WO2006080423A1 - Monitor wafer and method for monitoring wafer - Google Patents

Monitor wafer and method for monitoring wafer Download PDF

Info

Publication number
WO2006080423A1
WO2006080423A1 PCT/JP2006/301289 JP2006301289W WO2006080423A1 WO 2006080423 A1 WO2006080423 A1 WO 2006080423A1 JP 2006301289 W JP2006301289 W JP 2006301289W WO 2006080423 A1 WO2006080423 A1 WO 2006080423A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
carbide
monitor
sintered
test piece
Prior art date
Application number
PCT/JP2006/301289
Other languages
French (fr)
Japanese (ja)
Inventor
Toshikazu Shinogaya
Akira Sato
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Priority to JP2007500587A priority Critical patent/JPWO2006080423A1/en
Publication of WO2006080423A1 publication Critical patent/WO2006080423A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • H01L22/34Circuits for electrically characterising or monitoring manufacturing processes, e. g. whole test die, wafers filled with test structures, on-board-devices incorporated on each die, process control monitors or pad structures thereof, devices in scribe line

Definitions

  • the present invention relates to a monitor wafer and a wafer monitoring method. More specifically, the present invention relates to a monitor wafer having a carbon carbide sintered body strength and a wafer monitoring method using the monitor wafer.
  • silicon is used to confirm the deposition state of the deposited film formed on the wafer surface during the wafer surface processing step such as chemical vapor deposition (CVD) step.
  • CVD chemical vapor deposition
  • Powerful monitor wafers are used. Since such monitor wafers are expensive, they are reused by cleaning and removing the surface film with nitric acid after use.
  • the present invention relates to the following description items:
  • a monitor wafer characterized by having a carbonized carbon sintered body having a concave pocket for placing a test piece on a monitor portion on the wafer surface.
  • a ring plate that is detachably attached to the base wafer and forms a concave pocket for placing a test piece on the monitor portion when attached to the base wafer.
  • (4) The above test piece must have at least one of the requirements
  • a wafer monitoring method comprising: monitoring a deposited film deposited on the test piece using a monitor wafer having the same.
  • FIG. 1 shows a top view of a monitor wafer that works on the first embodiment
  • Fig. 1 (b) shows a cross-sectional view of the monitor wafer that works on the first embodiment
  • FIG. 1 (c) is a partially enlarged view of the cross section of the monitor wafer according to the first embodiment.
  • FIG. 2 (a) is a top view of a monitor wafer that works on the second embodiment
  • FIG. 2 (b) shows a cross-sectional view of the monitor wafer that works on the second embodiment
  • FIG. 4C is a partially enlarged view of a cross section of the monitor wafer according to the second embodiment.
  • FIGS. 3 (a) to 3 (d) show manufacturing process diagrams of a monitor wafer which is helpful in the first embodiment.
  • FIGS. 4 (a) to 4 (e) are diagrams showing a manufacturing process of a monitor wafer which is useful for the second embodiment.
  • FIG. 5 is a partially enlarged view of a cross section of a monitor wafer which is useful for the modification of the first embodiment.
  • the monitor wafer 10 that is effective in the first embodiment shown in FIGS. L (a) to (c) is made of a sintered carbide carbide having a concave pocket for placing a test piece on the monitor portion of the wafer surface. And a test piece 31 to 39 that is detachably attached to the pocket.
  • the monitor wafer 10 has pockets 21 to 29 at positions where the test pieces 31 to 39 are attached.
  • the monitor wafer main body 2 is not particularly limited, but is formed by a hot press method, a CVD method, and a reactive sintering method. Hot press and CVD methods are preferred because of their good chemical resistance. In addition, the monitor wafer body 2 formed by a hot press method is more preferable in that the flatness during high-temperature processing is stable.
  • the pockets formed in the form of dots on the wafer surface can be formed by a polishing method or the like.
  • the pocket can be provided without particular limitation as long as it is arranged in the monitor portion of the monitor wafer 10.
  • the monitor wafer 10 may be provided concentrically.
  • the depth of the pocket is not particularly limited as long as the force can be appropriately changed depending on the thickness of the test pieces 31 to 39, and can be held to the extent that the test piece is not displaced at least during the CVD process.
  • a through hole 61 may be provided at the bottom of the pocket of the monitor wafer 6. In that case, it is preferable to provide support portions 62a and 62b for holding the test piece 39.
  • the test pieces 31 to 39 are not particularly limited in thickness and shape as long as the state of the deposited film deposited on the surface can be monitored.
  • the economic viewpoint is preferably thin.
  • the shape may be a polygon such as a quadrangle in addition to a round shape.
  • Examples of the material of the test piece include silicon, sapphire, graphite, and quartz.
  • the test pieces 31 to 39 may be reused by performing a cleaning process after monitoring.
  • the monitor wafer main body 2 that exerts the power of the first embodiment also has the strength of sintered carbonized carbide, the chemical resistance is high and the test piece can be exchanged. Therefore, the monitor wafer body 2 can be reused any number of times by replacing the test pieces 31 to 39. In other words, the life of the monitor wafer 10 that is effective in the first embodiment is much longer than that of a monitor wafer that can be reused only about 4 times and also has a conventional silicon power.
  • the monitor wafer 10 which is useful for the first embodiment can be used in the same manner as a conventional monitor wafer. Therefore, the state of the deposited film on the wafer can be easily observed without the need for skilled techniques.
  • a monitor wafer 60 which is useful in the second embodiment shown in FIGS. 2 (a) to 2 (c), is a base wafer 3 made of a sintered carbide body, and is detachably attached to the base wafer 3.
  • the ring plate 5 also has a carbon carbide sintered body force that forms a concave pocket for placing the test piece on the monitor portion, and the test piece 41 to be attached to the pocket itself. 49.
  • the ring plate 5 has pockets 51 to 59 at positions where the test pieces 41 to 49 are attached. The following description will focus on differences from the first embodiment.
  • the base wafer 3 and the ring plate 5 are formed by a hot press method, a CVD method, or a reactive sintering method although there is no particular limitation. From the viewpoint of the stability of the flatness of the resulting monitor wafer, the hot press method is preferred.
  • the wafer mounting surface of the base wafer 3 is preferably flat. This is because the stability of the test pieces 41 to 49 is improved by widening the contact surface between the test pieces 41 to 49 and the base cover 3 (the bottom of the pocket) when the wafer is placed.
  • the flatness of the wafer mounting surface of the base wafer 3 is preferably about 10 ⁇ m to 50 ⁇ m.
  • the holes formed in the ring plate 5 can be formed by an electric discharge machining method.
  • the thickness of the ring plate 5, that is, the depth of the pocket, is a force that changes as appropriate according to the thickness of the test piece. ,.
  • the monitor wafer 60 that works in the second embodiment is that the ring plate 5 is the base wafer 3 or not. Therefore, the surface of the base wafer 3 can be easily polished. Therefore, the flatness of the wafer mounting surface of the base wafer 3 can be increased, and the stability of the test pieces 41 to 49 can be improved.
  • a wafer monitoring method using the monitor wafers 10 and 60 which is useful for the above embodiment. That is, a monitor wafer having a monitor wafer body having a carbonized carbide sintered body having a concave pocket for mounting a test piece on the monitor portion of the wafer surface and a test piece detachably attached to the pocket is used.
  • a wafer monitoring method characterized by monitoring a deposited film deposited on the test piece.
  • the monitor wafer manufacturing method As an embodiment of the monitor wafer manufacturing method, a manufacturing method using a hot press method will be described. First, the hot press method will be described.
  • a method for producing a carbide used for producing a monitor wafer will be described.
  • a silicon carbide sintered body having a free carbon content of 2 to 10% by weight is used.
  • Such a sintered carbonized carbide is obtained by firing a mixture of a sintered carbide powder and a nonmetallic sintering aid.
  • the carbon carbide powder will be described.
  • the carbide powder ⁇ type,
  • ⁇ -type carbide powder is preferably used.
  • the particle size of the used carbide powder is small. Preferably it is about 0.01-10 micrometers, More preferably, it is 0.05-2 micrometers.
  • the particle size is less than 0.01 ⁇ m, handling in processing steps such as weighing and mixing becomes difficult.
  • the particle size exceeds 10 / zm, the specific surface area of the powder, that is, the contact area with the adjacent powder. Is not preferable because it becomes smaller and it is difficult to increase the density.
  • High purity carbon carbide powder is, for example, a key compound (hereinafter referred to as “key source”).
  • key source An organic material that generates carbon by heating, and a polymerization catalyst or a cross-linking catalyst, and the obtained solid is fired in a non-oxidizing atmosphere.
  • a key source at least one kind of liquid compound is used as a force capable of widely using liquid and solid compounds. Examples of the liquid key source include polymers of alkoxysilane (mono-, di-, tree, tetra).
  • tetraalkoxysilane polymers are preferably used. Specifically, methoxysilane, ethoxysilane, propyloxysilane, butoxysilane and the like are mentioned. From the viewpoint of power handling, ethoxysilane is preferable.
  • the degree of polymerization of the tetraalkoxysilane polymer is about 2 to 15, a liquid low molecular weight polymer (oligomer) is formed.
  • oligomer liquid low molecular weight polymer
  • liquid cation polymers having a high degree of polymerization.
  • solid source that can be used in combination with a liquid source include carbide. Carbide carbides here include silica sol (including colloidal ultrafine silica) as well as mono-acid silicate (SiO) and diacid silicate (SiO 2).
  • Liquids containing colloidal molecules containing OH groups or alkoxy groups), fine silica, quartz powder, etc. are also included.
  • a tetraalkoxysilane oligomer having good homogeneity and a good ring ring property, or a mixture of an oligomer of tetraalkoxysilane and fine powder silica is preferable.
  • these key sources are highly pure, and specifically, the initial impurity content is preferably 20 ppm or less, more preferably 5 ppm or less.
  • a liquid material and a solid material may be used in combination.
  • An organic material having a high residual carbon ratio and capable of being polymerized or crosslinked by a catalyst or heating is preferable.
  • monomers such as phenol resin, furan resin, polyimide, polyurethane, polybulal alcohol, and prepolymers are preferred.
  • liquid materials such as cellulose, sucrose, pitch, and tar are also used.
  • resole type phenolic resin is preferable in terms of thermal decomposability and purity.
  • the purity of the organic material may be appropriately controlled according to the purpose.
  • the mixing ratio of the source of the key and the organic material can be determined by intensifying a preferable range based on the molar ratio of carbon to key (hereinafter abbreviated as "CZSi").
  • CZSi molar ratio of carbon to key
  • the czsi obtained from the elemental analysis of a carbonized carbon intermediate obtained by carbonizing a mixture of a key source and an organic material at 1000 ° C. As shown in the following reaction formula, carbon reacts with oxide silicon and changes to carbonized carbide.
  • the free carbon Occurrence can be suppressed.
  • C / Si is compounded to exceed 2.5, free carbon generation becomes remarkable, and a carbonized carbon powder with small particles can be obtained.
  • the blending ratio can be appropriately determined according to the purpose.
  • the action and effect of free carbon caused by the carbonized carbide powder are very weak compared with the action and effect of free carbon generated from the sintering aid, the free carbon caused by the carbonized carbide powder is The effect of this embodiment is not essentially affected.
  • a mixture of a key source and an organic material can be cured to form a solid.
  • Curing methods include a method using a crosslinking reaction by heating, a method using a curing catalyst, and a method using electron beam or radiation.
  • the curing catalyst to be used can be appropriately selected according to the organic material to be used. However, when phenol resin or furan resin is used as the organic material, such as toluenesulfonic acid, toluenecarboxylic acid, acetic acid, oxalic acid, hydrochloric acid, sulfuric acid, etc. Examples include acids and amines such as hexamine. Solids containing the key source and organic material are heated and carbonized as needed.
  • Carbonization is performed by heating at 800 ° C to 1000 ° C for 30 to 120 minutes in a non-acidic atmosphere such as nitrogen or argon. Further, when heated at 1350 ° C. to 2000 ° C. in a non-oxidizing atmosphere, silicon carbide is generated.
  • the firing temperature and firing time affect the particle size and the like of the resulting carbide powder, and may be appropriately determined. However, firing at 1600 to 1900 ° C. is efficient and preferable.
  • the method for obtaining the high-purity silicon carbide powder described above is described in detail in the specification of JP-A-9-48605.
  • the sintered body has a free carbon content of 2 to 10% by weight. This free carbon is attributed to the organic material used for the nonmetallic sintering aid, and the amount of free carbon can be reduced by adjusting the additive conditions such as the amount of nonmetallic sintering aid added. Can range.
  • a non-metallic sintering aid that can be a free carbon source, that is, an organic material that generates carbon by heating (hereinafter, sometimes referred to as "carbon source”) may be used.
  • the above organic material may be used alone or as a sintering aid with the above organic material coated on the surface of a carbide powder (particle size: about 0.01 to 1 micron). From this point, it is preferable to use an organic material alone.
  • organic materials that generate carbon by heating include coal tar pitch, pitch tar, phenol resin, furan resin, epoxy resin, phenoxy resin, saccharides, which have a high residual carbonization rate, Examples thereof include monosaccharides such as darcos, small saccharides such as sucrose, polysaccharides such as cellulose and starch, and the like.
  • the organic material is preferably liquid at room temperature, dissolved in a solvent, or softened by heating such as having thermoplasticity and heat melting properties.
  • the use of phenol resin increases the strength of the sintered carbonized carbide, and is more preferably resol type phenol resin.
  • the nonmetallic sintering aid may be dissolved in an organic solvent, and the solution may be mixed with the silicon carbide powder.
  • the organic solvent to be used varies depending on the non-metallic sintering aid. For example, when phenol resin is used as the sintering aid, lower alcohols such as ethyl alcohol, ethyl ether, acetone, etc. may be selected. it can.
  • high-purity silicon carbide sintered bodies not only high-purity silicon carbide powder, but also sintering aids and organic solvents with low impurity content! Favored ,.
  • the amount of the nonmetallic sintering aid added to the carbide carbide powder is determined so that the free carbon of the sintered carbide carbide is 2 to 10% by weight. If the free carbon is outside this range, the chemical change to SiC that progresses during the bonding process, and the bonding between the sintered carbide bodies is insufficient. It becomes.
  • the free carbon content (% by weight) is determined by heating the sintered carbide carbide body in an oxygen atmosphere at 800 ° C for 8 minutes, and measuring the amount of generated CO and CO with a carbon analyzer.
  • the measured force can be calculated.
  • the amount of sintering aid added varies depending on the type of sintering aid used and the amount of surface silica (silicon oxide) in the carbide powder.
  • the amount of surface silica (silicon oxide) of the carbide powder is quantified using hydrogen fluoride water in advance, and the stoichiometry sufficient to reduce this oxide oxide ( Calculate the stoichiometry calculated by formula (I).
  • the amount added can be determined so that the free carbon falls within the above-mentioned suitable range.
  • the description of the non-metallic sintering aid for the sintered carbide carbide described above is described in more detail in the specification of Japanese Patent Application No. 9-041048.
