WO2006077833A1 - Objective lens socket - Google Patents

Objective lens socket Download PDF

Info

Publication number
WO2006077833A1
WO2006077833A1 PCT/JP2006/300538 JP2006300538W WO2006077833A1 WO 2006077833 A1 WO2006077833 A1 WO 2006077833A1 JP 2006300538 W JP2006300538 W JP 2006300538W WO 2006077833 A1 WO2006077833 A1 WO 2006077833A1
Authority
WO
WIPO (PCT)
Prior art keywords
objective lens
solid immersion
immersion lens
lens
holder
Prior art date
Application number
PCT/JP2006/300538
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshio Isobe
Ikuo Arata
Hiroshi Tanabe
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Publication of WO2006077833A1 publication Critical patent/WO2006077833A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/33Immersion oils, or microscope systems or objectives for use with immersion fluids
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses

Definitions

  • the present invention relates to an objective lens socket for mounting a solid immersion lens holder that holds a solid immersion lens in front of the objective lens.
  • a solid immersion lens is known as a lens for enlarging an image of an observation object.
  • This solid immersion lens is a hemispherical lens or a super hemispherical lens called a Weierstrass sphere, and is a minute lens having a size of about 1 mm to 5 mm.
  • NA numerical aperture
  • magnification are enlarged, so that observation with high spatial resolution becomes possible.
  • Patent Document 1 As a semiconductor inspection apparatus to which this solid immersion lens is applied, for example, one disclosed in Patent Document 1 is known.
  • a solid immersion lens is placed in front of the objective lens (on the observation object side) by attaching a sleeve (solid immersion lens holder) containing the solid immersion lens to the tip of the objective lens. Is arranged. Then, by adjusting the pressure of the chamber formed in the sleeve through a valve provided on the sleeve, the solid immersion lens is moved in the optical axis direction of the solid immersion lens, and the optical object between the observation object and the solid immersion lens is moved. Realization.
  • Patent Document 1 US Patent No. 6621275
  • an object of the present invention is to provide an objective lens socket capable of bringing a solid immersion lens into close contact with an observation object with a simple configuration.
  • an objective lens socket includes a base portion attached to a tip portion of a lens barrel of an objective lens, a solid immersion lens holder, and an objective lens socket attached to the base portion. And a movable member attached to be slidable in the optical axis direction.
  • the solid immersion lens holder is disposed in front of the objective lens.
  • the solid immersion lens holder attached to the movable member is arranged in front of the objective lens. . Since the movable member is slidably attached to the base portion, the solid immersion lens holder is movable relative to the base portion in the optical axis direction of the objective lens. As a result, for example, when an observation object is observed using a solid immersion lens held by a solid immersion lens holder, the solid immersion lens can be brought into close contact with the observation object, and that state can be maintained. Easy.
  • the solid immersion lens can be brought into close contact with the observation object with a simple configuration.
  • FIG. 1 is a configuration diagram of a semiconductor inspection apparatus to which an embodiment of an objective lens socket according to the present invention is applied.
  • FIG. 2 is a configuration diagram showing a configuration of an objective lens equipped with an objective lens socket.
  • FIG. 3 is an exploded perspective view of the solid immersion lens holder shown in FIG. 2.
  • FIG. 4 is a sectional view of the objective lens socket.
  • FIGS. 5A and 5B are (a) a view of the objective lens socket as viewed from the objective lens side, (b) a cross-sectional view of the objective lens socket, and (c) a view of the objective lens socket as viewed from the sample side.
  • FIG. 6 is a configuration diagram showing a configuration of member position detection means.
  • FIG. 7 is a cross-sectional view of an objective lens socket for illustrating the operation of the member position detecting means.
  • FIG. 8 is a configuration diagram showing a configuration of a holder detection sensor.
  • FIG. 9 is a configuration diagram showing a configuration of a sensor head.
  • 10 is a cross-sectional view of the objective lens socket when the solid immersion lens holder is detected
  • FIG. 10B is a cross-sectional view of the objective lens socket when the solid immersion lens holder is not detected.
  • FIG. 11 is a configuration diagram showing the configuration of the objective lens when the objective lens socket is attached for normal observation, and (b) the objective lens is viewed from the sample side.
  • FIG. 12 is a configuration diagram showing a configuration of an objective lens socket equipped with another solid immersion lens holder as a modified example.
  • FIG. 13 is a configuration diagram showing the configuration of another example of the objective lens socket.
  • FIG. 14 is a cross-sectional view of another embodiment of the objective lens socket according to the present invention.
  • FIG. 15 is a perspective view of a solid immersion lens holder attached to the objective lens socket shown in FIG.
  • FIG. 16 is a side view of the objective lens socket.
  • FIG. 17 is a top view of the objective lens socket.
  • FIG. 18 is a bottom view of the objective lens socket.
  • FIG. 19 is a cross-sectional view taken along line XIX—XIX in FIG.
  • FIG. 20 is a cross-sectional view showing a state in which the movable member has moved from the state shown in FIG. 19 to the sample side, and FIG. 20 (b) from the state shown in FIG. It is sectional drawing which showed the state which moved to.
  • FIG. 1 is a configuration diagram showing a semiconductor inspection apparatus provided with an objective lens socket as one embodiment of the present invention.
  • FIG. 2 is a configuration diagram showing the configuration of the objective lens to which the objective lens socket is attached.
  • FIG. 3 is an exploded perspective view of the solid immersion lens holder attached to the objective lens socket.
  • FIG. 2 shows a state during observation of the sample. Further, as shown in the characteristic part of the objective lens socket, the panel housing groove (elastic body housing groove) 76 for housing the panel 100 and the through-hole 85 for inserting the pin P1 have the same cross section. Displayed forces These arrangements are actually different. This actual arrangement is shown in FIG. Fig. 3 shows a state in which the solid immersion lens holder holds the solid immersion lens.
  • the objective lens side is the upper side, and the sample side and the lower side are described with respect to the solid immersion lens.
  • the semiconductor inspection apparatus 1 uses, for example, a semiconductor device 11 (see FIG. 2) of a mold type semiconductor device that is a sample 10 as an observation object, and an image of the semiconductor device 11 It is an inspection device that acquires information and inspects its internal information.
  • “Molded semiconductor device” is a semiconductor device 11 molded with a resin 12.
  • “Internal information” includes circuit patterns of semiconductor devices and weak light emission from semiconductor devices. Examples of the weak light emission include those caused by an abnormal portion based on a defect in a semiconductor device, and transient light emission accompanying a switching operation of a transistor in the semiconductor device. Furthermore, it includes heat generation due to defects in semiconductor devices.
  • the back surface of the semiconductor device 11 is placed on the stage 2 provided in the observation section A in a state where the resin 12 is cut so that the back surface of the semiconductor device 11 embedded in the resin 12 is exposed. Is placed facing up.
  • the semiconductor device 11 is positioned on the bottom surface of the recess 13 formed by cutting the resin 12.
  • the inspection apparatus 1 is formed on the lower surface of the semiconductor device 11 (formed on the substrate surface of the semiconductor device 11). Inspect integrated circuits, etc.).
  • the semiconductor inspection apparatus 1 includes an observation unit A that observes the semiconductor device 11, a control unit B that controls the operation of each unit of the observation unit A, and processes and instructions necessary for the inspection of the semiconductor device 11. And an analysis unit C to perform.
  • the observation unit A includes a high-sensitivity camera 3 and a laser scanning optical system (LSM: Laser Scanning Microscope) unit 4 as image acquisition means for acquiring an image from the semiconductor device 11, and a high-sensitivity camera 3 and an LSM unit. 4 and an optical system 20 including an objective lens 21 of a microscope 5 disposed between the semiconductor device 11 and a solid immersion lens 6 for obtaining an enlarged observation image of the semiconductor device 11 (see FIG. 2). And an X stage 7 that is moved in the X_Y_Z directions orthogonal to each other.
  • LSM Laser Scanning Microscope
  • the optical system 20 includes a camera optical system 22 and an LSM unit optical system 23 in addition to the objective lens 21.
  • a plurality of objective lenses 21 having different magnifications are provided and can be switched.
  • the objective lens 21 has a correction ring 24, and by adjusting the correction ring 24, it is possible to reliably focus on a portion to be observed.
  • the camera optical system 22 guides the light from the semiconductor device 11 that has passed through the objective lens 21 to the high-sensitivity lens 3, and the high-sensitivity camera 3 acquires an image such as a circuit pattern of the semiconductor device 11.
  • the optical system 23 for the LSM unit reflects the infrared laser light from the LSM unit 4 to the objective lens 21 side by a beam splitter (not shown), guides it to the semiconductor device 11, and passes through the objective lens 21 to increase the height.
  • the reflected laser beam from the semiconductor device 11 facing the sensitivity camera 3 is guided to the LS ⁇ unit 4.
  • the LSM unit 4 scans infrared laser light in the ⁇ - ⁇ direction and emits it to the semiconductor device 11 side, while detecting reflected light from the semiconductor device 11 with a photodetector (not shown).
  • the intensity of the detection light reflects the circuit pattern of the semiconductor device 11. Therefore, the LSM unit 4 acquires an image of the circuit pattern or the like of the semiconductor device 11 by scanning the semiconductor device 11 with the infrared laser light.
  • the stage 7 has the high-sensitivity camera 3, the LSM unit 4, the optical system 20, the solid immersion lens 6 and the like in the ⁇ _ ⁇ direction (horizontal direction; parallel to the semiconductor device 11 that is the observation object. ) And the z direction (vertical direction) perpendicular thereto, as necessary.
  • the control unit B includes a camera controller 31, a laser scan (LSM) controller 32, and a peripheral controller 33.
  • the camera controller 31 and the LSM controller 32 control the operation of the high-sensitivity camera 3 and the LSM unit 4 respectively, thereby performing observation (acquisition of images) of the semiconductor device 11 performed in the observation unit A, setting of observation conditions, etc. Is controlled.
  • the peripheral controller 33 controls the operation of the XYZ stage 7 to move the high-sensitivity camera 3, the LSM unit 4, the optical system 20, and the like to a position corresponding to the observation position of the semiconductor device 11. , Control alignment, focusing and so on. At this time, the peripheral controller 33 controls the operation of the XYZ stage 7 according to the detection results of various sensors attached to the objective lens socket 9 and the solid immersion lens holder 8. The peripheral controller 33 adjusts the correction ring 24 by driving a correction ring adjustment motor 25 attached to the objective lens 21.
  • the analysis unit C includes an image analysis unit 41 and an instruction unit 42, and is configured by a computer.
  • the image analysis unit 41 performs necessary analysis processing on the image information from the camera controller 31 and the LSM controller 32, and the instruction unit 42 displays the input content from the operator and the analysis content by the image analysis unit 41.
  • the control unit B With reference to the control unit B, necessary instructions regarding the execution of the inspection of the semiconductor device 11 in the observation unit A are given.
  • images, data, and the like acquired or analyzed by the analysis unit C are displayed on the display device 43 connected to the analysis unit C as necessary.
  • the solid immersion lens 6 is a hemispherical microlens, and is formed into a spherical shape as well as an input / output surface for light with respect to the outside (for example, an objective lens of a microscope). It has an upper surface 6a and a bottom surface 6b which is a mounting surface for the semiconductor device 11 and is formed in a planar shape.
  • the solid immersion lens 6 obtains an enlarged observation image of the front surface (illustrated lower surface) of the semiconductor device 11 on the back side when the bottom surface 6b is in close contact with the observation position (illustrated upper surface).
  • the solid immersion lens used in the semiconductor inspection apparatus has a high refractive index material force that is substantially the same as or close to the refractive index of the substrate material of the semiconductor device. That Typical examples include Si, GaP, and GaAs.
  • the semiconductor substrate By optically contacting such a small optical element to the substrate surface of the semiconductor device, the semiconductor substrate itself is used as a part of the solid immersion lens.
  • the substrate According to the backside analysis of a semiconductor device using a solid immersion lens, when the focus of the objective lens is adjusted to the integrated circuit formed on the surface of the semiconductor substrate, due to the effect of the solid immersion lens, the substrate has a high NA. It is possible to pass the light beam, and high resolution can be expected.
  • the lens shape of such a solid immersion lens 6 is determined by the condition that the aberration is eliminated.
  • the spherical center is a focal point.
  • NA numerical aperture
  • magnification are both n times.
  • the shape of the solid immersion lens 6 is not limited to a hemispherical shape, and may be, for example, a Weierstrass shape.
  • a solid immersion lens holder 8 that suitably holds the solid immersion lens 6 with respect to the objective lens 21 is attached to the front of the objective lens 21 via the objective lens socket 9.
  • the objective lens socket 9 will be described later in detail.
  • the solid immersion lens holder 8 has a lens holding portion 60 extending from the center of the disc-shaped objective lens cap 50 in a direction substantially perpendicular to the objective lens cap 50.
  • the outer shape is substantially T-shaped.
  • the objective lens cap 50 has a peripheral wall 51 that is screwed into the objective lens socket 9 (see FIG. 2).
  • the objective lens cap 50 is attached to the tip of the objective lens 21 via the objective lens socket 9. Will be attached. Therefore, the position of the solid immersion lens 6 held by the solid immersion lens holder 8 can be adjusted by driving the XYZ stage 7.
  • the bottom plate 52 of the objective lens cap 50 has three openings 53, 53, 53 for allowing the light beam to pass therethrough.
  • Each aperture 53 allows light output from the LSM unit 4 to pass through the solid immersion lens 6 side, and allows light reflected from the semiconductor device 11 and output from the solid immersion lens 6 to pass through the objective lens 21 side.
  • Each opening 53 is substantially fan-shaped and is concentric with the center of the objective lens cap 50 and is arranged at equal intervals in the circumferential direction.
  • the lens holding part 60 and the bottom plate 52 are connected between the adjacent openings 53, 53, and three connecting parts 54, 54, 54 extending radially from the center of the objective lens cap 50 are equally spaced. Will be formed.
  • the lens holding unit 60 includes a lens holding member 61 that extends in a direction substantially orthogonal to the objective lens cap 50 (in the optical axis L direction of the objective lens 21) from the intersection of the three coupling parts 54.
  • the lens holding member 61 is positioned on each of the connecting portions 54, 54, 54 and includes three holding pieces 62, 62, 62 that receive the solid immersion lens 6.
  • the holding pieces 62, 62, 62 are radially arranged with respect to the center line of the lens holding member 61, and have a tapered shape in which the width d becomes narrower toward the center line of the lens holding member 61 as the force is applied. is doing.
  • Lens receiving surfaces 62a, 62a, 62a having the same curvature as the curvature of the upper surface 6a of the solid immersion lens 6 are formed at the front end of each holding piece 62 (the end opposite to the objective lens cap 50). Accordingly, the lens holding member 61 receives the solid immersion lens 6 by the three lens receiving surfaces 62a. For this reason, the lens holding member 61 can receive the solid immersion lens 6 stably.
  • the solid immersion lens 6 is disposed between the lens receiving surface 62a and the lens cover 63, and then the lens cover 63 is fixed to the lens holding member 61 with an adhesive or the like, thereby fixing the lens.
  • the immersion lens 6 is accommodated between the lens receiving surface 62a and the lens cover 63 with the bottom surface 6b protruding from the opening 64a, and the solid immersion lens 6 is held by the solid immersion lens holder 8.
  • the solid immersion lens 6 is grounded to the semiconductor device 11 when the objective lens 21 is moved in the direction of the optical axis L by the operation of the XYZ stage 7.
  • the semiconductor device 11 may be damaged by the force applied from the solid immersion lens 6.
  • the solid immersion lens holder 8 preferably has a stress detection sensor S at each connecting portion 54 as shown in FIG. [0043]
  • the solid immersion lens 6 applies a force to the semiconductor device 11
  • the solid immersion lens 6 is pressed against the holding piece 62 by the counteraction, and as a result, stress is generated in the connecting portion 54.
  • the stress detection sensor S detects the stress applied to the semiconductor device 11 by the solid immersion lens 6 by detecting the stress applied to the connecting portion 54.
  • the stress detection sensor S is electrically connected to the peripheral controller 33.
  • the peripheral controller 33 is connected to the XYZ stage 7. Stop driving. As a result, a force greater than a predetermined load is not applied to the semiconductor device 11, so
  • FIG. 4 is a cross-sectional view of the objective lens socket 9.
  • FIG. 5 is a configuration diagram showing the configuration of the base portion and the movable member of the objective lens socket 9.
  • FIG. 5 (a) is a view of the base portion and the movable member as viewed from the side of the object lens.
  • FIG. 5 (b) is a side view of the base portion and the movable member.
  • FIG. 5 (c) is a view of the base portion and the movable member as viewed from the sample side.
  • Fig. 4 as in Fig. 2, the characteristic part appears.
  • FIG. 5 shows a state in which the movable member is fitted to the base portion, but description of pins and the like is omitted.
  • the objective lens socket 9 includes a cylindrical base portion 70 fitted to the distal end portion of the object lens barrel 26 of the objective lens 21, and a base portion. And a movable member 80 fitted to 70.
  • the base 70 and the movable member 80 have bottom plates 71 and 81, respectively. Each of the bottom plates 71 and 81 is output from the objective lens 21 or incident on the objective lens 21 with the center at the center. Circular openings 72 and 82 for passing the light flux to be transmitted. As long as the diameters of the openings 72 and 82 are large enough not to block the light beam, the diameter of the opening 82 is larger than the diameter of the opening 72.
