6.
  • the four protrusions described above are pressing portions 10 0 1 to 10 4 that press the pressing shafts 40 to 4 7.
  • the shape and action of the rotary pressing plate ⁇ 0 0 will be described in detail with reference to FIG.
  • FIG. 6 is a plan view showing the shape of the rotary pressing plate 1 0 0.
  • the rotary pressing plate 100 has four pressing portions 10 0 1 to 10 4 formed on the outer peripheral portion.
  • the pressing portions 1001 to 104 are provided at equal intervals of 90 degrees in the circumferential direction.
  • a hole 10 5 through which the shaft portion of the rotary plate wheel 56 passes is provided at the center, and four holes 10 06 that pass through the roller support shaft 55 are provided at the outer peripheral direction. Yes. Since the pressing parts 1001 to 104 are point-symmetrical with respect to the rotation center G, the pressing part 1001 will be described as an example.
  • the circular arc 10 8 is formed with a force that is in contact with the pressing shafts 40 to 47 and a diameter having a slight gap when the rotary pressing plate 100 rotates, and presses the pressing shafts 40 to 47. Absent.
  • the rotary pressing plate 1 0 0 rotates, it gradually starts pressing one of the pressing shafts by the inclined surface 1 0 9, and reaches the maximum at the outer circumference circle 3 ⁇ 4 ⁇ 1 (rotation locus C of the rotary pressing plate 1 0 0). Reach the press, the rook, and close tube 8. : After that ⁇ Further rotation-rotation press plate 1 0 0 turns, slope 1 1 1-43: reach ;, gradually move away from the press shaft, tube 8 0 is closed Is released. At this time, the fluid flows into the tube 80. In this way, the rotary pressing plate. 1 0 0 'gives a peristaltic motion to the pressing shafts 40 to 47 and transports the fluid.
  • the recessed part 107 is provided between the adjacent press parts, In the recessed part 107, the press shafts 40-47 are making the state open
  • the pressing shafts 40 to 47 move away from the rotary pressing plate 100, the tube 80 moves to the rotation center G side due to the elastic force of the tube 80, and the tube 80 is closed. Is the structure.
  • the angle formed between the pressing shaft 4 0 and the pressing shaft 4 7 is set to 90 ° or more, so that the adjacent pressing portions of the rotary pressing plate 100 are adjacent to each other. Either block the tube 80.
  • the friction resistance when pressing the pressing shafts 40 to 47 is slightly larger than that of the structure including a plurality of the single rollers in the first embodiment described above, but the rotation Since the same driving can be performed with only one pressing plate 100, the structure can be simplified.
  • the fluid flow rate can be easily changed by replacing the rotating pressing plate according to the desired fluid flow rate. effective.
  • the rotary pressing plate 100 is mounted on the roller shaft 5 4 as a guide shaft, but directly mounted on the roller support shaft 5 5.
  • the object of the present invention can be realized even if the four nozzles' shafts or the roller support shafts are two diagonal pairs (one pair).
  • the rotating and pressing plate 1.0 and the rotating plate 7 6 are integrally formed, and the roller 5 0 as in the first embodiment. ⁇ 5 3 ⁇
  • Embodiment 3 of the present invention will be described with reference to the drawings.
  • the fluid transporter 10 in Embodiments 1 and 2 described above is provided with a fluid transporting device 20 and a fluid container 9 0 ′ as separate bodies, which are communicated with each other through a tube 80.
  • the structure of the third embodiment is characterized in that the fluid transport device and the fluid storage container are provided integrally in the housing.
  • FIG. 7 is an exploded perspective view showing the fluid transporter according to the third embodiment.
  • the fluid transporter 10 has a fluid transporting device section 20 0 and a fluid storage section 190 inside a housing having a bowl-like shape in plan view.
  • the housing is composed of a case 1 8 2 corresponding to the lower lid according to the first and second embodiments and an upper lid 1 81, and is screwed and fixed by fixing screws 9 5 (four in FIG. 7).
  • Case 1 8 2 is formed with two parallel recesses, one of which is provided with a pump unit 30 and a pump drive unit (not shown), and the other recess is provided with a fluid containing part 1 90 is formed.
  • the fluid container 1 90 and the pump unit 30 are communicated with each other through a tube 1 80.
  • One end 1, 9 2 of the tube 1 8 0 passes through the fluid containing part 1 90, and partway passes through the outer periphery of the pump unit 30 and the other end extends outside the fluid transporter 10. ing. ,.
  • the pump unit 30 has the same structure as that of the first and second embodiments described above, and transports fluid by the peristaltic motion of the pressing shafts 40 to 47 (see FIGS. 2 to 6). Structure. '''
  • Packing (not shown) shall be provided at the communicating part of one end 1 9 2 of the tube 1 8 0, the case 18.2 and the top cover, 1 8 1 and. Body part 1.9 From the beginning ... The fluid is prevented from leaking into the pump unit 30. It is desirable that the fluid storage unit 1 90 be provided with an opening that is closed with, for example, a breathable film so that the pressure is approximately equal to the external pressure when the upper lid 1 8 1 is attached. '
  • the upper lids 1 8 and 1 and the case ⁇ 8 2 can be fixed by heat welding or adhesive bonding, in addition to screwing.
  • the pump boot 30 and the fluid storage section 190 are arranged so as not to overlap with each other, so that the size can be reduced without increasing the thickness. Can be used.
  • the pump unit 30 and the fluid housing part 190 are formed as a single casing, the cost can be reduced. Can be reduced.
  • the fluid flow amount (transportation amount) can be set by the number of rollers, the number of pressing portions of the rotating plate, and the like. It is also possible to store multiple pieces of information that can arbitrarily select the rotational speed of 7 6 and select the rotational speed. In addition, the information to drive the rotational 7 6 intermittently is stored and fluid is intermittently stored. Can be made to flow.
  • Embodiments 1 to 3 described above it is possible to provide a thin and small fluid transport device that maintains a stable fluid flow rate and a fluid transport device including the fluid transport device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Vascular Medicine (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Reciprocating Pumps (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

A fluid transport device of peristaltic type continuously transporting a fluid, comprising a plurality of pressing shafts radially disposed on a concentric circular arc along a tube and squeezing a part of the tube having an elasticity to flow the fluid in an approximately right angle direction and rollers (50) to (53) sequentially pressing these pressing shafts from the inflow side to the outflow side of the fluid. By this structure, the thin and small fluid transport device capable of sustaining stable flow and a fluid transporter having the fluid transport device can be provided.