  • a method for sintering a mixture of a carbide carbide powder and a nonmetallic sintering aid will be described.
  • the silicon carbide powder and the nonmetallic sintering aid are mixed homogeneously.
  • a solution obtained by dissolving a sintering aid in an organic solvent as described above may be used.
  • the mixing method include known methods such as a method using a mixer, a planetary ball mill and the like.
  • the equipment used for mixing is preferably a synthetic resin material in order to prevent metal element impurities from being mixed. Mixing is preferably performed for about 10 to 30 hours, particularly for about 16 to 24 hours, and mixed thoroughly. After thorough mixing, the solvent is removed and the mixture is evaporated to dryness. Thereafter, the mixture is sieved to obtain a raw material powder of the mixture. For drying, a granulator such as a spray dryer may be used.
  • the raw material powder thus obtained is placed in a molding die.
  • the molding die to be used is made of graphite because metal impurities are not mixed in the sintered carbide body.
  • the contact part is made of graphite so that the raw material powder and the metal part of the mold do not directly contact each other, or a polytetrafluoroethylene sheet (Teflon) is applied to the contact part. (Registered trademark) sheet) can be used preferably.
  • Teflon polytetrafluoroethylene sheet
  • a graphite material or the like that is sufficiently baked at a temperature of 2500 ° C. or higher and does not generate impurities even when used at a high temperature can be used.
  • the raw material powder placed in the molding die is subjected to hot pressing. Wide of Nag 300 ⁇ 700kgfZcm 2 in particular constraints Te pressure Nitsu ⁇ of the hot press, it can be carried out by the pressure of the range. However, when pressurizing at 400 kgfZcm 2 or more, it is necessary to use hot press parts such as dies and punches having excellent pressure resistance.
  • Hot pressing is performed at a temperature of 2000 ° C to 2400 ° C. It is preferable that the temperature is raised to the hot pressing temperature gently and stepwise. When the temperature is raised in this way, chemical changes, state changes, etc. that occur at each temperature can be sufficiently advanced. As a result, it is possible to prevent the introduction of impurities, cracks and vacancies.
  • An example of the temperature raising process is shown below. First, a molding die containing raw material powder is placed in a furnace, and the furnace is evacuated to 10 _4 torr. Gently raise the temperature from room temperature to 200 ° C and keep it at 200 ° C for about 30 minutes. Then, heat up to 700 ° C in 6-10 hours and keep at 700 ° C for 2-5 hours.
  • the holding time at the constant temperature varies depending on the size of the sintered carbonized carbide, and may be set to a suitable time as appropriate.
  • the determination of force / force force with a sufficient holding time can be based on the time point when the degree of vacuum decrease is reduced to some extent.
  • the temperature is raised from 700 to 1500 until 6 to 9 hours and maintained at 1500 ° C for 1 to 5 hours. While the temperature is maintained at 1500 ° C., the reaction in which the oxide is reduced to carbon is progressed (formula (I)).
  • Insufficient holding time is not preferable because silicon dioxide remains and adheres to the surface of the silicon carbide powder, thus preventing densification of the particles and causing large grains to grow.
  • the determination of whether the holding time is sufficient is based on whether the generation of by-product carbon monoxide and carbon monoxide has stopped, i.e., the reduction in the degree of vacuum has stopped, and the reduction reaction start temperature has been reached. It can be used as a guideline to recover to a certain vacuum level of 1300 ° C.
  • the hot pressing is preferably performed after the inside of the furnace is heated to about 1500 ° C. at which sintering starts, and then filled with an inert gas in order to make the inside of the furnace a non-oxidizing atmosphere.
  • an inert gas it is preferable to use argon gas that is non-reactive even at high temperatures, such as nitrogen gas or argon gas. If a high-purity silicon carbide sintered body is produced, use an inert gas with a high purity.
  • the temperature forces 2000 o C ⁇ 2400 o C, the furnace so that the pressure force S300 ⁇ 700kgf / cm 2 Caro fever and Caro Press. If the maximum temperature is less than 2000 ° C, the densification is insufficient.
  • the maximum temperature exceeds 2400 ° C, it is not preferable because the powder or the raw material of the molded body may sublimate (decompose). It is preferable to raise the temperature from around 1500 ° C to the maximum temperature over 2 to 4 hours and hold at the maximum temperature for 1 to 8 hours. Sintering proceeds rapidly at 1850-1900 ° C and completes during the maximum temperature holding time.
  • the pressurization condition is less than 300 kgfZcm 2 , the density increase is insufficient, and if it exceeds 700 kgfZcm 2 , the graphite mold may be damaged, which is not preferable in terms of production efficiency.
  • the surface roughness (Ra) is preferably 0 or less, and more preferably 0.2 ⁇ m or less.
  • the pressure is preferably about 300 kgf / cm 2 to 700 kgfZcm 2 in order to suppress the growth of abnormal grains.
  • the sintered carbide carbide used is densified and has a density of 2.9 gZcm 3 or more and a porosity of 1% or less, preferably a density of 3. OgZcm 3 or more, and a porosity of 0.8% or less is particularly preferable.
  • a densified carbide body sintered body When a densified carbide body sintered body is used, mechanical properties such as bending strength and fracture strength, and electrical properties of the obtained bonded carbide body are improved.
  • the use of a densified silicon carbide sintered body is preferable in terms of contamination because the constituent particles are reduced in size.
  • a method for increasing the density of the sintered carbide carbide there is a method in which a forming step is performed in advance of the sintering step.
  • This molding process is performed at a lower temperature and lower pressure than the sintering process.
  • the bulky powder can be made compact (small volume) in advance, and by repeating this step many times, it becomes easy to produce a large molded body.
  • An example of various conditions of the molding process performed in advance prior to the sintering process is shown below.
  • the raw material powder obtained by homogeneously mixing the silicon carbide powder and the nonmetallic sintering aid is placed in a molding die, and the temperature is 80 ° C to 300 ° C, preferably 120 ° C to 140 ° C., pressure 50 kgfZcm 2 ⁇ : LOOkgfZcm 2 is pressed for 5 to 60 minutes, preferably 20 to 40 minutes to obtain a molded body.
  • the heating temperature may be appropriately determined according to the characteristics of the nonmetallic sintering aid.
  • the density of the resulting molded product is 1.8 gZcm 2 or more when using powder with an average particle size of about 1 m, and 1 when using powder with an average particle size of 0.5 m. Press to 5g / cm 2 It is preferable to do this. If the density of the molded body to be used is within this range, it is preferable because it becomes easy to increase the density of the sintered carbide body. Cut the molded body so that the resulting molded body is compatible with the mold used in the s
  • Impurity elements in the sintered carbonized carbide used in this embodiment (in the element periodic table of the 1989 IUPAC inorganic chemical nomenclature revised edition, elements with atomic number 3 or more excluding C, N, 0, Si) If the total content of (element) is 5 ppm or less, it can be used for processes requiring high cleanliness, for example, semiconductor manufacturing processes. More preferably, it is 3 ppm or less, and particularly preferably 1 ppm or less. However, the impurity content by chemical analysis has only a meaning as a reference value in actual use.
  • the evaluation of the contamination property of the carbide-bonded body may differ depending on the force that the impurities are uniformly distributed and whether the impurities are locally distributed.
  • the materials specifically exemplified above and the exemplified sintering method are used, a sintered carbide body having an impurity content of 1 ppm or less can be obtained.
  • the content of impurity elements contained in the raw materials used for example, the carbide powder and non-metallic sintering aid
  • the inert gas are used.
  • a method for removing impurities by adjusting the sintering conditions such as sintering time, temperature, etc. to 1 ppm or less.
  • the impurity element here is the same as described above, and atomic number 3 or more in the periodic table of the 1989 IUPAC Inorganic Chemical Nomenclature Revision (except for C, N, 0, Si) This element.
  • Other physical properties of the sintered carbide carbide used in the present embodiment are: bending strength at room temperature 200 to 800 kgfZmm 2 , Young's modulus 250 GPa to 500 GPa, Vickers hardness 2000 to 3500 kgfZmm 2 , Poisson's ratio 0.14 to 0 21. Thermal expansion coefficient 3.8 X 10— 6 to 4.5 X 10— 6 1 Z ° C, volume resistivity 0.1 ⁇ 'cm or less Various characteristics of the obtained carbonized carbide joint Is preferable.
  • a carbide carbide sintered body described in the specification of Japanese Patent Application No. 9-041048 can be suitably used as the carbide carbide sintered body of the present embodiment.
  • the surface to be bonded of the sintered carbide body is smooth in terms of adhesion.
  • the surface roughness (Ra) of the surface to be bonded is 0.5 m or less. Preferred is 0.2 m or less.
  • the surface roughness (Ra) of the sintered carbonized carbide should be adjusted to the above range by grinding or puffing with a 200 to 800 grinding wheel. Can do.
  • the silicon metal used in the present embodiment is preferably one having a purity of 98% or more, more preferably 99% or more, and particularly preferably 99.9%. If silicon metal with low purity is used, a covalent compound due to an impurity element is generated in the carbide bonded body, and the fire resistance is lowered. In particular, when used in connection with semiconductor processes such as a wafer jig, it is preferable to use one having a purity of 99.999% or more.
  • the silicon metal used is a powder, the powder is preferably 100 mesh or more. If the size of the silicon metal is less than 100 mesh, the surfaces to be joined are liable to shift and dimensional accuracy cannot be obtained. There is no particular restriction on the upper limit, but what is actually available is less than 350 mesh.
  • the amount of silicon metal used for bonding affects the bonding strength and the like of the resulting silicon carbide bonded body.
  • the bonding strength of the obtained silicon carbide bonded body is improved and the remaining silicon metal remains. It has been found that there is no reduction in the bonding strength or contamination due to.
  • Formula (D k X ⁇ joint surface area (cm 2 ) ⁇ of carbon carbide bonded body ⁇ X ⁇ free carbon content of sintered carbide body (%) ⁇ (g) For example, when joining two sintered bodies with the same surface, the surface area is the projection surface of the surface of one sintered carbonized carbide.
  • the total surface area of the projected surfaces of all the joined surfaces of the sintered carbide body is summed to indicate the 1Z2 area.
  • k is between 0.08 and 0.12, and is an experimentally determined coefficient whose dimension is g / cm 2
  • Silicon metal is bonded to two or more sintered carbides
  • silicon metal powder is spread on the surface of one of the sintered carbide bodies, and then silicon metal Overlay the surface to which the other sintered carbide body is to be joined on the dispersed surface, or place two or more sintered carbide bodies in close proximity to each other so that a predetermined space can be obtained (the joining surfaces face each other).
  • the silicon carbide sintered body sandwiching the silicon metal is subjected to a high-temperature heat treatment.
  • the heat treatment is preferably performed in a vacuum or in an inert gas atmosphere other than nitrogen gas, which is preferably performed in a non-acidic atmosphere.
  • the inert gas used is preferably argon gas or helium gas.
  • nitrogen gas is used as an inert gas, it reacts with silicon metal at a high temperature to form nitride nitride, and the joint surface may be peeled off or broken due to a difference in thermal expansion.
  • argon gas and helium gas are non-reactive even at high temperatures, such problems do not occur and are preferable.
  • the heating temperature is preferably 1450 ° C to 2200 ° C as long as it is equal to or higher than the melting point of silicon metal. Below 1450 ° C, silicon metal does not melt, and at 2200 ° C, silicon metal partially sublimes.
  • the upper limit is preferably 2000 ° C when j8 type carbide is used as the raw material, and 1800 ° C when ⁇ type is used. In particular, bonding at about 1600 ° C is preferable because a high-strength bonded body can be produced efficiently. Further, it is preferable to raise the temperature gently because the reaction between silicon metal and free carbon in the sintered carbonized carbon body proceeds sufficiently. Specifically, it is preferable to raise the temperature at 5 ° CZ to 15 ° CZ, especially about 10 ° CZ.
  • the monitor wafer 10 that works in the first embodiment is manufactured by the following process.
  • FIG. 3 (a) A monitor wafer body 2 shown in FIG. 3 (a) is manufactured according to the hot press method.
  • (Mouth) Next, as shown in FIG. 3 (b), pockets 24, 28, 29, 26, and 22 having a concave cross section are formed in the monitor portion of the monitor wafer body 2 using a polishing method.
  • the monitor wafer 10 that is effective in the first embodiment is manufactured.
  • the monitor wafer 60 that is useful in the second embodiment is manufactured by the following steps.
  • the monitor wafer 60 which is effective in the second embodiment is manufactured.
  • the obtained monitor wafers 10 and 60 have a structure in which the amount of residual key is small and the carbide particles are uniformly dispersed.
  • the monitor wafers 10 and 60 obtained according to the present embodiment have a density of 2.9 gZcm 3 or more, and mainly isotropic silicon particles having an average particle diameter of 2 ⁇ m-lO ⁇ m are uniformly dispersed. Has a structure. Therefore, it can be used as a structural member with small variations in density and the like. In general, if the density of the sintered body is less than 2.9 gZcm 3 , the mechanical properties such as bending strength and fracture strength and the electrical properties are lowered, and further, the particles are increased, resulting in poor contamination. Therefore, it can be said that the monitor wafer of this embodiment has good mechanical characteristics and electrical characteristics.
  • the density of the monitor wafers 10 and 60 in a preferred embodiment is 3. OgZcm 3 or more.
  • the total impurity content of the monitor wafers 10 and 60 obtained in the present embodiment is less than lOppm, preferably less than 5 ppm, more preferably less than 3 ppm, and even more preferably less than lppm.
  • the manufacturing method including the firing step of firing in an acidic atmosphere the total content of impurities other than silicon, carbon, and oxygen contained in the monitor wafers 10 and 60 can be less than lppm. it can.
  • the nitrogen content of the monitor wafers 10 and 60 obtained in this embodiment is 150 ppm or more.
  • the bending strength at room temperature is 400 MPa to 700 MPa
  • the Vickers hardness is ⁇ or 1500 kgf / mm 2 or more
  • Poisson iti is 0. 14 ⁇ 0.21
  • the resistivity is 1 X 10 _1 ⁇ cm or less.
  • the monitor wafers 10 and 60 of the present embodiment obtained as described above preferably have the following physical properties:
  • the monitor wafers 10 and 60 have a volume resistance of 1 Q cm or less, and in a more preferred embodiment 0.5 Q cm to 0.05 ⁇ cm.
  • Monitor wafers 10 and 60 have a total content of unavoidable elements other than silicon and carbon of monitor wafers 10 and 60, that is, impurity elements of less than 5 ppm.
  • the monitor wafers 10 and 60 have a density of 2.9 gZcm 3 or more, and in a more preferred embodiment, 3.00 to 3.15 gZcm 3 .
  • the monitor wafers 10 and 60 have a bending strength of 00 MPa or more, and in a more preferred embodiment, 500 MPa to 700 MPa.
  • the raw material powder of the present embodiment is a carbon carbide powder, a source for producing the raw material powder, a non-metallic sintering aid, and a non-oxidizing atmosphere. It is preferable that the purity of each inert gas is less than or equal to 1 ppm of each impurity element. If it is within the allowable range of purity in the heating and sintering process, it is not necessarily limited to this! /. Further, the base plate and the ring plate may be manufactured using, for example, a reactive sintering method without being limited to the hot press method.
  • a reusable monitor wafer having good chemical resistance is provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Ceramic Products (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