  • a plurality of through holes 73 are formed around the opening 72 of the base portion 70, and the base portion 70 is screwed to the objective lens 21 through the through holes 73. More specifically, it is screwed to an objective lens barrel 26 (see FIG. 2) that houses a lens group that the objective lens 21 has.
  • the method of fixing the base portion 70 to the objective lens 21 is not limited to the above method.
  • Peripheral walls 74 and 83 are provided on the peripheral portions of the bottom plates 71 and 81, respectively.
  • the base 70 having a diameter equal to the outer diameter of the tip of the objective lens barrel 26 is fitted and attached to the tip of the objective lens barrel 26 of the objective lens 21.
  • the movable member 80 in which the outer diameter of the peripheral wall 74 and the inner diameter of the peripheral wall 83 are equal is fitted to the base portion 70.
  • the outer surface of the peripheral wall 74 and the inner surface of the peripheral wall 83 are in sliding contact, and as a result, the movable member 80 is slidable in the optical axis L direction with respect to the base portion 70.
  • the outer diameter of the peripheral wall 83 (the outer diameter of the movable member 80) is equal to the outer peripheral surface of the end on the bottom plate 81 side of the movable member 80 equal to the outer diameter of the peripheral wall 51 of the objective lens cap 50 (see FIG. 2).
  • a screw groove 84 (see FIG. 5B) for screwing the peripheral wall 51 of the objective lens cap 50 is formed, and the objective lens cap 50 can be attached to the movable member 80.
  • the peripheral wall 83 of the movable member 80 has a pair of through holes 85 and 85 facing each other, and is formed at positions corresponding to the through holes 85 and 85 on the peripheral wall 74 of the base portion 70, respectively.
  • the movable member 80 is connected to the base portion 70 by inserting the pin P1 into the through holes 75 and 75.
  • the through hole 85 has an oval shape in which the length in the optical axis L direction is longer than the length in the circumferential direction, and the circumferential length of the through hole 85 is substantially the same as the outer diameter of the pin P1.
  • the movable member 80 can move with respect to the base portion 70 by the length of the elliptical optical axis L direction in the optical axis L direction, and is prevented from rotating in the circumferential direction. It will be.
  • the base portion 70 and the movable member 80 are made up of three panel receiving grooves (elastic body receiving grooves) 76, 76, 76 formed on the bottom surface of the peripheral wall 74 of the base portion 70, respectively.
  • Body) 1 00, 100, 100 are fitted together. Since the depth of the spring accommodating groove 76 is shorter than the natural length of the spring 100, the front end portion of the panel 100 protrudes from the panel accommodating groove 76.
  • both ends of the spring 100 are the bottom surface 76 a (upper surface in FIG. 4) of the panel receiving groove 76 and the movable member 80. Abutting against the bottom plate 81, the movable member 80 is urged in the optical axis L direction. As a result, when observing the semiconductor device 11, the solid immersion lens 6 is urged by the semiconductor device 11 and is securely adhered.
  • the spring 100 is disposed around the objective lens barrel 26 included in the objective lens 21.
  • the length of the objective lens socket 9 in the optical axis L direction is shorter, and the reduction of the working distance of the objective lens 21 due to the mounting of the object lens socket 9 can be suppressed.
  • the objective lens socket 9 is
  • member position detecting means 110 for detecting the position (member position) of the movable member 80 in the optical axis L direction with respect to the base portion 70.
  • FIG. 6 is a configuration diagram showing the configuration of the member position detecting means included in the objective lens socket 9.
  • FIG. 6 shows a state viewed from the direction of arrow A2 in FIG. 4, and shows a state where the solid immersion lens holder 8 is attached.
  • the member position detecting means 110 includes a sensor holding member 111, two proximity sensors 112 and 113 held by the sensor holding member 111, and a substantially L-shape.
  • the sensor holding member 111 has a substantially rectangular parallelepiped shape and is screwed into a screw hole 77 (see FIG. 5A) formed in the upper surface of the peripheral wall 74 of the base 70.
  • the proximity sensors 112 and 113 are held so that the front ends of the proximity sensors 112 and 113 protrude from the end of the sensor holding member 111.
  • the metal plate 114 is screwed into a screw hole 86 (see FIG. 5A) formed in the upper surface of the peripheral wall 83 of the movable member 80. Therefore, it moves in the optical axis L direction according to the movable member 80.
  • the metal plate 114 is disposed so as to face part of the force proximity sensors 112 and 113 (part extending in the optical axis L direction).
  • the proximity sensors 112 and 113 are held by the sensor holding member 111 while being arranged in parallel in the direction perpendicular to the optical axis L, which are different from each other in the optical axis L direction.
  • the proximity sensors 112 and 113 are electrically connected to the peripheral controller 33 (see FIG. 1), and generate a magnetic field in the vicinity of the tip thereof. Then, the member position of the movable member 80 with respect to the base portion 70 is detected by detecting the metal plate 114 by a change in the magnetic field due to the metal plate 114 approaching and moving upward in FIG.
  • the proximity sensor (contact position detecting unit) 112 is disposed between the base unit 70 and the movable member 80.
  • the panel 100 is arranged so as to face the metal plate 114 when it starts to shrink from its natural length.
  • the proximity sensor 112 detects the metal plate 114, so the proximity sensor 112 starts contact between the solid immersion lens 6 and the semiconductor device 11. It functions as a sensor that detects the position of the movable member 80 corresponding to the position.
  • the proximity sensor (stop position detection unit) 113 is arranged above the proximity sensor 112 and is used to stop the biasing of the panel 100 via the solid immersion lens 6 to the semiconductor device 11.
  • the member position of the movable member 80 is detected. That is, it is possible to detect the position of the movable member 80 with respect to the base portion 70 that generates the maximum urging force within a range that does not damage the semiconductor device 11 among the urging forces applied to the semiconductor device 11 through the solid immersion lens 6. Thus, it is disposed above the proximity sensor 112.
  • FIG. 7 is a diagram for explaining the operation of the member position detecting means 110.
  • the objective lens socket 9 is attached to the semiconductor device 11 side along with the objective lens 21.
  • the solid immersion lens 6 comes into contact with the semiconductor device 11.
  • the movable member 80 Since the solid immersion lens 6 is held by the solid immersion lens holder 8 attached to the movable member 80, when the solid immersion lens 6 contacts the semiconductor device 11, the movable member 80 is pushed toward the base portion 70 side. As a result, the metal plate 114 also moves upward, so that the proximity sensor 112 detects the metal plate 114. That is, the contact of the solid immersion lens 6 with the semiconductor device 11 is detected.
  • the detection result of the proximity sensor 112 is input to the instruction unit 42 via the peripheral controller 33 and notifies the operator that the solid immersion lens 6 is grounded to the semiconductor device 11.
  • the proximity sensor 112 is When the detection result indicating that the metal plate 114 is detected continues to be output and the proximity sensor 113 does not detect the metal plate 114, the focus position adjustment is continued. Applied.
  • the peripheral controller 33 Stop pressing down. Since a load exceeding the set urging force is not applied to the semiconductor device 11, damage to the semiconductor device 11 due to adjustment of the focus position or the like is suppressed.
  • the semiconductor inspection apparatus 1 has a holder detection sensor 120 that detects the mounting state of the solid immersion lens holder 8 as shown in FIGS.
  • FIG. 8 is a block diagram showing a configuration of a holder detection sensor included in the semiconductor inspection device 1.
  • the holder detection sensor 120 includes an amplifier unit 130 and a sensor head (holder detection unit) 140 that forms part of the objective lens socket 9.
  • the amplifier unit 130 has a light emitting element 131 and a light receiving element 132 and is electrically connected to the peripheral controller 33.
  • the light emitting element 131 of the amplifier unit 130 is optically connected to the light projecting side fiber 151, and the light projecting side fiber 151 is connected to the sensor head 140.
  • the light receiving element 132 of the amplifier unit 130 is optically connected to the light receiving side fiber 152, and the light receiving side fiber 152 is connected to the sensor head 140.
  • FIG. 9 is a configuration diagram showing the configuration of the sensor head.
  • FIG. 9 shows a state seen from the arrow A3 side in FIG.
  • FIG. 9 shows a state where the solid immersion lens holder 8 is attached.
  • the sensor head 140 includes a fiber holding member 141, a reflection mirror 142, and a condenser lens 143 covered with a cover 144.
  • the sensor head 140 is formed on the upper surface of the peripheral wall 74 of the base portion 70 of the objective lens socket 9. It is screwed using the formed screw hole 78 (see FIG. 5 (a)).
  • the fiber holding member 141 has the light projecting side fiber 151 and the light receiving side fiber 152 inserted therein, and holds them in parallel.
  • the reflection mirror 142 is fixed to the fiber holding member 141 in front of the output end of the light projecting side fiber 151, and reflects the light 153 output from the light projecting side fiber 151 to the solid immersion lens holder 8 side. At the same time, the return light (reflected light) from the solid immersion lens holder 8 is incident on the light receiving side fiber 152.
  • the condenser lens 143 is fixed to the fiber holding member 141 below the reflection mirror 142 (the lower side in FIG. 9), and is output from the light projecting side fiber 151 and reflected by the reflection mirror 142.
  • the collected light is condensed on the upper surface of the peripheral wall 51 of the solid immersion lens holder 8 and the return light from the solid immersion lens holder 8 is condensed and incident on the light receiving side fiber 152.
  • FIG. 10 is a diagram illustrating the operation of the holder detection sensor.
  • the solid immersion lens holder 8 when the solid immersion lens holder 8 is attached to the movable member 80, the light 153 output from the light projecting side fiber 151 is transmitted by the condenser lens 143. The light is reflected from the upper surface of the peripheral wall 51 of the objective lens cap 50, condensed by the condenser lens 143, and incident on the light receiving side fiber 152.
  • the reflected light from the solid immersion lens holder 8 is acquired by the sensor head 140.
  • the light receiving element 132 detects return light.
  • the mounting state of the solid immersion lens holder 8 can be detected based on whether or not the light receiving element 132 has detected return light. This makes it possible to observe the semiconductor device 11 with the solid immersion lens holder 8 securely attached even when the microscope 5 is placed in the box, for example.
  • the operator When the operator specifies the observation position to be observed with the solid immersion lens 6, the operator activates the solid immersion lens mode to enter an observation state using the solid immersion lens 6. At this time, the operator inputs the model number of the solid immersion lens 6 held by the solid immersion lens holder 8, the thickness and material of the substrate included in the semiconductor device 11, to the instruction unit 42. As a result, the instruction unit 42 refers to the pre-input data, and calculates five parameters for calculating the position of the correction ring 24 and the focus position of the objective lens 21, that is, the solid immersion lens 6. The thickness, refractive index, radius of curvature of the upper surface 6a, substrate thickness and substrate refractive index are specified.
  • the instruction unit 42 outputs light from the light emitting element 131 of the holder detection sensor 120 via the peripheral controller 33, and the solid immersion lens holder 8 is attached to the objective lens 21 used for solid immersion lens observation. Detect whether or not
  • the instruction unit 42 assumes that the solid immersion lens holder 8 is attached if the light receiving element 1 32 detects return light, and the light receiving element 132 is If no return light is detected, it is determined that the solid immersion lens holder 8 is not attached. Then, the detection result of the light receiving element 132, that is, the mounting state of the solid immersion lens holder 8 is transmitted to the operator.
  • the output of the light emitting element 131 can be stopped from the viewpoint of preventing other light from being mixed in the observation of the semiconductor device 11. preferable.
  • the instruction unit 42 switches the objective lens 21 to which the solid immersion lens 6 is attached by driving the revolver via the peripheral controller 33.
  • the instruction unit 42 drives the correction ring adjustment motor 25 via the peripheral controller 33 according to the five parameters specified according to the input model number of the solid immersion lens 6, the thickness and material of the substrate. , Adjust the correction ring 24 to the proper position.
  • the instruction unit 42 adjusts the focus position of the objective lens 21 by driving the XYZ stage 7 via the peripheral controller 33 according to the above five parameters.
  • the instruction unit 42 notifies the operator that the semiconductor device 11 is being pressed by the spring 100. Also for force
  • the peripheral controller 33 stops driving the XY Z stage 7.
  • an image acquired by the high-sensitivity camera 3 is regarded as a manual.
  • the instruction unit 42 observes the semiconductor device 11 using the LSM unit 4 and the high-sensitivity camera 3 etc. via the LSM controller 32 and the force controller 31. To implement.
  • the solid immersion lens 6 is replaced by replacing the solid immersion lens holder 8. In this case, since the minute solid immersion lens 6 need not be handled directly, the solid immersion lens 6 can be easily replaced.
  • the peripheral wall 83 of the movable member 80 of the objective lens socket 9 is in a state where all the springs 100 are accommodated in the spring accommodating grooves 76. And has a through hole 87 for fixing the movable member 80 to the base portion 70.
  • a screw hole 79 is formed at a position corresponding to the through hole 87 in the peripheral wall 74 of the base portion 70.
  • FIG. 11 (a) is a view of the objective lens 21 of FIG. 11 (a) as viewed from the semiconductor device 11 side.
  • the solid immersion lens holder 8 can be immediately attached by removing the fixing screw P2.
  • the solid immersion lens 6 is biased toward the semiconductor device 11 by the spring 100 of the objective lens socket 9. The solid immersion lens 6 can be securely adhered to the semiconductor device 11 and optically bonded.
  • the objective lens socket 9 is attached to the objective lens barrel 26, and the spring 100 is positioned around the objective lens barrel 26 of the objective lens 21, so the objective lens socket 9 is attached. As a result, the reduction of the working distance of the objective lens 21 is suppressed.
  • the objective lens socket 9 preferably has the solid immersion lens holder 8 holding the solid immersion lens 6 attached to the objective lens 21 and biases the solid immersion lens 6 against the semiconductor device 11 by the spring 100. It is preferable to apply not only to an upright type like the microscope 5 shown in 1 but also to an inverted type. Also in this case, the solid immersion lens 6 is preferably held in front of the objective lens 21 (the direction in which the front focal point is located), and is reliably urged to the semiconductor device 11 as the observation object. When applied to an inverted type, it is preferable that the force of the panel 100 is always applied to the movable member 80 by adjusting the length of the panel 100 and the length of the through hole 85 in the optical axis L direction.
  • the chamber is filled with gas.
  • the gas introduction pipe to be introduced must also be connected. In this case, there is a possibility that it is difficult to put a solid immersion lens in the recess 13 or the observation range in the recess is reduced.
  • the solid immersion lens 6 is urged toward the semiconductor device 11 by the spring 100 arranged around the objective lens 21.
  • a gas introduction pipe is not required. Therefore, it becomes easier to observe the semiconductor device 11 in the recess 13.
  • the solid immersion lens holder 8 having a substantially T-shaped outer shape is used, interference (contact) between the solid immersion lens holder 8 and the side wall 13a of the recess 13 is also reduced. It is possible to observe up to the peripheral edge of the semiconductor device 11 located in the position.
  • the present invention is not limited to the above embodiments. It is not limited.
  • the objective lens socket 9 has a solid immersion lens holder 8 with a substantially T-shaped outer shape.
  • a taper-shaped solid immersion lens holder 160 with an expanded outer diameter may be used.
  • the number of springs 100 is three, but this number is not limited to three.
  • the spring accommodating groove 161 is formed over the entire circumference of the peripheral wall 74, and one spring 162 provided continuously in the circumferential direction disposed in the spring accommodating groove 161. As good as you can. In this case, change the shape and thickness of the peripheral wall 74 so that the pin P1 can be fixed.
  • the number of springs 100 may be two, and even four or more.
  • the elastic body is not limited to the panel, but can be biased in the optical axis L direction.
  • the holder detection sensor 120 is not limited to a sensor that uses force light, which is a sensor using light, and may be any sensor that can detect the solid immersion lens holder 8.
  • the member position detecting means 110 does not necessarily need to include both the force S having the proximity sensor 112 as the contact position detecting unit and the proximity sensor 113 as the stop position detecting unit. Either one is fine.
  • the member position detecting means 110 is not limited to the proximity sensors 112 and 113, and it is sufficient that the position of the movable member 80 relative to the base portion 70 can be measured.
  • the spring 100 is provided around the objective lens barrel 26 of the objective lens 21.
  • the spring 100 is located below the objective lens barrel 26 of the objective lens 21 and is provided on the objective lens 21.
  • the lens group in the lens is the closest to the sample and may be placed around the lens. However, from the viewpoint of securing a working distance, it is preferable that the lens is disposed around the objective lens 21 as described above.
  • the objective lens socket 9 is The present invention can also be suitably applied to observation of the semiconductor device 11 that is not disposed in the recess 13. Furthermore, the objective lens socket 9 can be suitably used for observation of an observation object other than the semiconductor device 11.
  • the base portion 70 and the movable member 80 are not limited to cylindrical shapes.
  • the base part 70 is attached to the tip of the objective lens barrel 26, and the movable member 80 is opposed to the base part 70. Then, it should be attached to the base part 70 so as to be slidable in the optical axis L direction.
  • the sensor head 140 as the holder detection unit and the member position detection means 110 are not necessarily attached.
  • FIG. 14 is a cross-sectional view of still another embodiment (second embodiment) of the objective lens socket according to the present invention.
  • FIG. 14 shows a state in which the objective lens socket 170 is attached to the objective lens 21 of the semiconductor inspection apparatus 1 and the sample 10 is observed.