Description

明細書 流体輸送装置及び流体輸送器 技術分野  TECHNICAL FIELD FIELD OF THE INVENTION
本発明は、 流体輸送装置及び流体輸送装置を備える流体輸送器に関す る。 技術背景  The present invention relates to a fluid transport device and a fluid transport device including the fluid transport device. Technical background
従来、 第 1の従来技術と して、 ローターの周縁部の同心円上に設けら れた複数のローラー、 チューブ受部材との間に流体を流動するチューブ を装着し、 ローターを回転することで、 ローラーが順次チューブを押圧 して流体を流動させる蠕動式の流体輸送装置という ものが知られている Conventionally, as a first prior art, a plurality of rollers provided on concentric circles on the periphery of the rotor, and a tube that flows fluid between the tube receiving members are mounted, and the rotor is rotated. There is known a peristaltic fluid transport device in which the roller sequentially presses the tube to flow the fluid.
(特開平 1 0— 2 2 0 3 5 7号公報) 。 (Japanese Patent Laid-Open No. 10-2 20 3 5 7).
また、 第 2の従来技術と して、 前述の第 1の従来技術と,同様に、 ロー ターの周縁部に設けられた複数のローラーと二つのバッキングとの間に 流体を流動するチユーブを装着し、 ロータ一を回転することによって、 ローラーが順次チ 一ブを押圧して流体を流動きせる蠕動式の流体輸送 、装置も知られてお.り、 この流体輸送.装置は、. '口 タ一を回.:転.させるた.め のモーターモジュールが、 ローラー^二,ッ ドと重.ね合わせて構成されて いる (米国特許第 3 . 1 7 7 7 4 2号明細書) 。  Also, as the second prior art, similarly to the first prior art described above, a tube that allows fluid to flow between a plurality of rollers provided at the peripheral edge of the rotor and two backings is mounted. In addition, a peristaltic fluid transport device is also known in which a roller presses the chip in sequence by rotating the rotor, and the fluid transport device is also known. The first motor module is configured to overlap the roller and the second motor module (US Pat. No. 3, 1 7 7 7 4 2).
しかしながら、 このような第 1の従来技術及び第 2の従来技術に記載 の発明では共に、 チューブをローラーで直接押圧しながらローターが回 転し、 流体を輸送しているために、 チューブがローターの回転方向に引 き伸ばされることがあり、' チューブの流体流動部 (チューブの内径) の 大きさが、 初期の大きさに対して変化するので、 流体の流量も変化し、 安定した流量の輸送が困難となることが考えられる。  However, in both of the inventions described in the first conventional technique and the second conventional technique, the rotor rotates while the tube is directly pressed by the roller and transports the fluid. It may be stretched in the direction of rotation, and the size of the fluid flow part of the tube (inner diameter of the tube) will change with respect to the initial size. Can be difficult.
ま,こ、 前述した第 1の従来技術では、 ハウジングに流体輸送装置と駆 動制御回路と表示部と操'作部とが含まれる構造となっており、 小型化は 困難とされる。 In the first prior art described above, the housing includes a fluid transport device, a drive control circuit, a display unit, and an operation unit. It is difficult.
また、 前述した第 2の従来技術では、 モーターモジュールが、 ローラ 一ュニッ トと重ね合わせて構成されているため、 薄型化が困難であると レ、う課題を有する。  In the second prior art described above, since the motor module is configured to overlap the roller unit, there is a problem that it is difficult to reduce the thickness.
本発明は、 これら上記の課題を解決するためになされたもので、 安定 した流量を持続する薄型、 小型の流体輸送装置及びこの流体輸送装置を 備える流体輸送器を提供することを目的とする。 発明の開示 '  The present invention has been made to solve these problems, and an object of the present invention is to provide a thin and small fluid transport device that maintains a stable flow rate and a fluid transport device including the fluid transport device. Invention Disclosure ''
本発明の流体輸送装置は、 弾性を有するチューブと、 該チューブを円 弧状に装着するチューブ案内壁を有するチューブ枠と、 前記チューブの 内側に配置される回転板と、 前記チューブと前記回転板の間に放射状に 配置される複数の押圧軸と、'前記回転板の上面に、 前記回転板の回転中 心に対して同心円上に等間隔で配置された複数のローラーと、 を備え、 前記チューブ案内壁の円弧中心と前記回転板の回転中心と前記複数の押 圧軸の放射中心とがー致しており、 前記複数のローラーが、 前記複数の 押圧軸を順次押圧して流体の流入側から流出側に向かって流体を流動す ることを特徴とする。 . ... . .  The fluid transport device according to the present invention includes an elastic tube, a tube frame having a tube guide wall for mounting the tube in an arc shape, a rotating plate disposed inside the tube, and between the tube and the rotating plate. A plurality of pressing shafts arranged radially, and a plurality of rollers arranged on the upper surface of the rotating plate at equal intervals on a concentric circle with respect to the rotation center of the rotating plate, and the tube guide wall And the rotation center of the rotating plate and the radial center of the plurality of pressing shafts are aligned, and the plurality of rollers sequentially press the plurality of pressing shafts to flow out from the fluid inflow side. It is characterized by flowing fluid toward ...
<D 明によれ;ば、 押圧軸はチューブを略.直角方向に.押.圧するため.、 . チューブが引き伸ばされることがなく、 このことによってチューブの内 径 (流体の流動部) が変化しないため、 安定した流量を得ることができ る。 ' ' '  <D According to light; the pressing shaft presses the tube in a substantially right angle direction, so that the tube is not stretched, and this does not change the inner diameter of the tube (fluid flow part). Therefore, a stable flow rate can be obtained. '' '
また、 押圧軸を回転押出機構によって押圧する構造であるため、 押圧 軸の数、 ス トロークを任意に設定することによって、 流量の調整が自在 に行えるため、 所望の流量の流体輸送装置を容易に提供することができ る。  In addition, since the structure is such that the pressing shaft is pressed by a rotary extrusion mechanism, the flow rate can be freely adjusted by arbitrarily setting the number of pressing shafts and strokes. Can be provided.
ローラーは、 押圧軸との間の摩擦力によって、 回転板の回転方向とは 逆方向に回転する。 従って、 摩擦抵抗が小さくなり、 回転板の駆動力を 小さくすることができる。 詳しく は後述する実施の形態で説明するが、 回転板の駆動源と してのモーターの発生トルクが小さく てもよいので、 小型化が可能となり、 このことから流体輸送装置も小型化することがで きる。 The roller rotates in the direction opposite to the rotation direction of the rotating plate by the frictional force with the pressing shaft. Accordingly, the frictional resistance is reduced, and the driving force of the rotating plate can be reduced. Details will be described in an embodiment described later. Since the torque generated by the motor as the drive source of the rotating plate may be small, it is possible to reduce the size, and the fluid transport device can also be reduced in size.
また、 本発明では、 前記複数の押圧軸の少なく とも一つが前記チュー ブを閉塞していることを特徴とする。  In the present invention, at least one of the plurality of pressing shafts closes the tube.
このよ うな構造によれば、 この流体輸送装置を運転している際には、 少なく とも一つの押圧軸がチューブを閉塞する構造であるため、 流体を 連続して流動することができる。  According to such a structure, when operating the fluid transport device, since at least one pressing shaft closes the tube, the fluid can flow continuously.
また、 途中で運転を停止した際においても、 チューブの 1箇所は閉塞 しているので、 流体の外部への流出を防止することができる。 このこと は、 流体が仮に安全に配慮されるべき薬品等の場合、 安全性を高めるこ とができる。 '  In addition, even when the operation is stopped halfway, one point of the tube is closed, so that the fluid can be prevented from flowing out. This can increase safety when the fluid is a chemical that should be considered safe. '
また、 本発明の流体輸送器は、 弾性を有するチューブと、 該チューブ を円弧状に装着するチューブ案内壁を有するチューブ枠と、:前記チュー ブの内側に.配置される回転板と、 前記チューブと前記回転板の間に放射 状に配置される複数の押圧軸と、 俞記回転板の上面に、 前記回転板の回 転中心に対して同心円上に等間隔で配置された複数のローラーとを備え、 前記チューブ案内壁の円弧中心と前記回転板の回転中心と前記複.数の押 . 圧軸..の放射中心とが一致しており、 前記複数:のロー,.ラーが、 .前記複数の 押圧軸を順次押圧して流体の流入側から流出側に向かって流体を流動す ることを特徴とする流体輸送装置と、流体を収容する流体収容容器とが、 前記チューブによって連通さ ていることを特徴とする。  In addition, the fluid transporter of the present invention includes an elastic tube, a tube frame having a tube guide wall for mounting the tube in an arc shape, a rotating plate disposed inside the tube, and the tube And a plurality of pressing shafts arranged radially between the rotating plates, and a plurality of rollers arranged on the upper surface of the rotating plate at equal intervals on a concentric circle with respect to the rotation center of the rotating plate. The arc center of the tube guide wall, the rotation center of the rotating plate, and the radial center of the plurality of pressing shafts coincide with each other, and the plurality of rows, A fluid transport device characterized in that the fluid is flowed from the fluid inflow side to the fluid outflow side by sequentially pressing the pressure shafts of the fluid, and a fluid storage container for storing the fluid is communicated by the tube. It is characterized by that.
