WO2006079286A1 - Procede d'enclenchement d'un reroutage de service - Google Patents

Procede d'enclenchement d'un reroutage de service Download PDF

Info

Publication number
WO2006079286A1
WO2006079286A1 PCT/CN2006/000146 CN2006000146W WO2006079286A1 WO 2006079286 A1 WO2006079286 A1 WO 2006079286A1 CN 2006000146 W CN2006000146 W CN 2006000146W WO 2006079286 A1 WO2006079286 A1 WO 2006079286A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
service
current service
interrupted
misconnected
Prior art date
Application number
PCT/CN2006/000146
Other languages
English (en)
French (fr)
Inventor
Junbai Sun
Yu Wang
Junjie Feng
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to EP06705567A priority Critical patent/EP1724972B1/en
Priority to DE602006001980T priority patent/DE602006001980D1/de
Publication of WO2006079286A1 publication Critical patent/WO2006079286A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/22Alternate routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/32Flooding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/62Wavelength based

Definitions

  • the present invention relates to the field of service rerouting, and in particular, to a service rerouting triggering method in an automatic switched optical network.
  • optical networks such as Synchronous Digital Hierarchy (SDH), Synchronous Optical Network (SONET), Wavelength Division Multiplexing (WDM), etc.
  • SDH Synchronous Digital Hierarchy
  • SONET Synchronous Optical Network
  • WDM Wavelength Division Multiplexing
  • the Automatically Switched Optical Network is an optical network defined by the International Telecommunications Union (ITU) based on a distributed control plane and supporting dynamic switched connections.
  • ITU International Telecommunications Union
  • ASON uses an independent control plane to implement automatic connection management through various transport networks.
  • ASON supports dynamic allocation and scheduling of network bandwidth, and can effectively optimize the network according to changes in customer layer information such as IP data traffic.
  • ASON can greatly reduce network construction costs, improve bandwidth utilization, and provide distributed network recovery for the same network service requirements, greatly improving network reliability.
  • ASON's control plane The core function of ASON's control plane is the intelligent operation of the transport plane. There are three types of optical connections for ASON: cross-connects, switched connections, and soft permanent connections. In the ASON architecture, the optical network element first obtains the connection relationship between itself and other optical network elements through the link local discovery technology; then, the control plane releases its own node and link status, and receives other optical networks.
  • each optical network element has a "network map" describing the exact topology of ASON, including node, link, and resource information; when receiving the establishment from the client device or management system
  • the optical network uses the "network map” information to obtain a feasible path by combining a certain routing algorithm, and then drives the nodes on the path to establish a cross-connection through the signaling protocol until the destination node completes the dynamic establishment of the optical connection;
  • the optical connection is dynamically established, removed, or the link resource changes due to the fault, the corresponding optical network element needs to release the updated node and link state information in time to realize the re-synchronization of the "network map".
  • the control plane can dynamically re-route the algorithm to establish a new optical connection. And restore the business, the process is called rerouting.
  • Figure 1-1 shows a schematic diagram of a two-fiber bidirectional multiplex section ring.
  • nodes A, B, C, and D form an optical network ring, and each pair has a pair of opposite directions.
  • Optical fiber Sl/P2, S2/P1 the optical network ring is called a two-fiber bidirectional multiplex section ring.
  • the time slot of each fiber is divided into a working time slot and a protection time slot.
  • the service signal is transmitted on the working time slot of the optical fiber.
  • the optical fiber fails, the service signal is transferred to the optical fiber.
  • the other fiber is reversed on the protection slot for transmission.
  • the service signal transmitted on the working time slot of S1/P2 can be transferred to the protection time slot of S2/P1 to continue transmission.
  • the fiber S2/P1 fails, at S2/ The traffic signal transmitted on the working time slot of P1 can be transferred to the protection time slot of S1/P2 to continue transmission.
  • a multiplex section ring protection mode in which a service signal transmitted on a working time slot of a fiber is transferred to a protection time slot of another reverse fiber due to a fiber failure is called a ring switching.
  • Figure 1-2 shows the two-fiber multiplex section ring Schematic diagram of the ring switching, as shown in Figure 1-2, when the optical cables between the nodes B and C fail, causing the two fibers to be cut off, the ring switching occurs in the nodes B and C adjacent to the cutting point.
  • the traffic signal transmitted on the working time slot of the optical fiber S1/P2 is transmitted on the protection time slots that the nodes B and C transfer to the optical fiber S2/P1, and the traffic signals transmitted on the working time slots on the optical fiber S2/P1
  • the guard slots are transferred at nodes B and C to the fiber S1/P2.
  • Figure 2-1 shows a schematic diagram of a four-fiber bidirectional multiplex section ring.
  • nodes A, B, C, and D form an optical network ring, and each pair has a pair of transmit and receive jobs.
  • the working fiber S1 and the protection fiber P2 form a counterclockwise signal ring, and the working fiber S2 and the protection fiber P1 form a clockwise signal ring.
  • the service signal in the AC direction is transmitted on the optical fiber S1
  • the service signal in the CA direction is transmitted on the optical fiber S2.
  • the protection optical fibers P1 and P2 are idle.
  • the four-fiber bidirectional multiplex section ring performs a Span (Van) switch or a ring switch according to the fiber break condition. Specifically, if only the working fibers S1 and/or S2 are broken, only the segment switching is performed, that is, the service signal transmitted on the working fiber is switched to the protection fiber in the same direction, as shown in Figure 2-2. After the working fiber SI between the nodes B and C is broken, the service signal on the working fiber S1 is switched to the protection fiber P2; if the node fails, or the cable between the two nodes is completely cut off, the working fiber and the protection fiber are all broken. At this time, the ring switching is performed.
  • the ring switching protection mode has no section switching protection mode; and for the four-fiber bidirectional multiplex section ring, there is a section switching protection mode, and In the ring switching protection mode, when the ring switching and the segment switching exist simultaneously, the segment switching takes precedence.
  • the multiplex section ring protection mode is ring switching, each protection slot is shared by different segments of the ring. Therefore, when multiple points in the ring fail or multiple cables are cut off, a node or multiple nodes are isolated and ringed.
  • the service signals transmitted on different segments may preempt the same protection time slot, the service is staggered.
  • Figure 3-1, 3-2, and 3-3 respectively show a schematic diagram of service misconnection due to multiple faults.
  • Figure 3-1 in a 5-node multiplex section ring, ' When the optical cable between the nodes 4 and 5 is cut off, the ring switching occurs at this time, and the service 1 transmitted between the nodes 1 and 4 is ring-switched.
  • the service 1 is transferred to the reverse link for transmission;
  • the service 2 between the nodes 1 and 3 is ring-switched again, as shown by the dotted line in the figure, the service 2 is transferred to the reverse link, and it is visible:
  • service 1 and service 2 are in business connection.
  • Figure 3-2 in a 4-node multiplex section ring, if two cable cuts occur on the optical cables on both sides of node 3, service 1 and service 2 will also occur at node 1.
  • the service rerouting is triggered.
  • One is to trigger service rerouting through high-order channel alarms.
  • the disadvantages of the method are: low triggering accuracy, for example: when an interrupt or misconnection occurs in a cross-ring service, or an alarm may not be generated when the fiber is broken; and the method has high complexity, especially in a four-fiber bidirectional multiplex section ring. In the case of both ring switching and segment switching, the implementation will be more complicated.