  • the cross-sectional structure is shown so as to show the characteristic portion of the objective lens socket 170, and the arrangement relationship of each component is actually different.
  • FIG. 15 is a perspective view of the solid immersion lens holder shown in FIG.
  • FIG. 16 is a side view of the state in which the objective lens socket and the solid immersion lens holder are disassembled.
  • FIG. 17 is a top view of the objective lens socket.
  • FIG. 18 is a bottom view of the objective lens socket.
  • FIG. 19 is a cross-sectional view taken along line XIX-XIX in FIG.
  • FIG. 16 shows the state before attaching the solid immersion lens holder to the objective lens socket.
  • the description of the member position detecting means 110 and the metal plate 114 is omitted.
  • the same reference numerals are given to the same elements as those in the first embodiment, and duplicate descriptions are omitted.
  • the solid immersion lens holder 8 has a peripheral wall 55 provided on the peripheral edge of the bottom plate 52 of the objective lens cap 50.
  • a plate-like detection object D is screwed to the peripheral wall 55.
  • the detection object D is made of nickel-plated iron and extends to the objective lens 21 side.
  • the objective lens cap 50 is attached to the movable member 80 by magnetically attracting the magnets 181 to 183 force S to magnets 184 to 186 provided on the movable member 80 as will be described later.
  • the objective lens socket 170 to which the solid immersion lens holder 8 is attached will be described.
  • Three linear guides 190, 190, 190 extending in the direction of the optical axis L are provided at equal intervals on the wall outer surface 74a. Each linear guide 190 is screwed to the peripheral wall 74, for example.
  • a notch 83a is formed inside the peripheral wall 83 in the region where the holding member 192 is provided.
  • the movable member 80 is attached to the base unit 70 via the slider 191 and the linear guide 190. Therefore, as shown in FIGS. 20 (a) and 20 (b), the movable member 80 moves smoothly in the direction of the optical axis L with respect to the base portion 70. Further, the play between the base portion 70 and the movable member 80 can be further reduced by using the linear guide 190 and the slider 191. Therefore, the positional accuracy of the movable member 80 with respect to the base portion 70 becomes higher. In addition, since the backlash can be reduced as described above, it is possible to suppress the twisting that may occur when the backlash is large.
  • magnets 184 to 186 force S are provided on the lower surface of the flange portion 88.
  • Magnets 184 to 186 are, for example, rod-shaped, and are carried in the flange portion 88 so that the lower end portion protrudes slightly.
  • the solid immersion lens holder 8 is attached to the movable member 80 by the magnetic attractive force of the magnets 184 to 186 and the three magnets 181 to 183 provided on the peripheral wall 55 of the objective lens cap 50.
  • the magnetic poles of magnets 181 to 186 f array is', magnets 181 and 183 are N poles, magnet 182 is S poles, magnets 184 and 186 are S poles, and magnet 185 is N poles. I can think of it.
  • the solid immersion lens holder 8 By attaching the solid immersion lens holder 8 to the movable member 80 using the magnets 181 to 186 as described above, the solid immersion lens holder 8 can be easily attached and detached.
  • the objective lens socket 170 has the solid immersion lens holder 8 attached to the movable member 80.
  • Proximity sensor (holder detection unit) 200 for detecting whether or not the power is present.
  • the proximity sensor 200 is electrically connected to the peripheral controller 33 (see FIG. 1).
  • the proximity sensor 200 is held by a sensor holding member 201 fixed to the flange portion 88, and generates a magnetic field using a coil in the vicinity of the tip portion thereof.
  • the proximity sensor 200 detects the detected object D by a change in magnetic field generated by the position of the detected object D ahead (specifically, a change in impedance of the coil).
  • the flange 88 has a recess 88a for allowing the detected object D to pass therethrough. .
  • the object D to be detected passes through the recess 88a.
  • the proximity sensor 200 detects the object D to be detected. In other words, whether or not the solid immersion lens holder 8 is attached to the movable member 80 can be determined based on whether or not the detection object D is detected by the proximity sensor 200.
  • the detection object D can be reliably arranged in front of the proximity sensor 200.
  • the base 70 and the movable member 80 are fitted with the springs (elastic bodies) 100, 100, 100 accommodated in the three spring accommodating grooves 76, 76, 76, respectively.
  • the matching is the same as in the case of the objective lens socket 9.
  • the metal plate 114 is provided on the movable member 80 of the objective lens socket 170 and that the member position detecting means 110 is provided on the base portion 70 are the same as in the case of the objective lens socket 9. It is the same.
  • the observation method of the semiconductor inspection apparatus 1 using the objective lens socket 170 described above is the same as that of the objective lens socket 9 except that the attachment state of the solid immersion lens holder 8 is checked using the proximity sensor 200. This is the same as in the case of the first embodiment using. [0124] That is, after the proximity sensor 200 detects the detection object D, it is confirmed that the solid immersion lens holder 8 is attached, and then the first implementation using the objective lens socket 9 is performed. Observe sample 10 in the same way as for morphology.
  • the proximity sensor 200 using a magnetic field is simpler than in the case of optical detection, and the ON / OFF control is performed like a laser, for example. There is no need to do. As a result, the operation of the semiconductor inspection apparatus 1 becomes easier.
  • the force that the objective lens socket 170 to which the solid immersion lens holder 8 having the detection object D is attached has the linear guide 190.
  • the objective lens socket 9 shown in FIG. 2 has the linear guide 190.
  • the number of linear guides 190 is not limited to three, but one or two, and even four or more. However, it is preferable that a plurality of linear guides 190 are provided from the viewpoint of sliding the movable member 80 with respect to the base portion 70 more stably.
  • the objective lens socket 9, 170 is assumed to have the spring 100 as the elastic body, and the force S is applied when the objective lens socket 9, 170 is applied to an upright microscope.
  • the semiconductor device 11 since it adheres to the semiconductor device 11 by its own weight, it is not always necessary to use an elastic body.
  • the objective lens socket 170 as in the case of the objective lens socket 9, a panel housing groove formed over the entire circumference of the peripheral wall 55 like the panel housing groove 161 shown in FIG. Is possible. Further, it is possible to attach the solid immersion lens holder 160 to the objective lens socket 170. At this time, magnets 181 to 183 may be provided on the peripheral wall of the solid immersion lens holder 160.
  • the optical parameters of the solid immersion lens 6 attached to the objective lens 21 should be grasped in advance in order to obtain optimal observation conditions. It is necessary to keep.
  • the optical parameters of the solid immersion lens 6 include a refractive index n, a thickness d, and a radius of curvature R of a spherical lens surface (upper surface 6a).
  • control unit B calculates optimal observation conditions using the input refractive index and thickness of the substrate of the semiconductor device 11 and the input optical parameters of the solid immersion lens 6.
  • the parameters prepared in advance are read by selecting the model number of the solid immersion lens 6.
  • a configuration in which a storage medium such as an IC chip in which parameter values are stored is provided in the detection target D and data is read out during use may be used.
  • optical parameters of the solid immersion lens 6 are input to a storage medium such as a semiconductor device Z magnetic device attached to the detection object D, the model number, serial number, radius of curvature, and thickness of the solid immersion lens 6
  • a storage medium such as a semiconductor device Z magnetic device attached to the detection object D
  • the model number, serial number, radius of curvature, and thickness of the solid immersion lens 6 A configuration in which parameters such as a refractive index are stored can be used.
  • the data reading method includes reception by radio waves and reception through electrical contact by an arm and a manipulator.
  • a sensor applicable to each receiving method may be attached to the sensor holding member 201.
  • a configuration may be adopted in which data is read by attaching a barcode or the like to the detection object D and reading it.
  • the objective lens socket is provided with a base portion attached to the tip of the lens barrel of the objective lens and a solid immersion lens holder, and the light of the objective lens is attached to the base portion.
  • a movable member that is slidably mounted in the axial direction, and the solid immersion lens holder is preferably disposed in front of the objective lens.
  • a linear guide extending in the optical axis direction is provided on the outer peripheral surface of the base portion, and the movable member is slidably attached to the base portion via the linear guide. It is preferable. Since the movable member is slidably attached to the base portion via the linear guide, the backlash between the base portion and the movable member can be reduced, and high positioning accuracy can be realized.
  • the objective lens socket is provided between the base portion and the movable member. It is preferable to provide an elastic body that urges the movable member in the optical axis direction.
  • an elastic body is provided between the base portion slidably attached and the movable member, and the movable member is urged by the elastic body in the optical axis direction of the objective lens.
  • the solid immersion lens held by the solid immersion lens holder is also biased in the optical axis direction of the objective lens.
  • the elastic body is disposed around the lens barrel of the objective lens. As a result, even if the objective lens socket is attached to the lens barrel of the objective lens, the length of the objective lens socket in the optical axis direction of the objective lens can be shortened. A working distance can be secured.
  • the peripheral wall of the base portion is formed with an elastic body accommodating groove that extends in the optical axis direction and accommodates the elastic body, and the elastic body is formed in the elastic body accommodating groove.
  • the capacity to be accommodated S is suitable. Since the elastic body is housed in the elastic body housing groove, the length of the objective lens socket in the optical axis direction of the objective lens can be further shortened, and as a result, the working distance of the objective lens is ensured. be able to.
  • the holder detection unit detects the solid immersion lens holder by detecting an object to be detected that is previously attached to the solid immersion lens holder. In this case, it is possible to easily determine the mounting state of the solid immersion lens holder based on whether or not the detection object is detected by the holder detection unit.
  • the holder detection unit it is also effective for the holder detection unit to detect the solid immersion holder by acquiring the reflected light from the solid immersion lens holder. By detecting the solid immersion lens holder optically in this way, the solid immersion lens holder can be detected in a non-contact manner. It is possible to reduce the influence on
  • the objective lens socket further includes a member position detecting means for detecting a member position in the optical axis direction of the movable member with respect to the base portion.
  • the urging force received from the elastic body changes according to the position of the movable member. Therefore, the biasing force applied to the movable member from the elastic body can be detected by detecting the member position of the movable member by the member position detecting means.
  • the urging force that the movable member receives the elastic body force is applied to the observation object through the solid immersion lens at the time of observation. Therefore, the observation object is obtained by knowing the urging force applied to the observation object as described above. It is possible to observe the observation object without damaging it.
  • the member position detecting means of the objective lens socket detects a member position for stopping the urging of the object to be observed by the elastic body via the solid immersion lens held by the solid immersion lens holder. It is preferable to have a stop position detection unit. In this configuration, since the stop position detection unit detects the member position, the urging of the elastic body to the observation target object is stopped, so that a certain load is not applied to the observation target object. As a result, the observation object is protected.
  • the present invention can be used as an objective lens socket capable of bringing a solid immersion lens into close contact with an observation object with a simple configuration.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Microscoopes, Condenser (AREA)
  • Lens Barrels (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

An objective lens socket (9) comprising a base (70) being fixed to the distal end of the lens-barrel (26) of an objective lens (21), and a movable member (80) which is mounted to the base (70) slidably in the direction of the optical axis L of the objective lens while being fixed with a solid immersion lens holder (8), wherein the solid immersion lens holder is arranged in front of the objective lens. In this arrangement, the solid immersion lens holder can be arranged suitably in front of the objective lens. A solid immersion lens held by the solid immersion lens holder can be moved in the direction of the optical axis L and, as a result, the solid immersion lens (6) can be easily brought into tight contact with an observation object (11). Consequently, an objective lens socket by which the solid immersion lens can be brought into tight contact with the observation object through a simple arrangement is realized.

Description

明 細 書  Specification
対物レンズソケット  Objective lens socket
技術分野  Technical field
[0001] 本発明は、固浸レンズを保持する固浸レンズホルダを対物レンズの前方に取り付け るための対物レンズソケットに関するものである。  The present invention relates to an objective lens socket for mounting a solid immersion lens holder that holds a solid immersion lens in front of the objective lens.
背景技術  Background art
[0002] 観察対象物の画像を拡大するレンズとして固浸レンズ(SIL : Solid Immersion Lens) が知られている。この固浸レンズは、半球形状又はワイエルストラス球と呼ばれる超半 球形状のレンズで、その大きさが lmm〜5mm程度の微小レンズである。そして、こ の固浸レンズを観察対象物の表面に密着させて設置すると、開口数 (NA)及び倍率 が共に拡大されるため、高い空間分解能での観察が可能となる。  [0002] A solid immersion lens (SIL) is known as a lens for enlarging an image of an observation object. This solid immersion lens is a hemispherical lens or a super hemispherical lens called a Weierstrass sphere, and is a minute lens having a size of about 1 mm to 5 mm. When this solid immersion lens is placed in close contact with the surface of the observation object, both the numerical aperture (NA) and the magnification are enlarged, so that observation with high spatial resolution becomes possible.
[0003] この固浸レンズを適用した半導体検査装置として、例えば、特許文献 1に記載のも のが知られている。特許文献 1に記載の半導体検査装置では、固浸レンズを収容し たスリーブ(固浸レンズホルダ)を対物レンズの先端部に取り付けることによって、対物 レンズの前方 (観察対象物側)に固浸レンズを配置している。そして、スリーブに設け られたバルブを通してスリーブ内に形成されたチャンバ一の圧力を調節することで、 固浸レンズを固浸レンズの光軸方向に移動させて観察対象物と固浸レンズとの光学 的結合を実現している。  As a semiconductor inspection apparatus to which this solid immersion lens is applied, for example, one disclosed in Patent Document 1 is known. In the semiconductor inspection apparatus described in Patent Document 1, a solid immersion lens is placed in front of the objective lens (on the observation object side) by attaching a sleeve (solid immersion lens holder) containing the solid immersion lens to the tip of the objective lens. Is arranged. Then, by adjusting the pressure of the chamber formed in the sleeve through a valve provided on the sleeve, the solid immersion lens is moved in the optical axis direction of the solid immersion lens, and the optical object between the observation object and the solid immersion lens is moved. Realization.
特許文献 1 :米国特許第 6621275号明細書  Patent Document 1: US Patent No. 6621275
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] し力、しながら、特許文献 1に記載の半導体検查装置では、固浸レンズの光軸方向 の移動は、固浸レンズホルダ内のチャンバ一の圧力を調整することで実現させるのでHowever, in the semiconductor inspection device described in Patent Document 1, the movement of the solid immersion lens in the optical axis direction is realized by adjusting the pressure of the chamber in the solid immersion lens holder.
、チャンバ一内にガスを投入するためのバルブや、投入するガスを用意しなければな らず、構成が煩雑になる。 In addition, a valve for supplying gas into the chamber and a gas to be supplied must be prepared, and the configuration becomes complicated.
[0005] そこで、本発明は、簡易な構成で固浸レンズを観察対象物に密着させることが可能 な対物レンズソケットを提供することを目的とする。 課題を解決するための手段 [0005] Accordingly, an object of the present invention is to provide an objective lens socket capable of bringing a solid immersion lens into close contact with an observation object with a simple configuration. Means for solving the problem
[0006] 上記課題を解決するために、本発明に係る対物レンズソケットは、対物レンズの鏡 筒の先端部に取り付けられるベース部と、固浸レンズホルダが取り付けられると共に、 ベース部に対物レンズの光軸方向に摺動可能に取り付けられる可動部材と、を備え 、固浸レンズホルダを対物レンズの前方に配置することを特徴とする。  [0006] In order to solve the above problems, an objective lens socket according to the present invention includes a base portion attached to a tip portion of a lens barrel of an objective lens, a solid immersion lens holder, and an objective lens socket attached to the base portion. And a movable member attached to be slidable in the optical axis direction. The solid immersion lens holder is disposed in front of the objective lens.
[0007] この構成では、対物レンズの鏡筒の先端部に取り付けられるベース部に可動部材 が取り付けられるので、可動部材に取り付けられる固浸レンズホルダは、対物レンズ の前方に配置されることになる。そして、可動部材がベース部に摺動可能に取り付け られているので、固浸レンズホルダは、ベース部に対して対物レンズの光軸方向に対 して移動可能となっている。その結果として、例えば、固浸レンズホルダで保持された 固浸レンズを利用して観察対象物を観察するとき、固浸レンズを観察対象物に密着 させることができ、その状態を維持することが容易である。  In this configuration, since the movable member is attached to the base part attached to the tip of the lens barrel of the objective lens, the solid immersion lens holder attached to the movable member is arranged in front of the objective lens. . Since the movable member is slidably attached to the base portion, the solid immersion lens holder is movable relative to the base portion in the optical axis direction of the objective lens. As a result, for example, when an observation object is observed using a solid immersion lens held by a solid immersion lens holder, the solid immersion lens can be brought into close contact with the observation object, and that state can be maintained. Easy.
発明の効果  The invention's effect
[0008] 本発明による対物レンズソケットによれば、簡易な構成で固浸レンズを観察対象物 に密着させることが可能である。  [0008] According to the objective lens socket of the present invention, the solid immersion lens can be brought into close contact with the observation object with a simple configuration.
図面の簡単な説明  Brief Description of Drawings
[0009] [図 1]図 1は、本発明に係る対物レンズソケットの一実施形態を適用した半導体検査 装置の構成図である。  FIG. 1 is a configuration diagram of a semiconductor inspection apparatus to which an embodiment of an objective lens socket according to the present invention is applied.
[図 2]図 2は、対物レンズソケットを装着した対物レンズの構成を示す構成図である。  FIG. 2 is a configuration diagram showing a configuration of an objective lens equipped with an objective lens socket.