Disclosed is a monitor wafer characterized by being composed of a silicon carbide sintered body which has a recessed pocket in a monitor portion on the wafer surface for mounting a test piece. The monitor wafer is reusable and excellent in chemical resistance.

Description

明 細 書  Specification
モニターウェハ及びウェハのモニター方法  MONITOR WAFER AND WAFER MONITORING METHOD
技術分野  Technical field
[0001] 本発明は、モニターウェハ及びウェハのモニター方法に関する。さらに詳しくは炭化 ケィ素焼結体力 なるモニターウェハ及びそれを用いたウェハのモニター方法に関 する。  The present invention relates to a monitor wafer and a wafer monitoring method. More specifically, the present invention relates to a monitor wafer having a carbon carbide sintered body strength and a wafer monitoring method using the monitor wafer.
背景技術  Background art
[0002] 従来力 LSI等の半導体製造プロセスにおいて、ウェハ表面の処理工程例えばィ匕 学気相成長 (CVD)工程の際に、ウェハ表面に形成された堆積膜の堆積状態を確認 するためにシリコン力もなるモニターウェハが使用されている。かかるモニターウェハ は高価であるため、使用後、硝酸等で表面の膜を洗浄除去等することにより再利用さ れている。  In a conventional semiconductor manufacturing process such as LSI, silicon is used to confirm the deposition state of the deposited film formed on the wafer surface during the wafer surface processing step such as chemical vapor deposition (CVD) step. Powerful monitor wafers are used. Since such monitor wafers are expensive, they are reused by cleaning and removing the surface film with nitric acid after use.
[0003] しかし、シリコンは耐薬品性が劣るため、再利用を繰り返すとシリコンが溶出し表面 が荒れてモニターウェハとして使用できなくなる。また再利用の際に再研磨することに よりウェハが薄くなるため平面度が悪くなり、割れが発生したり、自動搬送が困難にな つていた。ところが、上記課題を改善する手段は、特に見当らな力つた。  [0003] However, since silicon has poor chemical resistance, when it is reused repeatedly, the silicon elutes and the surface becomes rough and cannot be used as a monitor wafer. Also, by re-polishing during reuse, the wafer becomes thinner, resulting in poor flatness, cracking, and automatic transfer. However, the means for improving the above-mentioned problem has been particularly apparent.
発明の開示  Disclosure of the invention
課題を解決するための手段  Means for solving the problem
[0004] 即ち、本発明は、以下の記載事項に関する: That is, the present invention relates to the following description items:
(1) ウェハ表面のモニター部に試験片を載置するための凹状のポケットを備える炭 化ケィ素焼結体力もなることを特徴とするモニターウェハ。  (1) A monitor wafer characterized by having a carbonized carbon sintered body having a concave pocket for placing a test piece on a monitor portion on the wafer surface.
[0005] (2) 炭化ケィ素焼結体からなるベースウェハと、 [0005] (2) a base wafer made of a sintered carbide carbide,
上記ベースウェハに着脱自在に取り付けられ、上記ベースウェハに取り付けた際に 、モニター部分に試験片を載置するための凹状のポケットを形成する炭化ケィ素焼 結体力 なるリングプレートと、を有することを特徴とするモニターウェハ。  A ring plate that is detachably attached to the base wafer and forms a concave pocket for placing a test piece on the monitor portion when attached to the base wafer. Characteristic monitor wafer.
[0006] (3) さらに、上記ポケットに着脱自在に取り付けられる試験片を有することを特徴と する上記(1)又は(2)記載のモニターウェハ。 [0007] (4) 上記試験片は、少なくとも一方の要件 [0006] (3) The monitor wafer according to (1) or (2), further comprising a test piece that is detachably attached to the pocket. [0007] (4) The above test piece must have at least one of the requirements
平面度 200 m以下、  Flatness 200 m or less,
表面粗度 (Ra) 0. l /z m以下、  Surface roughness (Ra) 0.1 l / z m or less,
を満たすことを特徴とする上記(3)に記載のモニターウェハ。  The monitor wafer according to (3) above, wherein
[0008] (5) ウェハ表面のモニター部に試験片を載置するための凹状のポケットを備える炭 化ケィ素焼結体力 なるモニターウェハ本体と、上記ポケットに着脱自在に取り付け られる試験片と、を有するモニターウェハを用いて、上記試験片上に堆積した堆積膜 をモニターすることを特徴とするウェハのモニター方法。 (5) A monitor wafer body having a carbonized carbon sintered body having a concave pocket for mounting a test piece on a monitor portion on the wafer surface, and a test piece detachably attached to the pocket. A wafer monitoring method comprising: monitoring a deposited film deposited on the test piece using a monitor wafer having the same.
図面の簡単な説明  Brief Description of Drawings
[0009] [図 1]図 1 (a)は第 1の実施形態に力かるモニターウェハの上面図を示し、図 1 (b)は 第 1の実施形態に力かるモニターウェハの断面図を示し、図 1 (c)は第 1の実施形態 にかかるモニターウェハの断面一部拡大図を示す。  [0009] [Fig. 1] Fig. 1 (a) shows a top view of a monitor wafer that works on the first embodiment, and Fig. 1 (b) shows a cross-sectional view of the monitor wafer that works on the first embodiment. FIG. 1 (c) is a partially enlarged view of the cross section of the monitor wafer according to the first embodiment.
[図 2]図 2 (a)は第 2の実施形態に力かるモニターウェハの上面図を示し、図 2 (b)は 第 2の実施形態に力かるモニターウェハの断面図を示し、図 2 (c)は第 2の実施形態 にかかるモニターウェハの断面一部拡大図を示す。  [FIG. 2] FIG. 2 (a) is a top view of a monitor wafer that works on the second embodiment, and FIG. 2 (b) shows a cross-sectional view of the monitor wafer that works on the second embodiment. FIG. 4C is a partially enlarged view of a cross section of the monitor wafer according to the second embodiment.
[図 3]図 3 (a)〜 (d)は第 1の実施形態に力かるモニターウェハの製造工程図を示す。  [FIG. 3] FIGS. 3 (a) to 3 (d) show manufacturing process diagrams of a monitor wafer which is helpful in the first embodiment.
[図 4]図 4 (a)〜(e)は第 2の実施形態に力かるモニターウェハの製造工程図を示す。  [FIG. 4] FIGS. 4 (a) to 4 (e) are diagrams showing a manufacturing process of a monitor wafer which is useful for the second embodiment.
[図 5]図 5は第 1の実施形態の変形例に力かるモニターウェハの断面一部拡大図を示 す。  [FIG. 5] FIG. 5 is a partially enlarged view of a cross section of a monitor wafer which is useful for the modification of the first embodiment.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 従来の課題を改善するべぐ耐薬品性が良好である観点から炭化ケィ素力 なるモ 二ターウェハの使用が検討された。力かるモニターウェハにより耐薬品性の問題が改 善されるに至った。しかし、炭化ケィ素は、耐薬品性が良好であるため化学的機械的 研磨(CMP)処理ができず、表面の平坦度をシリコンウェハ並に仕上ることが極めて 困難であった。そのため、炭化ケィ素上に堆積した堆積膜から、シリコン上に堆積し た堆積膜の堆積状態を正確に把握することが困難であった。  [0010] From the viewpoint of good chemical resistance to improve the conventional problems, the use of a monitor wafer that has carbon carbide strength has been studied. Powerful monitor wafers have improved the chemical resistance problem. However, since the carbon carbide has good chemical resistance, chemical mechanical polishing (CMP) treatment cannot be performed, and it has been extremely difficult to finish the surface flatness of a silicon wafer. Therefore, it was difficult to accurately grasp the deposition state of the deposited film deposited on silicon from the deposited film deposited on the carbide.
[0011] そこで、本発明者らはさらなる検討を加えた結果、炭化ケィ素焼結体力もなるモニタ 一ウェハ本体上に試験片を載置可能とすることで上記課題が解決することを見出し た。以下に実施形態を挙げて本発明を説明するが、本発明は以下の実施形態に限 定されな!/、ことは 、うまでもな!/、。 [0011] Therefore, as a result of further studies, the present inventors have found that the above-mentioned problems can be solved by making it possible to place a test piece on a monitor wafer body that also has a sintered carbide carbide strength. It was. Hereinafter, the present invention will be described with reference to embodiments. However, the present invention is not limited to the following embodiments!
[0012] (第 1の実施形態)  [0012] (First embodiment)
図 l (a)〜(c)に示す第 1の実施形態に力かるモニターウェハ 10は、ウェハ表面の モニター部に試験片を載置するための凹状のポケットを備える炭化ケィ素焼結体か らなるモニターウェハ本体 2と、さらに上記ポケットに着脱自在に取り付けられる試験 片 31〜39と、を有する。尚、モニターウェハ 10は、試験片 31〜39が取り付けられた 位置にポケット 21〜29を有する。  The monitor wafer 10 that is effective in the first embodiment shown in FIGS. L (a) to (c) is made of a sintered carbide carbide having a concave pocket for placing a test piece on the monitor portion of the wafer surface. And a test piece 31 to 39 that is detachably attached to the pocket. The monitor wafer 10 has pockets 21 to 29 at positions where the test pieces 31 to 39 are attached.
[0013] モニターウェハ本体 2は特に制限はな 、が、ホットプレス法、 CVD法及び反応焼結 法により形成される。耐薬品性が良好である点からホットプレス法や CVD法が好まし V、。また高温処理時の平面度が安定して 、る点でホットプレス法で形成されたモニタ 一ウェハ本体 2がより好ましい。ウェハ表面に散点状に形成された上記ポケットは、研 磨法等により形成され得る。  The monitor wafer main body 2 is not particularly limited, but is formed by a hot press method, a CVD method, and a reactive sintering method. Hot press and CVD methods are preferred because of their good chemical resistance. In addition, the monitor wafer body 2 formed by a hot press method is more preferable in that the flatness during high-temperature processing is stable. The pockets formed in the form of dots on the wafer surface can be formed by a polishing method or the like.
[0014] 上記ポケットは、モニターウェハ 10のモニター部に配置されるものであれば、特に 制限なく設けることができる。散点状に配置することの他、モニターウェハ 10と同心円 状に設けても構わない。ポケットの深さは、試験片 31〜39の厚みにより適宜変化す る力 少なくとも CVD工程にぉ 、て試験片がずれな 、程度に保持可能であれば特 に制限はない。  [0014] The pocket can be provided without particular limitation as long as it is arranged in the monitor portion of the monitor wafer 10. In addition to the arrangement in the form of scattered dots, the monitor wafer 10 may be provided concentrically. The depth of the pocket is not particularly limited as long as the force can be appropriately changed depending on the thickness of the test pieces 31 to 39, and can be held to the extent that the test piece is not displaced at least during the CVD process.
[0015] 尚、図 5に示すようにモニターウェハ 6のポケットの底部には貫通孔 61が設けられて いても構わない。その場合試験片 39を保持する支持部 62a、 62bを設けることが好ま しい。  As shown in FIG. 5, a through hole 61 may be provided at the bottom of the pocket of the monitor wafer 6. In that case, it is preferable to provide support portions 62a and 62b for holding the test piece 39.
[0016] 試験片 31〜39は、表面に堆積した堆積膜の状態がモニターできるものであれば、 厚みや形状は特に制限されない。経済的観点力 は厚みは薄いことが好ましい。形 状は丸型の他に四角形などの多角形であっても構わない。試験片の材質としては、 例えばシリコン、サファイア、黒鉛、石英等が挙げられる。鏡面研磨する場合、試験片 31〜39ίま、平面度 200 μ m以下、好ましく ίま 100 μ m以下、表面粗度 (Ra) 0. 1 m以下、好ましくは 0. 05 m以下、さらに好ましくは 0. 02 m以下である。尚、試験 片 31〜39はモニター後洗浄処理等することにより再利用しても構わない。 [0017] 第 1の実施形態に力かるモニターウェハ本体 2は、炭化ケィ素焼結体力もなるため 耐薬品性が高ぐし力も試験片が交換可能に形成されている。そのため、試験片 31 〜39を取り換えることで、モニターウェハ本体 2を何度でも再利用することができる。 つまり、 4回程度しか再利用できな力つた従来のシリコン力もなるモニターウェハに比 して、第 1の実施形態に力かるモニターウェハ 10の寿命は格段に長い。また、モニタ 一ウェハ全体の材質を置き換えることなく試験片の材質を換えるだけで、色々な材質 のウェハの堆積膜の状態を正確にし力も経済的に知ることができる。さらに、第 1の実 施形態に力かるモニターウェハ 10は、従来のモニターウェハと同様に用いることがで きる。そのため、熟練の技術を必要とすることなくウェハ上の堆積膜の状態を簡易に 観察することができる。 [0016] The test pieces 31 to 39 are not particularly limited in thickness and shape as long as the state of the deposited film deposited on the surface can be monitored. The economic viewpoint is preferably thin. The shape may be a polygon such as a quadrangle in addition to a round shape. Examples of the material of the test piece include silicon, sapphire, graphite, and quartz. When mirror polishing, test pieces 31-39ί, flatness 200 μm or less, preferably 100 μm or less, surface roughness (Ra) 0.1 m or less, preferably 0.05 m or less, more preferably 0.02 m or less. The test pieces 31 to 39 may be reused by performing a cleaning process after monitoring. [0017] Since the monitor wafer main body 2 that exerts the power of the first embodiment also has the strength of sintered carbonized carbide, the chemical resistance is high and the test piece can be exchanged. Therefore, the monitor wafer body 2 can be reused any number of times by replacing the test pieces 31 to 39. In other words, the life of the monitor wafer 10 that is effective in the first embodiment is much longer than that of a monitor wafer that can be reused only about 4 times and also has a conventional silicon power. In addition, by simply changing the material of the test piece without replacing the material of the entire monitor wafer, it is possible to accurately determine the state of the deposited film of wafers of various materials and to know the force economically. Furthermore, the monitor wafer 10 which is useful for the first embodiment can be used in the same manner as a conventional monitor wafer. Therefore, the state of the deposited film on the wafer can be easily observed without the need for skilled techniques.
[0018] (第 2の実施形態)  [0018] (Second Embodiment)
図 2 (a)〜(c)に示す第 2の実施形態に力かるモニターウェハ 60は、炭化ケィ素焼 結体からなるベースウェハ 3と、ベースウェハ 3に着脱自在に取り付けられ、ベースゥ ェハ 3に取り付けた際に、モニター部分に試験片を載置するための凹状のポケットを 形成する炭化ケィ素焼結体力もなるリングプレート 5と、さらに、上記ポケットに着脱自 在に取り付けられる試験片 41〜49と、を有する。尚、リングプレート 5は、試験片 41 〜49が取り付けられた位置にポケット 51〜59を有する。以下に第 1の実施形態と異 なる点を中心に説明する。  A monitor wafer 60, which is useful in the second embodiment shown in FIGS. 2 (a) to 2 (c), is a base wafer 3 made of a sintered carbide body, and is detachably attached to the base wafer 3. The ring plate 5 also has a carbon carbide sintered body force that forms a concave pocket for placing the test piece on the monitor portion, and the test piece 41 to be attached to the pocket itself. 49. The ring plate 5 has pockets 51 to 59 at positions where the test pieces 41 to 49 are attached. The following description will focus on differences from the first embodiment.