  • the other is mainly to trigger service rerouting by detecting the misconnection of the service. That is: business error detection by using overhead bytes and related alarms, for example: Using high-order channel tracking identifiers: J1 byte and high-order channel tracking identifier mismatch alarm (HP-TIM)
  • the service misconnection detection uses different identifiers in the J1 byte of each virtual concatenation (VC) 4 service. When a service misconnection occurs, the J1 byte identifier will change, and ⁇ - ⁇ is generated. An alarm that triggers service rerouting.
  • the disadvantages of this method are: No versatility.
  • the J1 byte is not allowed to be modified in some networks, for example, the J1 byte on the backbone network is mainly used in the aggregation layer network or the access layer network service, but is not allowed to be modified on the backbone network. Therefore, the method is in the backbone. Not available in the net. Summary of the invention
  • the main purpose of the present invention is to provide a service rerouting triggering method to improve the accuracy of the service re-routing and to expand the application range of the service rerouting trigger.
  • a service rerouting triggering method comprising:
  • Each node of the ASON acquires, saves, and updates the network topology information in real time;
  • the ASON node determines whether the network topology changes. If a change occurs, it is determined whether the current service has been interrupted or misconnected. If yes, the rerouting of the service is triggered. Otherwise, return to step A. If there is no change, go back to step 8.
  • the ASON node determines whether the current service is interrupted or misconnected, and further includes:
  • the ASON node detects that the network topology change occurs in the two-fiber bidirectional multiplex section ring, and the determining whether the current service is interrupted or staggered is specifically:
  • the ASON node determines whether the ingress node and the egress node of the current service are located on different communication components. If yes, it determines that the current service is interrupted or misconnected; otherwise, it determines that the current service is not interrupted or misconnected.
  • the ASON node After the ASON node determines that the topology of the network changes, and determines whether the current service is interrupted or misconnected, the ASON node further includes: The ASON node detects that the network topology change occurs in the four-fiber bidirectional multiplex section ring, and the determining whether the current service is interrupted or misconnected is specifically:
  • the ASON node determines whether the network topology change is caused by a fault in the current service ring switching protection path. If yes, it determines that the current service is interrupted or misconnected; otherwise, it determines that the current service has not been interrupted or misconnected.
  • the loop switching protection path is faulty: the node through which the ring switching protection path passes fails, or the working optical fiber and/or the protection fiber between the nodes passing through the ring switching protection path fails.
  • step B it is determined whether the network topology changes, and whether the current service is interrupted or misconnected, and the node that triggers service rerouting is the source node of the current service.
  • Step B determining whether the network topology changes and whether the current service is interrupted or the node that is connected to the wrong node is the destination node of the current service.
  • the destination node of the current service determines that the current service is interrupted or misconnected, and further includes: notifying the source node of the current service that the service is interrupted or misconnected,
  • the node that triggers the rerouting of the service is the source node of the current service.
  • Step B determining whether the network topology changes and whether the current service is interrupted or the node that is connected to the fault is the entry node of the current service.
  • looping node of the current service determines that the current service is interrupted or misconnected, and further includes: notifying the source node of the current service that the service is interrupted or misconnected.
  • the node that triggers the rerouting of the service is the source node of the current service.
  • Step B determining whether the network topology changes and whether the current service is interrupted or the node that is connected to the fault is the outgoing node of the current service.
  • looping node of the current service determines that the current service is interrupted or misconnected, and further includes: notifying the source node of the current service that the service is interrupted or misconnected.
  • the node that triggers the rerouting of the service is the source node of the current service.
  • the ASON node obtains the network topology information in the step A: the flooding acquisition of the traffic engineering link by using the routing protocol.
  • the network topology information includes multiplex section ring information.
  • the method provided by the present invention determines whether the service is interrupted or misconnected according to the change of the network topology information saved by the ASON node, and if so, triggers service rerouting, which is simple to implement and has high precision. , and is not limited by the network type, which expands the application scope of the service rerouting trigger. Specifically, in the two-fiber bidirectional multiplex section ring, if the ingress node and the egress node of the detected service are located on different connectivity components, the service rerouting is triggered; in the four-fiber bidirectional multiplex section ring, if the detection is performed If the ring switching protection path to the service fails, traffic rerouting is triggered. BRIEF DESCRIPTION OF THE DRAWINGS
  • Figure 1-1 is a schematic diagram of a two-fiber bidirectional multiplex section ring
  • Figure 1-2 is a schematic diagram of ring switching of a two-fiber bidirectional multiplex section ring
  • Figure 2-1 is a schematic diagram of a four-fiber bidirectional multiplex section ring
  • Figure 2-2 is a schematic diagram of section switching of a four-fiber bidirectional multiplex section ring
  • Figure 2-3 is a schematic diagram of ring switching of a four-fiber bidirectional multiplex section ring
  • Figure 3-1 is a schematic diagram of an example 1 of generating a service misconnection in a multiplex section ring
  • Figure 3-2 is a schematic diagram of an example 2 of generating a service misconnection in a multiplex section ring
  • Figure 3-3 is a schematic diagram of an example 3 of generating a service misconnection in a multiplex section ring
  • FIG. 5 is a flowchart of service rerouting triggering of a two-fiber bidirectional multiplex section ring according to the present invention
  • FIG. 6 is a flowchart of service rerouting triggering of a four-fiber bidirectional multiplex section ring according to the present invention
  • FIG. 8 is a schematic diagram of an example of service rerouting triggering of a four-fiber bidirectional multiplex section ring according to the present invention.
  • the service path refers to the path that the service passes through when the service is normally transmitted.
  • the segment switch protection path refers to the path that the service path passes through after the service segment is switched.
  • the path that passes through; the node that passes through the ring switching protection path refers to the node that the service passes after the ring switching occurs.
  • FIG. 4 is a flow chart of the service rerouting trigger provided by the present invention. As shown in FIG. 4, the specific steps are as follows:
  • Step 401 Each node of the ASON acquires, saves, and updates the network topology information in real time.
  • the routing protocol to flood the traffic engineering (TE) link each node of the ASON obtains the network topology information of the entire ASON, and saves the network topology information in the TE database, where the network topology information includes the multiplexing segment.
  • Ring information such as: the ring of the working fiber and the ring information of the protection fiber.
  • the TE link is a logical link.
  • Flooding refers to the process of interaction between routing nodes through routing information, so that each network element on the entire network can obtain real-time topology information of the entire network. After flooding, each node will save a "network map" about the entire ASON topology.