[図 3]図 3は、図 2に示した固浸レンズホルダの分解斜視図である。  FIG. 3 is an exploded perspective view of the solid immersion lens holder shown in FIG. 2.
[図 4]図 4は、対物レンズソケットの断面図である。  FIG. 4 is a sectional view of the objective lens socket.
[図 5]図 5は、(a)対物レンズソケットを対物レンズ側から見た図、(b)対物レンズソケッ トの断面図、及び(c)対物レンズソケットを試料側から見た図である。  FIGS. 5A and 5B are (a) a view of the objective lens socket as viewed from the objective lens side, (b) a cross-sectional view of the objective lens socket, and (c) a view of the objective lens socket as viewed from the sample side.
[図 6]図 6は、部材位置検出手段の構成を示す構成図である。  FIG. 6 is a configuration diagram showing a configuration of member position detection means.
[図 7]図 7は、部材位置検出手段の動作を示すための対物レンズソケットの断面図で ある。  FIG. 7 is a cross-sectional view of an objective lens socket for illustrating the operation of the member position detecting means.
[図 8]図 8は、ホルダ検出センサの構成を示す構成図である。  FIG. 8 is a configuration diagram showing a configuration of a holder detection sensor.
[図 9]図 9は、センサヘッドの構成を示す構成図である。 [図 10]図 10は、 (a)固浸レンズホルダが検出される場合の対物レンズソケットの断面 図、及び (b)固浸レンズホルダが検出されない場合の対物レンズソケットの断面図で ある。 FIG. 9 is a configuration diagram showing a configuration of a sensor head. 10 is a cross-sectional view of the objective lens socket when the solid immersion lens holder is detected, and FIG. 10B is a cross-sectional view of the objective lens socket when the solid immersion lens holder is not detected.
[図 11]図 11は、 (a)対物レンズソケットを装着して通常観察するときの対物レンズの構 成を示す構成図、及び (b)対物レンズを試料側から見た図である。  [FIG. 11] FIG. 11 is a configuration diagram showing the configuration of the objective lens when the objective lens socket is attached for normal observation, and (b) the objective lens is viewed from the sample side.
[図 12]図 12は、変形例としての他の固浸レンズホルダを装着した対物レンズソケット の構成を示す構成図である。  FIG. 12 is a configuration diagram showing a configuration of an objective lens socket equipped with another solid immersion lens holder as a modified example.
[図 13]図 13は、対物レンズソケットの他の例の構成を示す構成図である。  FIG. 13 is a configuration diagram showing the configuration of another example of the objective lens socket.
[図 14]図 14は、本発明に係る対物レンズソケットの他の実施形態の断面図である。  FIG. 14 is a cross-sectional view of another embodiment of the objective lens socket according to the present invention.
[図 15]図 15は、図 14に示した対物レンズソケットに取り付けられる固浸レンズホルダ の斜視図である。  FIG. 15 is a perspective view of a solid immersion lens holder attached to the objective lens socket shown in FIG.
[図 16]図 16は、対物レンズソケットの側面図である。  FIG. 16 is a side view of the objective lens socket.
[図 17]図 17は、対物レンズソケットの上面図である。  FIG. 17 is a top view of the objective lens socket.
[図 18]図 18は、対物レンズソケットの底面図である。  FIG. 18 is a bottom view of the objective lens socket.
[図 19]図 19は、図 17の XIX— XIX線に沿った断面図である。  FIG. 19 is a cross-sectional view taken along line XIX—XIX in FIG.
[図 20]図 20は、 (a)図 19に示した状態から可動部材が試料側に移動した状態を示し た断面図、及び (b)図 19に示した状態から可動部材が対物レンズ側に移動した状態 を示した断面図である。  20 is a cross-sectional view showing a state in which the movable member has moved from the state shown in FIG. 19 to the sample side, and FIG. 20 (b) from the state shown in FIG. It is sectional drawing which showed the state which moved to.
符号の説明  Explanation of symbols
[0010] 6…固浸レンズ、 8, 160…固浸レンズホノレダ、 9, 170…対物レンズソケット、 11 · · · 半導体デバイス (観察対象物)、 21…対物レンズ、 26…対物レンズ鏡筒(鏡筒)、 70 …ベース部、 74…周壁、 74a…周壁外面、 76…パネ収容溝(弾性体収容溝)、 80· · · 可動部材、 100, 162…パネ(弾性体)、 110…部材位置検出手段、 112…近接セン サ (接触位置検出部)、 113…近接センサ (停止位置検出部)、 140…センサヘッド( ホルダ検出部)、 190…リニアガイド、 200…近接センサ(ホルダ検出部)、 D…被検 出体、 L…光軸方向。  [0010] 6 ... Solid immersion lens, 8, 160 ... Solid immersion lens Honoreda, 9, 170 ... Objective lens socket, 11 ... Semiconductor device (observation object), 21 ... Objective lens, 26 ... Objective lens barrel (mirror) Cylinder), 70 ... base part, 74 ... peripheral wall, 74a ... peripheral wall outer surface, 76 ... panel housing groove (elastic body housing groove), 80 · · · movable member, 100, 162 ... panel (elastic body), 110 ... member position Detection means 112 ... Proximity sensor (contact position detection unit) 113 ... Proximity sensor (stop position detection unit) 140 ... Sensor head (holder detection unit) 190 ... Linear guide 200 ... Proximity sensor (holder detection unit) , D ... Detected object, L ... Optical axis direction.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 以下、図面と共に本発明に係る対物レンズソケットの好適な実施形態について説明 する。なお、各図において、同一の要素には同一符号を付し、重複する説明は省略 する。 Hereinafter, preferred embodiments of the objective lens socket according to the present invention will be described with reference to the drawings. To do. In each figure, the same elements are denoted by the same reference numerals, and redundant description is omitted.
[0012] (第 1の実施形態)  [0012] (First embodiment)
図 1は、本発明の一実施形態としての対物レンズソケットを備えた半導体検查装置 を示す構成図である。図 2は、対物レンズソケットが装着された対物レンズの構成を示 す構成図である。また、図 3は、対物レンズソケットに取り付けられる固浸レンズホルダ の分解斜視図である。  FIG. 1 is a configuration diagram showing a semiconductor inspection apparatus provided with an objective lens socket as one embodiment of the present invention. FIG. 2 is a configuration diagram showing the configuration of the objective lens to which the objective lens socket is attached. FIG. 3 is an exploded perspective view of the solid immersion lens holder attached to the objective lens socket.
[0013] なお、図 2では、試料の観察時の状態を示している。また、対物レンズソケットの特 徴部分を示すように、パネ 100を収容しているパネ収容溝 (弾性体収容溝) 76と、ピ ン P1を揷入するための貫通孔 85とを同じ断面で表示している力 これらの配置関係 は実際には異なる。この実際の配置は、後述する図 5に示している。図 3では、固浸 レンズホルダが固浸レンズを保持する状態を示している。以下の説明では、固浸レン ズに対して、対物レンズ側を上側とし、試料側と下側として説明する。  [0013] FIG. 2 shows a state during observation of the sample. Further, as shown in the characteristic part of the objective lens socket, the panel housing groove (elastic body housing groove) 76 for housing the panel 100 and the through-hole 85 for inserting the pin P1 have the same cross section. Displayed forces These arrangements are actually different. This actual arrangement is shown in FIG. Fig. 3 shows a state in which the solid immersion lens holder holds the solid immersion lens. In the following description, the objective lens side is the upper side, and the sample side and the lower side are described with respect to the solid immersion lens.
[0014] 図 1及び図 2に示すように、半導体検査装置 1は、例えば、試料 10であるモールド 型半導体デバイスが有する半導体デバイス 11 (図 2参照)を観察対象物とし、半導体 デバイス 11の画像を取得しその内部情報を検査する検査装置である。  As shown in FIGS. 1 and 2, the semiconductor inspection apparatus 1 uses, for example, a semiconductor device 11 (see FIG. 2) of a mold type semiconductor device that is a sample 10 as an observation object, and an image of the semiconductor device 11 It is an inspection device that acquires information and inspects its internal information.
[0015] 「モールド型半導体デバイス」とは、半導体デバイス 11が樹脂 12によってモールド されたものである。また、「内部情報」としては、半導体デバイスの回路パターンや半 導体デバイスからの微弱発光が含まれる。この微弱発光としては、半導体デバイスの 欠陥に基づく異常個所に起因するものや、半導体デバイス中のトランジスタのスイツ チング動作に伴うトランジェント発光などが挙げられる。さらには、半導体デバイスの 欠陥に基づく発熱も含まれる。  “Molded semiconductor device” is a semiconductor device 11 molded with a resin 12. “Internal information” includes circuit patterns of semiconductor devices and weak light emission from semiconductor devices. Examples of the weak light emission include those caused by an abnormal portion based on a defect in a semiconductor device, and transient light emission accompanying a switching operation of a transistor in the semiconductor device. Furthermore, it includes heat generation due to defects in semiconductor devices.
[0016] 試料 10は、樹脂 12内に埋設された半導体デバイス 11の裏面が露出するように樹 脂 12が切削された状態で、観察部 Aに設けられたステージ 2上に半導体デバイス 11 の裏面が上を向くように載置される。このように、試料 10の一部を切削して半導体デ バイス 11の裏面を露出させているので、半導体デバイス 11は、樹脂 12が切削されて なる凹部 13の底面に位置することになる。そして、検查装置 1は、本実施形態にあつ ては、半導体デバイス 11の図示下面(半導体デバイス 11の基板表面に形成された 集積回路等)を検査する。 [0016] In the sample 10, the back surface of the semiconductor device 11 is placed on the stage 2 provided in the observation section A in a state where the resin 12 is cut so that the back surface of the semiconductor device 11 embedded in the resin 12 is exposed. Is placed facing up. Thus, since a part of the sample 10 is cut to expose the back surface of the semiconductor device 11, the semiconductor device 11 is positioned on the bottom surface of the recess 13 formed by cutting the resin 12. Then, in this embodiment, the inspection apparatus 1 is formed on the lower surface of the semiconductor device 11 (formed on the substrate surface of the semiconductor device 11). Inspect integrated circuits, etc.).
[0017] 半導体検査装置 1は、半導体デバイス 11の観察を行う観察部 Aと、観察部 Aの各 部の動作を制御する制御部 Bと、半導体デバイス 11の検査に必要な処理や指示等 を行う解析部 Cと、を備えている。  The semiconductor inspection apparatus 1 includes an observation unit A that observes the semiconductor device 11, a control unit B that controls the operation of each unit of the observation unit A, and processes and instructions necessary for the inspection of the semiconductor device 11. And an analysis unit C to perform.
[0018] 観察部 Aは、半導体デバイス 11からの画像を取得する画像取得手段としての高感 度カメラ 3及びレーザスキャン光学系(LSM : Laser Scanning Microscope)ユニット 4と 、高感度カメラ 3及び LSMユニット 4と半導体デバイス 11との間に配置される顕微鏡 5の対物レンズ 21を含む光学系 20と、半導体デバイス 11の拡大観察画像を得るた めの固浸レンズ 6 (図 2参照)と、これらを直交する X_Y_Z方向に各々移動させる X ΥΖステージ 7と、を具備している。  The observation unit A includes a high-sensitivity camera 3 and a laser scanning optical system (LSM: Laser Scanning Microscope) unit 4 as image acquisition means for acquiring an image from the semiconductor device 11, and a high-sensitivity camera 3 and an LSM unit. 4 and an optical system 20 including an objective lens 21 of a microscope 5 disposed between the semiconductor device 11 and a solid immersion lens 6 for obtaining an enlarged observation image of the semiconductor device 11 (see FIG. 2). And an X stage 7 that is moved in the X_Y_Z directions orthogonal to each other.
[0019] 光学系 20は、上記対物レンズ 21に加えて、カメラ用光学系 22と、 LSMユニット用 光学系 23と、を備えている。対物レンズ 21は、倍率が異なるものが複数設けられ、切 り換え可能とされている。また、対物レンズ 21は、補正環 24を有しており、補正環 24 を調整することで観察したい箇所に確実に焦点を合わせることが可能となっている。 カメラ用光学系 22は、対物レンズ 21を通した半導体デバイス 11からの光を高感度力 メラ 3に導き、高感度カメラ 3は半導体デバイス 11の回路パターン等の画像を取得す る。  The optical system 20 includes a camera optical system 22 and an LSM unit optical system 23 in addition to the objective lens 21. A plurality of objective lenses 21 having different magnifications are provided and can be switched. In addition, the objective lens 21 has a correction ring 24, and by adjusting the correction ring 24, it is possible to reliably focus on a portion to be observed. The camera optical system 22 guides the light from the semiconductor device 11 that has passed through the objective lens 21 to the high-sensitivity lens 3, and the high-sensitivity camera 3 acquires an image such as a circuit pattern of the semiconductor device 11.
[0020] 一方、 LSMユニット用光学系 23は、 LSMユニット 4からの赤外レーザ光をビームス プリッタ(不図示)で対物レンズ 21側に反射し半導体デバイス 11に導くと共に、対物 レンズ 21を通し高感度カメラ 3に向力う半導体デバイス 11からの反射レーザ光を LS Μユニット 4に導く。  [0020] On the other hand, the optical system 23 for the LSM unit reflects the infrared laser light from the LSM unit 4 to the objective lens 21 side by a beam splitter (not shown), guides it to the semiconductor device 11, and passes through the objective lens 21 to increase the height. The reflected laser beam from the semiconductor device 11 facing the sensitivity camera 3 is guided to the LS Μ unit 4.
[0021] この LSMユニット 4は、赤外レーザ光を Χ—Υ方向に走査し半導体デバイス 11側に 出射する一方で、半導体デバイス 11からの反射光を光検出器 (不図示)で検出する 。この検出光の強度は、半導体デバイス 11の回路パターンを反映した強度となって いる。従って、 LSMユニット 4は、赤外レーザ光が半導体デバイス 11を Χ_Υ走査す ることで、半導体デバイス 11の回路パターン等の画像を取得する。  The LSM unit 4 scans infrared laser light in the Χ-Χ direction and emits it to the semiconductor device 11 side, while detecting reflected light from the semiconductor device 11 with a photodetector (not shown). The intensity of the detection light reflects the circuit pattern of the semiconductor device 11. Therefore, the LSM unit 4 acquires an image of the circuit pattern or the like of the semiconductor device 11 by scanning the semiconductor device 11 with the infrared laser light.
[0022] また、 ΧΥΖステージ 7は、高感度カメラ 3、 LSMユニット 4、光学系 20及び固浸レン ズ 6等を、 Χ_Υ方向(水平方向;観察対象物である半導体デバイス 11に対して平行 を成す方向)及びこれに直交する z方向(垂直方向)の各々に、必要に応じて移動す るためのものである。 [0022] In addition, the stage 7 has the high-sensitivity camera 3, the LSM unit 4, the optical system 20, the solid immersion lens 6 and the like in the Χ_Υ direction (horizontal direction; parallel to the semiconductor device 11 that is the observation object. ) And the z direction (vertical direction) perpendicular thereto, as necessary.
[0023] 制御部 Bは、カメラコントローラ 31と、レーザスキャン(LSM)コントローラ 32と、ペリ フェラルコントローラ 33と、を備えている。カメラコントローラ 31及び LSMコントローラ 32は、高感度カメラ 3及び LSMユニット 4の動作を各々制御することで、観察部 Aで 行われる半導体デバイス 11の観察の実行 (画像の取得)や観察条件の設定等を制 御する。  The control unit B includes a camera controller 31, a laser scan (LSM) controller 32, and a peripheral controller 33. The camera controller 31 and the LSM controller 32 control the operation of the high-sensitivity camera 3 and the LSM unit 4 respectively, thereby performing observation (acquisition of images) of the semiconductor device 11 performed in the observation unit A, setting of observation conditions, etc. Is controlled.
[0024] ペリフヱラルコントローラ 33は、 XYZステージ 7の動作を制御することで、半導体デ バイス 11の観察位置に対応する位置への高感度カメラ 3、 LSMユニット 4及び光学 系 20等の移動、位置合わせ、焦点合わせ等を制御する。この際、ペリフェラルコント ローラ 33は、対物レンズソケット 9及び固浸レンズホルダ 8に取り付けられた種々のセ ンサなどの検出結果に応じて XYZステージ 7の動作を制御する。また、ペリフェラノレ コントローラ 33は、対物レンズ 21に取り付けられた補正環調整用モータ 25を駆動し て補正環 24を調整する。  The peripheral controller 33 controls the operation of the XYZ stage 7 to move the high-sensitivity camera 3, the LSM unit 4, the optical system 20, and the like to a position corresponding to the observation position of the semiconductor device 11. , Control alignment, focusing and so on. At this time, the peripheral controller 33 controls the operation of the XYZ stage 7 according to the detection results of various sensors attached to the objective lens socket 9 and the solid immersion lens holder 8. The peripheral controller 33 adjusts the correction ring 24 by driving a correction ring adjustment motor 25 attached to the objective lens 21.