[0019] ベースウェハ 3やリングプレート 5は、特に制限はないがホットプレス法、 CVD法や 反応焼結法により形成される。得られるモニターウェハの平面度の安定性の観点から はホットプレス法が好まし 、。ベースウェハ 3のウェハ載置面は平坦であることが好ま しい。ゥヱハを載置した際に、試験片 41〜49とベースゥヱハ 3 (ポケットの底部)との 接触面が広がることで、試験片 41〜49の安定性が向上するからである。ベースゥェ ハ 3のウェハ載置面の平面度は、好ましくは約 10 μ m〜50 μ mである。リングプレー ト 5に形成される孔は放電加工法により形成されうる。リングプレート 5の厚さ、即ちポ ケットの深さは、試験片の厚みにより適宜変化する力 少なくとも CVD工程において 試験片 41〜49がずれな 、程度に保持可能であれば特に制限はな!/、。  The base wafer 3 and the ring plate 5 are formed by a hot press method, a CVD method, or a reactive sintering method although there is no particular limitation. From the viewpoint of the stability of the flatness of the resulting monitor wafer, the hot press method is preferred. The wafer mounting surface of the base wafer 3 is preferably flat. This is because the stability of the test pieces 41 to 49 is improved by widening the contact surface between the test pieces 41 to 49 and the base cover 3 (the bottom of the pocket) when the wafer is placed. The flatness of the wafer mounting surface of the base wafer 3 is preferably about 10 μm to 50 μm. The holes formed in the ring plate 5 can be formed by an electric discharge machining method. The thickness of the ring plate 5, that is, the depth of the pocket, is a force that changes as appropriate according to the thickness of the test piece. ,.
[0020] 第 2の実施形態に力かるモニターウェハ 60は、リングプレート 5がベースウェハ 3か ら取り外し可能に構成されているため、ベースウェハ 3の表面を研磨し易い。そのた め、ベースウェハ 3のウェハ載置面の平面度を高め、試験片 41〜49の安定性を向上 させることがでさる。 [0020] The monitor wafer 60 that works in the second embodiment is that the ring plate 5 is the base wafer 3 or not. Therefore, the surface of the base wafer 3 can be easily polished. Therefore, the flatness of the wafer mounting surface of the base wafer 3 can be increased, and the stability of the test pieces 41 to 49 can be improved.
[0021] (モニター方法)  [0021] (Monitoring method)
本発明の別の態様として上記実施形態に力かるモニターウェハ 10、 60を用いたゥ ェハのモニター方法が提供される。即ち、ウェハ表面のモニター部に試験片を載置 するための凹状のポケットを備える炭化ケィ素焼結体力 なるモニターウェハ本体と、 上記ポケットに着脱自在に取り付けられる試験片と、を有するモニターウェハを用い て、上記試験片上に堆積した堆積膜をモニターすることを特徴とするウェハのモニタ 一方法が提供される。  As another aspect of the present invention, there is provided a wafer monitoring method using the monitor wafers 10 and 60, which is useful for the above embodiment. That is, a monitor wafer having a monitor wafer body having a carbonized carbide sintered body having a concave pocket for mounting a test piece on the monitor portion of the wafer surface and a test piece detachably attached to the pocket is used. Thus, there is provided a wafer monitoring method characterized by monitoring a deposited film deposited on the test piece.
[0022] (モニターウェハの製造方法)  [0022] (Monitor Wafer Manufacturing Method)
モニターウェハの製造方法の 1実施形態として、ホットプレス法を用いた製造方法に っ 、て説明する。まずホットプレス法にっ 、て説明する。  As an embodiment of the monitor wafer manufacturing method, a manufacturing method using a hot press method will be described. First, the hot press method will be described.
[0023] (ホットプレス法)  [0023] (Hot press method)
以下にモニターウェハの製造に用いられる炭化ケィ素の製造方法につ 、て説明す る。本実施形態のモニターウェハの製造方法には、遊離炭素含有率が 2〜10重量 %の炭化ケィ素焼結体を使用する。このような炭化ケィ素焼結体は、炭化ケィ素粉末 と、非金属系焼結助剤との混合物を焼成することにより得られる。  In the following, a method for producing a carbide used for producing a monitor wafer will be described. In the manufacturing method of the monitor wafer of this embodiment, a silicon carbide sintered body having a free carbon content of 2 to 10% by weight is used. Such a sintered carbonized carbide is obtained by firing a mixture of a sintered carbide powder and a nonmetallic sintering aid.
[0024] まず、炭化ケィ素粉末につ!、て説明する。炭化ケィ素粉末としては、 α型、 |8型、 非晶質、あるいはこれらの混合物等を広く用いることができ、市販品を用いてもよい。 中でも β型炭化ケィ素粉末が好適に用いられる。炭化ケィ素焼結体を高密度化する ためには、用いる炭化ケィ素粉末の粒径は小さいほうがよい。好ましくは 0. 01〜10 μ m程度、より好ましくは 0. 05〜2 μ mである。粒径が 0. 01 μ m未満であると、計量 、混合等の処理工程における取り扱いが困難となり、一方 10 /z mを超えると、粉体の 比表面積、即ち、隣接する粉体との接触面積が小さくなり、高密度化が困難となるの で好ましくない。  [0024] First, the carbon carbide powder will be described. As the carbide powder, α type, | 8 type, amorphous, or a mixture thereof can be widely used, and commercially available products may be used. Among these, β-type carbide powder is preferably used. In order to increase the density of the sintered carbide carbide, it is better that the particle size of the used carbide powder is small. Preferably it is about 0.01-10 micrometers, More preferably, it is 0.05-2 micrometers. When the particle size is less than 0.01 μm, handling in processing steps such as weighing and mixing becomes difficult. On the other hand, when the particle size exceeds 10 / zm, the specific surface area of the powder, that is, the contact area with the adjacent powder. Is not preferable because it becomes smaller and it is difficult to increase the density.
[0025] 高純度の炭化ケィ素粉末を用いると、得られる炭化ケィ素焼結体も高純度になるの で好ましい。高純度の炭化ケィ素粉末は、例えば、ケィ素化合物(以下「ケィ素源」と いう場合がある。)と、加熱により炭素を発生する有機材料と、重合触媒または架橋触 媒とを混合し、得られた固形物を非酸化性雰囲気中で焼成することにより製造するこ とができる。ケィ素源としては、液状、および固体状の化合物を広く用いることができ る力 少なくとも液状の化合物を 1種以上用いる。液状のケィ素源としては、アルコキ シシラン (モノ—、ジ—、トリー、テトラー)の重合体等が挙げられる。アルコキシシラン の重合体の中では、テトラアルコキシシランの重合体が好適に用いられる。具体的に は、メトキシシラン、エトキシシラン、プロピロキシシラン、ブトキシシラン等が挙げられ る力 ハンドリングの点からはエトキシシランが好ましい。テトラアルコキシシラン重合 体の重合度は 2〜 15程度であると液状の低分子量重合体 (オリゴマー)となる。その 他、重合度が高いケィ酸ポリマーで液状のものもある。液状のケィ素源と併用可能な 固体状のケィ素源としては、炭化ケィ素が挙げられる。ここにいう炭化ケィ素には、一 酸ィ匕ケィ素(SiO)、二酸ィ匕ケィ素(SiO )の他、シリカゾル (コロイド状超微細シリカ含 [0025] It is preferable to use a high-purity silicon carbide powder because the resulting sintered carbide body has high purity. High purity carbon carbide powder is, for example, a key compound (hereinafter referred to as “key source”). There is a case. ), An organic material that generates carbon by heating, and a polymerization catalyst or a cross-linking catalyst, and the obtained solid is fired in a non-oxidizing atmosphere. As a key source, at least one kind of liquid compound is used as a force capable of widely using liquid and solid compounds. Examples of the liquid key source include polymers of alkoxysilane (mono-, di-, tree, tetra). Among the alkoxysilane polymers, tetraalkoxysilane polymers are preferably used. Specifically, methoxysilane, ethoxysilane, propyloxysilane, butoxysilane and the like are mentioned. From the viewpoint of power handling, ethoxysilane is preferable. When the degree of polymerization of the tetraalkoxysilane polymer is about 2 to 15, a liquid low molecular weight polymer (oligomer) is formed. In addition, there are some liquid cation polymers having a high degree of polymerization. Examples of solid source that can be used in combination with a liquid source include carbide. Carbide carbides here include silica sol (including colloidal ultrafine silica) as well as mono-acid silicate (SiO) and diacid silicate (SiO 2).
2  2
有液であって、コロイド分子内に OH基やアルコキシ基を含有するもの)、微細シリカ 、石英粉体等も含まれる。これらのケィ素源の中でも、均質性ゃノヽンドリング性が良好 であるテトラアルコキシシランのオリゴマー、またはテトラアルコキシシランのオリゴマ 一と微粉体シリカとの混合物等が好ましい。また、これらのケィ素源は高純度であるこ と力 子ましく、具体的には初期の不純物含有量が 20ppm以下であるのが好ましぐ 5 ppm以下であるのがさらに好ましい。  Liquids containing colloidal molecules containing OH groups or alkoxy groups), fine silica, quartz powder, etc. are also included. Among these key sources, a tetraalkoxysilane oligomer having good homogeneity and a good ring ring property, or a mixture of an oligomer of tetraalkoxysilane and fine powder silica is preferable. In addition, these key sources are highly pure, and specifically, the initial impurity content is preferably 20 ppm or less, more preferably 5 ppm or less.
[0026] 加熱により炭素を生成する有機材料としては、液状のものの他、液状のものと固体 状のものを併用することもできる。残炭率が高ぐかつ触媒あるいは加熱により重合ま たは架橋する有機材料が好ましい。具体的には、フエノール榭脂、フラン榭脂、ポリイ ミド、ポリウレタン、ポリビュルアルコール等のモノマー、およびプレポリマーが好まし い。その他、セルロース、しょ糖、ピッチ、タール等の液状物も用いられる。中でもレゾ ール型フエノール榭脂が、熱分解性および純度の点で好ましい。有機材料の純度は 、 目的に応じて適宜、制御すればよい。特に高純度の炭化ケィ素粉末が必要な場合 は、不純物元素の含有量が各々 5ppm未満である有機材料を用いるのが好ましい。  [0026] As the organic material that generates carbon by heating, in addition to a liquid material, a liquid material and a solid material may be used in combination. An organic material having a high residual carbon ratio and capable of being polymerized or crosslinked by a catalyst or heating is preferable. Specifically, monomers such as phenol resin, furan resin, polyimide, polyurethane, polybulal alcohol, and prepolymers are preferred. In addition, liquid materials such as cellulose, sucrose, pitch, and tar are also used. Among them, resole type phenolic resin is preferable in terms of thermal decomposability and purity. The purity of the organic material may be appropriately controlled according to the purpose. In particular, when high-purity silicon carbide powder is required, it is preferable to use an organic material having an impurity element content of less than 5 ppm each.
[0027] ケィ素源と有機材料の配合比率は、炭素とケィ素のモル比(以下「CZSi」と略記す る。)を目安に好ましい範囲をあら力じめ決定することができる。ここにいう CZSiとは 、ケィ素源と有機材料との混合物を 1000°Cにて炭化した炭化ケィ素中間体を元素 分析し、その分析値より得られる czsiである。炭素は、以下の反応式で表わされる ように、酸化ケィ素と反応し、炭化ケィ素に変化する。 [0027] The mixing ratio of the source of the key and the organic material can be determined by intensifying a preferable range based on the molar ratio of carbon to key (hereinafter abbreviated as "CZSi"). What is CZSi here The czsi obtained from the elemental analysis of a carbonized carbon intermediate obtained by carbonizing a mixture of a key source and an organic material at 1000 ° C. As shown in the following reaction formula, carbon reacts with oxide silicon and changes to carbonized carbide.
[0028] 式(I) SiO 2 + 3C→SiC + 2CO従って、化学量論的には、 CZSiが 3. 0であると、 炭化ケィ素中間体中の遊離炭素は 0%になるが、実際には SiOガス等が揮散するた め、 czsiがより低い値であっても遊離炭素が発生する。遊離炭素は粒成長を抑制 する効果を有するので、目的とする粉末粒子の粒径に応じて、 czsiを決定し、その 比となるようにケィ素源と有機材料とを配合すればよい。例えば、約 1気圧、 1600°C 以上で、ケィ素源と有機材料との混合物を焼成する場合、 C/Siが 2. 0〜2. 5の範 囲になるように配合すると、遊離炭素の発生を抑制することができる。同条件で、 C/ Siが 2. 5を超えるように配合すると、遊離炭素の発生が顕著となり、粒子の小さな炭 化ケィ素粉末が得られる。このように、目的に応じて、配合比率を適宜決定することが できる。尚、炭化ケィ素粉末に起因する遊離炭素の作用および効果は、焼結助剤か ら生じる遊離炭素の作用および効果と比較して非常に弱いので、炭化ケィ素粉末に 起因する遊離炭素は、本実施形態の効果には本質的に影響しないものである。  [0028] Formula (I) SiO 2 + 3C → SiC + 2CO Therefore, in terms of stoichiometry, when CZSi is 3.0, the free carbon in the carbide intermediate is 0%. Since SiO gas etc. is volatilized, free carbon is generated even if czsi is lower. Since free carbon has an effect of suppressing grain growth, czsi should be determined according to the particle size of the target powder particles, and the key source and the organic material should be blended so as to obtain the ratio. For example, when calcining a mixture of a key source and an organic material at about 1 atm and 1600 ° C or higher, blending so that C / Si is in the range of 2.0 to 2.5, the free carbon Occurrence can be suppressed. Under the same conditions, when C / Si is compounded to exceed 2.5, free carbon generation becomes remarkable, and a carbonized carbon powder with small particles can be obtained. Thus, the blending ratio can be appropriately determined according to the purpose. In addition, since the action and effect of free carbon caused by the carbonized carbide powder are very weak compared with the action and effect of free carbon generated from the sintering aid, the free carbon caused by the carbonized carbide powder is The effect of this embodiment is not essentially affected.
[0029] ケィ素源と有機材料との混合物を硬化させ、固形物にすることもできる。硬化の方 法としては、加熱による架橋反応を利用する方法、硬化触媒により硬化する方法、電 子線や放射線を利用する方法等がある。用いる硬化触媒は、用いる有機材料に応じ て適宜選択できるが、フエノール榭脂、フラン榭脂を有機材料に用いた場合は、トル エンスルホン酸、トルエンカルボン酸、酢酸、蓚酸、塩酸、硫酸等の酸類、へキサミン 等のアミン類等が挙げられる。ケィ素源と有機材料を含有する固形物は、必要に応じ 加熱炭化される。炭化は、窒素またはアルゴン等の非酸ィ匕性雰囲気中 800°C〜100 0°Cにて 30〜120分間加熱することにより行われる。さらに、非酸化性雰囲気中 135 0°C〜2000°Cで加熱すると炭化ケィ素が生成する。焼成温度と焼成時間は、得られ る炭化ケィ素粉末の粒径等に影響するので、適宜決定すればよいが、 1600〜190 0°Cで焼成すると効率的で好ま 、。以上に説明した高純度の炭化ケィ素粉末を得 る方法は、特開平 9— 48605号明細書により詳細に記載されている。  [0029] A mixture of a key source and an organic material can be cured to form a solid. Curing methods include a method using a crosslinking reaction by heating, a method using a curing catalyst, and a method using electron beam or radiation. The curing catalyst to be used can be appropriately selected according to the organic material to be used. However, when phenol resin or furan resin is used as the organic material, such as toluenesulfonic acid, toluenecarboxylic acid, acetic acid, oxalic acid, hydrochloric acid, sulfuric acid, etc. Examples include acids and amines such as hexamine. Solids containing the key source and organic material are heated and carbonized as needed. Carbonization is performed by heating at 800 ° C to 1000 ° C for 30 to 120 minutes in a non-acidic atmosphere such as nitrogen or argon. Further, when heated at 1350 ° C. to 2000 ° C. in a non-oxidizing atmosphere, silicon carbide is generated. The firing temperature and firing time affect the particle size and the like of the resulting carbide powder, and may be appropriately determined. However, firing at 1600 to 1900 ° C. is efficient and preferable. The method for obtaining the high-purity silicon carbide powder described above is described in detail in the specification of JP-A-9-48605.