  • the "network map” contains real-time TE information of the entire ASON, such as: NE information, TE link information, link attributes. Including bandwidth information, protection type information, slot occupancy information, and the like.
  • TE attribute of the "network map” an important information is also included: the multiplex section ring information of the TE link, that is, which multiplex section ring the TE link belongs to.
  • This "network map” is also known as the TE database.
  • Step 402 The ASON node determines whether the network topology changes according to the saved network topology information. If yes, go to step 403; otherwise, return to step 401.
  • the multiplex section ring fails, such as: When the fiber is broken, the network topology changes.
  • Step 403 The ASON node determines whether the current service has a service interruption or a service misconnection according to the change of the network topology. If yes, go to step 404; otherwise, return to step 401.
  • Step 404 The ASON source node triggers rerouting of the service, and then the ASON source node re-routes the service for the service and establishes the service on the new service path.
  • the source node or the destination node or the ringing node or the ringing node of the service may be the source node or the destination node or the ringing node or the ringing node of the service if the network topology is changed or not, and if the source node detects the service interruption or the wrong connection, The source node needs to be notified, and the source node triggers service rerouting.
  • the source node and the destination node of the service are that the service enters and leaves the border node in the current smart domain, and the first node that initiates the service establishment signaling process is called the source node, and the destination node is the last node that arrives in the service establishment signaling process.
  • a ring node is the node through which the service enters the multiplex section ring for the first time.
  • the ring-out node refers to the last node that passes before the service leaves the multiplex ring.
  • the network topology information saved by the node is the network topology information of the smart domain to which the node belongs.
  • FIG. 5 is a flow chart of the service rerouting triggering of the two-fiber Han to the multiplex section ring provided by the present invention. As shown in FIG. 5, the specific steps are as follows:
  • Step 501 Each node of the ASON acquires, saves, and updates the network topology information in real time.
  • Step 502 The ASON node determines whether the network topology changes according to the saved network topology information. If yes, go to step 503; otherwise, return to step 501.
  • Step 503 The ASON node detects that the network topology change is a two-fiber bidirectional multiplex section ring, and determines whether the ingress node and the egress node of the current service are respectively located on different connectivity components of the ring, and if yes, determine that the service is interrupted. Or staggered, go to step 504; otherwise, go back to step 501.
  • the ring switching occurs after the fiber on the service path fails. Thereafter, if the ring in the service is down If the fault occurs on the protection path, such as the protection of the fiber break, the service will be interrupted or misconnected. It can be seen that the first fault must occur in the forward chain between the incoming and outgoing nodes of the service signal. On the road, the secondary fault must occur on the reverse link between the incoming and outgoing nodes of the service signal. Therefore, the two faults will inevitably block the incoming and outgoing nodes, resulting in two-way two-way complex.
  • the services transmitted on the forward and reverse links of the segment ring cannot be connected. That is, the connection between the ring-in node and the egress node cannot be connected. In this case, the service is interrupted or misconnected, and service re-routing is triggered.
  • Step 504 The ASON node triggers rerouting of the service, and then the ASON node re-routes the service for the service and establishes the service on the new service path.
  • FIG. 6 is a flow chart of service rerouting triggering of a four-fiber bidirectional multiplex section ring provided by the present invention. As shown in FIG. 6, the specific steps are as follows:
  • Step 601 Each node of the ASON acquires, saves, and updates the network topology information in real time.
  • Step 602 The ASON node determines whether the network topology changes according to the saved network topology information. If yes, go to step 603; otherwise, return to step 601.
  • Step 603 The ASON node detects that the network topology change is a four-fiber bidirectional multiplex section ring, and determines whether the network topology change is caused by a failure of the current service ring switching protection path. If yes, determine service interruption or service. If the connection is wrong, go to step 604; otherwise, go back to step 601.
  • the service may be interrupted or misconnected.
  • Step 604 The ASON node triggers re-routing of the service, after which the ASON node re-routes the service and establishes the service on the new service path.
  • the following is an example of performing the rerouting triggering of the two-fiber Han multiplex section ring and the four-fiber bidirectional multiplex section ring ring according to the present invention.
  • Example 1 Service rerouting trigger in a two-fiber bidirectional multiplex section ring.
  • the nodes 1, 2, 3, 4, and 5 form a two-fiber bidirectional multiplex section ring, and the service 1 and the service 2 pass through the ring, where the service 1 passes through the nodes 1, 2, and 3,
  • the ingress and egress nodes are node 1 and node 3, respectively; service 2 passes through nodes 1, 5, and 4, respectively, and the ingress and egress nodes are node 1 and node 4, respectively.
  • three fiber break events occur in sequence, and each fiber break event is as follows:
  • the cable between node 1 and node 2 is cut off: the working fiber and the protection fiber are cut off at the same time.
  • the service 1 has a ring switching, and the path is changed to 1 -5-4-3-2-3.
  • Service 1 can continue; the intelligent system of node 1 detects service 1, and finds that ring-in node 1 and ring-out node 3 of service 1 can communicate through path 1-5-4-3, so it is not necessary to trigger re-routing; Unaffected, the path is unchanged;
  • the cable between the node 2 and the node 3 is cut off: the working fiber and the protection fiber are cut off at the same time, and the service 1 performs the ring switching again, the path is changed to 1-5-4-3, and the service 1 continues;
  • the intelligent system of node 1 detects service 1, and finds that the ingress node 1 and the egress node 3 of service 1 are connected through path 1-5 -4 -3, so it is not necessary to trigger rerouting; service 2 is not affected, and the path is unchanged. ;
  • the cable between node 5 and node 4 is cut off: the working fiber and the protection fiber are cut off at the same time, and the ring switching protection path that the service 1 passes is interrupted, so the service 1 is interrupted, and the intelligent system of node 1 is off.
  • 1 Checking and finding that the ingress node 1 and the egress node 3 have been split into two communication components, so the intelligent system of node 1 triggers the rerouting of service 1, and for service 2, the ring switching occurs, but this Will lead to business misconnection, the same
  • the intelligent system of node 1 detects service 2
  • the intelligent system of node 1 also triggers the rerouting of service 2.
  • Example 2 Service rerouting trigger in a four-fiber bidirectional multiplex section ring.
  • nodes 1, 2, 3, 4, and 5 form a four-fiber bidirectional multiplex section ring, and service 1 passes through nodes 1, 2, and 3 in sequence, and the ingress and egress nodes are node 1 and node, respectively. 3;
  • Three broken fiber events occur in sequence in the ring, and each fiber breaking event is as follows:
  • the two protection fibers between node 1 and node 2 are cut off, and the traffic 1 is ring-switched.
  • the path is changed to 1 -5-4-3 - 2-3, where path 1 - 5 - 4 -3-2 is the ring switching protection path, and service 1 continues;
  • the two working fibers between the node 4 and the node 3 are cut off, causing a traffic switching of a service originally transmitted on the working fiber between the node 3 and the node 4, and the service is transferred to the node 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)
  • Optical Communication System (AREA)
  • Soil Working Implements (AREA)
  • Accommodation For Nursing Or Treatment Tables (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