[0025] 解析部 Cは、画像解析部 41と指示部 42とを備え、コンピュータにより構成されてい る。画像解析部 41は、カメラコントローラ 31及び LSMコントローラ 32からの画像情報 に対して必要な解析処理等を実施し、指示部 42は、操作者からの入力内容や画像 解析部 41による解析内容等を参照し、制御部 Bを介して、観察部 Aにおける半導体 デバイス 11の検査の実行に関する必要な指示を行う。また、解析部 Cにより取得又 は解析された画像、データ等は、必要に応じて解析部 Cに接続された表示装置 43に 表示される。  The analysis unit C includes an image analysis unit 41 and an instruction unit 42, and is configured by a computer. The image analysis unit 41 performs necessary analysis processing on the image information from the camera controller 31 and the LSM controller 32, and the instruction unit 42 displays the input content from the operator and the analysis content by the image analysis unit 41. With reference to the control unit B, necessary instructions regarding the execution of the inspection of the semiconductor device 11 in the observation unit A are given. In addition, images, data, and the like acquired or analyzed by the analysis unit C are displayed on the display device 43 connected to the analysis unit C as necessary.
[0026] 図 2に示すように、固浸レンズ 6は、半球形状の微小レンズであり、外部(例えば、顕 微鏡の対物レンズ)に対する光の入出力面となると共に球面形状に形成された上面 6aと、半導体デバイス 11に対する取付面となると共に平面形状に形成された底面 6b とを有する。固浸レンズ 6は、この底面 6bが観察位置(図示上面)に密着することで、 裏側となる半導体デバイス 11の表面(図示下面)の拡大観察画像を得る。  [0026] As shown in FIG. 2, the solid immersion lens 6 is a hemispherical microlens, and is formed into a spherical shape as well as an input / output surface for light with respect to the outside (for example, an objective lens of a microscope). It has an upper surface 6a and a bottom surface 6b which is a mounting surface for the semiconductor device 11 and is formed in a planar shape. The solid immersion lens 6 obtains an enlarged observation image of the front surface (illustrated lower surface) of the semiconductor device 11 on the back side when the bottom surface 6b is in close contact with the observation position (illustrated upper surface).
[0027] 具体的には、半導体検查装置において使用される固浸レンズは、半導体デバイス の基板材料と実質的に同一またはその屈折率に近い、高屈折率材料力 なる。その 代表的な例としては、 Si、 GaP、 GaAsなどが挙げられる。 Specifically, the solid immersion lens used in the semiconductor inspection apparatus has a high refractive index material force that is substantially the same as or close to the refractive index of the substrate material of the semiconductor device. That Typical examples include Si, GaP, and GaAs.
[0028] このような微小な光学素子を半導体デバイスの基板表面に光学密着させることによ り、半導体基板自身を固浸レンズの一部として利用する。固浸レンズを利用した半導 体デバイスの裏面解析によれば、対物レンズの焦点を半導体基板表面に形成された 集積回路に合わせた際に、固浸レンズの効果により、基板中に NAの高い光束を通 すことが可能となり、高分解能化が期待できる。 [0028] By optically contacting such a small optical element to the substrate surface of the semiconductor device, the semiconductor substrate itself is used as a part of the solid immersion lens. According to the backside analysis of a semiconductor device using a solid immersion lens, when the focus of the objective lens is adjusted to the integrated circuit formed on the surface of the semiconductor substrate, due to the effect of the solid immersion lens, the substrate has a high NA. It is possible to pass the light beam, and high resolution can be expected.
[0029] このような固浸レンズ 6のレンズ形状は、収差がなくなる条件によって決まるものであ る。半球形状を有する固浸レンズ 6では、その球心が焦点となる。このとき、開口数( NA)および倍率はともに n倍となる。なお、固浸レンズ 6の形状は、半球形状に限定 されず、例えば、ワイエルストラス形状のものでもよい。  [0029] The lens shape of such a solid immersion lens 6 is determined by the condition that the aberration is eliminated. In the solid immersion lens 6 having a hemispherical shape, the spherical center is a focal point. At this time, the numerical aperture (NA) and the magnification are both n times. The shape of the solid immersion lens 6 is not limited to a hemispherical shape, and may be, for example, a Weierstrass shape.
[0030] この固浸レンズ 6を対物レンズ 21に対して好適に保持する固浸レンズホルダ 8は、 対物レンズソケット 9を介して対物レンズ 21の前方に取り付けられる。この対物レンズ ソケット 9については詳しくは後述する。  A solid immersion lens holder 8 that suitably holds the solid immersion lens 6 with respect to the objective lens 21 is attached to the front of the objective lens 21 via the objective lens socket 9. The objective lens socket 9 will be described later in detail.
[0031] 図 2及び図 3に示すように、固浸レンズホルダ 8は、円板状の対物レンズキャップ 50 の中心から対物レンズキャップ 50に略直交する方向にレンズ保持部 60が延在したも のであり、図 3に示した矢印 A1の方向からみた場合、その外形は略 T字状である。  As shown in FIGS. 2 and 3, the solid immersion lens holder 8 has a lens holding portion 60 extending from the center of the disc-shaped objective lens cap 50 in a direction substantially perpendicular to the objective lens cap 50. When viewed from the direction of the arrow A1 shown in FIG. 3, the outer shape is substantially T-shaped.
[0032] 対物レンズキャップ 50は、対物レンズソケット 9 (図 2参照)に螺合する周壁 51を有し ており、対物レンズキャップ 50は、対物レンズソケット 9を介して対物レンズ 21の先端 部に取り付けられることになる。従って、固浸レンズホルダ 8に保持される固浸レンズ 6 の位置は、 XYZステージ 7を駆動することで調整できる。  The objective lens cap 50 has a peripheral wall 51 that is screwed into the objective lens socket 9 (see FIG. 2). The objective lens cap 50 is attached to the tip of the objective lens 21 via the objective lens socket 9. Will be attached. Therefore, the position of the solid immersion lens 6 held by the solid immersion lens holder 8 can be adjusted by driving the XYZ stage 7.
[0033] また、対物レンズキャップ 50が有する底板 52は、光束を通過させるための 3つの開 口 53, 53, 53を有する。各開口 53は、 LSMユニット 4から出力された光を固浸レン ズ 6側に通すと共に、半導体デバイス 11によって反射され固浸レンズ 6から出力され た光を対物レンズ 21側に通す。  [0033] Further, the bottom plate 52 of the objective lens cap 50 has three openings 53, 53, 53 for allowing the light beam to pass therethrough. Each aperture 53 allows light output from the LSM unit 4 to pass through the solid immersion lens 6 side, and allows light reflected from the semiconductor device 11 and output from the solid immersion lens 6 to pass through the objective lens 21 side.
[0034] 各開口 53は、略扇状であり、対物レンズキャップ 50の中心に対して互いに同心状 であって周方向に等間隔に配置されている。これによつて、隣り合う開口 53, 53間に は、レンズ保持部 60と底板 52とを連結すると共に、対物レンズキャップ 50の中心から 放射状に延びる 3つの連結部 54, 54, 54が等間隔で形成されることになる。 [0035] レンズ保持部 60は、 3つの連結部 54の交差部分から対物レンズキャップ 50に略直 交する方向(対物レンズ 21の光軸 L方向)に延在するレンズ保持部材 61を有する。 レンズ保持部材 61は、各連結部 54, 54, 54上に位置すると共に、固浸レンズ 6を受 ける 3つの保持片 62, 62, 62力らなる。 Each opening 53 is substantially fan-shaped and is concentric with the center of the objective lens cap 50 and is arranged at equal intervals in the circumferential direction. As a result, the lens holding part 60 and the bottom plate 52 are connected between the adjacent openings 53, 53, and three connecting parts 54, 54, 54 extending radially from the center of the objective lens cap 50 are equally spaced. Will be formed. The lens holding unit 60 includes a lens holding member 61 that extends in a direction substantially orthogonal to the objective lens cap 50 (in the optical axis L direction of the objective lens 21) from the intersection of the three coupling parts 54. The lens holding member 61 is positioned on each of the connecting portions 54, 54, 54 and includes three holding pieces 62, 62, 62 that receive the solid immersion lens 6.
[0036] 保持片 62, 62, 62は、レンズ保持部材 61の中心線に対して放射状に配置されると 共に、幅 dがレンズ保持部材 61の中心線に向力 につれて狭くなるテーパ形状を有 している。  [0036] The holding pieces 62, 62, 62 are radially arranged with respect to the center line of the lens holding member 61, and have a tapered shape in which the width d becomes narrower toward the center line of the lens holding member 61 as the force is applied. is doing.
[0037] 各保持片 62の先端部(対物レンズキャップ 50と反対側の端部)に固浸レンズ 6の上 面 6aの曲率と同じ曲率を有するレンズ受け面 62a, 62a, 62aが形成されており、レ ンズ保持部材 61は、 3つのレンズ受け面 62aによって固浸レンズ 6を受けることになる 。このため、レンズ保持部材 61は、固浸レンズ 6を安定的に受けることができる。  [0037] Lens receiving surfaces 62a, 62a, 62a having the same curvature as the curvature of the upper surface 6a of the solid immersion lens 6 are formed at the front end of each holding piece 62 (the end opposite to the objective lens cap 50). Accordingly, the lens holding member 61 receives the solid immersion lens 6 by the three lens receiving surfaces 62a. For this reason, the lens holding member 61 can receive the solid immersion lens 6 stably.
[0038] また、各保持片 62の先端部には、円筒形状のレンズカバー 63を固定するための爪 部 62bがそれぞれ形成されている。レンズカバー 63は、底板 64を有しており、底板 6 4の周縁部には、爪部 62bに嵌め合わされる周壁 65が設けられている。底板 64には 、固浸レンズ 6の底面 6bを外側(試料 10側)に突出させるための開口 64aが形成され ている。  [0038] Further, a claw portion 62b for fixing the cylindrical lens cover 63 is formed at the tip of each holding piece 62, respectively. The lens cover 63 has a bottom plate 64, and a peripheral wall 65 fitted to the claw portion 62 b is provided on the peripheral edge of the bottom plate 64. The bottom plate 64 is formed with an opening 64a for projecting the bottom surface 6b of the solid immersion lens 6 to the outside (sample 10 side).
[0039] この構成では、レンズ受け面 62aとレンズカバー 63との間に固浸レンズ 6を配置し てから、接着剤などによってレンズカバー 63をレンズ保持部材 61に固定することによ つて、固浸レンズ 6は、レンズ受け面 62aとレンズカバー 63との間に底面 6bを開口 64 aから突出した状態で収容され、固浸レンズホルダ 8に固浸レンズ 6が保持されること になる。  In this configuration, the solid immersion lens 6 is disposed between the lens receiving surface 62a and the lens cover 63, and then the lens cover 63 is fixed to the lens holding member 61 with an adhesive or the like, thereby fixing the lens. The immersion lens 6 is accommodated between the lens receiving surface 62a and the lens cover 63 with the bottom surface 6b protruding from the opening 64a, and the solid immersion lens 6 is held by the solid immersion lens holder 8.
[0040] そして、 XYZステージ 7の操作によって対物レンズ 21がその光軸 L方向に移動させ られることで固浸レンズ 6が半導体デバイス 11に接地することになる。  Then, the solid immersion lens 6 is grounded to the semiconductor device 11 when the objective lens 21 is moved in the direction of the optical axis L by the operation of the XYZ stage 7.
[0041] この固浸レンズ 6が接地した状態で、フォーカス位置の調整などによって更に固浸 レンズ 6が押し下げられると、固浸レンズ 6から加わる力によって半導体デバイス 1 1が 損傷する虞がある。  If the solid immersion lens 6 is further pushed down by adjusting the focus position while the solid immersion lens 6 is grounded, the semiconductor device 11 may be damaged by the force applied from the solid immersion lens 6.
[0042] そこで、固浸レンズホルダ 8は、図 3に示すように、各連結部 54に応力検知センサ S をそれぞれ有することが好ましレ、。 [0043] 固浸レンズ 6が半導体デバイス 11に力を加えているとき、固浸レンズ 6は、その反作 用で保持片 62に押しつけられており、その結果として、連結部 54に応力が生じる。 応力検知センサ Sは、連結部 54に加わる応力を検出することで、固浸レンズ 6が半導 体デバイス 11に負荷するカを検出してレ、る。 [0042] Therefore, the solid immersion lens holder 8 preferably has a stress detection sensor S at each connecting portion 54 as shown in FIG. [0043] When the solid immersion lens 6 applies a force to the semiconductor device 11, the solid immersion lens 6 is pressed against the holding piece 62 by the counteraction, and as a result, stress is generated in the connecting portion 54. . The stress detection sensor S detects the stress applied to the semiconductor device 11 by the solid immersion lens 6 by detecting the stress applied to the connecting portion 54.
[0044] そして、応力検知センサ Sは、ペリフェラルコントローラ 33に電気的に接続されてお り、応力検知センサ Sが所定の応力以上のカを検知した場合、ペリフェラルコントロー ラ 33が、 XYZステージ 7の駆動を停止する。これによつて、所定の負荷以上の力が 半導体デバイス 11に加わらなレ、ようになってレ、る。  [0044] Then, the stress detection sensor S is electrically connected to the peripheral controller 33. When the stress detection sensor S detects a force greater than or equal to a predetermined stress, the peripheral controller 33 is connected to the XYZ stage 7. Stop driving. As a result, a force greater than a predetermined load is not applied to the semiconductor device 11, so
[0045] 次に、特に本実施形態の特徴をなす対物レンズソケット 9について詳説する。図 4は 、対物レンズソケット 9の断面図である。図 5は、対物レンズソケット 9が有するベース 部と可動部材との構成を示す構成図である。図 5 (a)は、ベース部及び可動部材を対 物レンズ側から見た図である。図 5 (b)は、ベース部及び可動部材の側面図である。 図 5 (c)は、ベース部及び可動部材を試料側から見た図である。図 4では、図 2と同様 に特徴部分が現れるように記載している。また、図 5では、ベース部に可動部材が嵌 め合わされた状態を示しているが、ピンなどの記載は省略している。  [0045] Next, the objective lens socket 9 that characterizes the present embodiment will be described in detail. FIG. 4 is a cross-sectional view of the objective lens socket 9. FIG. 5 is a configuration diagram showing the configuration of the base portion and the movable member of the objective lens socket 9. FIG. 5 (a) is a view of the base portion and the movable member as viewed from the side of the object lens. FIG. 5 (b) is a side view of the base portion and the movable member. FIG. 5 (c) is a view of the base portion and the movable member as viewed from the sample side. In Fig. 4, as in Fig. 2, the characteristic part appears. Further, FIG. 5 shows a state in which the movable member is fitted to the base portion, but description of pins and the like is omitted.
[0046] 対物レンズソケット 9は、図 2、図 4及び図 5に示すように、対物レンズ 21が有する対 物レンズ鏡筒 26の先端部に嵌め合わされる円筒形状のベース部 70と、ベース部 70 に嵌め合わされる可動部材 80とを有する。  As shown in FIGS. 2, 4, and 5, the objective lens socket 9 includes a cylindrical base portion 70 fitted to the distal end portion of the object lens barrel 26 of the objective lens 21, and a base portion. And a movable member 80 fitted to 70.
[0047] ベース部 70及び可動部材 80は、それぞれ底板 71, 81を有しており、各底板 71, 81は、その中心を中心として、対物レンズ 21から出力される又は対物レンズ 21に入 射される光束を通すための円形の開口 72, 82をそれぞれ有している。開口 72, 82 の直径は、光束を遮らない大きさであればよぐ開口 82の直径は開口 72の直径より も大きくなつている。ベース部 70の開口 72の周りには、複数の貫通孔 73が形成され ており、ベース部 70は、貫通孔 73を介して対物レンズ 21に螺子止めされる。より具 体的には、対物レンズ 21が有するレンズ群を収容している対物レンズ鏡筒 26 (図 2 参照)に螺子止めされる。ただし、ベース部 70の対物レンズ 21への固定方法は上記 の方法に限らない。  [0047] The base 70 and the movable member 80 have bottom plates 71 and 81, respectively. Each of the bottom plates 71 and 81 is output from the objective lens 21 or incident on the objective lens 21 with the center at the center. Circular openings 72 and 82 for passing the light flux to be transmitted. As long as the diameters of the openings 72 and 82 are large enough not to block the light beam, the diameter of the opening 82 is larger than the diameter of the opening 72. A plurality of through holes 73 are formed around the opening 72 of the base portion 70, and the base portion 70 is screwed to the objective lens 21 through the through holes 73. More specifically, it is screwed to an objective lens barrel 26 (see FIG. 2) that houses a lens group that the objective lens 21 has. However, the method of fixing the base portion 70 to the objective lens 21 is not limited to the above method.
[0048] 各底板 71 , 81の周縁部には周壁 74, 83がそれぞれ設けられている。周壁 74の内 径は、対物レンズ鏡筒 26の先端部の外径に等しぐベース部 70は対物レンズ 21の 対物レンズ鏡筒 26の先端部に嵌め合わされて取り付けられる。 [0048] Peripheral walls 74 and 83 are provided on the peripheral portions of the bottom plates 71 and 81, respectively. Of the peripheral wall 74 The base 70 having a diameter equal to the outer diameter of the tip of the objective lens barrel 26 is fitted and attached to the tip of the objective lens barrel 26 of the objective lens 21.