この発明によれば、 前述した構造の流体輸送装置を採用しているため に、 前述した効果を有すると共に、 流体輸送装置と流体収容容器とがチ ユ ーブで連通されている。 従って、 流体収容容器の交換を容易に行う こ とができるので取り扱い易いこと と、 流体輸送装置を繰り返し使用する ことができるので経済的効果もある。 また、 本発明の流体輸送器は、 前記流体輸送装置と前記流体収容容器 とが、 筐体内において平面方向に並列して形成されていることを特徴と する。 ' According to the present invention, since the fluid transport device having the above-described structure is employed, the above-described effects are achieved, and the fluid transport device and the fluid storage container are communicated by the tube. Accordingly, the fluid container can be easily exchanged, so that it is easy to handle and the fluid transportation device can be used repeatedly, so that there is an economic effect. The fluid transporter according to the present invention is characterized in that the fluid transport device and the fluid container are formed in parallel in a planar direction in a housing. '
このよ うな構造によれば、 流体輸送装置と流体収容容器と.を重なり あ わないように配置しているために、 厚みを増すことなく、 小型化を可能 とすることができる。 また、. 流体輸送装置と流体収容容器の筐体が一つ で形成されることから、 コス トの低減ができる。  According to such a structure, since the fluid transport device and the fluid storage container are arranged so as not to overlap each other, it is possible to reduce the size without increasing the thickness. In addition, since the fluid transport device and the housing for the fluid container are formed as one, the cost can be reduced.
さらに'、 流体輸送器が、 前記流体収容容器の内外を導通する開口部を 備え、前記開口部には通気性フィルムを装着していることを特徴とする。  Furthermore, the fluid transporter is provided with an opening for conducting the inside and outside of the fluid container, and a breathable film is attached to the opening.
流体収容容器は流体が漏洩しないよ うに密閉されるが、 流体輸送装置 を駆動して、 流体を流動すると、 流体収容容器が外部圧力 (大気圧) に 対して負圧になり、'流体の流動を妨げることが考えられる。 そこで、 通 気性フィルム等で塞がれる開口部を設けることにより、 流体収容容器内 が、 大気圧と同程度の圧力にすることができ:、 流体の流動を円滑に行う ことができる。 ' ' 産業上の利用可能性  The fluid container is sealed so that the fluid does not leak. However, when the fluid transport device is driven to flow the fluid, the fluid container becomes negative with respect to the external pressure (atmospheric pressure), and the fluid flow It may be possible to prevent Therefore, by providing an opening that is closed with a gas-permeable film or the like, the inside of the fluid storage container can be set to a pressure that is about the same as the atmospheric pressure: the fluid can flow smoothly. '' Industrial applicability
- . 本発明の-流'体輸送装置及び流体輸送器は、 様タな機械装置.にお.い.て.、 装置内.、 または装置外に搭載され、 水や食塩水、....薬液、:油類 芳香液.、.. インク、 気体等の流体の輸.送に利用することができる。 また、 流体輸送 器単独で、 俞記流体の流動、 供給に利用することができるが、 これに限 定されない。 図面の簡単な説明 -The fluid transport device and fluid transporter of the present invention can be installed in various mechanical devices, inside the device, or outside the device, and can be used for water, saline, etc. Chemicals: Oils Aromatic liquids, can be used for transporting fluids such as ink and gas. In addition, the fluid transporter alone can be used for fluid flow and supply, but is not limited to this. Brief Description of Drawings
【図 1】 本発明の実施形態 1 に係る流体輸送器の外観を示す斜視図。 【図 2】 本発'明の実施形態 1 に係る流体輸送装置を示す平面図。  FIG. 1 is a perspective view showing an external appearance of a fluid transporter according to Embodiment 1 of the present invention. FIG. 2 is a plan view showing a fluid transportation device according to Embodiment 1 of the present invention.
【図 3】 本発明の実施形態 1 に係る流体輸送装置を示す断面図。  FIG. 3 is a cross-sectional view showing a fluid transportation device according to Embodiment 1 of the present invention.
【図 4】 本発明の実施形態 2に係る流体輸送装置'を示す部分平面図。 【図 5】 本発明の実施形態 2に係る流体輸送装置を示す断面図。 【図 6】 本発明の実施形態 2に係る回転押圧板の形状を示す平面図。 【図 7】 本発明の実施形態 3に係る流体輸送器を示す分解斜視図。 発明を実施するための最良の形態 FIG. 4 is a partial plan view showing a fluid transport device ′ according to Embodiment 2 of the present invention. FIG. 5 is a cross-sectional view showing a fluid transportation device according to Embodiment 2 of the present invention. FIG. 6 is a plan view showing the shape of a rotary pressing plate according to Embodiment 2 of the present invention. FIG. 7 is an exploded perspective view showing a fluid transporter according to Embodiment 3 of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明に係る流体輸送装置、 及びこの流体輸送装置を備える流 体輸送器について説明する。 なお、 以下に記載する実施形態は、 本発明 の 1実施例にすぎず、 本発明はこれに限定されるものではない。  Hereinafter, a fluid transport device according to the present invention and a fluid transport device including the fluid transport device will be described. The embodiment described below is only one example of the present invention, and the present invention is not limited to this.
まず、 本発明の実施形態 1について,説明する。  First, Embodiment 1 of the present invention will be described.
図 1〜図 3には実施形態 1に係る流体輸送!^及び流体輸送装置が示さ れている。  1 to 3 show fluid transportation according to Embodiment 1! ^ And fluid transport devices are shown.
図 1 は、 実施形態 1の流体輸送器の外観を示す斜視図である。 図 1に おいて、 流体輸送器 1 0は、 流体を蠕動運動によって輸送する流体輸送 装置 2 0と、 流体を収容するパック状の流体収容容器 9 0 と、 から構成 されている。 そして、 流体輸送装置 2 0 と流体収容容器 9 0 とは、 チュ ーブ 8 0によって連通されている。  FIG. 1 is a perspective view showing an appearance of the fluid transporter according to the first embodiment. In FIG. 1, a fluid transporter 10 is composed of a fluid transporting device 20 that transports fluid by a peristaltic motion, and a pack-shaped fluid storage container 90 that stores fluid. The fluid transport device 20 and the fluid container 90 are communicated with each other by a tube 80.
流体収容容器 9 0は、 可撓性を有する合成樹脂からなり、 本実施形態 においては、 シリ コン系樹脂によつて形成されている。 .流体収容容器 9 .0の一方の端.部に. -はチ.ュ.一ブ.保持.部 9 2が設けられ、,チ.ュ. ブ 8. 0が圧 着ま.たは熱溶着-ま.-. feは接着.等の手段で、 流体:が.漏洩..し.:な.! Aよ.う-に.密 -閉.鼠 定されている。 , ,  The fluid storage container 90 is made of a synthetic resin having flexibility, and is formed of a silicon-based resin in the present embodiment. -One end of the fluid storage container 9.0 is provided with a tube holding part 92, and the tube 8.0 is compressed or heated. Welding-ma.-fe is a means of adhesion, etc., fluid: is leaking, and is leaking. ,,
なお、 本発明で使用される流体と しては、 水や食塩水、 薬液、 油類、 芳香液、 インク等流動性がある液体の他、 気体が含まれる。  The fluid used in the present invention includes water, saline, chemicals, oils, aromatics, fluids such as ink, and gas.
チューブ 8 0は、 一方の端部が流体収容容器 9 0の内部に連通し、 流 体輸送装置 2 0内を通り、 流体輸送装置 2 0の外部に延在され、 流体収 容容器 9 0内に収容されている流体が流体輸送装置 2 0によつて外部に 輸送される。 '  One end of the tube 80 communicates with the inside of the fluid container 90, passes through the fluid transport device 20, extends to the outside of the fluid transport device 20, and is in the fluid container 90. The fluid contained in the container is transported to the outside by the fluid transport device 20. '
流体輸送装置 2 0は、 下蓋 8 2、 ポンプュニッ ト枠 3 1、 チューブ枠 3 2、 上蓋 8 1を順次重ねて、 それらを固定螺子 9 5. (図 1では、 上蓋 固定螺子を示す) 等によって一体化されている。 この流体輸送装置 2 0 の内部に流体を輸送するための回転押出機構が格納されている。 なお、 下蓋 8 2、 ポンプュニッ ト枠 3 1、 チューブ枠 3 2、 上蓋 8 1 及び流体収容容器 9 0は、 流体輸送器 1 0を生体に装着する場合におい ては、 生体整合性の優れた材料、 例えば、 ポリスルホン、 ウレタン等の 合成樹脂を採用することが好ましい。 , The fluid transport device 20 has a lower lid 8 2, a pump unit frame 3 1, a tube frame 3 2, and an upper lid 8 1 that are stacked one on top of the other and fixed screws 9 5. (In FIG. 1, the upper lid fixing screw is shown) etc. It is integrated by. This fluid transport device 2 0 The rotary extrusion mechanism for transporting the fluid is stored in the interior of the machine. The lower lid 8 2, the pump unit frame 3 1, the tube frame 3 2, the upper lid 8 1, and the fluid storage container 90 are excellent in biocompatibility when the fluid transporter 10 is attached to a living body. It is preferable to employ a synthetic resin such as a material such as polysulfone or urethane. ,
続いて、流体を輸送するための機構について図面を参照して説明する。 図 2は、 本実施形態に係る流体輸送装置 2 0の流体を輸送するための 機構を示す平面図、 図 3は、 図 2の A— A切断面を示す断面図である。 なお、 図 2は、 説明を分かりやすくするために上蓋 8 1 を透視した状態 を示している。 図 2、 図 3において、 流体輸送装置 2 0は、 基本構成と してチューブ 8 0に蠕動運動を与え、 流体を輸送する回転押出機構と し てのポンプユエッ ト 3 0 と、 ポンプュ二ッ ト 3 0を駆動するためのポン プ駆動ュ-ッ ト 6 0 と、 から構成されている。 ポンプュニッ ト 3 0 とポ ンプ駆動ュニッ ト 6 0 ,とは、 断面方向に重ね; T構成され'ている(図 3、 参 照)。 _  Next, a mechanism for transporting fluid will be described with reference to the drawings. FIG. 2 is a plan view showing a mechanism for transporting the fluid of the fluid transport device 20 according to the present embodiment, and FIG. 3 is a cross-sectional view showing the AA section of FIG. Note that FIG. 2 shows a state in which the upper lid 8 1 is seen through for easy understanding of the explanation. 2 and 3, the fluid transport device 20 has a peristaltic motion to the tube 80 as a basic configuration, and a pump unit 30 as a rotary extrusion mechanism that transports fluid, and a pump unit 3. Pump drive unit 60 for driving 0 and 0. The pump unit 30 and the pump drive unit 60 are stacked in a cross-sectional direction; they are T-configured (see Fig. 3). _