业务重路由触发方法
技术领域
本发明涉及业务重路由技术领域, 特别涉及自动交换光网絡中的业 务重路由触发方法。 发明背景
传统的光网络,如:同步数字系列(SDH )、同步光纤网络(SONET )、 波分多路复用 (WDM )等, 是基于集中管理的系统, 其光网络节点通 常是"哑,,的, 光连接的创建、 维护、 拆除都需要人工干预, 以这种方式 建立的光连接称为永久连接。基于永久连接的光网络不能满足因 IP数据 业务不断增长而需要越来越大的网络带宽的需求、也不能满足因 IP数据 业务量不确定性和不可预见性而需要网络带宽的动态、 灵活分配的需 求。
自动交换光网络(ASON )是由国际电信联盟(ITU )定义的基于分 布控制平面且支持动态交换连接的光网络。 ASON利用独立的控制平面, 通过各种传送网来实施自动连接管理。 ASON支持网络带宽的动态分配 和调度连接, 可依据客户层信息如: IP数据业务量等的变化, 有效地优 化网絡。 与传统光网络相比, 对于同样的网络业务需求, ASON可以大 大降低建网成本, 提高带宽利用率, 还可以提供分布式的网络恢复, 极 大地提高网络的可靠性。
ASON 的控制平面的核心功能是对传送平面的智能化操作。 ASON 的光连接分为三种: 交叉连接、 交换连接和软永久性连接。 在 ASON架 构下, 光网元首先通过链路局部的发现技术获得自身与其它光网元的连 接关系; 再通过控制平面发布自身的节点和链路状态, 并接收其它光网 元发布的节点和链路状态,最终每个光网元都有一份描述 ASON精确拓 朴的"网络地图", 其中包括节点、 链路、 资源信息; 当接收到来自客户 设备或管理系统的建立连接请求时, 光网络利用"网絡地图"信息, 结合 一定的路由算法得到一条可行的路径, 再通过信令协议驱动该路径上的 节点建立交叉连接, 直到目的节点完成光连接的动态建立; 在光连接动 态建立、 拆除, 或者故障引起链路资源变化时, 相应光网元需要及时发 布更新的节点、 链路状态信息, 实现"网络地图"的再同步。 在网络故障 如: 链路中断或节点失效等发生时, 如果光连接如: 交叉连接、 交换连 接或软永久性连接等被中断, 则控制平面能动态地重新进行路由算法, 建立新的光连接并恢复业务, 该过程称为重路由。
当业务在光网络中传输时, 由于业务路径故障等会导致业务中断, 为解决该问题, 传统光网络中提出了很多种技术成熟的业务保护方法, 如 1: N的线性复用段保护、 二纤双向复用段环保护、 四纤双向复用段 环保护等。
图 1-1给出了二纤双向复用段环的示意图, 如图 1-1所示, 节点 A、 B、 C、 D 组成一个光网络环, 且每两个节点间有一对方向相反的光纤 Sl/P2、 S2/P1 , 该光网络环称为二纤双向复用段环。 其中, 每根光纤的 时隙都分为工作时隙和保护时隙, 当光纤正常时, 业务信号在该光纤的 工作时隙上传送, 当该光纤出现故障时, 业务信号转移到与该光纤反向 的另一光纤的保护时隙上传送。例如:当光纤 S1 P2发生故障时,在 S1/P2 的工作时隙上传送的业务信号可转移到 S2/P1的保护时隙上继续传送, 同样当光纤 S2/P1发生故障时, 在 S2/P1的工作时隙上传送的业务信号 可转移到 S1/P2的保护时隙上继续传送。 将由于光纤故障, 而将该光纤 工作时隙上传送的业务信号转移到另一反向光纤的保护时隙上继续传 送的复用段环保护方式, 称为环倒换。 图 1-2给出了二纤汉向复用段环 的环倒换示意图, 如图 1-2所示, 当节点 B、 C间的光缆出现故障而导 致两根光纤全部被切断时, 与切断点相邻的节点 B和 C中发生环倒换, 将原来在光纤 S1/P2的工作时隙上传送的业务信号在节点 B和 C转移到 光纤 S2/P1上的保护时隙上传送, 同时将在光纤 S2/P1上的工作时隙上 传送的业务信号在节点 B和 C转移到光纤 S1/P2上的保护时隙传送。可 以看出: 在环倒换前, 节点 A到 C的业务信号走 A-B-C的路径, 环倒 换后变为: A-B-A-D-C; 环倒换前, 节点 C到 A的业务信号走 C-B-A路 径, 环倒换后变为: C-D-A-B-A。
图 2-1给出了四纤双向复用段环的示意图, 如图 2-1所示, 节点 A、 B、 C, D组成光网络环, 每两个节点间分别有一对发、 收工作光纤 Sl、 S2和一对发、 收保护光纤 Pl、 P2。 其中工作光纤 S1和保护光纤 P2形 成逆时针信号环, 工作光纤 S2和保护光纤 P1形成顺时针信号环。 以节 点 A和 C为例, 在正常情况下, AC方向的业务信号在光纤 S1上传送, CA方向的业务信号在光纤 S2上传送, 此时,保护光纤 P1和 P2是空闲 的。 当发生断纤时, 根据断纤情况的不同, 四纤双向复用段环会进行区 段( Span )倒换或环倒换。 具体地, 若只是工作光纤 S1和 /或 S2发生断 纤, 此时只进行区段倒换, 即将工作光纤上传送的业务信号倒换到同方 向的保护光纤上,如图 2-2所示, 当节点 B、 C间的工作光纤 SI断纤后, 工作光纤 S1上的业务信号倒换到保护光纤 P2上; 若节点失效, 或某两 节点间的光缆全部切断即工作光纤和保护光纤全部断纤, 此时进行环倒 换, 如图 2-3所示, 当节点 B、 C间的光缆被切断时, 在节点 B和 C上, 将工作光纤 S1上的业务信号倒换到保护光纤 P1上, 将工作光纤 S2上 的业务信号倒换到保护光纤 P2上。
可见, 对于二纤双向复用段环, 只有环倒换保护方式, 没有区段倒 换保护方式; 而对于四纤双向复用段环, 既有区段倒换保护方式, 也有 环倒换保护方式, 且在环倒换与区段倒换同时存在时, 区段倒换优先。 当复用段环保护方式为环倒换时, 每一保护时隙是由环的不同段共 用的, 因此当环内多点失效或多处光缆切断, 而使某一节点或多节点孤 立出环时, 在不同段上传送的业务信号可能会发生抢占同一保护时隙的 情况, 从而导致业务错连。 图 3-1、 3-2、 3-3 分别给出了一种因多处故 障而导致业务错连的示意图, 如图 3-1所示, 在一个 5节点的复用段环 中, '当节点 4、 5之间的光缆切断时, 此时环倒换发生, 在节点 1和 4 间传送的业务 1发生环倒换, 如图中虚线所示, 业务 1转移到反向链路 上传送; 而此时若节点 2、 3间的光缆再切断, 则节点 1和 3间的业务 2 又发生环倒换,如图中虚线所示, 业务 2转移到反向链路上传送, 可见: 此时在节点 1和 4处, 业务 1和业务 2发生业务错连。 同样, 如图 3-2 所示, 在一个 4节点的复用段环中, 若两次光缆切断分别发生在节点 3 两侧的光缆上, 同样会导致业务 1和业务 2在节点 1处发生业务错连; 如图 3-3所示, 在一个 4节点的复用段环中, 若节点 3发生故障, 导致 节点 3两侧的光缆无法使用, 则节点 2和 5发生环倒换, 从而导致业务 1和业务 2在节点 1处发生业务错连。