[0049] また、周壁 74の外径と周壁 83の内径とは等しぐ可動部材 80は、ベース部 70に嵌 め合わされるようになつている。そして、周壁 74の外面と周壁 83の内面とは摺動接触 しており、その結果として、可動部材 80は、ベース部 70に対して光軸 L方向に摺動 可能である。周壁 83の外径(可動部材 80の外径)は、対物レンズキャップ 50 (図 2参 照)が有する周壁 51の外径に等しぐ可動部材 80の底板 81側の端部の外周面には 、対物レンズキャップ 50の周壁 51を螺合させるための螺子溝 84 (図 5 (b)参照)が形 成されており、可動部材 80に対物レンズキャップ 50を取り付けられるようになつてい る。 In addition, the movable member 80 in which the outer diameter of the peripheral wall 74 and the inner diameter of the peripheral wall 83 are equal is fitted to the base portion 70. The outer surface of the peripheral wall 74 and the inner surface of the peripheral wall 83 are in sliding contact, and as a result, the movable member 80 is slidable in the optical axis L direction with respect to the base portion 70. The outer diameter of the peripheral wall 83 (the outer diameter of the movable member 80) is equal to the outer peripheral surface of the end on the bottom plate 81 side of the movable member 80 equal to the outer diameter of the peripheral wall 51 of the objective lens cap 50 (see FIG. 2). A screw groove 84 (see FIG. 5B) for screwing the peripheral wall 51 of the objective lens cap 50 is formed, and the objective lens cap 50 can be attached to the movable member 80.
[0050] 可動部材 80が有する周壁 83には、互いに対向する一対の貫通孔 85, 85を有して おり、ベース部 70の周壁 74において貫通孔 85, 85とそれぞれ対応する位置に形成 された貫通孔 75, 75にピン P1を挿入することによって可動部材 80はベース部 70に 連結される。貫通孔 85は、光軸 L方向の長さが周方向の長さよりも長い長円形状を 有しており、貫通孔 85の周方向の長さはピン P1の外径とほぼ同じである。その結果 、可動部材 80は、光軸 L方向に対しては、長円形状の光軸 L方向の長さだけベース 部 70に対して可動でき、周方向に対しては、回転が防止されることになる。  [0050] The peripheral wall 83 of the movable member 80 has a pair of through holes 85 and 85 facing each other, and is formed at positions corresponding to the through holes 85 and 85 on the peripheral wall 74 of the base portion 70, respectively. The movable member 80 is connected to the base portion 70 by inserting the pin P1 into the through holes 75 and 75. The through hole 85 has an oval shape in which the length in the optical axis L direction is longer than the length in the circumferential direction, and the circumferential length of the through hole 85 is substantially the same as the outer diameter of the pin P1. As a result, the movable member 80 can move with respect to the base portion 70 by the length of the elliptical optical axis L direction in the optical axis L direction, and is prevented from rotating in the circumferential direction. It will be.
[0051] このベース部 70と可動部材 80とは、ベース部 70の周壁 74の底面に形成された 3 つのパネ収容溝(弾性体収容溝) 76, 76, 76にそれぞれ収容されたパネ(弾性体) 1 00, 100, 100を挟んで嵌め合わされる。このバネ収容溝 76の深さは、バネ 100の 自然長よりも短いので、パネ 100の先端部はパネ収容溝 76から突出する。  [0051] The base portion 70 and the movable member 80 are made up of three panel receiving grooves (elastic body receiving grooves) 76, 76, 76 formed on the bottom surface of the peripheral wall 74 of the base portion 70, respectively. Body) 1 00, 100, 100 are fitted together. Since the depth of the spring accommodating groove 76 is shorter than the natural length of the spring 100, the front end portion of the panel 100 protrudes from the panel accommodating groove 76.
[0052] したがって、ベース部 70に可動部材 80が嵌めあわされた状態では、バネ 100の両 端部は、それぞれパネ収容溝 76の底面 76a (図 4中の上側の面)及び可動部材 80 の底板 81に当接し、可動部材 80を光軸 L方向に付勢することになる。これによつて、 半導体デバイス 11を観察するときには、固浸レンズ 6は、半導体デバイス 11に付勢さ れて確実に密着することになる。  Therefore, in a state where the movable member 80 is fitted to the base portion 70, both ends of the spring 100 are the bottom surface 76 a (upper surface in FIG. 4) of the panel receiving groove 76 and the movable member 80. Abutting against the bottom plate 81, the movable member 80 is urged in the optical axis L direction. As a result, when observing the semiconductor device 11, the solid immersion lens 6 is urged by the semiconductor device 11 and is securely adhered.
[0053] また、周壁 74は、対物レンズ鏡筒 26の外周部の外側に位置するため(図 2参照)、 バネ 100は、対物レンズ 21が有する対物レンズ鏡筒 26の周囲に配置されることにな る。その結果として、対物レンズソケット 9の光軸 L方向の長さはより短くなつており、対 物レンズソケット 9を装着したことによる対物レンズ 21のワーキングディスタンスの減少 を抑制できている。 Further, since the peripheral wall 74 is located outside the outer peripheral portion of the objective lens barrel 26 (see FIG. 2), the spring 100 is disposed around the objective lens barrel 26 included in the objective lens 21. Nina The As a result, the length of the objective lens socket 9 in the optical axis L direction is shorter, and the reduction of the working distance of the objective lens 21 due to the mounting of the object lens socket 9 can be suppressed.
[0054] ところで、パネ 100が縮みパネ 100による付勢力が強すぎると、前述したように、半 導体デバイス 11が損傷する虞がある。そのため、対物レンズソケット 9は、図 2及び図 Incidentally, if the panel 100 is contracted and the urging force of the panel 100 is too strong, the semiconductor device 11 may be damaged as described above. Therefore, the objective lens socket 9 is
4に示すように、ベース部 70に対する可動部材 80の光軸 L方向における位置(部材 位置)を検出する部材位置検出手段 110を有する。 As shown in FIG. 4, it has member position detecting means 110 for detecting the position (member position) of the movable member 80 in the optical axis L direction with respect to the base portion 70.
[0055] 図 6は、対物レンズソケット 9が有する部材位置検出手段の構成を示す構成図であ る。図 6は、図 4の矢印 A2の方向から見た状態を示しており、固浸レンズホルダ 8を取 り付けた状態の図である。 FIG. 6 is a configuration diagram showing the configuration of the member position detecting means included in the objective lens socket 9. FIG. 6 shows a state viewed from the direction of arrow A2 in FIG. 4, and shows a state where the solid immersion lens holder 8 is attached.
[0056] 図 4及び図 6に示すように、部材位置検出手段 110は、センサ保持部材 111と、セ ンサ保持部材 111が保持している 2つの近接センサ 112, 113と、略 L字状の金属板[0056] As shown in FIGS. 4 and 6, the member position detecting means 110 includes a sensor holding member 111, two proximity sensors 112 and 113 held by the sensor holding member 111, and a substantially L-shape. Metal plate
114とを有する。 114.
[0057] センサ保持部材 111は、外形が略直方体であってベース部 70の周壁 74の上面に 形成された螺子孔 77 (図 5 (a)参照)に螺子止めされており、センサ保持部材 111は 、近接センサ 112, 113の先端部がセンサ保持部材 111の端部から突出するように 近接センサ 112, 113を保持している。  The sensor holding member 111 has a substantially rectangular parallelepiped shape and is screwed into a screw hole 77 (see FIG. 5A) formed in the upper surface of the peripheral wall 74 of the base 70. The proximity sensors 112 and 113 are held so that the front ends of the proximity sensors 112 and 113 protrude from the end of the sensor holding member 111.
[0058] 金属板 114は、可動部材 80の周壁 83の上面に形成された螺子孔 86 (図 5 (a)参 照)に螺子止めされている。そのため、可動部材 80に合わせて光軸 L方向に動くこと になる。そして、金属板 114は、その一部(光軸 L方向に延びる部分)力 近接センサ 112, 113と対面するように配置されている。  [0058] The metal plate 114 is screwed into a screw hole 86 (see FIG. 5A) formed in the upper surface of the peripheral wall 83 of the movable member 80. Therefore, it moves in the optical axis L direction according to the movable member 80. The metal plate 114 is disposed so as to face part of the force proximity sensors 112 and 113 (part extending in the optical axis L direction).
[0059] 近接センサ 112, 113は、光軸 L方向に互いに段違いであって光軸 Lと直交する方 向に並列に配置されてセンサ保持部材 111によって保持される。近接センサ 112, 1 13は、ペリフェラルコントローラ 33 (図 1参照)に電気的に接続されおり、その先端部 近傍に磁界を発生させている。そして、金属板 114が近づ 図 4中、上側に移動す る)ことによる磁界の変化によって金属板 114を検出することで、ベース部 70に対す る可動部材 80の部材位置を検出する。  The proximity sensors 112 and 113 are held by the sensor holding member 111 while being arranged in parallel in the direction perpendicular to the optical axis L, which are different from each other in the optical axis L direction. The proximity sensors 112 and 113 are electrically connected to the peripheral controller 33 (see FIG. 1), and generate a magnetic field in the vicinity of the tip thereof. Then, the member position of the movable member 80 with respect to the base portion 70 is detected by detecting the metal plate 114 by a change in the magnetic field due to the metal plate 114 approaching and moving upward in FIG.
[0060] 近接センサ (接触位置検出部) 112は、ベース部 70と可動部材 80との間に配置さ れたパネ 100が自然長のときから縮み始めたときに金属板 114と対面するように配置 されている。これにより、固浸レンズ 6が半導体デバイス 11に接触したときに近接セン サ 112は、金属板 114を検出することになるので、近接センサ 112は、固浸レンズ 6と 半導体デバイス 11との接触開始位置に対応する可動部材 80の部材位置を検出す るセンサとして機能する。 [0060] The proximity sensor (contact position detecting unit) 112 is disposed between the base unit 70 and the movable member 80. The panel 100 is arranged so as to face the metal plate 114 when it starts to shrink from its natural length. Thus, when the solid immersion lens 6 comes into contact with the semiconductor device 11, the proximity sensor 112 detects the metal plate 114, so the proximity sensor 112 starts contact between the solid immersion lens 6 and the semiconductor device 11. It functions as a sensor that detects the position of the movable member 80 corresponding to the position.
[0061] また、近接センサ (停止位置検出部) 113は、近接センサ 112よりも上側に配置され ており、固浸レンズ 6を介したパネ 100による半導体デバイス 11への付勢を停止する ための可動部材 80の部材位置を検出する。すなわち、固浸レンズ 6を介して半導体 デバイス 11に付与される付勢力のうち、半導体デバイス 11に損傷を与えない範囲の 最大の付勢力を生じせしめる可動部材 80のベース部 70に対する位置を検出できる ように、近接センサ 112よりも上方に配置されている。  Further, the proximity sensor (stop position detection unit) 113 is arranged above the proximity sensor 112 and is used to stop the biasing of the panel 100 via the solid immersion lens 6 to the semiconductor device 11. The member position of the movable member 80 is detected. That is, it is possible to detect the position of the movable member 80 with respect to the base portion 70 that generates the maximum urging force within a range that does not damage the semiconductor device 11 among the urging forces applied to the semiconductor device 11 through the solid immersion lens 6. Thus, it is disposed above the proximity sensor 112.
[0062] ここで、図 7を参照して、部材位置検出手段 110の動作について説明する。図 7は、 部材位置検出手段 110の動作を説明する図である。  Here, the operation of the member position detecting means 110 will be described with reference to FIG. FIG. 7 is a diagram for explaining the operation of the member position detecting means 110.
[0063] 図 7 (a)に示すように、先ず、ペリフェラルコントローラ 33によって対物レンズ 21のフ オーカス位置の調整が実施されているとき、対物レンズ 21に伴って対物レンズソケッ ト 9が半導体デバイス 11側に押し下げられると、固浸レンズ 6は半導体デバイス 11に 接触することになる。  As shown in FIG. 7 (a), first, when the focus position of the objective lens 21 is adjusted by the peripheral controller 33, the objective lens socket 9 is attached to the semiconductor device 11 side along with the objective lens 21. When pressed down, the solid immersion lens 6 comes into contact with the semiconductor device 11.
[0064] 固浸レンズ 6は可動部材 80に取り付けられた固浸レンズホルダ 8で保持されている ので、固浸レンズ 6が半導体デバイス 11に接触することで可動部材 80はベース部 70 側に押され、その結果として、金属板 114も上側に移動するので、近接センサ 112が 金属板 114を検出する。すなわち、半導体デバイス 11への固浸レンズ 6の接触を検 出する。  [0064] Since the solid immersion lens 6 is held by the solid immersion lens holder 8 attached to the movable member 80, when the solid immersion lens 6 contacts the semiconductor device 11, the movable member 80 is pushed toward the base portion 70 side. As a result, the metal plate 114 also moves upward, so that the proximity sensor 112 detects the metal plate 114. That is, the contact of the solid immersion lens 6 with the semiconductor device 11 is detected.
[0065] 近接センサ 112の検出結果は、ペリフェラルコントローラ 33を介して指示部 42に入 力され、操作者に固浸レンズ 6が半導体デバイス 11に接地したことを知らせる。  The detection result of the proximity sensor 112 is input to the instruction unit 42 via the peripheral controller 33 and notifies the operator that the solid immersion lens 6 is grounded to the semiconductor device 11.
[0066] そして、図 7 (b)に示すように、対物レンズ 21が半導体デバイス 11側に更に押し下 げられた状態(すなわち、対物レンズソケット 9が押し下げられた状態)では近接セン サ 112は金属板 114を検出している旨の検出結果を出力し続けており、近接センサ 113が金属板 114を検出していない状態では、継続してフォーカス位置の調整が実 施される。 Then, as shown in FIG. 7B, in the state where the objective lens 21 is further pushed down to the semiconductor device 11 side (that is, the state where the objective lens socket 9 is pushed down), the proximity sensor 112 is When the detection result indicating that the metal plate 114 is detected continues to be output and the proximity sensor 113 does not detect the metal plate 114, the focus position adjustment is continued. Applied.
[0067] また、図 7 (c)に示すように、対物レンズソケット 9が半導体デバイス 11側に更に押し 下げられ、近接センサ 113が金属板 114を検出したとき、ペリフェラルコントローラ 33 は、対物レンズ 21の押し下げを停止する。これによつて設定した付勢力以上の負荷 は半導体デバイス 11に加えられないので、フォーカス位置の調整などによって半導 体デバイス 11が損傷することが抑制されることになる。  Further, as shown in FIG. 7 (c), when the objective lens socket 9 is further pushed down to the semiconductor device 11 side and the proximity sensor 113 detects the metal plate 114, the peripheral controller 33 Stop pressing down. Since a load exceeding the set urging force is not applied to the semiconductor device 11, damage to the semiconductor device 11 due to adjustment of the focus position or the like is suppressed.
[0068] また、半導体デバイス 11の観察時には、通常、顕微鏡 5は喑箱に入れられるので、 可動部材 80に固浸レンズホルダ 8が付けられているか否かを自動的に確認できるこ とが好ましい。そこで、半導体検查装置 1は、図 1、図 2及び図 8に示すように、固浸レ ンズホルダ 8の取付状態を検出するホルダ検出センサ 120を有する。図 8は、半導体 検查装置 1が有するホルダ検出センサの構成を示すブロック図である。ホルダ検出セ ンサ 120は、アンプユニット 130と、対物レンズソケット 9の一部を構成するセンサへッ ド(ホルダ検出部) 140とを有する。  [0068] Further, at the time of observing the semiconductor device 11, the microscope 5 is usually put in a box, so it is preferable that it can be automatically confirmed whether or not the solid immersion lens holder 8 is attached to the movable member 80. . Therefore, the semiconductor inspection apparatus 1 has a holder detection sensor 120 that detects the mounting state of the solid immersion lens holder 8 as shown in FIGS. FIG. 8 is a block diagram showing a configuration of a holder detection sensor included in the semiconductor inspection device 1. The holder detection sensor 120 includes an amplifier unit 130 and a sensor head (holder detection unit) 140 that forms part of the objective lens socket 9.
[0069] アンプユニット 130は、発光素子 131と受光素子 132とを有しており、ペリフェラルコ ントローラ 33に電気的に接続されている。アンプユニット 130の発光素子 131は、投 光側ファイバ 151と光学的に接続されており、投光側ファイバ 151は、センサヘッド 1 40に接続されている。また、アンプユニット 130の受光素子 132は、受光側ファイバ 1 52と光学的に接続されており、受光側ファイバ 152は、センサヘッド 140に接続され ている。  The amplifier unit 130 has a light emitting element 131 and a light receiving element 132 and is electrically connected to the peripheral controller 33. The light emitting element 131 of the amplifier unit 130 is optically connected to the light projecting side fiber 151, and the light projecting side fiber 151 is connected to the sensor head 140. The light receiving element 132 of the amplifier unit 130 is optically connected to the light receiving side fiber 152, and the light receiving side fiber 152 is connected to the sensor head 140.
[0070] 図 9は、センサヘッドの構成を示す構成図である。図 9は、図 4の矢印 A3側から見 た状態を示している。なお、図 9では、固浸レンズホルダ 8を取り付けた状態を示して いる。  FIG. 9 is a configuration diagram showing the configuration of the sensor head. FIG. 9 shows a state seen from the arrow A3 side in FIG. FIG. 9 shows a state where the solid immersion lens holder 8 is attached.
[0071] センサヘッド 140は、ファイバ保持部材 141と、反射ミラー 142と、集光レンズ 143と がカバー 144によって覆われたものであり、対物レンズソケット 9が有するベース部 70 の周壁 74の上面に形成された螺子孔 78 (図 5 (a)参照)を利用して螺子止めされて いる。  [0071] The sensor head 140 includes a fiber holding member 141, a reflection mirror 142, and a condenser lens 143 covered with a cover 144. The sensor head 140 is formed on the upper surface of the peripheral wall 74 of the base portion 70 of the objective lens socket 9. It is screwed using the formed screw hole 78 (see FIG. 5 (a)).