まず、 ポンプ,駆動ユニッ ト 6 0の構造及び駆動について説明する。 図 3において、 ポンプ駆動ユニッ ト 6 0は、 板状の第 1機枠 6 1 と、 第 2 - 機枠 6 2 と、 第 機枠 6 3 とを備え、 それぞれの機枠の間 ,空間に、 駆 . ·':動力:をポン,プュ.二ッ小. 3 .に与えるモ ^~タ.. ,..と伝逢輪列、-.及び駆動制御 のための駆動回路 (共に、 図示せず) とが備えられている。 '  First, the structure and drive of the pump and drive unit 60 will be described. In FIG. 3, the pump drive unit 60 includes a plate-shaped first machine frame 61, a second-machine frame 62, and a first machine frame 63, and is provided between the machine frames. , WD. ': Power: Gives power to the pump, power, power train, power train, and drive circuit for drive control (both (Not shown). '
モーターとしては、 本実施形態においては、 水晶時計等に採用されて いるステップモーターが採用され、 ポンプユニッ ト 3 0の外側にコイル • プロック 7 0が配置されている。 図示しないが、 コイルブロ ック 7 0と 磁気接合されているステーターとステーター内部にローターが備えられ ており、 駆動回路 (図示せず) からの信号に基いて回転される。 駆動回 路には、 予め所定の駆動パターンが記憶されており、 この駆動パターン に基づく信号によってステツプモーターが駆動される。  As the motor, in this embodiment, a step motor employed in a quartz watch or the like is employed, and a coil block 70 is disposed outside the pump unit 30. Although not shown, a stator magnetically joined to the coil block 70 and a rotor are provided inside the stator, and are rotated based on a signal from a drive circuit (not shown). A predetermined drive pattern is stored in advance in the drive circuit, and the step motor is driven by a signal based on this drive pattern.
. なお、 図示しないが、 駆動回路と駆動源と しての.電池とは、 第 1機枠 6 1 と下蓋 8 2 とで形成される空間に配置され、 電池は、 コイルプロッ ク 7 0及び後述する伝達車とは交差しない位置に配置されている。 また 、 前述したように、 下蓋 8 2は固定螺子 9 6によって螺合固定されてい るために、 下蓋 8 2を取り外せば、 電池交換を容易に行うことが可能な 構造である。 Although not shown, the battery as a drive circuit and a drive source is arranged in a space formed by the first machine casing 61 and the lower lid 82, and the battery is a coil probe. 70 and the transmission wheel, which will be described later. Further, as described above, since the lower lid 82 is screwed and fixed by the fixing screw 96, the battery can be easily replaced if the lower lid 82 is removed.
ローターの回転は、 図示しない複数の伝達車によって所定の減速比に 減速されて伝達一番車 7 1に伝達される。 伝達一番車 7 1は、 第 2機枠 6 2に設けられた軸受 7 7 と第 3機枠 6 3に植立された伝達二番車軸 7 2 との間で軸支されている。 伝達一番車 7 1の回転は、 伝達三番車 7 3 (図は省略している) を経て、 伝達四番車 7 4、 伝達五番車 7 5を経て ポンプュ-ッ ト 3 0の中心に位置する回転板車 5 6に伝達される。  The rotation of the rotor is reduced to a predetermined reduction ratio by a plurality of transmission wheels (not shown) and transmitted to the first transmission wheel 71. The transmission first wheel 71 is pivotally supported between a bearing 7 7 provided in the second machine casing 62 and a transmission second axle 7 2 planted in the third machine casing 63. The rotation of the first transmission wheel 7 1 goes through the third transmission wheel 7 3 (not shown), the fourth transmission wheel 7 4 and the fifth transmission wheel 7 5 through the center of the pump boot 30 Is transmitted to the rotating wheel wheel 5 6 located at.
伝達四番車 7 4は、 伝達二番車軸 7 2の中心軸部に遊嵌され、 伝達五 番車 7 5は、 第 1機枠 6 1に設けられた支軸 6 1 Aに遊嵌されている。  The transmission fourth wheel 7 4 is loosely fitted on the central shaft portion of the transmission second wheel shaft 7 2, and the transmission fifth wheel 7 5 is loosely fitted on the support shaft 6 1 A provided on the first machine casing 61. ing.
ポンプ駆動ュニッ ト 6 0は、 リ ング状のポンプュニッ ト枠 3 1の内部 に、 第 1機枠 6 1が図示しない固定螺子によって螺合固定され、 第 2機 枠 6 2 と第 3機枠 6 3 とは、 それぞれ所定の間隔を有して、 図示-しない 固定螺子によつて第 1機,枠 6 1に螺合固定されている。 このようにして 、 ポンプ駆動ュニッ ト 6' 0は、 伝達五番車 7 5を除いてュニッ ト化され ている。 このポン.プ—駆動.ュ二.ッ ト .6 0の上部にポソプ 二.ッ ト. .3 .0が装 着されて—い.る b In the pump drive unit 60, the first machine frame 61 is screwed and fixed inside the ring-shaped pump unit frame 31 by a fixing screw (not shown), and the second machine frame 6 2 and the third machine frame 6 are connected. 3 are fixedly screwed to the first machine and the frame 61 by fixing screws (not shown), each having a predetermined interval. In this way, the pump drive unit 6'0 is unitized except for the transmission fifth wheel 75. A pop-up unit 3.0 is installed on top of this pump-driven unit 60 b .
次に、 ポンプ ニッ ト 3 0の構造について説明する。 図 2、 図 3にお いて、 ポンプユニッ ト 3 0には、 基本構成と して、 ポンプ駆動ュ ッ ト 6 0から伝達される回転力によつて回転される回転板車 5 6 と、 回転板 車 5 6 と一体で回転する回転板 7 6 と、 回転板 7 6の周縁部上面に備え られる 4個のローラー 5 0 5 3 と、 回転板 7 6の回転中心から放射状 に備えられた 8本の押圧軸 4 0 4 7 と、 流体を流動するチューブ 8 0 と、 が€えられている。  Next, the structure of the pump unit 30 will be described. 2 and 3, the pump unit 30 has, as a basic structure, a rotating plate wheel 56 rotated by a rotational force transmitted from the pump drive unit 60, and a rotating plate. A rotating plate 7 6 that rotates integrally with the car 5 6, four rollers 5 0 5 3 provided on the upper surface of the peripheral portion of the rotating plate 7 6, and eight provided radially from the rotation center of the rotating plate 7 6 The pressing shaft 4 0 4 7 and the tube 8 0 through which the fluid flows are provided.
回転板 7 6は、 円盤状の板部材からなり、 中心部に回転板車 5 6が軸 止されている。 この'回転板車 5 6に伝達五番車 7 5から回転力が伝達さ れ、 回転板 7 6が伝達二番車軸 7 2を回転中心と して回転する。 回転板 車 5 6の中心の穴が伝達二番車軸 7 2に揷入され、 この伝達二番車軸 7 2 と上蓋 8 1 に設けられている軸受 5 7 とによって、 回転板車 5 6が軸 支されている。 The rotating plate 76 is made of a disk-shaped plate member, and the rotating wheel wheel 56 is fixed at the center. Rotational force is transmitted from the transmission fifth wheel 75 to this' rotating wheel wheel 56, and the rotating plate 76 rotates around the transmission second wheel shaft 72. Rotating plate The center hole of the car 5 6 is inserted into the transmission second axle 7 2, and the rotary wheel 5 6 is supported by the transmission second axle 7 2 and the bearing 5 7 provided on the upper cover 8 1. ing.
回転板 Ί 6の外周部にはローラー支軸 5 5が植立されている。 ローラ 一支軸 5 5は、 回転板 7 6の回転中心から等距離 (同心円上)、 且つ平面 方向に等間隔に 4本備えられている ( 9 0度間隔)。 なお、 ローラー支軸 5 5、 ローラー 5 0〜 5 3に係る構造は、 4組とも同じ構造であるため 、 1組を例示して説明する。 ローラー支軸 5 5は回転板 7 6の下側から 圧入されており、 回転板 7 6を挟んで反対側からローラー軸 5 4がロー ラー支軸 5 5に圧入されている。  A roller support shaft 5 5 is planted on the outer periphery of the rotary plate Ί 6. Four rollers 55 are provided at equal distances (concentric circles) from the rotation center of the rotating plate 76 and at equal intervals in the plane direction (90 degree intervals). In addition, since the structure which concerns on the roller spindle 55 and the rollers 50-53 is the same structure in four sets, it demonstrates by exemplifying one set. The roller support shaft 5 5 is press-fitted from the lower side of the rotating plate 7 6, and the roller shaft 5 4 is press-fitted into the roller support shaft 5 5 from the opposite side across the rotating plate 7 6.
さらに、 ローラー軸 5 :にローラー 5 0が揷入されて、 Cリ ング 5 8 によって係止される。 ローラー 5 0は、 ローラー軸 5 4に対して遊嵌の 関係であり、 自在 回転することができる。 同様な構造で、 ローラー 5 0〜 5 3も、 回転板 7 6の回転中心から等距離に配置されている。 これ らローラー 5 0〜 5 3を備えた回転板 7 6の外周には、 リ ング状のスラ イ ド枠 3 4が備えられている。  Further, the roller 50 is inserted into the roller shaft 5: and is locked by the C ring 5 8. The roller 50 has a loose-fitting relationship with the roller shaft 54 and can freely rotate. With the same structure, the rollers 50 to 53 are also arranged at an equal distance from the rotation center of the rotating plate 76. A ring-shaped slide frame 34 is provided on the outer periphery of the rotating plate 76 having these rollers 50 to 53.