[0030] 次に非金属系焼結助剤について説明する。本実施形態に用いられる炭化ケィ素 焼結体は、遊離炭素 2〜10重量%のものである。この遊離炭素は、非金属系焼結助 剤に用いられる有機材料に起因するものであり、非金属系焼結助剤の添加量等の添 加条件を調整することにより遊離炭素量を前述の範囲にすることができる。 Next, the nonmetallic sintering aid will be described. Carbide carbide used in this embodiment The sintered body has a free carbon content of 2 to 10% by weight. This free carbon is attributed to the organic material used for the nonmetallic sintering aid, and the amount of free carbon can be reduced by adjusting the additive conditions such as the amount of nonmetallic sintering aid added. Can range.
[0031] 非金属系焼結助剤としては、前述したように遊離炭素源となり得る、即ち加熱により 炭素を生じる有機材料 (以下「炭素源」 ヽぅ場合がある。 )を含有するものを用いる。 前述の有機材料を単独で、または前述の有機材料を炭化ケィ素粉末 (粒径:約 0. 0 1〜1ミクロン)表面に被覆させたものを焼結助剤として用いてもよいが、効果の点から は、有機材料を単独で用いるのが好ましい。加熱により炭素を生成する有機材料とし ては、具体的には、残炭化率の高いコールタールピッチ、ピッチタール、フエノール 榭脂、フラン榭脂、エポキシ榭脂、フエノキシ榭脂の他、各種糖類、例えば、ダルコ一 ス等の単糖類、しょ糖等の小糖類、セルロース、でんぷん等の多糖類等が挙げられる 。有機材料を炭化ケィ素粉末と均質に混合するには、有機材料は常温で液状のもの 、溶媒に溶解するもの、または熱可塑性、熱融解性を有する等加熱により軟化するも のが好ましい。中でも、フエノール榭脂を用いると炭化ケィ素焼結体の強度が向上す るので好ましぐさらにレゾール型フエノール榭脂が好ましい。これらの有機材料の作 用機構は明確にはなっていないが、有機材料は加熱されると系中にカーボンブラッ ク、グラフアイトの如き無機炭素系化合物を生成する。この無機炭素系化合物が焼結 助剤として有効に作用しているものと考えられる。但し、カーボンブラック等を焼結助 剤として用いても、同様な効果は得られない。  [0031] As described above, a non-metallic sintering aid that can be a free carbon source, that is, an organic material that generates carbon by heating (hereinafter, sometimes referred to as "carbon source") may be used. . The above organic material may be used alone or as a sintering aid with the above organic material coated on the surface of a carbide powder (particle size: about 0.01 to 1 micron). From this point, it is preferable to use an organic material alone. Specifically, organic materials that generate carbon by heating include coal tar pitch, pitch tar, phenol resin, furan resin, epoxy resin, phenoxy resin, saccharides, which have a high residual carbonization rate, Examples thereof include monosaccharides such as darcos, small saccharides such as sucrose, polysaccharides such as cellulose and starch, and the like. In order to mix the organic material homogeneously with the carbonized carbide powder, the organic material is preferably liquid at room temperature, dissolved in a solvent, or softened by heating such as having thermoplasticity and heat melting properties. Of these, the use of phenol resin increases the strength of the sintered carbonized carbide, and is more preferably resol type phenol resin. Although the mechanism of operation of these organic materials is not clear, when organic materials are heated, inorganic carbon compounds such as carbon black and graphite are produced in the system. This inorganic carbon-based compound is considered to function effectively as a sintering aid. However, even if carbon black or the like is used as a sintering aid, the same effect cannot be obtained.
[0032] 非金属系焼結助剤は、所望により有機溶媒に溶解し、その溶液と炭化ケィ素粉末 を混合してもよい。使用する有機溶媒は、非金属系焼結助剤により異なり、例えば、 焼結助剤としてフエノール榭脂を用いる場合は、エチルアルコール等の低級アルコ ール類、ェチルエーテル、アセトン等を選択することができる。高純度の炭化ケィ素 焼結体を作製する場合は、高純度の炭化ケィ素粉末を使用するのみならず、焼結助 剤および有機溶媒も不純物含有量の少な!/、ものを用いるのが好ま 、。  [0032] If desired, the nonmetallic sintering aid may be dissolved in an organic solvent, and the solution may be mixed with the silicon carbide powder. The organic solvent to be used varies depending on the non-metallic sintering aid. For example, when phenol resin is used as the sintering aid, lower alcohols such as ethyl alcohol, ethyl ether, acetone, etc. may be selected. it can. When producing high-purity silicon carbide sintered bodies, not only high-purity silicon carbide powder, but also sintering aids and organic solvents with low impurity content! Favored ,.
[0033] 非金属系焼結助剤の炭化ケィ素粉末に対する添加量は、炭化ケィ素焼結体の遊 離炭素が 2〜10重量%になるように決定する。遊離炭素がこの範囲外であると、接合 処理中に進行する SiCへの化学変化、および炭化ケィ素焼結体間の接合が不十分 となる。ここで、遊離炭素の含有率 (重量%)は、炭化ケィ素焼結体を酸素雰囲気下 において、 800°Cで 8分間加熱し、発生した CO、 COの量を炭素分析装置で測定し [0033] The amount of the nonmetallic sintering aid added to the carbide carbide powder is determined so that the free carbon of the sintered carbide carbide is 2 to 10% by weight. If the free carbon is outside this range, the chemical change to SiC that progresses during the bonding process, and the bonding between the sintered carbide bodies is insufficient. It becomes. Here, the free carbon content (% by weight) is determined by heating the sintered carbide carbide body in an oxygen atmosphere at 800 ° C for 8 minutes, and measuring the amount of generated CO and CO with a carbon analyzer.
2  2
、その測定値力 算出することができる。焼結助剤の添加量は、用いる焼結助剤の種 類および炭化ケィ素粉末の表面シリカ(酸化ケィ素)量によって異なる。添加量を決 定する目安としては、あらかじめ炭化ケィ素粉末の表面シリカ(酸化ケィ素)量を弗化 水素水を用いて定量し、この酸化ケィ素を還元するのに十分な化学量論 (式 (I)で算 出される化学量論)を算出する。これと、非金属系焼結助剤が加熱により炭素を生成 する割合を考慮し、遊離炭素が前述の適する範囲となるように添加量を決定すること ができる。以上に説明した炭化ケィ素焼結体の非金属系焼結助剤についての説明 は、特願平 9— 041048号明細書中により詳細に記載されている。  The measured force can be calculated. The amount of sintering aid added varies depending on the type of sintering aid used and the amount of surface silica (silicon oxide) in the carbide powder. As a guideline for determining the addition amount, the amount of surface silica (silicon oxide) of the carbide powder is quantified using hydrogen fluoride water in advance, and the stoichiometry sufficient to reduce this oxide oxide ( Calculate the stoichiometry calculated by formula (I). In consideration of this and the rate at which the nonmetallic sintering aid generates carbon by heating, the amount added can be determined so that the free carbon falls within the above-mentioned suitable range. The description of the non-metallic sintering aid for the sintered carbide carbide described above is described in more detail in the specification of Japanese Patent Application No. 9-041048.
[0034] 次に、炭化ケィ素粉末と非金属系焼結助剤の混合物を焼結する方法について説 明する。炭化ケィ素粉末と非金属系焼結助剤は均質に混合する。均質の混合物を 得るために、前述したように焼結助剤を有機溶媒に溶解した溶液を用いてもよい。混 合方法としては、公知の方法、例えば、ミキサー、遊星ボールミル等を用いる方法が 挙げられる。混合に使用する器具は、金属元素不純物の混入を防止するため、合成 榭脂素材のものを用いるのが好ましい。混合は 10〜30時間程度、特に 16〜24時間 程度行い、十分に混合するのが好ましい。十分に混合した後、溶媒を除去し、混合 物を蒸発乾固させる。その後、篩にかけて混合物の原料粉体を得る。乾燥には、スプ レードライヤー等の造粒装置を使用してもよい。  [0034] Next, a method for sintering a mixture of a carbide carbide powder and a nonmetallic sintering aid will be described. The silicon carbide powder and the nonmetallic sintering aid are mixed homogeneously. In order to obtain a homogeneous mixture, a solution obtained by dissolving a sintering aid in an organic solvent as described above may be used. Examples of the mixing method include known methods such as a method using a mixer, a planetary ball mill and the like. The equipment used for mixing is preferably a synthetic resin material in order to prevent metal element impurities from being mixed. Mixing is preferably performed for about 10 to 30 hours, particularly for about 16 to 24 hours, and mixed thoroughly. After thorough mixing, the solvent is removed and the mixture is evaporated to dryness. Thereafter, the mixture is sieved to obtain a raw material powder of the mixture. For drying, a granulator such as a spray dryer may be used.
[0035] このようにして得られた原料粉体は、成形金型中に配置される。使用する成形金型 が黒鉛製のものであると、金属不純物が炭化ケィ素焼結体中に混入しないので好ま しい。金属製の成形金型であっても、原料粉体と金型の金属部とが直接接触しない ように、接触部を黒鉛製とするか、または接触部にポリテトラフルォロエチレンシート( テフロン (登録商標)シート)を介在させれば、好適に使用できる。特に、高純度の炭 化ケィ素焼結体を製造したい場合は、金型、および炉内の断熱材等には高純度の 黒鉛材料を用いるのが好ましい。具体的には、 2500°C以上の温度で、あら力じめ十 分にベーキング処理され、高温使用しても不純物の発生がな 、黒鉛材料等が挙げら れる。 成形金型中に配置された原料粉体は、ホットプレス加工を施される。ホットプレスの 圧力につ ヽては特に制約はなぐ 300〜700kgfZcm2の広 、範囲の圧力により行う ことができる。但し、 400kgfZcm2以上で加圧する場合は、ホットプレス用の部品、例 えば、ダイス、パンチ等は耐圧性に優れたものを用いる必要がある。 [0035] The raw material powder thus obtained is placed in a molding die. It is preferable that the molding die to be used is made of graphite because metal impurities are not mixed in the sintered carbide body. Even in the case of a metal mold, the contact part is made of graphite so that the raw material powder and the metal part of the mold do not directly contact each other, or a polytetrafluoroethylene sheet (Teflon) is applied to the contact part. (Registered trademark) sheet) can be used preferably. In particular, when it is desired to produce a high-purity sintered carbonized carbon, it is preferable to use a high-purity graphite material for the mold and the heat insulating material in the furnace. Specifically, a graphite material or the like that is sufficiently baked at a temperature of 2500 ° C. or higher and does not generate impurities even when used at a high temperature can be used. The raw material powder placed in the molding die is subjected to hot pressing. Wide of Nag 300~700kgfZcm 2 in particular constraints Te pressure Nitsuヽof the hot press, it can be carried out by the pressure of the range. However, when pressurizing at 400 kgfZcm 2 or more, it is necessary to use hot press parts such as dies and punches having excellent pressure resistance.
ホットプレスは、 2000°C〜2400°Cにて行う力 このホットプレス加工温度までの昇 温は穏やかに、かつ段階的に行うのが好ましい。このように昇温すると、各々の温度 で生じる化学変化、状態変化等を十分に進行させることができる。その結果、不純物 混入や亀裂および空孔の発生を防止することができる。好まし 、昇温工程の一例を 以下に示す。まず、原料粉体をいれた成形金型を炉内に配置し、炉内を 10_4torrの 真空状態にする。室温から 200°Cまで穏やかに昇温し、約 30分間 200°Cに保つ。そ の後、 700°Cまで 6〜10時間で昇温し、 2〜5時間 700°Cに保つ。室温から 700°Cま での昇温工程で、吸着水分や有機溶媒の脱離が起こり、また、非金属系焼結助剤の 炭化も進行する。一定温度の保持時間は、炭化ケィ素焼結体のサイズによって異な り、適宜好適な時間に設定すればよい。また、保持時間が十分である力否力の判断 は、真空度の低下がある程度少なくなる時点を目安にすることができる。次に、 700 で〜1500でまで6〜9時間で昇温し、 1〜5時間程 1500°Cに保持する。 1500°Cに 保持している間、酸化ケィ素が還元され炭化ケィ素に変化する反応が進行する (式 (I ) )。保持時間が不十分であると、二酸化ケイ素が残留し、炭化ケィ素粉末表面に付 着するので、粒子の緻密化を妨げ、大粒の成長原因となるので好ましくない。保持時 間が十分である力否かの判断は、副生成物である一酸ィ匕炭素の発生が停止してい るかを目安に、即ち、真空度の低下がおさまり、還元反応開始温度である 1300°Cの 真空度まで回復して 、るかを目安にすることができる。 Hot pressing is performed at a temperature of 2000 ° C to 2400 ° C. It is preferable that the temperature is raised to the hot pressing temperature gently and stepwise. When the temperature is raised in this way, chemical changes, state changes, etc. that occur at each temperature can be sufficiently advanced. As a result, it is possible to prevent the introduction of impurities, cracks and vacancies. An example of the temperature raising process is shown below. First, a molding die containing raw material powder is placed in a furnace, and the furnace is evacuated to 10 _4 torr. Gently raise the temperature from room temperature to 200 ° C and keep it at 200 ° C for about 30 minutes. Then, heat up to 700 ° C in 6-10 hours and keep at 700 ° C for 2-5 hours. In the temperature raising process from room temperature to 700 ° C, desorption of adsorbed moisture and organic solvent occurs, and carbonization of nonmetallic sintering aids also progresses. The holding time at the constant temperature varies depending on the size of the sintered carbonized carbide, and may be set to a suitable time as appropriate. In addition, the determination of force / force force with a sufficient holding time can be based on the time point when the degree of vacuum decrease is reduced to some extent. Next, the temperature is raised from 700 to 1500 until 6 to 9 hours and maintained at 1500 ° C for 1 to 5 hours. While the temperature is maintained at 1500 ° C., the reaction in which the oxide is reduced to carbon is progressed (formula (I)). Insufficient holding time is not preferable because silicon dioxide remains and adheres to the surface of the silicon carbide powder, thus preventing densification of the particles and causing large grains to grow. The determination of whether the holding time is sufficient is based on whether the generation of by-product carbon monoxide and carbon monoxide has stopped, i.e., the reduction in the degree of vacuum has stopped, and the reduction reaction start temperature has been reached. It can be used as a guideline to recover to a certain vacuum level of 1300 ° C.