[0072] 図 9に示すように、ファイバ保持部材 141は、その内部に投光側ファイバ 151及び 受光側ファイバ 152が揷入され、それらを並列に保持する。 [0073] 反射ミラー 142は、投光側ファイバ 151の出力端の前方においてファイバ保持部材 141に固定されており、投光側ファイバ 151から出力された光 153を固浸レンズホル ダ 8側に反射させると共に、固浸レンズホルダ 8からの戻り光(反射光)を受光側フアイ バ 152に入射させる。 [0072] As shown in FIG. 9, the fiber holding member 141 has the light projecting side fiber 151 and the light receiving side fiber 152 inserted therein, and holds them in parallel. The reflection mirror 142 is fixed to the fiber holding member 141 in front of the output end of the light projecting side fiber 151, and reflects the light 153 output from the light projecting side fiber 151 to the solid immersion lens holder 8 side. At the same time, the return light (reflected light) from the solid immersion lens holder 8 is incident on the light receiving side fiber 152.
[0074] また、集光レンズ 143は、反射ミラー 142の下方(図 9の下側)であってファイバ保持 部材 141に固定されており、投光側ファイバ 151から出力され反射ミラー 142で反射 された光を固浸レンズホルダ 8が有する周壁 51の上面に集光させると共に、固浸レン ズホルダ 8からの戻り光を受光側ファイバ 152に集光して入射させる。  In addition, the condenser lens 143 is fixed to the fiber holding member 141 below the reflection mirror 142 (the lower side in FIG. 9), and is output from the light projecting side fiber 151 and reflected by the reflection mirror 142. The collected light is condensed on the upper surface of the peripheral wall 51 of the solid immersion lens holder 8 and the return light from the solid immersion lens holder 8 is condensed and incident on the light receiving side fiber 152.
[0075] ここで、図 10を利用してホルダ検出センサの動作について説明する。図 10は、ホ ルダ検出センサの動作を示す図である。  Here, the operation of the holder detection sensor will be described with reference to FIG. FIG. 10 is a diagram illustrating the operation of the holder detection sensor.
[0076] 図 10 (a)に示すように、可動部材 80に固浸レンズホルダ 8が取り付けられていると きには、投光側ファイバ 151から出力された光 153は、集光レンズ 143で対物レンズ キャップ 50が有する周壁 51の上面で反射し、集光レンズ 143で集光され受光側ファ ィバ 152に入射される。  As shown in FIG. 10 (a), when the solid immersion lens holder 8 is attached to the movable member 80, the light 153 output from the light projecting side fiber 151 is transmitted by the condenser lens 143. The light is reflected from the upper surface of the peripheral wall 51 of the objective lens cap 50, condensed by the condenser lens 143, and incident on the light receiving side fiber 152.
[0077] すなわち、センサヘッド 140によって固浸レンズホルダ 8からの反射光を取得する。  That is, the reflected light from the solid immersion lens holder 8 is acquired by the sensor head 140.
その結果として、受光素子 132は戻り光を検出する。  As a result, the light receiving element 132 detects return light.
[0078] 一方、図 10 (b)に示すように、固浸レンズホルダ 8が可動部材 80に取り付けられて いないときには、投光側ファイバ 151から出力された光 153は、受光側ファイバ 152 に入射されることがないため、受光素子 132は戻り光を検出しない。  On the other hand, as shown in FIG. 10 (b), when the solid immersion lens holder 8 is not attached to the movable member 80, the light 153 output from the light projecting side fiber 151 is incident on the light receiving side fiber 152. Therefore, the light receiving element 132 does not detect return light.
[0079] したがって、受光素子 132が戻り光を検出したか否かで固浸レンズホルダ 8の取り 付け状態を検出できることになる。これによつて、例えば、顕微鏡 5が喑箱内に入れら れていても固浸レンズホルダ 8が確実に装着された状態で半導体デバイス 11の観察 が可能となる。  Therefore, the mounting state of the solid immersion lens holder 8 can be detected based on whether or not the light receiving element 132 has detected return light. This makes it possible to observe the semiconductor device 11 with the solid immersion lens holder 8 securely attached even when the microscope 5 is placed in the box, for example.
[0080] 次に、半導体検查装置 1を利用して半導体デバイス 11の画像を取得する方法の一 例について説明する。  [0080] Next, an example of a method for acquiring an image of the semiconductor device 11 using the semiconductor inspection apparatus 1 will be described.
[0081] 先ず、顕微鏡 5が有する複数の対物レンズ 21のうち、固浸レンズ 6を付けていない 対物レンズ 21で固浸レンズ 6によって半導体デバイス 11を観察する構造を特定する 。この観察位置の特定は、指示部 42によってペリフェラルコントローラ 33を介して XY Zステージ 7を駆動して行う。 First, a structure in which the semiconductor device 11 is observed by the solid immersion lens 6 is specified with the objective lens 21 that is not attached with the solid immersion lens 6 among the plurality of objective lenses 21 of the microscope 5. This observation position is specified by the instruction unit 42 via the peripheral controller 33. This is done by driving Z stage 7.
[0082] 操作者は、固浸レンズ 6で観察する観察位置を特定したら固浸レンズモードを起動 し、固浸レンズ 6を利用した観察状態とする。この際、操作者は、固浸レンズホルダ 8 が保持している固浸レンズ 6の型番、半導体デバイス 11が有する基板の厚さ及び材 質を指示部 42に対して入力する。これによつて、指示部 42は、予め入力されている データを参照して、補正環 24の位置や対物レンズ 21のフォーカス位置を計算するた めの 5つのパラメータ、すなわち、固浸レンズ 6の厚さや、屈折率、上面 6aの曲率半 径、基板厚さ及び基板の屈折率を特定する。  [0082] When the operator specifies the observation position to be observed with the solid immersion lens 6, the operator activates the solid immersion lens mode to enter an observation state using the solid immersion lens 6. At this time, the operator inputs the model number of the solid immersion lens 6 held by the solid immersion lens holder 8, the thickness and material of the substrate included in the semiconductor device 11, to the instruction unit 42. As a result, the instruction unit 42 refers to the pre-input data, and calculates five parameters for calculating the position of the correction ring 24 and the focus position of the objective lens 21, that is, the solid immersion lens 6. The thickness, refractive index, radius of curvature of the upper surface 6a, substrate thickness and substrate refractive index are specified.
[0083] 次に、指示部 42は、ペリフェラルコントローラ 33を介してホルダ検出センサ 120の 発光素子 131から光を出力させて、固浸レンズ観察に利用する対物レンズ 21に固浸 レンズホルダ 8が取り付けられているか否かを検出する。  Next, the instruction unit 42 outputs light from the light emitting element 131 of the holder detection sensor 120 via the peripheral controller 33, and the solid immersion lens holder 8 is attached to the objective lens 21 used for solid immersion lens observation. Detect whether or not
[0084] すなわち、発光素子 131によって光を出力させたときに、指示部 42は、受光素子 1 32が戻り光を検出すれば、固浸レンズホルダ 8が装着されているとし、受光素子 132 が戻り光を検出しなければ、固浸レンズホルダ 8が装着されていないと判断する。そし て、受光素子 132の検出結果、すなわち、固浸レンズホルダ 8の取付状態を操作者 に伝える。  That is, when light is output by the light emitting element 131, the instruction unit 42 assumes that the solid immersion lens holder 8 is attached if the light receiving element 1 32 detects return light, and the light receiving element 132 is If no return light is detected, it is determined that the solid immersion lens holder 8 is not attached. Then, the detection result of the light receiving element 132, that is, the mounting state of the solid immersion lens holder 8 is transmitted to the operator.
[0085] また、固浸レンズホルダ 8が装着されたことが確認された場合には、半導体デバイス 11の観察における他の光の混入を防止する観点から、発光素子 131の出力を止め ることが好ましい。  In addition, when it is confirmed that the solid immersion lens holder 8 is attached, the output of the light emitting element 131 can be stopped from the viewpoint of preventing other light from being mixed in the observation of the semiconductor device 11. preferable.
[0086] 固浸レンズホルダ 8が装着されている場合、指示部 42は、ペリフェラルコントローラ 3 3を介してレボルバを駆動して固浸レンズ 6が取り付けられている対物レンズ 21に切り 替える。次に、指示部 42は、入力された固浸レンズ 6の型番、基板の厚さ及び材質 に応じて特定した 5つのパラメータに応じてペリフェラルコントローラ 33を介して補正 環調整用モータ 25を駆動し、補正環 24を適正な位置に合わせる。  When the solid immersion lens holder 8 is attached, the instruction unit 42 switches the objective lens 21 to which the solid immersion lens 6 is attached by driving the revolver via the peripheral controller 33. Next, the instruction unit 42 drives the correction ring adjustment motor 25 via the peripheral controller 33 according to the five parameters specified according to the input model number of the solid immersion lens 6, the thickness and material of the substrate. , Adjust the correction ring 24 to the proper position.
[0087] 続いて、指示部 42は、上記 5つのパラメータに応じ、ペリフェラルコントローラ 33を 介して XYZステージ 7を駆動することで対物レンズ 21のフォーカス位置を合わせる。 この場合、近接センサ 112が金属板 114を検出したときには、指示部 42は、半導体 デバイス 11をバネ 100によって加圧している旨を操作者に知らせる。また、フォー力 ス位置の調整において、近接センサ 113が金属板 114を検出したとき又は応力検知 センサ Sが所定の応力以上の応力を検知したら、ペリフェラルコントローラ 33は、 XY Zステージ 7の駆動を停止させる。 Subsequently, the instruction unit 42 adjusts the focus position of the objective lens 21 by driving the XYZ stage 7 via the peripheral controller 33 according to the above five parameters. In this case, when the proximity sensor 112 detects the metal plate 114, the instruction unit 42 notifies the operator that the semiconductor device 11 is being pressed by the spring 100. Also for force In the adjustment of the position, when the proximity sensor 113 detects the metal plate 114 or when the stress detection sensor S detects a stress greater than a predetermined stress, the peripheral controller 33 stops driving the XY Z stage 7.
[0088] そして、近接センサ 112が金属板 114を検出する一方、近接センサ 113が金属板 1 14を検出していない範囲において、例えば高感度カメラ 3で取得される画像を見な 力 Sらマニュアル操作で、対物レンズ 21のフォーカス位置を微調する。そして、対物レ ンズ 21のフォーカス位置が合った状態で、指示部 42は、 LSMコントローラ 32及び力 メラコントローラ 31を介して、 LSMユニット 4及び高感度カメラ 3等を利用して半導体 デバイス 11の観察を実施する。  [0088] Then, in the range where the proximity sensor 112 detects the metal plate 114 while the proximity sensor 113 does not detect the metal plate 114, for example, an image acquired by the high-sensitivity camera 3 is regarded as a manual. By operation, finely adjust the focus position of the objective lens 21. Then, in a state where the focus position of the objective lens 21 is in alignment, the instruction unit 42 observes the semiconductor device 11 using the LSM unit 4 and the high-sensitivity camera 3 etc. via the LSM controller 32 and the force controller 31. To implement.
[0089] なお、仮に、固浸レンズ 6を取り替える必要が生じた場合には、固浸レンズホルダ 8 を取り替えることで固浸レンズ 6を取り替える。この場合、微小な固浸レンズ 6を直接 取り扱わなくてもよいので、固浸レンズ 6の交換が容易になっている。  If it is necessary to replace the solid immersion lens 6, the solid immersion lens 6 is replaced by replacing the solid immersion lens holder 8. In this case, since the minute solid immersion lens 6 need not be handled directly, the solid immersion lens 6 can be easily replaced.
[0090] また、上記説明では、対物レンズソケット 9に固浸レンズホルダ 8を装着した状態で の半導体デバイス 11を観察する場合を説明したが、対物レンズソケット 9に固浸レン ズホルダ 8を装着していない状態での通常観察も可能である。  In the above description, the case where the semiconductor device 11 is observed in a state where the solid immersion lens holder 8 is mounted on the objective lens socket 9 has been described. However, the solid immersion lens holder 8 is mounted on the objective lens socket 9. Normal observation is also possible in a state in which it is not.
[0091] すなわち、図 5 (a)及び図 5 (b)に示すように、対物レンズソケット 9が有する可動部 材 80の周壁 83には、バネ収容溝 76内にバネ 100を全て収容した状態で可動部材 8 0をベース部 70に固定するための貫通孔 87を有している。  That is, as shown in FIGS. 5 (a) and 5 (b), the peripheral wall 83 of the movable member 80 of the objective lens socket 9 is in a state where all the springs 100 are accommodated in the spring accommodating grooves 76. And has a through hole 87 for fixing the movable member 80 to the base portion 70.
[0092] そして、ベース部 70が有する周壁 74には、その貫通孔 87に対応する位置に螺子 孔 79が形成されている。その結果、螺子孔 79に対応した固定用螺子 P2を利用する ことで、バネ 100をバネ収容溝 76内に全て収容した状態で、可動部材 80をベース部 70に対して固定することができる。  Further, a screw hole 79 is formed at a position corresponding to the through hole 87 in the peripheral wall 74 of the base portion 70. As a result, by using the fixing screw P2 corresponding to the screw hole 79, the movable member 80 can be fixed to the base portion 70 in a state in which the spring 100 is fully accommodated in the spring accommodating groove 76.
[0093] そのため、対物レンズソケット 9の光軸 L方向の長さを最小にした状態で、図 11 (a) に示すように、半導体デバイス 11を観察すればよい。図 11 (b)は、図 11 (a)の対物 レンズ 21を半導体デバイス 11側からみた図である。  Therefore, the semiconductor device 11 may be observed as shown in FIG. 11 (a) with the length of the objective lens socket 9 in the optical axis L direction minimized. FIG. 11 (b) is a view of the objective lens 21 of FIG. 11 (a) as viewed from the semiconductor device 11 side.
[0094] この場合、対物レンズソケット 9の光軸 L方向の長さを短くできているので、対物レン ズ 21のワーキングディスタンスを確保することができている。また、固定用螺子 P2を はずすことで、直ぐに固浸レンズホルダ 8を取り付けられるようになつている。 [0095] 以上説明したように、対物レンズソケット 9を利用した半導体デバイス 11の観察では 、対物レンズソケット 9が有するバネ 100によって固浸レンズ 6を半導体デバイス 11に 付勢するので、簡易な構成で確実に固浸レンズ 6を半導体デバイス 11に密着させて 光学的に接合できる。 In this case, since the length of the objective lens socket 9 in the optical axis L direction can be shortened, the working distance of the objective lens 21 can be secured. Further, the solid immersion lens holder 8 can be immediately attached by removing the fixing screw P2. As described above, in the observation of the semiconductor device 11 using the objective lens socket 9, the solid immersion lens 6 is biased toward the semiconductor device 11 by the spring 100 of the objective lens socket 9. The solid immersion lens 6 can be securely adhered to the semiconductor device 11 and optically bonded.
[0096] そして、対物レンズソケット 9は対物レンズ鏡筒 26に取り付けられており、バネ 100 は対物レンズ 21の対物レンズ鏡筒 26の周囲に位置することになるので、対物レンズ ソケット 9を装着することによる対物レンズ 21のワーキングディスタンスの減少が抑制 されている。  The objective lens socket 9 is attached to the objective lens barrel 26, and the spring 100 is positioned around the objective lens barrel 26 of the objective lens 21, so the objective lens socket 9 is attached. As a result, the reduction of the working distance of the objective lens 21 is suppressed.
[0097] また、対物レンズソケット 9は、固浸レンズ 6を保持した固浸レンズホルダ 8を好適に 対物レンズ 21に取り付け、バネ 100によって固浸レンズ 6を半導体デバイス 11に付 勢するので、図 1に示した顕微鏡 5のように正立型のものへの適用のみならず、倒立 型に適用することも好ましい。この場合も、固浸レンズ 6は、対物レンズ 21の前方(前 側焦点の有る方向)に好適に保持され、また、観察対象物としての半導体デバイス 1 1に確実に付勢される。なお、倒立型に適用する場合には、パネ 100の長さや貫通 孔 85が有する光軸 L方向の長さなどを調整して常に可動部材 80にパネ 100による 力が加わっていることが好ましい。  Further, the objective lens socket 9 preferably has the solid immersion lens holder 8 holding the solid immersion lens 6 attached to the objective lens 21 and biases the solid immersion lens 6 against the semiconductor device 11 by the spring 100. It is preferable to apply not only to an upright type like the microscope 5 shown in 1 but also to an inverted type. Also in this case, the solid immersion lens 6 is preferably held in front of the objective lens 21 (the direction in which the front focal point is located), and is reliably urged to the semiconductor device 11 as the observation object. When applied to an inverted type, it is preferable that the force of the panel 100 is always applied to the movable member 80 by adjusting the length of the panel 100 and the length of the through hole 85 in the optical axis L direction.
[0098] ところで、従来の技術のように、固浸レンズをチャンバに収容し、チャンバ内にガス を導入してガス圧で固浸レンズを半導体デバイスに付勢しょうとすると、チャンバにガ スを導入するガス導入管なども接続しなければならない。この場合、凹部 13内に固 浸レンズを入れることが困難であったり、凹部内での観察範囲を減少させる虞がある  [0098] By the way, when the solid immersion lens is accommodated in the chamber and gas is introduced into the chamber and the solid immersion lens is urged to the semiconductor device by the gas pressure as in the conventional technique, the chamber is filled with gas. The gas introduction pipe to be introduced must also be connected. In this case, there is a possibility that it is difficult to put a solid immersion lens in the recess 13 or the observation range in the recess is reduced.