当业务在环倒换方式下再出现链路故障等而导致业务中断或业务 错连时,要进行业务重路由触发。 目前主要有两种业务重路由触发方法: 一种是通过高阶通道告警触发业务重路由。 该方法的缺点是: 触发 精度低, 例如: 在跨环业务产生中断或错连时, 或断纤时可能不产生告 警; 且该方法实现复杂度高, 尤其在四纤双向复用段环中同时存在环倒 换和区段倒换的情况下, 实现将更加复杂。
另一种主要是通过对业务错连的检测来触发业务重路由。 即: 通过 利用开销字节及相关告警进行业务错连检测, 例如: 利用高阶通道的跟 踪识别符即: J1 字节和高阶通道跟踪标识符失配告警(HP-TIM )进行 业务错连检测, 在每个虚级联 ( VC ) 4业务的 J1字节中使用不同的标 识符, 当发生业务错连时, J1 字节的标识符将发生改变, 此时产生 ΗΡ-ΤΙΜ告警, 从而触发业务重路由。 该方法的缺点是: 不具有通用性。 因为在某些网络中 J1字节是不允许修改的, 如: 骨干网上的 J1字节主 要用于汇聚层网络或接入层网络业务中, 而不允许在骨干网上修改, 因 此该方法在骨干网中不可行。 发明内容
本发明的主要目的在于一种业务重路由触发方法, 以提高业务重路 由触发的精确度, 并扩大业务重路由触发的应用范围。
为实现上述发明目的, 本发明的技术方案是这样实现的:
一种业务重路由触发方法, 该方法包括:
A、 ASON各节点获取、 保存并实时更新网络拓朴信息;
B、 根据保存的网絡拓朴信息, ASON节点判断网络拓朴是否发生 变化, 若发生变化, 判断当前业务是否发生了中断或错连, 若是, 触发 对该业务的重路由, 否则, 返回步骤 A; 若没发生变化, 返回步驟八。
步骤 B所述 ASON节点判定网络拓朴发生变化之后,判断当前业务 是否发生中断或错连之前, 进一步包括:
ASON节点检测到该网络拓朴变化发生于二纤双向复用段环中, 且, 所述判断当前业务是否发生中断或错连具体为:
ASON节点判断当前业务的入环节点和出环节点是否位于不同的联 通分量上, 若是, 判定当前业务发生中断或错连; 否则, 判定当前业务 没有发生中断或错连。
步骤 B所述 ASON节点判定网珞拓朴发生变化之后,判断当前业务 是否发生中断或错连之前, 进一步包括: ASON节点检测到该网络拓朴变化发生于四纤双向复用段环中, 且, 所述判断当前业务是否发生中断或错连具体为:
ASON节点判断网络拓朴变化是否由当前业务的环倒换保护路径发 生故障引起的, 若是, 判定当前业务发生中断或错连; 否则, 判定当前 业务没有发生中断或错连。
所述环倒换保护路径发生故障为: 环倒换保护路径经过的节点发生 故障,或者环倒换保护路径所经过节点间的工作光纤和 /或保护光纤发生 故障。
步骤 B所述判断网络拓朴是否发生变化、及判断当前业务是否发生 中断或错连、 及触发业务重路由的节点为当前业务的源节点。
步骤 B所述判断网络拓朴是否发生变化及当前业务是否发生中断或 错连的节点为当前业务的目的节点,
且, 所述当前业务的目的节点判定当前业务发生中断或错连的同 时, 进一步包括: 通知当前业务的源节点业务发生中断或错连,
所述触发对该业务的重路由的节点为当前业务的源节点。
步骤 B所述判断网络拓朴是否发生变化及当前业务是否发生中断或 错连的节点为当前业务的入环节点,
且, 所述当前业务的入环节点判定当前业务发生中断或错连的同 时, 进一步包括: 通知当前业务的源节点业务发生中断或错连,
所述触发对该业务的重路由的节点为当前业务的源节点。
步骤 B所述判断网络拓朴是否发生变化及当前业务是否发生中断或 错连的节点为当前业务的出环节点,
且, 所述当前业务的出环节点判定当前业务发生中断或错连的同 时, 进一步包括: 通知当前业务的源节点业务发生中断或错连,
所述触发对该业务的重路由的节点为当前业务的源节点。 步骤 A所述 ASON各节点获取网络拓朴信息具体为:通过路由协议 对流量工程链路的洪泛获取。
所述网络拓朴信息包括复用段环信息。
与现有技术相比,本发明提供的方法才艮据 ASON节点保存的网络拓 朴信息的变化, 判断业务是否发生中断或错连, 若是, 则触发业务重路 由, 实现简单, 且精度较高, 并不受网络类型限制, 扩大了业务重路由 触发的应用范围。 具体地, 在二纤双向复用段环中, 若检测到业务的入 环节点和出环节点位于不同的联通分量上, 则触发业务重路由; 在四纤 双向复用段环中, 若检测到业务的环倒换保护路径发生故障, 则触发业 务重路由。 附图简要说明
图 1-1为二纤双向复用段环的示意图;
图 1-2为二纤双向复用段环的环倒换示意图;
图 2-1为四纤双向复用段环的示意图;
图 2-2为四纤双向复用段环的区段倒换示意图;
图 2-3为四纤双向复用段环的环倒换示意图;
图 3-1为复用段环中产生业务错连的实例一的示意图;
图 3-2为复用段环中产生业务错连的实例二的示意图;
图 3-3为复用段环中产生业务错连的实例三的示意图;
图 4为本发明提供的业务重路由触发的流程图;
图 5为本发明提供的二纤双向复用段环的业务重路由触发流程图; 图 6为本发明提供的四纤双向复用段环的业务重路由触发流程图; 图 Ί为本发明提供的二纤双向复用段环的业务重路由触发实例的示 意图; 图 8为本发明提供的四纤双向复用段环的业务重路由触发实例的示 意图。 实施本发明的方式
下面结合附图及具体实施例对本发明再作进一步详细的说明。
本发明中, 业务路径指, 业务正常传送时所经过路径; 区段倒换保 护路径指, 业务发生区段倒换后在保护光纤上所经过的路径; 环倒换保 护路径指, 业务发生环倒换后所经过的路径; 环倒换保护路径所经过节 点指, 业务发生环倒换后所经过的节点。
图 4是本发明提供的业务重路由触发的流程图, 如图 4所示, 其具 体步骤如下:
步骤 401: ASON各节点获取、 保存并实时更新网络拓朴信息。 通过路由协议对流量工程(TE )链路的洪泛, ASON的各节点获得 整个 ASON的网络拓朴信息,并将该网络拓朴信息保存在 TE数据库中, 该网络拓朴信息包括复用段环信息, 如: 工作光纤所组的环和保护光纤 所组的环信息等。 这里, TE链路是一个逻辑链路。 洪泛是指各个节点 间经过路由协议信息交互 , 使得全网每个网元都能得到全网的实时拓朴 信息的过程。 经过洪泛以后, 每个节点都会保存一份关于整个 ASON拓 朴的 "网络地图",该 "网络地图"中含有整个 ASON的实时 TE信息如: 网元信息、 TE链路信息、 链路属性包括带宽信息、 保护类型信息、 时 隙占用信息等。 另外, 在该 "网络地图" 的 TE属性中, 还包括一个重 要信息: TE链路的复用段环信息, 即该 TE链路属于哪个复用段环。 该 "网络地图" 也称为 TE数据库。