' このスライ ド枠 3 4の中心も,回転板 7 6の回転中心と一致しており、 図示しない位置決め部材によつて正確に位置が規制され,、 固定.螺子 9 .7 ' によって第 1機枠.6. 1に螺合固定されている .(図 2、 参照)。. ス.ライ ド枠 3 4には、 中心から放射状に内側から外側に貫通する孔が 8個開設され 、 この孔それぞれに押圧軸 4 0〜 4 7が揷入されている。 押圧軸 4 0〜 4 7は、 軸方向に移動可能な寸法に設定されている。 ここで、 押圧軸 4 0の軸方向中心と、 押圧軸 4 7の軸方向中心がつく る角度は 9 0度以上 に設定されている。  'The center of this slide frame 3 4 also coincides with the rotation center of the rotating plate 76, and the position is accurately regulated and fixed by a positioning member (not shown). Screwed onto frame 6.1 (see Fig. 2). In the slide frame 34, eight holes that penetrate from the center radially to the outside are opened, and the pressing shafts 40 to 47 are inserted into the holes, respectively. The pressing shafts 40 to 47 are set to dimensions that can move in the axial direction. Here, the angle formed by the axial center of the pressing shaft 40 and the axial center of the pressing shaft 47 is set to 90 degrees or more.
押圧軸 4 0〜 4 7は、 それぞれ同じ形状をしているため代表して押圧 軸 4 3を例示して説明する (図 3、 参照)。 押圧軸 4 3は、 一方の端部に 鍔状の押圧部 4 3 A、 他方の端部は半球状に丸められた押部 4 3 Bが形 成されている。 押部 4 3 Bがローラー 5 0に押されて押圧部 4 3 Aがチ ユープ 8 0をチューブ案内壁 3 2 Bに押圧することで流体を圧搾流動す る構造である。 押圧軸 4 3がローラー 5 0 5 3 と接触しないときには ■ チューブ 8 0を押圧しない (図 3中、 二点鎖線で示す)。 Since the pressing shafts 40 to 47 have the same shape, the pressing shaft 43 will be described as an example (see FIG. 3). The pressing shaft 4 3 is formed with a hook-shaped pressing portion 4 3 A at one end and a pressing portion 4 3 B rounded into a hemisphere at the other end. The pressing part 4 3 B is pressed by the roller 50 and the pressing part 4 3 A presses the tube 80 against the tube guide wall 3 2 B to squeeze and flow the fluid. It is a structure. When the pressing shaft 4 3 is not in contact with the roller 5 0 5 3 ■ The tube 80 is not pressed (indicated by a two-dot chain line in FIG. 3).
スライ ド枠 3 4の外周には、 さ らにリング状のチューブ枠 3 2が備え られている。 チューブ枠 3 2も、 スライ ド枠 3 4 と同様に中心が回転板 5 7 6の回転中心と一致している。 チューブ枠 3 2の内周部には、 チュー ブ 8 0を装着する段状のチューブ装着部 3 2 Aが形成されており、 この チューブ装着部 3 2 Aと押圧軸 4 3の押圧部 4 3 Aとの間でチューブ 8 0の平面方向の位置が規制されている。 押圧軸 4 0 4 7が存在しない 範囲では、 チューブ 8 0は、 スライ ド枠 3 4 とチューブ枠.3 2 とに設け 10 られたチューブ案内溝 (図示せず) によって、 図 2で示す形態に装着さ れている。  A ring-shaped tube frame 3 2 is further provided on the outer periphery of the slide frame 3 4. The tube frame 3 2 also has a center coincident with the rotation center of the rotating plate 5 7 6 as with the slide frame 3 4. A tube-shaped tube mounting portion 3 2 A for mounting the tube 80 is formed on the inner peripheral portion of the tube frame 3 2. The tube mounting portion 3 2 A and the pressing portion 4 3 of the pressing shaft 4 3 The position of the tube 80 in the plane direction is restricted between the position A and A. In the range where the pressing shaft 40 4 7 does not exist, the tube 80 is formed into the form shown in FIG. 2 by the tube guide groove (not shown) provided in the slide frame 3 4 and the tube frame 3 2. It is installed.
押圧軸 4 0 4 7は、 回転板 7 6の回転中心から放射状に延在されて .おり、 チューブ 8 0が押圧されるチューブ案内壁 3 2 Bも.回転板 7 6の 回転中心と同心円で形成されているので、 チューブ 8 0は、 押圧軸 4 0 15 4 7によって略直角方向に押圧される。' "  The pressing shaft 40 4 7 extends radially from the rotation center of the rotating plate 76, and the tube guide wall 3 2 B to which the tube 80 is pressed is also concentric with the rotating center of the rotating plate 76. Thus, the tube 80 is pressed in a substantially right angle direction by the pressing shaft 4 0 15 4 7. '"
スライ ド枠 3 4には、 チューブ 8' 0の上面'方向に部分的に突出したチ ブ押え 3 5が形成され、 チューブ 8 0が浮き上がらないようにして いる。—このチュ ブ押え.3 5は、 チューブ 8—0を押圧する押.圧軸 4 0 4 7それぞれ-の..間'に複数配置される (図 2では、 3箇.所に.設け—もれて.い 20' る)。 . '  The slide frame 34 is formed with a tip presser 35 that partially protrudes in the direction of the upper surface of the tube 8'0 so that the tube 80 is not lifted up. —This tube presser. 3 5 is arranged in multiple places between the press shafts 4 0 4 7 to press the tube 8—0 (between three places in Fig. 2). Leaked. 20 '). .
本実施形態の流体輸送装置 2 0は、 前述したポンプ駆動ュニッ ト 6 0 と、 ポンプュニッ ト 3 0とを重ね合わせて、 ポンプュニッ ト枠に軸支さ れた固定軸 3 3にチューブ枠 3 2、 上蓋 8 1 を揷通させ、 固定螺子 9 5 . で螺合固定される。 また、 下蓋 8 2も同様に固定螺子 9 6によって螺合' 5 固定されて一体に構成されている。 続いて、 本実施形態における流体 の流動作用にについて図 2を参照して説明する。 回転板 7 6は、 ポンプ f  The fluid transport device 20 according to the present embodiment includes the above-described pump drive unit 60 and the pump unit 30 superimposed on each other so that the tube frame 3 2 is fixed to the fixed shaft 33 supported by the pump unit frame. The upper lid 8 1 is passed through and fixed by screwing with fixing screws 9 5. Similarly, the lower lid 8 2 is screwed together by a fixing screw 96 and is integrally formed. Next, the fluid flow action in the present embodiment will be described with reference to FIG. Rotating plate 7 6 Pump f
駆動ュニッ ト 6 0によって、 流体の流動方向 (図中、 矢印方向)、 つまり 本実施形態では反時計方向に回転する。 ローラー 5 0を例示して説明す る。. ローラー 5 0の最外周部が、 押圧軸 4 0に交差する前は、 押圧軸 4 · 0は開放された状態にある。 回転板 7 6が回転して、 ローラー 5 0の最 外周 (図中、 軌跡 Cで示す) が押圧軸 4 0の端部に接触する位置から押 圧軸 4 0がチューブ 8 0方向に移動し、 チューブ 8 ◦を押圧開始する。 The drive unit 60 rotates in the direction of fluid flow (in the direction of the arrow in the figure), that is, counterclockwise in this embodiment. The roller 50 will be described as an example. Before the outermost circumference of the roller 50 crosses the pressing shaft 4 0, the pressing shaft 4 · 0 is in an open state. The rotating plate 76 rotates and the pressing shaft 40 moves in the direction of the tube 80 from the position where the outermost circumference of the roller 50 (shown by the locus C in the figure) contacts the end of the pressing shaft 40. , Start pressing tube ◦.
ローラー 5 0が押圧軸 4 0に接触し、 押圧を開始するまでは、 前述し たよ うに、 押圧軸 4 0 と 4 7 との角度は 9 0度以上に設定されているた め、 少なく とも押圧軸 4 7はローラー 5 1によって押圧され、 チューブ 8 0を閉塞している。  Until the roller 50 touches the pressing shaft 40 and starts pressing, as described above, the angle between the pressing shafts 40 and 47 is set to 90 degrees or more. The shaft 47 is pressed by the roller 51 and closes the tube 80.
さ らに、 回転板 7 6が回転すると、 ローラー 5 0は押圧軸 4 1 , 4 2 , 4 3 と順次押圧していく。 この際、 回転板 7 6の回転中心とローラー の回転中心と押圧軸の軸中心線とが直線になるとき、 押圧量が最大にな り、 その後、 ローラーは、 徐々に押圧軸から離れてゆき、 チューブ 8 0 が押圧軸の押圧から開放される。 このように、 チューブ 8 0を順次押圧 していく運動を蠕動運動と呼び、 この蠕動運動によってチューブ 8 0を 圧搾して流体を輸送する。 このよ うな蠕動運動を利用して流体を輸送す る装置を蠕動式流体輸送装置と呼ぶ。  Further, when the rotating plate 76 rotates, the roller 50 sequentially presses against the pressing shafts 4 1, 4 2, 4 3. At this time, when the rotation center of the rotating plate 76, the rotation center of the roller, and the axial center line of the pressing shaft become a straight line, the pressing amount becomes maximum, and then the roller gradually moves away from the pressing shaft. The tube 80 is released from the pressing of the pressing shaft. In this way, the motion of pressing the tube 80 sequentially is called a peristaltic motion, and the fluid is transported by squeezing the tube 80 by this peristaltic motion. A device that uses this peristaltic motion to transport fluid is called a peristaltic fluid transport device.
このようにして、 回転板 7 6が回転するに従い、 ローラー 5 0〜 5 3 が次々 と押圧軸 4 0〜 4 7を押圧していくが、 前述したように、 押圧軸 4 0 と..4 7のなす角度が 9 0度以上であるた.め ίに、 少なく と.も押圧,軸の. 一つが、 チュ プ '.8 Ό-を.閉塞していることにな.る。. . :ノ. .... ,·.. : .. また、 ローラー 5 0〜 5 3は、 押圧軸 4 0〜 4 7を押圧する際、 回転 板 7 6の回転方向とは逆の方'向、 つまり時計回り方向に摩擦力によって 回転されるため、 押圧軸 4 0〜 4 7 との摩擦力が低減される。  Thus, as the rotating plate 7 6 rotates, the rollers 50 to 53 press the pressing shafts 4 0 to 4 7 one after another, but as described above, the pressing shafts 40 and ..4 Since the angle formed by 7 is 90 degrees or more, at least one of the shafts is pressed and the shaft '8' is closed. : No. ...., ....: .. Also, the rollers 5 0 to 5 3 are opposite to the rotating direction of the rotating plate 7 6 when pressing the pressing shafts 4 0 to 4 7. Since it is rotated by the friction force in the 'direction, that is, in the clockwise direction, the friction force with the pressing shafts 40 to 4 7 is reduced.
なお、 前述の実施形態 1では、 ローラーを 4個備え、 押圧軸を 8本備 えた構造を例示しているが、 ローラー及び押圧軸の数は任意に選択して 備えることができる。  In the first embodiment described above, a structure is shown in which four rollers are provided and eight pressing shafts are provided, but the number of rollers and pressing shafts can be arbitrarily selected and provided.