ホットプレスは、焼結が開始する 1500°C程度まで炉内を昇温し、次に炉内を非酸 化性雰囲気とするために、不活性ガスを充填した後行うのが好ましい。不活性ガスと しては、窒素ガス、あるいはアルゴンガス等が用いられる力 高温においても非反応 性であるアルゴンガスを用いるのが好ま 、。高純度炭化ケィ素焼結体を製造した ヽ 場合は、不活性ガスも高純度のものを用いる。炉内を非酸化性雰囲気とした後、温度 力 2000oC〜2400oC、圧力力 S300〜700kgf/cm2となるように炉内をカロ熱およびカロ 圧する。最高温度が 2000°C未満であると、高密度化が不十分となる。一方、最高温 度が 2400°Cを超えると、粉体もしく成形体原料が昇華 (分解)する虞があるため好ま しくない。 1500°C近傍〜最高温度までの昇温は 2〜4時間かけて行い、最高温度で 1〜8時間保持するのが好ましい。 1850〜1900°Cで焼結は急速に進行し、最高温 度保持時間中に焼結が完了する。また加圧条件が、 300kgfZcm2未満であると高 密度化が不十分となり、 700kgfZcm2を超えると黒鉛製の成形金型が破損すること もあり、製造効率上好ましくない。表面粗度 (Ra)は 0. 以下が好ましぐ 0. 2 μ m以下がさらに好ましい。圧力は異常粒が成長するのを抑えるために、 300kgf/c m2〜700kgfZcm2程度で加圧するのが好ましい。 The hot pressing is preferably performed after the inside of the furnace is heated to about 1500 ° C. at which sintering starts, and then filled with an inert gas in order to make the inside of the furnace a non-oxidizing atmosphere. As the inert gas, it is preferable to use argon gas that is non-reactive even at high temperatures, such as nitrogen gas or argon gas. If a high-purity silicon carbide sintered body is produced, use an inert gas with a high purity. After the furnace and non-oxidizing atmosphere, the temperature forces 2000 o C~2400 o C, the furnace so that the pressure force S300~700kgf / cm 2 Caro fever and Caro Press. If the maximum temperature is less than 2000 ° C, the densification is insufficient. On the other hand, if the maximum temperature exceeds 2400 ° C, it is not preferable because the powder or the raw material of the molded body may sublimate (decompose). It is preferable to raise the temperature from around 1500 ° C to the maximum temperature over 2 to 4 hours and hold at the maximum temperature for 1 to 8 hours. Sintering proceeds rapidly at 1850-1900 ° C and completes during the maximum temperature holding time. On the other hand, if the pressurization condition is less than 300 kgfZcm 2 , the density increase is insufficient, and if it exceeds 700 kgfZcm 2 , the graphite mold may be damaged, which is not preferable in terms of production efficiency. The surface roughness (Ra) is preferably 0 or less, and more preferably 0.2 μm or less. The pressure is preferably about 300 kgf / cm 2 to 700 kgfZcm 2 in order to suppress the growth of abnormal grains.
[0037] 用いる炭化ケィ素焼結体は、高密度化されて 、て、密度が 2. 9gZcm3以上、気孔 率が 1 %以下であると好ましぐ密度が 3. OgZcm3以上、気孔率が 0. 8%以下であ ると特に好ましい。高密度化された炭化ケィ素焼結体を用いると、得られる炭化ケィ 素接合体の曲げ強度、破壊強度等の力学的特性、および電気的物性が向上する。 また、高密度化された炭化ケィ素焼結体を用いると、構成粒子が小粒化されているの で汚染性の点でも好ましい。一方、低密度の、例えば多孔性の炭化ケィ素焼結体を 用いると、炭化ケィ素接合体の耐熱性、耐酸化性、耐薬品性、および機械的強度が 劣り、また接合強度が不十分となる場合もある。 [0037] The sintered carbide carbide used is densified and has a density of 2.9 gZcm 3 or more and a porosity of 1% or less, preferably a density of 3. OgZcm 3 or more, and a porosity of 0.8% or less is particularly preferable. When a densified carbide body sintered body is used, mechanical properties such as bending strength and fracture strength, and electrical properties of the obtained bonded carbide body are improved. In addition, the use of a densified silicon carbide sintered body is preferable in terms of contamination because the constituent particles are reduced in size. On the other hand, if a low-density porous carbide sintered body, for example, is used, the heat resistance, oxidation resistance, chemical resistance, and mechanical strength of the carbonized carbon bonded body are inferior and the bonding strength is insufficient. Sometimes it becomes.
[0038] 炭化ケィ素焼結体を高密度化する方法として、焼結工程に先立って予め成形工程 を実施する方法がある。この成形工程は、焼結工程と比較して低温低圧で行われる ものである。この焼結工程を実施すると、嵩のある粉体を予めコンパクト(小容量化) にできるので、この工程を何度も繰り返すことによって、大型の成形体が製造しやすく なる。焼結工程に先立って予め実施される成形工程の諸条件の一例を以下に示す。 炭化ケィ素粉末と非金属系焼結助剤とを、均質に混合して得られた原料粉体を成形 金型内に配置し、温度 80°C〜300°C、好ましくは 120°C〜140°C、圧力 50kgfZcm 2〜: LOOkgfZcm2で 5〜60分間、好ましくは 20〜40分間プレスして成形体を得る。 加熱温度は非金属系焼結助剤の特性に応じて、適宜決定すればよい。得られる成 形体の密度は、平均粒径 1 m程度の粉体を用いた場合は 1. 8gZcm2以上となる ように、また平均粒径 0. 5 mの粉体を用いた場合は 1. 5g/cm2となるようにプレス するのが好ましい。用いる成形体の密度がこの範囲であると、炭化ケィ素焼結体の高 密度化が容易となるので好まし 、。得られた成形体が焼結工程に用いる成形金型に 適合するように、成形体に切削加工を施してもょ ヽ。 [0038] As a method for increasing the density of the sintered carbide carbide, there is a method in which a forming step is performed in advance of the sintering step. This molding process is performed at a lower temperature and lower pressure than the sintering process. By carrying out this sintering step, the bulky powder can be made compact (small volume) in advance, and by repeating this step many times, it becomes easy to produce a large molded body. An example of various conditions of the molding process performed in advance prior to the sintering process is shown below. The raw material powder obtained by homogeneously mixing the silicon carbide powder and the nonmetallic sintering aid is placed in a molding die, and the temperature is 80 ° C to 300 ° C, preferably 120 ° C to 140 ° C., pressure 50 kgfZcm 2 ˜: LOOkgfZcm 2 is pressed for 5 to 60 minutes, preferably 20 to 40 minutes to obtain a molded body. The heating temperature may be appropriately determined according to the characteristics of the nonmetallic sintering aid. The density of the resulting molded product is 1.8 gZcm 2 or more when using powder with an average particle size of about 1 m, and 1 when using powder with an average particle size of 0.5 m. Press to 5g / cm 2 It is preferable to do this. If the density of the molded body to be used is within this range, it is preferable because it becomes easy to increase the density of the sintered carbide body. Cut the molded body so that the resulting molded body is compatible with the mold used in the sintering process.
[0039] 本実施形態に用いる炭化ケィ素焼結体中の不純物元素(1989年 IUPAC無機化 学命名法改訂版の元素周期表において、 C、 N、 0、 Siを除ぐ原子番号 3以上の元 素)の総含有量は 5ppm以下であると、高い清浄度が要求されるプロセス、例えば、 半導体製造プロセス等にも使用し得るので好ましい。より好ましくは 3ppm以下、特に 好ましくは lppm以下である。但し、化学的分析による不純物含有量は、実際に使用 する場合の参考値としての意味を有するに過ぎない。例えば、不純物含有量は同一 であっても、不純物が均一に分布している力、局所的に偏在しているかによってその 炭化ケィ素接合体に対する汚染性の評価は異なる場合もある。尚、以上に具体的に 例示した材料、および例示した焼結方法を用いれば、不純物含有量 lppm以下の炭 化ケィ素焼結体が得られる。また、炭化ケィ素焼結体の不純物元素含有量を減少さ せるには、用いる原料 (例えば、炭化ケィ素粉末と非金属系焼結助剤)、および不活 性ガスに含まれる不純物元素含有量を lppm以下にしたり、焼結時間、温度等、焼 結の諸条件を調整して不純物を除去する方法等が挙げられる。尚、ここでいう不純物 元素とは、前述と同様であり、 1989年 IUPAC無機化学命名法改訂版の周期律表 における、原子番号 3以上(但し、 C、 N、 0、 Si、を除く。)の元素をいう。  [0039] Impurity elements in the sintered carbonized carbide used in this embodiment (in the element periodic table of the 1989 IUPAC inorganic chemical nomenclature revised edition, elements with atomic number 3 or more excluding C, N, 0, Si) If the total content of (element) is 5 ppm or less, it can be used for processes requiring high cleanliness, for example, semiconductor manufacturing processes. More preferably, it is 3 ppm or less, and particularly preferably 1 ppm or less. However, the impurity content by chemical analysis has only a meaning as a reference value in actual use. For example, even if the impurity content is the same, the evaluation of the contamination property of the carbide-bonded body may differ depending on the force that the impurities are uniformly distributed and whether the impurities are locally distributed. In addition, if the materials specifically exemplified above and the exemplified sintering method are used, a sintered carbide body having an impurity content of 1 ppm or less can be obtained. Moreover, in order to reduce the impurity element content of the sintered carbide body, the content of impurity elements contained in the raw materials used (for example, the carbide powder and non-metallic sintering aid) and the inert gas are used. For example, a method for removing impurities by adjusting the sintering conditions such as sintering time, temperature, etc. to 1 ppm or less. The impurity element here is the same as described above, and atomic number 3 or more in the periodic table of the 1989 IUPAC Inorganic Chemical Nomenclature Revision (except for C, N, 0, Si) This element.
[0040] 本実施形態に用いる炭化ケィ素焼結体の、その他の物性値は、室温における曲げ 強度 200〜800kgfZmm2、ヤング率 250GPa〜500GPa、ビッカース硬度 2000〜 3500kgfZmm2、ポアソン比 0. 14〜0. 21、熱膨張係数 3. 8 X 10— 6〜4. 5 X 10— 61 Z°C、体積固有抵抗 0. 1 Ω 'cm以下であると、得られる炭化ケィ素接合体の諸特性 が良好となるので好ましい。尚、本実施形態の炭化ケィ素焼結体として、特願平 9— 041048号明細書に記載の炭化ケィ素焼結体を好適に使用することができる。 [0040] Other physical properties of the sintered carbide carbide used in the present embodiment are: bending strength at room temperature 200 to 800 kgfZmm 2 , Young's modulus 250 GPa to 500 GPa, Vickers hardness 2000 to 3500 kgfZmm 2 , Poisson's ratio 0.14 to 0 21. Thermal expansion coefficient 3.8 X 10— 6 to 4.5 X 10— 6 1 Z ° C, volume resistivity 0.1 Ω 'cm or less Various characteristics of the obtained carbonized carbide joint Is preferable. Incidentally, as the carbide carbide sintered body of the present embodiment, a carbide carbide sintered body described in the specification of Japanese Patent Application No. 9-041048 can be suitably used.
[0041] また、炭化ケィ素焼結体の接合する面は、密着性の観点力も滑らかであると好まし ぐ具体的には、接合する面の表面粗度 (Ra)は 0. 5 m以下が好ましぐ 0. 2 m 以下がより好ましい。炭化ケィ素焼結体の表面粗度 (Ra)は、 200番から 800番の砥 石による研削加工またはパフ加工等を施すことによって、前述の範囲に調整すること ができる。 [0041] Further, it is preferable that the surface to be bonded of the sintered carbide body is smooth in terms of adhesion. Specifically, the surface roughness (Ra) of the surface to be bonded is 0.5 m or less. Preferred is 0.2 m or less. The surface roughness (Ra) of the sintered carbonized carbide should be adjusted to the above range by grinding or puffing with a 200 to 800 grinding wheel. Can do.
次に、接合材として用いるシリコン金属について説明する。本実施形態に用いるシ リコン金属は、純度 98%以上のものを用いるのが好ましぐより好ましくは純度 99% 以上、特に好ましくは純度 99. 9%である。純度の低いシリコン金属を用いると、炭化 ケィ素接合体中に不純物元素による共有ィ匕合物が生成し、耐火度を低下させること になる。特に、ウェハ治具等、半導体プロセス関連に用いる場合は、純度 99. 999% 以上のものを用いるのが好ましい。用いるシリコン金属が粉体である場合は、粉体は 100メッシュ以上のものが好ましい。シリコン金属の大きさが 100メッシュ未満であると 、接合する面がずれやすくなり、寸法精度が得られなくなる。上限値については特に 制約はないが、実際に入手できるものは 350メッシュ以下のものである。  Next, silicon metal used as a bonding material will be described. The silicon metal used in the present embodiment is preferably one having a purity of 98% or more, more preferably 99% or more, and particularly preferably 99.9%. If silicon metal with low purity is used, a covalent compound due to an impurity element is generated in the carbide bonded body, and the fire resistance is lowered. In particular, when used in connection with semiconductor processes such as a wafer jig, it is preferable to use one having a purity of 99.999% or more. When the silicon metal used is a powder, the powder is preferably 100 mesh or more. If the size of the silicon metal is less than 100 mesh, the surfaces to be joined are liable to shift and dimensional accuracy cannot be obtained. There is no particular restriction on the upper limit, but what is actually available is less than 350 mesh.