步骤 402: ASON节点根据保存的网络拓朴信息, 判断网络拓朴是 否发生变化, 若是, 执行步骤 403; 否则, 返回步骤 401。 这里, 当复用段环出现故障如: 断纤时, 网洛拓朴会发生变化。 步驟 403: ASON节点根据网络拓朴的变化, 判断当前业务是否发 生了业务中断或业务错连, 若是, 执行步驟 404; 否则, 返回步骤 401。
步骤 404: ASON源节点触发对该业务的重路由, 此后 ASON源节 点为该业务重新查找路由并在新业务路径上建立该业务。
判断网络拓朴是否发生变化和判断当前业务是否发生业务中断或 错连的可以是该业务的源节点或目的节点或入环节点或出环节点, 若非 源节点检测到业务中断或错连, 则需要通知源节点, 由源节点触发业务 重路由。 这里, 业务的源节点和目的节点是该业务进入和离开当前智能 域内的边界节点, 发起业务建立信令过程的首节点叫源节点, 目的节点 是业务建立信令过程中最后到达的节点, 入环节点指业务第一次进入复 用段环所经过的节点, 出环节点指业务离开复用环前经过的最后一个节 点。 对某个节点来说, 该节点保存的网络拓朴信息是该节点所属智能域 的网络拓朴信息。
图 5 是本发明提供的二纤汉向复用段环的业务重路由触发的流程 图, 如图 5所示, 其具体步骤如下:
步驟 501 : ASON各节点获取、 保存并实时更新网络拓朴信息。 步骤 502: ASON节点根据保存的网络拓朴信息, 判断网络拓朴是 否发生变化, 若是, 执行步骤 503; 否则, 返回步骤 501。
步驟 503: ASON节点检测到发生网络拓朴变化的为二纤双向复用 段环, 判断当前业务的入环节点和出环节点是否分别位于该环的不同的 联通分量上, 若是, 判定业务中断或错连, 执行步骤 504; 否则, 返回 步骤 501。
对二纤双向复用段环上的业务, 当该业务在业务路径上传送时, 该 业务路径上的光纤出现故障后会发生环倒换, 此后, 若在该业务的环倒 换保护路径上再出现故障如:保护光纤断纤,就会产生业务中断或错连, 可以看出, 第一次故障必然发生在业务信号的入环节点和出环节点之间 的正向链路上, 而笫二次故障必然发生在业务信号的入环节点和出环节 点之间的反向链路上, 因此两次故障必然将入环节点和出环节点隔断, 导致二纤双向复用段环正、 反向链路上传送的业务均无法接续, 即从入 环节点到出环节点之间无法联通, 此时即判定业务中断或错连, 需要触 发业务重路由。
步驟 504: ASON节点触发对该业务的重路由, 此后 ASON节点为 该业务重新查找路由并在新业务路径上建立该业务。
图 6 是本发明提供的四纤双向复用段环的业务重路由触发的流程 图, 如图 6所示, 其具体步骤如下:
步骤 601: ASON各节点获取、 保存并实时更新网络拓朴信息。 步骤 602: ASON节点根据保存的网络拓朴信息, 判断网络拓朴是 否发生变化, 若是, 执行步骤 603; 否则, 返回步骤 601。
步骤 603: ASON节点检测到发生网络拓朴变化的为四纤双向复用 段环, 判断该网络拓朴变化是否由当前业务的环倒换保护路径发生故障 而引起的, 若是, 判定业务中断或业务错连, 执行步骤 604; 否则, 返 回步骤 601。
当前业务的环倒换保护路径所经过的节点发生故障, 或者所经过节 点间的工作光纤和保护光纤之一发生断纤, 或两者都发生断纤, 都会导 致业务中断或错连。
对四纤双向复用段环上的业务, 当该业务的业务路径上发生断纤 后, 会发生区段倒换, 区段倒换保护路径上再发生断纤后, 会发生环倒 换, 此后若在环倒换保护路径所经过节点间的光纤再发生断纤, 则会产 生业务中断或业务错连, 需要触发业务重路由。 步骤 604: ASON节点触发对该业务的重路由, 此后 ASON节点为 该业务重新查找路由并在新业务路径上建立该业务。
以下分别给出本发明进行二纤汉向复用段环和四纤双向复用段环 业务重路由触发的例子。
例子一: 二纤双向复用段环中的业务重路由触发。
如图 7所示, 节点 1、 2、 3、 4、 5组成一个二纤双向复用段环, 该 环上有业务 1和业务 2通过, 其中, 业务 1依次经过节点 1、 2、 3, 入 环节点和出环节点分别是节点 1和节点 3; 业务 2依次经过节点 1、 5、 4, 入环节点和出环节点分别是节点 1和节点 4。设在该环中依次发生了 三次断纤事件, 每次断纤事件具体如下:
第一次断纤时, 节点 1和节点 2之间的光缆切断即: 工作光纤和保 护光纤同时切断,此时业务 1发生环倒换,路径改为 1 -5-4-3-2-3, 业务 1可继续进行; 节点 1的智能系统对业务 1进行检测, 发现业务 1 的入环节点 1和出环节点 3可经过路径 1-5-4-3联通, 所以不必触 发重路由; 业务 2不受影响, 路径不变;
第二次断纤时, 节点 2和节点 3之间的光缆切断即: 工作光纤和保 护光纤同时切断, 业务 1再次进行环倒换, 路径改为 1-5-4-3, 业务 1继续进行; 节点 1的智能系统对业务 1进行检测, 发现业务 1的入环 节点 1和出环节点 3经过路径 1-5 -4 -3联通, 所以不必触发重路由; 业务 2不受影响, 路径不变;
第三次断纤时, 节点 5和节点 4之间的光缆切断即: 工作光纤和保 护光纤同时切断, 业务 1所经过的环倒换保护路径中断, 所以业务 1中 断, 节点 1的智能系统对业务 1进行检测, 发现入环节点 1和出环节点 3已经被分割成两个联通分量, 所以节点 1的智能系统会触发业务 1的 重路由; 而对于业务 2, 则会发生环倒换, 但此时将导致业务错连, 同 时节点 1的智能系统会对业务 2进行检测, 发现入环节点 1和出环节点 4 已经被分割成两个联通分量, 所以节点 1的智能系统也会触发业务 2 的重路由。
例子二: 四纤双向复用段环中的业务重路由触发。
如图 8所示, 节点 1、 2、 3、 4、 5组成一个四纤双向复用段环, 业 务 1依次经过节点 1、 2、 3, 入环节点和出环节点分别是节点 1和节点 3; 在该环中依次发生了三次断纤事件, 各断纤事件具体如下:
第一次断纤时, 节点 1和节点 2之间的两条工作光纤切断, 业务 1 发生区段倒换, 路径改为 1 -2-3, 且业务 1在节点 1与节点 2之间走 保护光纤即: 路径 1-2为区段保护路径, 业务 1继续;
第二次断纤时, 节点 1和节点 2之间的两条保护光纤切断, 业务 1 发生环倒换, 路径改为 1 -5-4-3 - 2-3, 其中, 路径 1 - 5 - 4-3-2 为环倒换保护路径, 业务 1继续进行;
第三次断纤时, 节点 4和节点 3之间的两条工作光纤切断, 导致原 来在节点 3和节点 4之间的工作光纤上传送的某业务发生区段倒换, 该 业务转移到节点 3和节点 4之间的保护光纤上传送, 从而抢占了业务 1 在节点 3和节点 4之间的环倒换保护路径 4-3, 业务 1中断; 节点 1的 智能系统检测到业务 1发生中断, 触发对业务 1的重路由。