従って、 前述した実施形態 1によれば、 押圧軸 4 0〜 4 7はチューブ 8 0を略直角方向に押圧するため、 チューブ 8 0が引き伸ばされること がなく 、 このこと よってチューブ 8 0の内径 (流体の流動部) が変化 しないため、 安定した流量を得ることができる。 また、 押圧軸 4 0〜4 7をローラー 5 0 — 5 3によって押圧する構造 であるため、 押圧軸の数、 ス トロークを任意に設定することによって、 流量の調整が自在に行え、 所望の流量の流体輸送装置 2 0及び流体輸送 器を容易に提供することができる。 Therefore, according to the first embodiment described above, the pressing shafts 40 to 47 press the tube 80 in a substantially right angle direction, so that the tube 80 is not stretched. Since the fluid flow part does not change, a stable flow rate can be obtained. In addition, since the pressing shafts 40 to 4 7 are pressed by the rollers 50 to 53, the flow rate can be adjusted freely by setting the number of pressing shafts and the stroke as desired. The fluid transport device 20 and the fluid transport device can be easily provided.
また、 ローラー 5 0〜 5 3は、 押圧 4 0〜 4 7を押圧する際、 回転 板 7 6 の回転方向とは逆方向に回転するため、 摩擦抵抗が小さく なり、 回転板 7 6 の駆動力を小さくすることができ、 回転板 7 6の駆動源と し てのモーターの発生トルクが小さくてもよいので、 小型化が可能となり 、 このことから流体輸送装置 2 0も小型化することができる。  In addition, the rollers 50 to 53 rotate in the direction opposite to the rotating direction of the rotating plate 7 6 when pressing the pressings 40 to 47, so the frictional resistance is reduced and the driving force of the rotating plate 7 6 is reduced. Since the generated torque of the motor as the drive source of the rotating plate 76 may be small, it is possible to reduce the size, and from this, the fluid transport device 20 can also be reduced in size. .
さ らに、 流体輸送装置 2 0 と流体収容容器 9 0 とはチューブ 8 0で連 通されているため、 流体収容容器 9 0の交換を容易に行う ことができる の'で、 取り扱い易いこと と、 流体輸送装置 2 0を繰り返し使用すること ができるので、 経済的効果もある。  Furthermore, since the fluid transport device 20 and the fluid storage container 90 are communicated with each other through the tube 80, the fluid storage container 90 can be easily replaced, and therefore, it is easy to handle. Since the fluid transport device 20 can be used repeatedly, there is also an economic effect.
なお、 本実施形態では、 ローラー 5 0〜 5 3を回転板 7 6に軸支する 際、 ローラー軸 5 4に揷通して Cリング 5 8で係止する構造を採用して いるが、 ローラー支軸 5 5に直接揷通させて軸支する構造を採用するこ ともできる。 ,  In this embodiment, when the rollers 50 to 53 are axially supported on the rotating plate 7 6, a structure is adopted in which the roller shaft 5 4 is passed through and locked by the C ring 5 8. It is also possible to adopt a structure in which the shaft 55 is directly passed through the shaft and supported. ,
続いて.、 本発明の実竭形態 2に係る流体輸.送.装置について図.面を参.照 して説明する。 実施形態. 2は、 前述した実施形.態, 1が.口..一ラ によつて 押圧軸をチューブ 8 0に押圧する構造に対して、 ローラーの代わり に回 転押圧板' 1 0 0を備え、 この回転押圧板 1 0 0を回転することによって、 押圧軸を押圧することを特徴と している。 従って、 回転押圧板 1 0 0の 構造を中心に説明し、 他の共通部分の説明を省略し、 実施形態 1 と同じ 部位には同じ符号を附して説明する。  Next, a fluid transporting device according to embodiment 2 of the present invention will be described with reference to the drawings. Embodiment 2 is the above-described embodiment, where 1 is the mouth, and the structure in which the pressing shaft is pressed against the tube 80, instead of the roller, the rotating pressing plate '1 0 0 The rotary pressing plate 100 is rotated to press the pressing shaft. Therefore, the structure of the rotary pressing plate 100 will be mainly described, the description of other common parts will be omitted, and the same parts as those in Embodiment 1 will be described with the same reference numerals.
図 4は、 実施形態 2に係る流体輸送装置 2 0の部分平面図、 図 5は、 図 4の B— B断面を示す断面図である。 実施形態 2におけるポンプ駆動 ュニッ ト 6 0の構造は、 実施形態 1 と同じであるので説明を省略する。  FIG. 4 is a partial plan view of the fluid transport device 20 according to the second embodiment, and FIG. 5 is a cross-sectional view showing a BB cross section of FIG. Since the structure of the pump drive unit 60 in the second embodiment is the same as that in the first embodiment, the description thereof is omitted.
図 5、 図 6において、 回転板 7 6の上面には 4'箇所の突出部を有する 回転押圧板 1 0 0 (図 4、 参照) が備えられている。 回転押圧板 1 0 0 は、 実施形態 1 (図 3、 参照) で説明したローラー 5 0〜 5 3が揷着さ れる 4本のローラー支軸 5 5を案内軸と して装着され、 やはり、 C リ ン グ 5 8で係止されている。 回転押圧板 1 0 0は、 回転板 7 6 と回転中心 を同一にして、 回転板 7 6 と共に回転される。 先述の 4箇所の突出部が 押圧軸 4 0〜 4 7を押圧する押圧部 1 0 1〜 1 0 4である。 回転押圧板 Γ 0 0の形状と作用については、 図 6 を参照して詳しく説明する。 5 and 6, a rotary pressing plate 100 (see FIG. 4) having 4 ′ protrusions is provided on the upper surface of the rotary plate 76. Rotating pressure plate 1 0 0 Are mounted using the four roller support shafts 5 5 to which the rollers 50 to 5 3 described in Embodiment 1 (see FIG. 3) are attached as guide shafts. It is locked with. The rotary pressing plate 100 is rotated together with the rotary plate 7 6 with the same rotation center as that of the rotary plate 7 6. The four protrusions described above are pressing portions 10 0 1 to 10 4 that press the pressing shafts 40 to 4 7. The shape and action of the rotary pressing plate Γ 0 0 will be described in detail with reference to FIG.
図 6は、回転押圧板 1 0 0 の形状を示す平面図である。図 6において、 回転押圧板 1 0 0は、 外周部に 4箇所の押圧部 1 0 1〜 1 0 4が形成さ れている。 押圧部 1 0 1〜 1 0 4は、 円周方向に 9 0度等間隔で設けら れている。 中心部には、 回転板車 5 6の軸部が揷通される孔 1 0 5 と、 外周方向には、 ローラー支軸 5 5に揷通する 4箇所の孔 1 0 6が 設さ れている。 押圧部 1 0 1〜 1 0 4は、 回転中心 Gに対して点対称の形状 であるため、 押圧部 1 0 1を例示して説明する。  FIG. 6 is a plan view showing the shape of the rotary pressing plate 1 0 0. In FIG. 6, the rotary pressing plate 100 has four pressing portions 10 0 1 to 10 4 formed on the outer peripheral portion. The pressing portions 1001 to 104 are provided at equal intervals of 90 degrees in the circumferential direction. A hole 10 5 through which the shaft portion of the rotary plate wheel 56 passes is provided at the center, and four holes 10 06 that pass through the roller support shaft 55 are provided at the outer peripheral direction. Yes. Since the pressing parts 1001 to 104 are point-symmetrical with respect to the rotation center G, the pressing part 1001 will be described as an example.
円弧 1 0 8は、 回転押圧板 1 0 0が回転する際に、 押圧軸 4 0〜 4 7 に接する力 、 僅かに間隙を有する直径で形成され、 押圧軸 4 0〜 4 7を 押圧していない。 回転押圧板 1 0 0が回転すると、 斜面 1 0 9によって 除々に押圧軸の一つを押圧開始し、 外周円 ¾ί 1 1 0 (回転押圧板 1 0 0 の回転軌跡 C ) に.おいて最大押圧ス ト,ロークに達.,し、 チユーブ 8 . を閉 塞す.る.。. :.そ:の後、 ·さらに回-転押圧板 1 0 0が回.転すると、、斜面 1 1 1-43:.,; 達し、 除々に押圧軸から遠ざかり、 チューブ 8 0は閉塞状態から開放さ れる。 このとき、 チューブ 8 0内に流体が流入する。 このよ うにして、 回転押圧板. 1 0 0 'によって、 押圧軸 4 0〜 4 7に蠕動運動を与え、 流体 を輸送する。  The circular arc 10 8 is formed with a force that is in contact with the pressing shafts 40 to 47 and a diameter having a slight gap when the rotary pressing plate 100 rotates, and presses the pressing shafts 40 to 47. Absent. When the rotary pressing plate 1 0 0 rotates, it gradually starts pressing one of the pressing shafts by the inclined surface 1 0 9, and reaches the maximum at the outer circumference circle ¾ί 1 (rotation locus C of the rotary pressing plate 1 0 0). Reach the press, the rook, and close tube 8. : After that · Further rotation-rotation press plate 1 0 0 turns, slope 1 1 1-43: reach ;, gradually move away from the press shaft, tube 8 0 is closed Is released. At this time, the fluid flows into the tube 80. In this way, the rotary pressing plate. 1 0 0 'gives a peristaltic motion to the pressing shafts 40 to 47 and transports the fluid.
なお、 隣接する押圧部の間には、 凹部 1 0 7が設けられており、 凹部 1 0 7においては、 押圧軸 4 0〜 4 7は、 完全に開放されている状態を 作っている。 また、 凹部 1 0 7 と円弧 1 0 8、 円弧 1 0 8 と斜面 1 0 9、 斜面 1 0 9 と外周円弧 1 1 0、 外周円弧 1 1 0 と斜面 1 1 1 との間は、 滑らかに丸められ、 押圧軸 4 0 4 7を円滑に押圧するように形成され ている。 押圧軸 4 0〜 4 7は、 回転押圧板 1 0 0 と離れていく ときに-は、 チュ ーブ 8 0の弾性力で、 回転中心 G側に移動してチューブ 8 0の閉塞が開 放される構造である。 In addition, the recessed part 107 is provided between the adjacent press parts, In the recessed part 107, the press shafts 40-47 are making the state open | released completely. Smoothly between the recess 1 0 7 and the arc 1 0 8, the arc 1 0 8 and the slope 1 0 9, the slope 1 0 9 and the outer circumference arc 1 1 0, and the outer circumference arc 1 1 0 and the slope 1 1 1 It is rounded and formed so as to smoothly press the pressing shaft 4 0 4 7. When the pressing shafts 40 to 47 move away from the rotary pressing plate 100, the tube 80 moves to the rotation center G side due to the elastic force of the tube 80, and the tube 80 is closed. Is the structure.