接合に用いるシリコン金属量は、得られる炭化ケィ素接合体の接合強度等に影響 する。本発明者等が鋭意研究を重ねた結果、以下の式(1)に従って算出される量の シリコン金属を用いると、得られる炭化ケィ素接合体の接合強度が良好となるとともに 、シリコン金属の残存による接合強度の低下や、汚染は生じないことを見出した。式( D k X {炭化ケィ素接合体の接合面表面積 (cm2) } X {炭化ケィ素焼結体の遊離炭 素量 (%) } (g)式中、炭化ケィ素接合体の接合面表面積は、接合面の投影面でみた 表面積を示すものである。例えば、 2個の同一の面を有する焼結体を接合する場合 は、一方の炭化ケィ素焼結体の面の投影面でみた表面積を示す。また、 3個以上の 炭化ケィ素焼結体を接合する場合は、炭化ケィ素焼結体のすべての接合する面の 投影面でみた表面積を合計し、その 1Z2の面積を示すものである。式中、 kは 0. 08 〜0. 12であり、実験的に求められた係数である。そのディメンジョンは g/cm2になる シリコン金属は、接合される 2以上の炭化ケィ素焼結体の面の間に挟持される。例 えば、一方の炭化ケィ素焼結体の面にシリコン金属粉末を散布し、次にシリコン金属 が散布された面上に他方の炭化ケィ素焼結体の接合する面を重ねたり、予め 2以上 の炭化ケィ素焼結体を所定の空間が得られるように近接して配置し (接合面同士が 対向するように配置し)、その空間に金属シリコン粉末を充填すればよい。この際、特 別に加圧する必要はなぐ例えば、炭化ケィ素焼結体を重ねた状態で接合する場合 は、炭化ケィ素焼結体の自重が負荷されているのみでも面がずれなければよい。面 がずれないように、固定具で固定したり、加圧してもよい。シリコン金属を炭化ケィ素 焼結体の面上に散布する方法としては、例えば、ロート等を用いて炭化ケィ素焼結 体の面がシリコン金属ですベて被覆されるように散布する方法がある。 The amount of silicon metal used for bonding affects the bonding strength and the like of the resulting silicon carbide bonded body. As a result of intensive studies by the present inventors, when the amount of silicon metal calculated in accordance with the following equation (1) is used, the bonding strength of the obtained silicon carbide bonded body is improved and the remaining silicon metal remains. It has been found that there is no reduction in the bonding strength or contamination due to. Formula (D k X {joint surface area (cm 2 )} of carbon carbide bonded body} X {free carbon content of sintered carbide body (%)} (g) For example, when joining two sintered bodies with the same surface, the surface area is the projection surface of the surface of one sintered carbonized carbide. In addition, when 3 or more sintered carbide bodies are joined, the total surface area of the projected surfaces of all the joined surfaces of the sintered carbide body is summed to indicate the 1Z2 area. Where k is between 0.08 and 0.12, and is an experimentally determined coefficient whose dimension is g / cm 2 Silicon metal is bonded to two or more sintered carbides For example, silicon metal powder is spread on the surface of one of the sintered carbide bodies, and then silicon metal Overlay the surface to which the other sintered carbide body is to be joined on the dispersed surface, or place two or more sintered carbide bodies in close proximity to each other so that a predetermined space can be obtained (the joining surfaces face each other). In this case, there is no need to pressurize in particular, for example, when bonding carbide carbide sintered bodies in a stacked state. If the weight of the sintered carbide body is only loaded, the surface should not be displaced. You may fix with a fixing tool or pressurize so that a surface may not shift. As a method of spraying silicon metal on the surface of the sintered carbide body, for example, there is a method using a funnel or the like so that the surface of the sintered carbide body is covered with silicon metal.
次に、シリコン金属を挟持する炭化ケィ素焼結体は、高温加熱処理を施される。加 熱処理は、非酸ィヒ性雰囲気で行うのが好ましぐ真空中または窒素ガス以外の不活 性ガス雰囲気中で行うのが好ましい。用いる不活性ガスとしては、アルゴンガス、ヘリ ゥムガスが好ましい。不活性ガスとして窒素ガスを用いると、高温でシリコン金属と反 応し、窒化ケィ素が生成してしまい、接合面が熱膨張差により剥離または破壊してし まうことがある。一方、アルゴンガスおよびヘリウムガスは、高温においても非反応性 であるので、そのような問題は生じず好ましい。尚、高純度の炭化ケィ素接合体を製 造した 、場合は、不活性ガスも高純度のものを用いるのが好ま 、。  Next, the silicon carbide sintered body sandwiching the silicon metal is subjected to a high-temperature heat treatment. The heat treatment is preferably performed in a vacuum or in an inert gas atmosphere other than nitrogen gas, which is preferably performed in a non-acidic atmosphere. The inert gas used is preferably argon gas or helium gas. When nitrogen gas is used as an inert gas, it reacts with silicon metal at a high temperature to form nitride nitride, and the joint surface may be peeled off or broken due to a difference in thermal expansion. On the other hand, since argon gas and helium gas are non-reactive even at high temperatures, such problems do not occur and are preferable. In the case of manufacturing a high-purity silicon carbide bonded body, it is preferable to use a high-purity inert gas.
[0043] 加熱温度は、シリコン金属の融点以上であればよぐ 1450°C〜2200°Cが好ましい 。 1450°C未満ではシリコン金属が融解せず、 2200°Cではシリコン金属が一部昇華 する。原料として j8型の炭化ケィ素を用いた場合は 2000°C、 α型を用いた場合は 1 800°Cを上限とするのが好ましい。特に 1600°C程度で接合すると、効率的に高強度 な接合体を製造できるので好ましい。また、昇温を穏やかに行うと、シリコン金属と炭 化ケィ素焼結体中の遊離炭素との反応が十分に進行するので好ましい。具体的に は、 5°CZ分〜 15°CZ分で昇温するのが好ましぐ特に 10°CZ分程度で行うのが好 ましい。 [0043] The heating temperature is preferably 1450 ° C to 2200 ° C as long as it is equal to or higher than the melting point of silicon metal. Below 1450 ° C, silicon metal does not melt, and at 2200 ° C, silicon metal partially sublimes. The upper limit is preferably 2000 ° C when j8 type carbide is used as the raw material, and 1800 ° C when α type is used. In particular, bonding at about 1600 ° C is preferable because a high-strength bonded body can be produced efficiently. Further, it is preferable to raise the temperature gently because the reaction between silicon metal and free carbon in the sintered carbonized carbon body proceeds sufficiently. Specifically, it is preferable to raise the temperature at 5 ° CZ to 15 ° CZ, especially about 10 ° CZ.
[0044] (モニターウェハの製造工程)  [0044] (Monitor wafer manufacturing process)
第 1の実施形態に力かるモニターウェハ 10は以下の工程により製造される。  The monitor wafer 10 that works in the first embodiment is manufactured by the following process.
(ィ)図 3 (a)に示すモニターウェハ本体 2を、上記ホットプレス法に従って製造する。 (口)次に、図 3 (b)に示すようにモニターウェハ本体 2のモニター部に研磨法を用い て断面凹状のポケット 24、 28、 29、 26、 22を形成する。  (Ii) A monitor wafer body 2 shown in FIG. 3 (a) is manufactured according to the hot press method. (Mouth) Next, as shown in FIG. 3 (b), pockets 24, 28, 29, 26, and 22 having a concave cross section are formed in the monitor portion of the monitor wafer body 2 using a polishing method.
(ノヽ)続 ヽて、図 3 (c)【こ示すよう【こ試験片 34、 38、 39、 36、 32をポケット 24、 28、 29 、 26、 22に埋め込む。以上により第 1の実施形態に力かるモニターウェハ 10が製造 される。 [0045] また第 2の実施形態に力かるモニターウェハ 60は以下の工程により製造される。(No.) Continue to embed the test specimens 34, 38, 39, 36, 32 in the pockets 24, 28, 29, 26, 22 as shown in Fig. 3 (c). As described above, the monitor wafer 10 that is effective in the first embodiment is manufactured. In addition, the monitor wafer 60 that is useful in the second embodiment is manufactured by the following steps.
(ィ)図 4 (a)に示すモニターウェハ 60を構成するベースウェハ 3とリングプレート 5を、 上記ホットプレス法に従って製造する。 (B) The base wafer 3 and the ring plate 5 constituting the monitor wafer 60 shown in FIG. 4 (a) are manufactured according to the hot press method.
[0046] (口)次に、ベースウェハ 3のウェハ載置面を平面になるように研磨する。 (Mouth) Next, the wafer mounting surface of the base wafer 3 is polished so as to be flat.
[0047] (ハ)続いて、ベースウェハ 3に取り付けた際にポケットを形成するように、リングプレー ト 5に、放電加工法を用いて図 4 (b)に示すように開孔(ポケット) 54、 58、 59、 56、 5[0047] (c) Subsequently, an opening (pocket) is formed in the ring plate 5 by using an electric discharge machining method so as to form a pocket when the wafer is attached to the base wafer 3 as shown in FIG. 4 (b). 54, 58, 59, 56, 5
2を設ける。 2 is provided.
[0048] (二)次に、ボルトを用いてベースウェハ 3にリングプレート 5を固着する。  (2) Next, the ring plate 5 is fixed to the base wafer 3 using bolts.
[0049] (ホ)続ヽて、図 4 (d)【こ示すよう【こ試験片 44、 48、 49、 46、 42をポケット 54、 58、 59 [0049] (e) Continue, Fig. 4 (d) [As shown, this test piece 44, 48, 49, 46, 42 in the pocket 54, 58, 59
、 56、 52に埋め込む。以上により第 2の実施形態に力かるモニターウェハ 60が製造 される。 , 56, 52. As described above, the monitor wafer 60 which is effective in the second embodiment is manufactured.
[0050] 以上の製造方法により高純度、高密度、高靭性な炭化ケィ素焼結体 (モニターゥ ノ、)を得ることができる。上記ホットプレス法において、本実施形態の前述の加熱条件 を満たしうるものであれば、特に製造装置等に制限はなぐ公知の加熱炉内ゃ反応 装置を使用することができる。  [0050] By the above production method, a high-purity, high-density, high-toughness sintered carbonized carbide (monitor mono) can be obtained. In the above hot press method, any known reactor in the heating furnace can be used as long as the above-described heating conditions of the present embodiment can be satisfied.
[0051] 得られたモニターウェハ 10、 60は、残留ケィ素量が少なぐまた炭化ケィ素粒子が 均一に分散している構造を有する。本実施形態により得られるモニターウェハ 10、 6 0は、密度が 2. 9gZcm3以上であり、平均粒径が 2 ^ m-lO ^ mの主として等方状 のケィ素粒子が均一に分散している構造を有する。そのため、密度等のバラツキが 小さい構造部材として使用できる。一般に、焼結体の密度が 2. 9gZcm3未満である と、曲げ強度、破壊強度などの力学的特性や電気的な物性が低下し、さらに、パー ティクルが増大して汚染性が悪ィ匕することが報告されていることからすると、本実施形 態のモニターウェハは良好な力学的特性と電気的特性を有するものと 、える。好まし い態様におけるモニターウェハ 10、 60の密度は、 3. OgZcm3以上である。 [0051] The obtained monitor wafers 10 and 60 have a structure in which the amount of residual key is small and the carbide particles are uniformly dispersed. The monitor wafers 10 and 60 obtained according to the present embodiment have a density of 2.9 gZcm 3 or more, and mainly isotropic silicon particles having an average particle diameter of 2 ^ m-lO ^ m are uniformly dispersed. Has a structure. Therefore, it can be used as a structural member with small variations in density and the like. In general, if the density of the sintered body is less than 2.9 gZcm 3 , the mechanical properties such as bending strength and fracture strength and the electrical properties are lowered, and further, the particles are increased, resulting in poor contamination. Therefore, it can be said that the monitor wafer of this embodiment has good mechanical characteristics and electrical characteristics. The density of the monitor wafers 10 and 60 in a preferred embodiment is 3. OgZcm 3 or more.
[0052] 本実施形態で得られるモニターウェハ 10、 60の不純物の総含有量は、 lOppm未 満、好ましくは 5ppm未満、より好ましくは 3ppm未満、さらに好ましくは lppm未満で ある。なお、液状のケィ素化合物と、非金属系焼結助剤と、重合又は架橋触媒と、を 均質に混合して得られた固形物を非酸化性雰囲気下で加熱炭化した後、さらに、非 酸ィ匕性雰囲気下で焼成する焼成工程とを含む製造方法によれば、モニターウェハ 1 0、 60に含まれるケィ素、炭素、酸素以外の不純物の総含有量を lppm未満にするこ とができる。本実施形態で得られるモニターウェハ 10、 60の窒素含有量は、 150pp m以上である。 [0052] The total impurity content of the monitor wafers 10 and 60 obtained in the present embodiment is less than lOppm, preferably less than 5 ppm, more preferably less than 3 ppm, and even more preferably less than lppm. In addition, after carbonizing a solid obtained by intimately mixing a liquid key compound, a non-metallic sintering aid, and a polymerization or crosslinking catalyst in a non-oxidizing atmosphere, the According to the manufacturing method including the firing step of firing in an acidic atmosphere, the total content of impurities other than silicon, carbon, and oxygen contained in the monitor wafers 10 and 60 can be less than lppm. it can. The nitrogen content of the monitor wafers 10 and 60 obtained in this embodiment is 150 ppm or more.
[0053] その他、本実施形態で得られるモニターウェハ 10、 60の好ましい物性について検 討するに、例えば、室温における曲げ強度は 400MPa〜700MPa、ビッカース硬度 ίま 1500kgf/mm2以上、ポアソン itiま 0. 14〜0. 21、熱膨張率 ίま 3. 8 X 10— 6〜4. 5 X 10— 6 (。C— 、熱伝導率は 150WZm'k以上、比熱は 0. 60〜0. 70jZg'K、比 抵抗は 1 X 10_1 Ω cm以下である。 [0053] In addition, when considering preferable physical properties of the monitor wafers 10 and 60 obtained in the present embodiment, for example, the bending strength at room temperature is 400 MPa to 700 MPa, the Vickers hardness is ί or 1500 kgf / mm 2 or more, and Poisson iti is 0. 14 ~ 0.21, thermal expansion coefficient ίMA 3. 8 X 10— 6 〜4.5 X 10— 6 (.C—, thermal conductivity 150WZm'k or more, specific heat 0.60 ~ 0.70jZg 'K, the resistivity is 1 X 10 _1 Ωcm or less.
[0054] 以上のようにして得られる本実施形態のモニターウェハ 10、 60は、好適には以下 のような物性を有する:  The monitor wafers 10 and 60 of the present embodiment obtained as described above preferably have the following physical properties:
モニターウェハ 10、 60は、体積抵抗が l Q cm以下、さらに好ましい態様において 0 . 5 Q cm〜0. 05 Ω cmである。モニターウェハ 10、 60は、モニターウェハ 10、 60の ケィ素及び炭素以外の不可避的元素、即ち不純物元素の総含有量は 5ppm未満で ある。モニターウェハ 10、 60は、密度が 2. 9gZcm3以上、さらに好ましい態様にお いて 3. 00〜3. 15gZcm3である。モニターウェハ 10、 60は、曲げ強度力 00MPa 以上、さらに好ましい態様において 500MPaから 700MPaである。 The monitor wafers 10 and 60 have a volume resistance of 1 Q cm or less, and in a more preferred embodiment 0.5 Q cm to 0.05 Ωcm. Monitor wafers 10 and 60 have a total content of unavoidable elements other than silicon and carbon of monitor wafers 10 and 60, that is, impurity elements of less than 5 ppm. The monitor wafers 10 and 60 have a density of 2.9 gZcm 3 or more, and in a more preferred embodiment, 3.00 to 3.15 gZcm 3 . The monitor wafers 10 and 60 have a bending strength of 00 MPa or more, and in a more preferred embodiment, 500 MPa to 700 MPa.
[0055] 本実施形態の原料粉体である炭化ケィ素粉体及び原料粉体を製造するためのケ ィ素源と非金属系焼結助剤、さらに、非酸化性雰囲気とするために用いられる不活 性ガス、それぞれの純度は、各不純物元素含有量 lppm以下であることが好ましい 力 加熱、焼結工程における純ィ匕の許容範囲内であれば必ずしもこれに限定するも のではな!/、。またベースプレートとリングプレートはホットプレス法に制限されることな ぐ例えば反応焼結法等を用いて製造しても構わない。  [0055] The raw material powder of the present embodiment is a carbon carbide powder, a source for producing the raw material powder, a non-metallic sintering aid, and a non-oxidizing atmosphere. It is preferable that the purity of each inert gas is less than or equal to 1 ppm of each impurity element. If it is within the allowable range of purity in the heating and sintering process, it is not necessarily limited to this! /. Further, the base plate and the ring plate may be manufactured using, for example, a reactive sintering method without being limited to the hot press method.
[0056] 本出願は、同出願人により先にされた日本国特許出願、すなわち、 #112005- 2 3583号(出願日 2005年 1月 31日)に基づく優先権主張を伴うものであって、この明 細書を参照のためにここに組み込むものとする。  [0056] This application is accompanied by a priority claim based on a Japanese patent application filed earlier by the same applicant, ie, # 112005-2 3583 (filing date 31 January 2005), This description is incorporated herein for reference.
産業上の利用可能性  Industrial applicability
[0057] 本発明によれば、耐薬品性が良好で再利用可能なモニターウェハが提供される。 [0057] According to the present invention, a reusable monitor wafer having good chemical resistance is provided.