Claims

权利要求书
1、 一种业务重路由触发方法, 其特征在于, 该方法包括:
A、 自动交换光网络 ASON各节点获取、 保存并实时更新网络拓朴 信息;
B、 根据保存的网络拓朴信息, ASON节点判断网络拓朴是否发生 变化, 若发生变化, 判断当前业务是否发生了中断或错连, 若是, 触发 对该业务的重路由, 否则, 返回步骤 A; 若没发生变化, 返回步驟八。
2、 如权利要求 1所述的方法, 其特征在于, 步骤 B所述 ASON节 点判定网络拓朴发生变化之后, 判断当前业务是否发生中断或错连之 前, 进一步包括:
ASON节点检测到该网络拓朴变化发生于二纤双向复用段环中, 且, 所述判断当前业务是否发生中断或错连具体为:
ASON节点判断当前业务的入环节点和出环节点是否位于不同的联 通分量上, 若是, 判定当前业务发生中断或错连; 否则, 判定当前业务 没有发生中断或错连。
3、 如权利要求 1所述的方法, 其特征在于, 步驟 B所述 ASON节 点判定网絡拓朴发生变化之后, 判断当前业务是否发生中断或错连之 前, 进一步包括:
ASON节点检测到该网络拓朴变化发生于四纤双向复用段环中, 且, 所述判断当前业务是否发生中断或错连具体为:
ASON节点判断网络拓朴变化是否由当前业务的环倒换保护路径发 生故障引起的, 若是, 判定当前业务发生中断或错连; 否则, 判定当前 业务没有发生中断或错连。
4、 如权利要求 3 所述的方法, 其特征在于, 所述环倒换保护路径 发生故障为: 环倒换保护路径经过的节点发生故障, 或者环倒换保护路 径所经过节点间的工作光纤和 /或保护光纤发生故障。
5、 如权利要求 1所述的方法, 其特征在于, 步骤 B所述判断网络 拓朴是否发生变化、 及判断当前业务是否发生中断或错连、 及触发业务 重路由的节点为当前业务的源节点。
6、 如权利要求 1所述的方法, 其特征在于, 步骤 B所述判断网络 拓朴是否发生变化及当前业务是否发生中断或错连的节点为当前业务 的目的节点,
且, 所述当前业务的目的节点判定当前业务发生中断或错连的同 时, 进一步包括: 通知当前业务的源节点业务发生中断或错连,
所述触发对该业务的重路由的节点为当前业务的源节点。
7、 如权利要求 1所述的方法, 其特征在于, 步骤 B所述判断网络 拓朴是否发生变化及当前业务是否发生中断或错连的节点为当前业务 的入环节点,
且, 所述当前业务的入环节点判定当前业务发生中断或错连的同 时, 进一步包括: 通知当前业务的源节点业务发生中断或错连,
所述触发对该业务的重路由的节点为当前业务的源节点。
8、 如权利要求 1所述的方法, 其特征在于, 步驟 B所述判断网络 拓朴是否发生变化及当前业务是否发生中断或错连的节点为当前业务 的出环节点,
且, 所述当前业务的出环节点判定当前业务发生中断或错连的同 时, 进一步包括: 通知当前业务的源节点业务发生中断或错连,
所述触发对该业务的重路由的节点为当前业务的源节点。
9、 如权利要求 1所述的方法, 其特征在于, 步骤 A所述 ASON各 节点获取网络拓朴信息具体为: 通过路由协议对流量工程链路的洪泛获 取。
10、 如权利要求 1、 2或 3所述的方法, 其特征在于, 所述网络拓 朴信息包括复用段环信息。
PCT/CN2006/000146 2005-01-25 2006-01-25 Procede d'enclenchement d'un reroutage de service WO2006079286A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06705567A EP1724972B1 (en) 2005-01-25 2006-01-25 A service rerouting triggering method
DE602006001980T DE602006001980D1 (de) 2005-01-25 2006-01-25 Dienst-umleit-trigger-verfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNB2005100330252A CN100531092C (zh) 2005-01-25 2005-01-25 智能光网络的业务重路由触发方法
CN200510033025.2 2005-01-25