また、 前述した実施形態 1において説明したが、 押圧軸 4 0 と押圧軸 4 7 とがなす角度は、 9 0度以上に設定されているため、 回転押圧板 1 0 0の隣り合う押圧部のいずれかがチューブ 8 0を閉塞している。  In addition, as described in the first embodiment, the angle formed between the pressing shaft 4 0 and the pressing shaft 4 7 is set to 90 ° or more, so that the adjacent pressing portions of the rotary pressing plate 100 are adjacent to each other. Either block the tube 80.
従って、 前述の実施形態 2によれば、 前述した実施形態 1 における口 一ラーを複数備える構造に比べ、 押圧軸 4 0〜4 7を押圧するときの摩 擦抵抗は若干大きく なる,ものの、 回転押圧板 1 0 0を一つ備えるだけで 同様な駆動を行う ことができるので、 構造を簡単にすることができる。  Therefore, according to the above-described second embodiment, the friction resistance when pressing the pressing shafts 40 to 47 is slightly larger than that of the structure including a plurality of the single rollers in the first embodiment described above, but the rotation Since the same driving can be performed with only one pressing plate 100, the structure can be simplified.
さ らに、 押圧部の数、 形状を幾通りか用意しておけば、 所望の流体流 量に対応して回転押圧板を取り替えることで、 容易に流体流量の変更を 行う ことができるという.効果があ,る。  Furthermore, if the number and shape of the pressing parts are prepared in several ways, the fluid flow rate can be easily changed by replacing the rotating pressing plate according to the desired fluid flow rate. effective.
なお、 前述の実施形態 2 (図 4, 5、 参照) では、 回転押圧板 1 0 0 は、 案内軸と してのローラー軸 5 4に装着されているが、 ローラー支軸 5 5に直接装着する構造とすることができ、 また、 4本の口 ラー'軸ま たはローラー支軸を対角の 2本 ( 1対) にしても、 本発明の目的を実現 することが—できる。  In Embodiment 2 (see FIGS. 4 and 5), the rotary pressing plate 100 is mounted on the roller shaft 5 4 as a guide shaft, but directly mounted on the roller support shaft 5 5. In addition, the object of the present invention can be realized even if the four nozzles' shafts or the roller support shafts are two diagonal pairs (one pair).
さもに .回転,押圧板 · 1. .0と回転板.7 6を一体 形成„す.る.こ.と, .もで.き. る。 また、 実施形態 1 のように、 ローラー 5 0〜 5 3 ^応して、 ' 4個 の回転押圧板を備える構造とすることもできる他、 押圧部を 2個、 また は 3個備える回転押圧板とすることもできる。  In addition, the rotating and pressing plate 1.0 and the rotating plate 7 6 are integrally formed, and the roller 5 0 as in the first embodiment. ~ 5 3 ^ In response to this, it is possible to adopt a structure including four rotating pressing plates, or a rotating pressing plate including two or three pressing portions.
このよ うにすれば、 流体輸送装置 2 0の構造をよ り簡単にすることが でき、 コス トの低減を可能にする。 , 続いて、 本発明の実施形態 3について図面を参照して説明する。 実施 形態 3は、 前述した実施形態 1, 2における流体輸送器 1 0が、 流体輸 送装置 2 0 と流体収容容器 9 0 'が別体で備えられ、 それらをチューブ 8 0で連通している構造であるが、 実施形態 3では、 流体輸送装置と流体 収容容器とを筐体の中に一体化して設けているところに特徴を有してい る。 ' In this way, the structure of the fluid transport device 20 can be simplified, and the cost can be reduced. Subsequently, Embodiment 3 of the present invention will be described with reference to the drawings. In Embodiment 3, the fluid transporter 10 in Embodiments 1 and 2 described above is provided with a fluid transporting device 20 and a fluid container 9 0 ′ as separate bodies, which are communicated with each other through a tube 80. The structure of the third embodiment is characterized in that the fluid transport device and the fluid storage container are provided integrally in the housing. The '
図 7は、 実施形態 3 に係る流体輸送器を示す分解斜視図である。 実施 形態 1, ' 2 と同じ部位には同じ符号を附して説明する。 図 7において、 流体輸送器 1 0は、 平面視瓢拿状の形状の筐体内部に流体輸送装置部 2 0 0 と流体収容部 1 9 0とが形成されている。 筐体は、 実施形態 1, 2 による下蓋に対応するケース 1 8 2 と上蓋 1 8 1 とから構成され、 固定 螺子 9 5 (図 7では 4本) によって螺合固定される。  FIG. 7 is an exploded perspective view showing the fluid transporter according to the third embodiment. The same parts as those in Embodiments 1 and '2 will be described with the same reference numerals. In FIG. 7, the fluid transporter 10 has a fluid transporting device section 20 0 and a fluid storage section 190 inside a housing having a bowl-like shape in plan view. The housing is composed of a case 1 8 2 corresponding to the lower lid according to the first and second embodiments and an upper lid 1 81, and is screwed and fixed by fixing screws 9 5 (four in FIG. 7).
ケース 1 8 2には、 並列した二つの凹部が形成され、' 一方の凹部にポ ンプユニッ ト 3 0 とポンプ駆動ュニッ ト (図示せず) が備えられ、 他方 の凹部には、 流体収容部 1 9 0が形成されている。 流体収容部 1 9 0 と ポンプュニヅト 3 0 とは、 チューブ 1 8 0で連通されている。 チューブ 1 8 0の一方の端部 1, 9 2が流体収容部 1 9 0に、 途中はポンプュニッ ト 3 0の外周部を通り、 他方の端部が流体輸送器 1 0の外部に延在され ている。 , .  Case 1 8 2 is formed with two parallel recesses, one of which is provided with a pump unit 30 and a pump drive unit (not shown), and the other recess is provided with a fluid containing part 1 90 is formed. The fluid container 1 90 and the pump unit 30 are communicated with each other through a tube 1 80. One end 1, 9 2 of the tube 1 8 0 passes through the fluid containing part 1 90, and partway passes through the outer periphery of the pump unit 30 and the other end extends outside the fluid transporter 10. ing. ,.
ポンプユニッ ト 3 0は、 前述した実施形態 1、 実施形態 2 と同じ構造 が採用されており 、 押圧軸 4 0〜 4 7 (図 2〜図 6、 参照) の蠕動運動 によって流体を輸送す'る構造である。 ' '  The pump unit 30 has the same structure as that of the first and second embodiments described above, and transports fluid by the peristaltic motion of the pressing shafts 40 to 47 (see FIGS. 2 to 6). Structure. ''
チ ーブ 1 8 0の一方の端部 1 9 2 と、 ケース 1 8 .2 と上蓋, 1 8 1 と . の連.通部には , 図示しないパッキンが設けら'れ.、 .流:体収.容部 1 .9 ひ-から… ポンプュニッ ト 3 0の内部に流体が漏洩しないよ うにしている。 流体収 容部 1 9 0は、 上蓋 1 8 1が装着された際、 外部圧力と略同等の圧力に なるよ うに、 例えば、 通気性フィルム等で塞がれる開口部を設けること が望ま しい。 '  Packing (not shown) shall be provided at the communicating part of one end 1 9 2 of the tube 1 8 0, the case 18.2 and the top cover, 1 8 1 and. Body part 1.9 From the beginning ... The fluid is prevented from leaking into the pump unit 30. It is desirable that the fluid storage unit 1 90 be provided with an opening that is closed with, for example, a breathable film so that the pressure is approximately equal to the external pressure when the upper lid 1 8 1 is attached. '
なお、 上蓋 1 8 , 1 とケース Γ 8 2 とは螺合固定以外に、 熱溶着や、 接 着剤による貼着固定とすることができる。  In addition, the upper lids 1 8 and 1 and the case Γ 8 2 can be fixed by heat welding or adhesive bonding, in addition to screwing.
従って、 前述した実施形態 3によれば、 'ポンプュ-ッ ト 3 0 と流体収 容部 1 9 0 とが重なり あわないよ うに配置しているために、 厚みを増す ことなく、 小型化を可能とするこ とができる。 また、 ポンプユニッ ト 3 0 と流体収容部 1 9 0 の筐体が一つで形成されることから、 コス トの低 減ができる。 Therefore, according to the above-described Embodiment 3, the pump boot 30 and the fluid storage section 190 are arranged so as not to overlap with each other, so that the size can be reduced without increasing the thickness. Can be used. In addition, since the pump unit 30 and the fluid housing part 190 are formed as a single casing, the cost can be reduced. Can be reduced.
なお、 本発明は前述の実施形態に限定されるものではなく、 本発明の 目的を達成できる範囲での変形、改良等は本発明に含まれるものである。 例えば、 前述の実施形態 1〜実施形態 3では、 ローラーの数、 回転板 の押圧部の数等で、 流体流動量 (輸送量) を設定できるとしたが、 図示 しない駆動制御回路に、 回転板 7 6の回転速度を任意に選択できる複数 の情報を記憶させておき、 回転速度を選択することもでき、 さ らには、 回転 7 6を間歇駆動する情報を記憶させて、 間歇的に流体を流動させ ることもできる。  It should be noted that the present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention. For example, in Embodiments 1 to 3 described above, the fluid flow amount (transportation amount) can be set by the number of rollers, the number of pressing portions of the rotating plate, and the like. It is also possible to store multiple pieces of information that can arbitrarily select the rotational speed of 7 6 and select the rotational speed. In addition, the information to drive the rotational 7 6 intermittently is stored and fluid is intermittently stored. Can be made to flow.
従って、 前述の実施形態 1〜実施形態 3によれば、 安定した流体流量 を持続する薄型、 小型の流体輸送装置及びこの流体輸送装置を備える流 体輸送器を提供することができる。  Therefore, according to Embodiments 1 to 3 described above, it is possible to provide a thin and small fluid transport device that maintains a stable fluid flow rate and a fluid transport device including the fluid transport device.