Claims

請求の範囲 The scope of the claims
[1] ウェハ表面のモニター部に試験片を載置するための凹状のポケットを備える炭化ケ ィ素焼結体力もなることを特徴とするモニターウェハ。  [1] A monitor wafer characterized in that the carbonized carbon sintered body has a concave pocket for placing a test piece on the monitor portion of the wafer surface.
[2] 炭化ケィ素焼結体からなるベースウェハと、  [2] a base wafer made of a sintered carbide carbide,
前記ベースウェハに着脱自在に取り付けられ、前記ベースウェハに取り付けた際に 、モニター部分に試験片を載置するための凹状のポケットを形成する炭化ケィ素焼 結体からなるリングプレートと、  A ring plate made of a sintered carbide body that is detachably attached to the base wafer and forms a concave pocket for placing a test piece on the monitor portion when attached to the base wafer;
を有することを特徴とするモニターウェハ。  A monitor wafer characterized by comprising:
[3] さらに、前記ポケットに着脱自在に取り付けられる試験片を有することを特徴とする 請求項 1又は 2記載のモニターウェハ。 3. The monitor wafer according to claim 1 or 2, further comprising a test piece that is detachably attached to the pocket.
[4] 前記試験片は、少なくとも一方の要件 [4] The test piece has at least one requirement
平面度 200 m以下、  Flatness 200 m or less,
表面粗度 (Ra)0. l /z m以下、  Surface roughness (Ra) 0 l / z m or less,
を満たすことを特徴とする請求項 3に記載のモニターウェハ。  The monitor wafer according to claim 3, wherein:
[5] ウェハ表面のモニター部に試験片を載置するための凹状のポケットを備える炭化ケ ィ素焼結体力 なるモニターウェハ本体と、前記ポケットに着脱自在に取り付けられる 試験片と、を有するモニターウェハを用いて、前記試験片上に堆積した堆積膜をモ- ターすることを特徴とするウェハのモニター方法。 [5] A monitor wafer comprising a monitor wafer body having a carbon carbide sintered body having a concave pocket for placing a test piece on the monitor portion of the wafer surface, and a test piece detachably attached to the pocket. And monitoring the deposited film deposited on the test piece using the method.
PCT/JP2006/301289 2005-01-31 2006-01-27 Monitor wafer and method for monitoring wafer WO2006080423A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007500587A JPWO2006080423A1 (en) 2005-01-31 2006-01-27 MONITOR WAFER AND WAFER MONITORING METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-023583 2005-01-31
JP2005023583 2005-01-31

Publications (1)

Publication Number Publication Date
WO2006080423A1 true WO2006080423A1 (en) 2006-08-03

Family

ID=36740447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301289 WO2006080423A1 (en) 2005-01-31 2006-01-27 Monitor wafer and method for monitoring wafer

Country Status (2)

Country Link
JP (1) JPWO2006080423A1 (en)
WO (1) WO2006080423A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023086262A1 (en) * 2021-11-09 2023-05-19 Applied Materials, Inc. Pressure puck diagnostic wafer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10294346A (en) * 1997-04-17 1998-11-04 Hitachi Ltd Method of inspecting semiconductor and inspection jig used for the same
JPH10303133A (en) * 1997-04-22 1998-11-13 Shin Etsu Handotai Co Ltd Semiconductor wafer thin film forming device capable of measuring thin film and vertical boat
JPH1126387A (en) * 1997-06-30 1999-01-29 Mitsubishi Materials Shilicon Corp Wafer adapter and its using method
JPH11344386A (en) * 1998-05-29 1999-12-14 Sakaguchi Dennetsu Kk Wafer with temperature detection element
WO2005000765A2 (en) * 2003-06-27 2005-01-06 Bridgestone Corporation Dummy wafer and method for manufacture thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10294346A (en) * 1997-04-17 1998-11-04 Hitachi Ltd Method of inspecting semiconductor and inspection jig used for the same
JPH10303133A (en) * 1997-04-22 1998-11-13 Shin Etsu Handotai Co Ltd Semiconductor wafer thin film forming device capable of measuring thin film and vertical boat
JPH1126387A (en) * 1997-06-30 1999-01-29 Mitsubishi Materials Shilicon Corp Wafer adapter and its using method
JPH11344386A (en) * 1998-05-29 1999-12-14 Sakaguchi Dennetsu Kk Wafer with temperature detection element
WO2005000765A2 (en) * 2003-06-27 2005-01-06 Bridgestone Corporation Dummy wafer and method for manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023086262A1 (en) * 2021-11-09 2023-05-19 Applied Materials, Inc. Pressure puck diagnostic wafer

Also Published As

Publication number Publication date
JPWO2006080423A1 (en) 2008-06-19

Similar Documents

Publication Publication Date Title
JP4086936B2 (en) Dummy wafer
KR100487262B1 (en) Silicon carbide sintered body and process for making the same
WO2007119526A1 (en) In-line heater and method for manufacturing same
JP4012287B2 (en) Sputtering target panel
JP4602662B2 (en) Ceramic heater unit
JPH1167427A (en) Heater component
JP2007183085A (en) In-line heater and manufacturing method of the same
JPWO2003040059A1 (en) Manufacturing method of silicon carbide sintered body jig used for semiconductor manufacturing and silicon carbide sintered body jig obtained by the manufacturing method
JP4490304B2 (en) Susceptor
JP4390872B2 (en) Semiconductor manufacturing apparatus member and method for manufacturing semiconductor manufacturing apparatus member
WO2006057404A1 (en) Heater unit
JP5303103B2 (en) Silicon carbide sintered body and method for producing the same
JPH1067565A (en) Sintered silicon carbide body and its production
US20060240287A1 (en) Dummy wafer and method for manufacturing thereof
WO2006080423A1 (en) Monitor wafer and method for monitoring wafer
JP4491080B2 (en) Method for producing sintered silicon carbide
JP4918316B2 (en) Plasma-resistant silicon carbide sintered body and method for producing the same
JP2000154063A (en) Production of silicon carbide sintered body
JPH1179843A (en) Production of silicon carbide structure and silicon carbide structure obtained by the same production
JP4002325B2 (en) Method for producing sintered silicon carbide
JP2001130971A (en) Silicon carbide sintered body and method for producing the same
JP2002128566A (en) Silicon carbide sintered compact and electrode
JP5130099B2 (en) Method for producing sintered silicon carbide
JPH10101432A (en) Part for dry etching device
JP2000016877A (en) Production of bonded silicon carbide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007500587

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06712455

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6712455

Country of ref document: EP