Publications (1)

Publication Number Publication Date
WO2006079286A1 true WO2006079286A1 (fr) 2006-08-03

Family

ID=36740047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/000146 WO2006079286A1 (fr) 2005-01-25 2006-01-25 Procede d'enclenchement d'un reroutage de service

Country Status (6)

Country Link
EP (1) EP1724972B1 (zh)
CN (1) CN100531092C (zh)
AT (1) ATE403313T1 (zh)
DE (1) DE602006001980D1 (zh)
ES (1) ES2309944T3 (zh)
WO (1) WO2006079286A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SI2096802T1 (sl) * 2006-12-01 2012-02-29 Zte Corp Hierarhiäśni postopek za poizvedbo o poti v avtomatsko komutiranem optiäśnem omreĺ˝ju
CN101197591B (zh) * 2008-01-02 2011-05-25 中兴通讯股份有限公司 用于ason的保护恢复方法和装置
CN101686419A (zh) * 2008-09-28 2010-03-31 华为技术有限公司 通知重路由的方法、节点设备及环网络
CN101515827B (zh) * 2009-03-31 2011-12-07 中兴通讯股份有限公司 一种自动交换光网络业务错联阻错的方法及系统
CN101710846B (zh) * 2009-12-10 2013-10-16 中兴通讯股份有限公司 一种自动交换光网络中业务的保护方法和装置
CN103647598B (zh) * 2013-11-05 2016-01-06 国家电网公司 一种基于智能光网络的通信多等级保护方法
CN113596630B (zh) * 2021-05-17 2022-11-15 北京邮电大学 混合栅格光网络的路由资源分配方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5442620A (en) * 1992-03-26 1995-08-15 At&T Corp. Apparatus and method for preventing communications circuit misconnections in a bidirectional line-switched ring transmission system
JP2002118580A (ja) * 2000-10-10 2002-04-19 Nec Corp リングプロテクション方法
CN1424827A (zh) * 2003-01-09 2003-06-18 上海交通大学 自动光交换网中的双向通道恢复方法
CN1472890A (zh) * 2002-07-30 2004-02-04 深圳市中兴通讯股份有限公司 一种防止光传输环形网传输业务错连的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2401901A1 (en) * 2000-03-03 2001-09-13 Vinay K. Bannai Routing switch for dynamically rerouting traffic due to detection of faulty link
JP3765971B2 (ja) * 2000-03-06 2006-04-12 富士通株式会社 リング構成方法及びそのノード装置
JP3754416B2 (ja) * 2000-07-17 2006-03-15 株式会社東芝 トラフィックの自己救済方式およびリエスタブリッシュ方式
DE10142372B4 (de) * 2001-01-05 2005-03-03 Siemens Ag Vorrichtung und Verfahren zum Wiederherstellen von Verbindungen in automatisch schaltbaren optischen Netzen
DE60235094D1 (de) * 2002-11-19 2010-03-04 Alcatel Lucent Die Fehlerlokalisierung in einem Übertragungsnetzwerk

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5442620A (en) * 1992-03-26 1995-08-15 At&T Corp. Apparatus and method for preventing communications circuit misconnections in a bidirectional line-switched ring transmission system
JP2002118580A (ja) * 2000-10-10 2002-04-19 Nec Corp リングプロテクション方法
CN1472890A (zh) * 2002-07-30 2004-02-04 深圳市中兴通讯股份有限公司 一种防止光传输环形网传输业务错连的方法
CN1424827A (zh) * 2003-01-09 2003-06-18 上海交通大学 自动光交换网中的双向通道恢复方法

Also Published As

Publication number Publication date
EP1724972A4 (en) 2007-04-11
DE602006001980D1 (de) 2008-09-11
EP1724972B1 (en) 2008-07-30
ES2309944T3 (es) 2008-12-16
ATE403313T1 (de) 2008-08-15
CN1812360A (zh) 2006-08-02
EP1724972A1 (en) 2006-11-22
CN100531092C (zh) 2009-08-19

Similar Documents

Publication Publication Date Title
CN1333554C (zh) 一种复用段保护和格状网恢复结合的方法
CA2558786C (en) Line-level path protection in the optical layer
JP3195465B2 (ja) 双方向多重区間切替式リング伝送システムおよび通信信号転送方法
US6658013B1 (en) Method and apparatus for ensuring survivability of inter-ring traffic
US5903370A (en) System for an optical domain
JP3390705B2 (ja) 双方向多重セクションスイッチリング伝送システムにおける逆方向の互換性を持つ障害回復
JP4663022B2 (ja) 通信ネットワークにおけるパスの故障救済を行うための装置及び方法
US7333425B2 (en) Failure localization in a transmission network
US7660238B2 (en) Mesh with protection channel access (MPCA)
CN100373848C (zh) 支持附加业务的传输网恢复方法
WO2006026914A1 (fr) Procede de protection de services pour reseau de transmission optique et dispositif de noeud
GB2471761A (en) Fault recovery path reconfiguration in ring networks
WO2005022782A1 (fr) Structure d'echange et procede de configuration de connexion entre reseaux optiques
RU2730086C1 (ru) Способ переключения с совмещением группы резервирования, устройством управления и устройством оптической связи
WO2006079286A1 (fr) Procede d'enclenchement d'un reroutage de service
US20040076114A1 (en) Method and apparatus for shared protection in an optical transport network ring based on the ODU management
US20100014417A1 (en) Method and apparatus of ring network protection
CN101674217B (zh) 一种在mesh网络中实现永久环网保护的方法
CN100382534C (zh) 智能光网络双向复用段环网络保护倒换失败的检测方法
EP1489784A1 (en) Restoration in an automatically switched optical transport network
US20140040476A1 (en) Method and system for network restructuring in multilayer network
WO2011017863A1 (zh) 光数据单元环路共享保护控制方法与装置
JP4459973B2 (ja) 通信ネットワークにおけるパスの故障救済を行うための装置及び方法
KR100340725B1 (ko) 광가입자 전송시스템의 신호경로 설정관리 및자동보호절체 방법
WO2008040254A1 (fr) Procédé de traitement destiné aux informations de liaison d'ingénierie de trafic

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006705567

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2006705567

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2006705567

Country of ref document: EP