Claims

請求の範囲 The scope of the claims
1 . 弾性を有するチューブと、 該チューブを円弧状に装着するチューブ 案内壁を有するチューブ枠と、 前記チューブの内側に配置される回転板 と、 前記チューブと前記回転板の間に放射状に配置される複数の押圧軸 と、 前記回転板の上面に、 前記回転板の回転中心に対して同心円上に等 間隔で配置された複数のローラーと、 を備え、 前記チューブ案内壁の円 弧中心と前記回転板の回転中心と前記複数の押圧軸の放射中心とが一致 しており、 前記複数のローラーが、 前記複数の押圧軸.を順次押圧して流 体の流入側から流出側に向か.つて流体を流動することを特徴とする流体 輸送装置。  1. a tube having elasticity, a tube frame having a tube guide wall for mounting the tube in an arc shape, a rotating plate disposed inside the tube, and a plurality of radially disposed between the tube and the rotating plate A plurality of rollers arranged on the upper surface of the rotating plate at equidistant intervals with respect to the rotation center of the rotating plate, and the arc center of the tube guide wall and the rotating plate The rotation centers of the plurality of pressing shafts coincide with the radial centers of the plurality of pressing shafts, and the plurality of rollers sequentially press the plurality of pressing shafts from the inflow side to the outflow side of the fluid. A fluid transport device characterized by flowing.
2 . '請求の範囲 1に記載の流体輸送装置において、  2. 'In the fluid transport device according to claim 1,
前記複数の押圧軸の少なく とも一つが前記チューブを閉塞しているこ とを特徴とする流体輸送装置。  A fluid transporting device, wherein at least one of the plurality of pressing shafts closes the tube.
3 . 弾性を有するチューブと、 該チューブを円弧状に装着するチューブ 案内壁を有するチューブ枠と、 前記チューブの内側に配置される回転板 と、 前記チューブと前記回転板の間に放射状に配置される複数の押圧軸 と、 前記回転板の上面に、 前記回転 の回転中心に対して同心円上に等 間隔で配置された複数のローラーとを備え.、.前記チューブ案内壁の円弧 中心と前記回転板の回.転中心と前記複数の押圧軸 放射 i と.が一致レ. ており、 前記複数のローラーが、 前記複数の押圧軸を順次押圧して流体 の流入側から流出側に向かって流体を流動することを特徴とする流体輸 送装置と、 流体を収容する流体収容容器とが、 前記チューブによって連 通されていることを特徴とする流体輸送器。  3. a tube having elasticity, a tube frame having a tube guide wall for mounting the tube in an arc shape, a rotating plate disposed inside the tube, and a plurality of radially disposed between the tube and the rotating plate And a plurality of rollers arranged on the upper surface of the rotating plate at equal intervals on a concentric circle with respect to the rotation center of the rotation plate, and the arc center of the tube guide wall and the rotation plate The rotation center and the plurality of pressing shafts radiate i coincide with each other, and the plurality of rollers sequentially press the plurality of pressing shafts to flow the fluid from the fluid inflow side to the outflow side. A fluid transporter characterized in that a fluid transport device and a fluid storage container for storing a fluid are communicated by the tube.
4 . 請求の範诵 3に記載の流体輸送器において、  4. In the fluid transport device according to claim 3,
前記流体輸送装置と前記流体収容容器とが、 筐体内において平面方向 に並列して形成されていることを特徴とする流体輸送器。'  The fluid transporter, wherein the fluid transport device and the fluid container are formed in parallel in a planar direction in a housing. '
5 . 請求の範囲 4に記載の流体輸送器において、  5. In the fluid transport device according to claim 4,
前記流体収容容器の内外を導通する開口部を備え、 前記開口部には通 気性フィルムを装着していることを特徴とする流体輸送器。 '  An fluid transporter comprising an opening for conducting the inside and outside of the fluid container, and a gas permeable film attached to the opening. '
PCT/JP2006/301398 2005-01-26 2006-01-24 Fluid transport device and fluid transporter WO2006080480A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US11/795,994 US7950908B2 (en) 2005-01-26 2006-01-24 Fluid transporting device of a peristalic type with tube and push pin arrangement
US12/617,771 US8157546B2 (en) 2005-01-26 2009-11-13 Fluid transporting device of the peristaltic type with a push pin and push plate arrangement
US13/412,066 US8834138B2 (en) 2005-01-26 2012-03-05 Fluid transporting device of the peristaltic type with a push pin and push plate arrangement
US13/890,466 US8858201B2 (en) 2005-01-26 2013-05-09 Fluid transporting device of the peristaltic type with a push pin and push plate arrangement
US13/890,504 US20130243633A1 (en) 2005-01-26 2013-05-09 Fluid transporting device of the peristaltic type with a push pin and push plate arrangement
US14/017,440 US20140003984A1 (en) 2005-01-26 2013-09-04 Fluid transporting device of the peristaltic type with a push pin and push plate arrangement
US14/134,519 US8888473B2 (en) 2005-01-26 2013-12-19 Fluid transporting device of the peristaltic type with a push pin and push plate arrangement
US14/134,459 US9309880B2 (en) 2005-01-26 2013-12-19 Fluid transporting device of the peristaltic type with a push pin and push plate arrangement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-017932 2005-01-26
JP2005017932A JP3702901B1 (en) 2005-01-26 2005-01-26 Fluid transport device and fluid transporter

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/795,994 A-371-Of-International US7950908B2 (en) 2005-01-26 2006-01-24 Fluid transporting device of a peristalic type with tube and push pin arrangement
US12/617,771 Division US8157546B2 (en) 2005-01-26 2009-11-13 Fluid transporting device of the peristaltic type with a push pin and push plate arrangement

Publications (1)

Publication Number Publication Date
WO2006080480A1 true WO2006080480A1 (en) 2006-08-03

Family

ID=35185091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301398 WO2006080480A1 (en) 2005-01-26 2006-01-24 Fluid transport device and fluid transporter

Country Status (2)

Country Link
JP (1) JP3702901B1 (en)
WO (1) WO2006080480A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014101841A (en) * 2012-11-21 2014-06-05 Aquatech Co Ltd Tube pump
CN104043160A (en) * 2013-03-14 2014-09-17 精工爱普生株式会社 Liquid Transporting Apparatus And Liquid Transporting Method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4355722B2 (en) * 2005-11-17 2009-11-04 セイコーエプソン株式会社 Fluid transport device
US8353683B2 (en) 2007-06-05 2013-01-15 Seiko Epson Corporation Micropump, pump module, and drive module
JP5098677B2 (en) * 2007-06-05 2012-12-12 セイコーエプソン株式会社 Micro pump, pump module, drive module
JP5144301B2 (en) * 2007-08-23 2013-02-13 株式会社セイコーアイ・インフォテック Pinch valve and device equipped with the pinch valve
JP5509540B2 (en) * 2007-08-30 2014-06-04 セイコーエプソン株式会社 Micro pump
JP6019718B2 (en) * 2012-05-02 2016-11-02 セイコーエプソン株式会社 Liquid transport apparatus and liquid transport method
JP5915687B2 (en) * 2014-04-03 2016-05-11 セイコーエプソン株式会社 Pump, tube unit
JP5915688B2 (en) * 2014-04-03 2016-05-11 セイコーエプソン株式会社 Pump, tube unit
JP6075420B2 (en) * 2015-07-31 2017-02-08 セイコーエプソン株式会社 Micro pump

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07217541A (en) * 1994-02-01 1995-08-15 Fumito Komatsu Tube pump
JPH10507799A (en) * 1994-05-11 1998-07-28 デビオテック ソシエテ アノニム Peristaltic pump device
JPH11137679A (en) * 1997-11-12 1999-05-25 Terumo Corp Transfusion pump
JPH11224868A (en) * 1997-11-03 1999-08-17 Motorola Inc Chemical and mechanical planarizing system and its method
JP2001515557A (en) * 1996-03-12 2001-09-18 モーバイド,アーマド―マヘル Peristaltic pump
JP2001523995A (en) * 1997-04-18 2001-11-27 ソシエテ デ プロデユイ ネツスル ソシエテ アノニム Peristaltic pump

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07217541A (en) * 1994-02-01 1995-08-15 Fumito Komatsu Tube pump
JPH10507799A (en) * 1994-05-11 1998-07-28 デビオテック ソシエテ アノニム Peristaltic pump device
JP2001515557A (en) * 1996-03-12 2001-09-18 モーバイド,アーマド―マヘル Peristaltic pump
JP2001523995A (en) * 1997-04-18 2001-11-27 ソシエテ デ プロデユイ ネツスル ソシエテ アノニム Peristaltic pump
JPH11224868A (en) * 1997-11-03 1999-08-17 Motorola Inc Chemical and mechanical planarizing system and its method
JPH11137679A (en) * 1997-11-12 1999-05-25 Terumo Corp Transfusion pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014101841A (en) * 2012-11-21 2014-06-05 Aquatech Co Ltd Tube pump
CN104043160A (en) * 2013-03-14 2014-09-17 精工爱普生株式会社 Liquid Transporting Apparatus And Liquid Transporting Method

Also Published As

Publication number Publication date
JP3702901B1 (en) 2005-10-05
JP2006207414A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
WO2006080480A1 (en) Fluid transport device and fluid transporter
US8888473B2 (en) Fluid transporting device of the peristaltic type with a push pin and push plate arrangement
JP3750689B1 (en) Fluid transport device and fluid transporter
JP4946974B2 (en) Fluid transport device and fluid transporter
US9631615B2 (en) Control unit, tube unit, and micropump
JP2007138775A (en) Liquid transportation device
JP2008522076A (en) Peristaltic pump
CN107847672A (en) Liquid device is administered and gives decoction unit
WO2015173926A1 (en) Micro peristaltic pump
JP2008202603A (en) Fluid conveying device and fluid conveyor
JP4165528B2 (en) Fluid transport device and fluid transporter
CN203229376U (en) Filling device and exhaust mechanism
JP5857466B2 (en) Fluid transport device
JP2019090337A (en) Peristaltic pump device
JP2004243591A (en) Container for paste or the like
JP2021530704A (en) Cartridge with liquid pack
JP2009115151A (en) Valve device
JP6956969B1 (en) Resin assembly and manufacturing method
JP5915687B2 (en) Pump, tube unit
JP2013177897A (en) Tube unit, control unit and micropump
JPH10191664A (en) Driving device and apparatus using it
WO2015196560A1 (en) Drip controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11795994

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 06712541

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6712541

Country of ref document: EP