[0099] これに対して、対物レンズソケット 9を利用した場合、対物レンズ 21の周囲に配置さ れたバネ 100によって固浸レンズ 6の半導体デバイス 11への付勢を実施しているの で、ガス導入管などは不要である。そのため、凹部 13内の半導体デバイス 11をより 観察し易くなつている。特に、外形が略 T字状の固浸レンズホルダ 8を利用しているた め、固浸レンズホルダ 8と凹部 13の側壁 13aとの干渉(接触)も低減されているので、 凹部 13の下面に位置した半導体デバイス 11の周縁部まで観察が可能である。 On the other hand, when the objective lens socket 9 is used, the solid immersion lens 6 is urged toward the semiconductor device 11 by the spring 100 arranged around the objective lens 21. A gas introduction pipe is not required. Therefore, it becomes easier to observe the semiconductor device 11 in the recess 13. In particular, since the solid immersion lens holder 8 having a substantially T-shaped outer shape is used, interference (contact) between the solid immersion lens holder 8 and the side wall 13a of the recess 13 is also reduced. It is possible to observe up to the peripheral edge of the semiconductor device 11 located in the position.
[0100] 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に 限定されない。対物レンズソケット 9には、外形が略 T字状の固浸レンズホルダ 8が取 り付けられるとした力 たとえば、図 12に示すように、固浸レンズ 6を頂点として対物レ ンズ 21側に向かって外径が広がったテーパ形状の固浸レンズホルダ 160を利用して あよい。 [0100] Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the above embodiments. It is not limited. For example, as shown in FIG. 12, the objective lens socket 9 has a solid immersion lens holder 8 with a substantially T-shaped outer shape. In addition, a taper-shaped solid immersion lens holder 160 with an expanded outer diameter may be used.
[0101] また、バネ 100の個数は、 3つとしたが、この個数は 3つに限定されなレ、。たとえば、 図 13に示すように、バネ収容溝 161が周壁 74の全周に渡って形成されており、その バネ収容溝 161内に配置された周方向に連続して設けられた 1つのバネ 162として もよレ、。この際には、ピン P1を固定できるように周壁 74の形状や厚さを変更すればよ レ、。また、バネ 100の数は、 2つでもよく、更に、 4つ以上でもよレ、。更に、弾性体は、 パネに限らず、光軸 L方向に付勢できればょレ、。  [0101] The number of springs 100 is three, but this number is not limited to three. For example, as shown in FIG. 13, the spring accommodating groove 161 is formed over the entire circumference of the peripheral wall 74, and one spring 162 provided continuously in the circumferential direction disposed in the spring accommodating groove 161. As good as you can. In this case, change the shape and thickness of the peripheral wall 74 so that the pin P1 can be fixed. Also, the number of springs 100 may be two, and even four or more. Furthermore, the elastic body is not limited to the panel, but can be biased in the optical axis L direction.
[0102] また、ホルダ検出センサ 120は、光を利用したセンサである力 光を利用するものに 限らなくてもよく、固浸レンズホルダ 8を検出できればよい。更にまた、部材位置検出 手段 110は、接触位置検出部としての近接センサ 112と、停止位置検出部としての 近接センサ 113とを有するとした力 S、必ずしも両方を備える必要はなレ、。何れか一方 でもよレ、。また部材位置検出手段 110としては、近接センサ 112, 113に限らず、ベ ース部 70に対する可動部材 80の位置を計測できればよい。  [0102] Further, the holder detection sensor 120 is not limited to a sensor that uses force light, which is a sensor using light, and may be any sensor that can detect the solid immersion lens holder 8. Furthermore, the member position detecting means 110 does not necessarily need to include both the force S having the proximity sensor 112 as the contact position detecting unit and the proximity sensor 113 as the stop position detecting unit. Either one is fine. Further, the member position detecting means 110 is not limited to the proximity sensors 112 and 113, and it is sufficient that the position of the movable member 80 relative to the base portion 70 can be measured.
[0103] 更に、バネ 100は、対物レンズ 21の対物レンズ鏡筒 26の周囲に設けられていると したが、例えば、対物レンズ 21の対物レンズ鏡筒 26の下側であって、対物レンズ 21 が有するレンズ群のうち一番試料に近レ、レンズの周囲に設けるようにしてもょレ、。ただ し、ワーキングディスタンスを確保する観点から、対物レンズ 21の周囲に位置するよう に配置されることが好ましいのは、前述したとおりである。  Furthermore, the spring 100 is provided around the objective lens barrel 26 of the objective lens 21. For example, the spring 100 is located below the objective lens barrel 26 of the objective lens 21 and is provided on the objective lens 21. The lens group in the lens is the closest to the sample and may be placed around the lens. However, from the viewpoint of securing a working distance, it is preferable that the lens is disposed around the objective lens 21 as described above.
[0104] また、上記実施形態では、対物レンズソケット 9を備えた半導体検查装置 1で、凹部 13内に配置された半導体デバイス 11を観察する場合について説明したが、対物レ ンズソケット 9は、凹部 13内に配置されていない半導体デバイス 11の観察にも好適 に適用できる。更に、対物レンズソケット 9は、半導体デバイス 11以外の観察対象物 の観察にも好適に利用できる。  [0104] Further, in the above-described embodiment, the case where the semiconductor device 11 provided in the recess 13 is observed with the semiconductor inspection device 1 including the objective lens socket 9, but the objective lens socket 9 is The present invention can also be suitably applied to observation of the semiconductor device 11 that is not disposed in the recess 13. Furthermore, the objective lens socket 9 can be suitably used for observation of an observation object other than the semiconductor device 11.
[0105] 更に、ベース部 70及び可動部材 80は、円筒形状のものに限らない。ベース部 70 は、対物レンズ鏡筒 26の先端部に取り付けられ、可動部材 80は、ベース部 70に対 して光軸 L方向に摺動可能にベース部 70に取り付けられるようになっていればよレ、。 また、必ずしも、ホルダ検出部としてのセンサヘッド 140、及び部材位置検出手段 11 0は取り付けられてレ、なくてもょレ、。 [0105] Furthermore, the base portion 70 and the movable member 80 are not limited to cylindrical shapes. The base part 70 is attached to the tip of the objective lens barrel 26, and the movable member 80 is opposed to the base part 70. Then, it should be attached to the base part 70 so as to be slidable in the optical axis L direction. In addition, the sensor head 140 as the holder detection unit and the member position detection means 110 are not necessarily attached.
[0106] また、図 14は、本発明に係る対物レンズソケットの更に他の実施形態(第 2の実施 形態)の断面図である。図 14では、半導体検查装置 1が有する対物レンズ 21に対物 レンズソケット 170が装着されて、試料 10を観察している時の状態を示している。な お、図 14では、対物レンズソケット 170の特徴部分を示すように断面構造を表示して おり、各構成要素の配置関係は実際には異なる。  FIG. 14 is a cross-sectional view of still another embodiment (second embodiment) of the objective lens socket according to the present invention. FIG. 14 shows a state in which the objective lens socket 170 is attached to the objective lens 21 of the semiconductor inspection apparatus 1 and the sample 10 is observed. In FIG. 14, the cross-sectional structure is shown so as to show the characteristic portion of the objective lens socket 170, and the arrangement relationship of each component is actually different.
[0107] 図 15は、図 14に示した固浸レンズホルダの斜視図である。図 16は、対物レンズソ ケットと固浸レンズホルダとを分解した状態の側面図である。図 17は、対物レンズソケ ットの上面図である。図 18は、対物レンズソケットの底面図である。図 19は、図 17の XIX— XIX線に沿った断面図である。図 16では、後述する近接センサ 200の記載は 省略している。また、図 16は、対物レンズソケットに固浸レンズホルダを取り付ける前 の状態を示している。図 17では、部材位置検出手段 110及び金属板 114の記載は 省略している。以下の説明では、第 1の実施形態と同様の要素には同じ符合を付し、 重複する説明を省略する。  FIG. 15 is a perspective view of the solid immersion lens holder shown in FIG. FIG. 16 is a side view of the state in which the objective lens socket and the solid immersion lens holder are disassembled. FIG. 17 is a top view of the objective lens socket. FIG. 18 is a bottom view of the objective lens socket. FIG. 19 is a cross-sectional view taken along line XIX-XIX in FIG. In FIG. 16, the description of the proximity sensor 200 to be described later is omitted. FIG. 16 shows the state before attaching the solid immersion lens holder to the objective lens socket. In FIG. 17, the description of the member position detecting means 110 and the metal plate 114 is omitted. In the following description, the same reference numerals are given to the same elements as those in the first embodiment, and duplicate descriptions are omitted.
[0108] 図 14及び図 15に示すように、固浸レンズホルダ 8は、対物レンズキャップ 50の底板 52の周縁部に設けられた周壁 55を有する。周壁 55には、板状の被検出体 Dが螺子 止めされている。被検出体 Dは、ニッケルメツキされた鉄からなり、対物レンズ 21側に 延びている。  As shown in FIGS. 14 and 15, the solid immersion lens holder 8 has a peripheral wall 55 provided on the peripheral edge of the bottom plate 52 of the objective lens cap 50. A plate-like detection object D is screwed to the peripheral wall 55. The detection object D is made of nickel-plated iron and extends to the objective lens 21 side.
[0109] 更に、周壁 55には、 3つのマグネット 181〜183力 S各マグネット 181〜: 183の上端 部が周壁 55の上面 55aとほぼ同じ位置になるように埋め込まれている。このマグネッ ト 181〜183力 S、後述するように、可動部材 80に設けられたマグネット 184〜186に 磁気吸着することによって対物レンズキャップ 50が可動部材 80に取り付けられること になる。  Furthermore, three magnets 181 to 183 force S each of the magnets 181 to 183 are embedded in the peripheral wall 55 so that the upper end portion of the magnet 183 is substantially at the same position as the upper surface 55a of the peripheral wall 55. The objective lens cap 50 is attached to the movable member 80 by magnetically attracting the magnets 181 to 183 force S to magnets 184 to 186 provided on the movable member 80 as will be described later.
[0110] この固浸レンズホルダ 8が取り付けられる対物レンズソケット 170について説明する [0111] 図 16〜図 19に示すように、対物レンズソケット 170が有するベース部 70は、その周 壁外面 74aに光軸 L方向に延びる 3つのリニアガイド 190, 190, 190が等間隔で設 けられている。各リニアガイド 190は、例えば、周壁 74に螺子止めされている。 [0110] The objective lens socket 170 to which the solid immersion lens holder 8 is attached will be described. [0111] As shown in FIGS. Three linear guides 190, 190, 190 extending in the direction of the optical axis L are provided at equal intervals on the wall outer surface 74a. Each linear guide 190 is screwed to the peripheral wall 74, for example.
[0112] 可動部材 80は、このリニアガイド 190にガイドされながら光軸 L方向にスライドするス ライダ 191を有する。スライダ 191は、外形が略直方体でスライダ 191を収容する凹 部が形成されたスライダ保持部材 192に螺子止めされており、リニアガイド 190に、例 えば、ボールを介して嵌め合わせられる。そして、スライダ保持部材 192は、可動部 材 80の周壁 83から張り出したフランジ部 88に螺子止めによって固定されている。  The movable member 80 includes a slider 191 that slides in the optical axis L direction while being guided by the linear guide 190. The slider 191 is screwed to a slider holding member 192 having a substantially rectangular parallelepiped shape and formed with a recess for accommodating the slider 191. The slider 191 is fitted to the linear guide 190 via a ball, for example. The slider holding member 192 is fixed to the flange portion 88 protruding from the peripheral wall 83 of the movable member 80 by screwing.
[0113] このようにスライダ保持部材 192を可動部材 80に固定しているため、ベース部 70に 対して可動部材 80が移動したときに、リニアガイド 190と周壁 83とが接触しないように 、スライダ保持部材 192が設けられる領域での周壁 83の内側には、切り欠き部 83a が形成されている。  [0113] Since the slider holding member 192 is fixed to the movable member 80 as described above, when the movable member 80 moves relative to the base portion 70, the slider is prevented from contacting the linear guide 190 and the peripheral wall 83. A notch 83a is formed inside the peripheral wall 83 in the region where the holding member 192 is provided.
[0114] 上記構成では、可動部材 80は、スライダ 191及びリニアガイド 190を介してベース 部 70に取り付けられる。よって、図 20 (a)及び図 20 (b)に示すように、可動部材 80は 、ベース部 70に対して光軸 L方向によりスムーズに移動することになる。また、リニア ガイド 190及びスライダ 191を介することで、ベース部 70と可動部材 80との間のガタ をより小さくできる。そのため、ベース部 70に対する可動部材 80の位置精度がより高 くなる。また、前述したようにガタを小さくできることから、ガタが大きい場合に発生する 虞のあるこじれも抑制できる。  In the above configuration, the movable member 80 is attached to the base unit 70 via the slider 191 and the linear guide 190. Therefore, as shown in FIGS. 20 (a) and 20 (b), the movable member 80 moves smoothly in the direction of the optical axis L with respect to the base portion 70. Further, the play between the base portion 70 and the movable member 80 can be further reduced by using the linear guide 190 and the slider 191. Therefore, the positional accuracy of the movable member 80 with respect to the base portion 70 becomes higher. In addition, since the backlash can be reduced as described above, it is possible to suppress the twisting that may occur when the backlash is large.
[0115] また、図 18に示すように、フランジ部 88の下面には、 3つのマグネット 184〜: 186力 S 設けられている。マグネット 184〜: 186は、例えば、棒状であり下端部が若干突出す るようにフランジ部 88内に坦め込まれている。このマグネット 184〜186と、対物レン ズキャップ 50の周壁 55に設けられた 3つのマグネット 181〜: 183との磁気吸引力によ つて固浸レンズホルダ 8が可動部材 80に取り付けられる。なお、マグネット 181〜18 6の磁極としては、 f列えは'、マグネット 181 , 183を N極、マグネット 182を S極としたと き、マグネット 184, 186を S極、マグネット 185を N極とすることカ考えられる。  Further, as shown in FIG. 18, three magnets 184 to 186 force S are provided on the lower surface of the flange portion 88. Magnets 184 to 186 are, for example, rod-shaped, and are carried in the flange portion 88 so that the lower end portion protrudes slightly. The solid immersion lens holder 8 is attached to the movable member 80 by the magnetic attractive force of the magnets 184 to 186 and the three magnets 181 to 183 provided on the peripheral wall 55 of the objective lens cap 50. As for the magnetic poles of magnets 181 to 186, f array is', magnets 181 and 183 are N poles, magnet 182 is S poles, magnets 184 and 186 are S poles, and magnet 185 is N poles. I can think of it.
[0116] このように固浸レンズホルダ 8を可動部材 80にマグネット 181〜: 186を利用して取り 付けることで、固浸レンズホルダ 8の着脱が容易になっている。  [0116] By attaching the solid immersion lens holder 8 to the movable member 80 using the magnets 181 to 186 as described above, the solid immersion lens holder 8 can be easily attached and detached.
[0117] また、対物レンズソケット 170は、固浸レンズホルダ 8が可動部材 80に取り付けられ ているか否力を検出するための近接センサ(ホルダ検出部) 200を有する。近接セン サ 200は、ペリフェラルコントローラ 33 (図 1参照)に電気的に接続されている。近接 センサ 200は、フランジ部 88に固定されたセンサ保持部材 201に保持されており、そ の先端部近傍にコイルを利用して磁界を発生させている。そして、近接センサ 200は 、前方に被検出体 Dが位置することで生じる磁界の変化はり具体的にはコイルのィ ンピーダンスの変化)によって被検出体 Dを検出する。 [0117] The objective lens socket 170 has the solid immersion lens holder 8 attached to the movable member 80. Proximity sensor (holder detection unit) 200 for detecting whether or not the power is present. The proximity sensor 200 is electrically connected to the peripheral controller 33 (see FIG. 1). The proximity sensor 200 is held by a sensor holding member 201 fixed to the flange portion 88, and generates a magnetic field using a coil in the vicinity of the tip portion thereof. The proximity sensor 200 detects the detected object D by a change in magnetic field generated by the position of the detected object D ahead (specifically, a change in impedance of the coil).
[0118] この近接センサ 200の前方に被検出体 Dを確実に配置するために、図 17に示すよ うに、フランジ部 88には、被検出体 Dを通すための凹部 88aが形成されている。  [0118] In order to securely arrange the detected object D in front of the proximity sensor 200, as shown in FIG. 17, the flange 88 has a recess 88a for allowing the detected object D to pass therethrough. .
[0119] 対物レンズソケット 170では、マグネット 181〜183とマグネット 184〜186とを合わ せることで固浸レンズホルダ 8を可動部材 80に取り付けると、凹部 88aを通って被検 出体 Dが近接センサ 200の前方に確実に位置することになり、近接センサ 200が被 検出体 Dを検出する。すなわち、近接センサ 200による被検出体 Dの検出の有無に より固浸レンズホルダ 8が可動部材 80に取り付けられているか否かを判別できること になる。  [0119] In the objective lens socket 170, when the solid immersion lens holder 8 is attached to the movable member 80 by aligning the magnets 181 to 183 and the magnets 184 to 186, the object D to be detected passes through the recess 88a. The proximity sensor 200 detects the object D to be detected. In other words, whether or not the solid immersion lens holder 8 is attached to the movable member 80 can be determined based on whether or not the detection object D is detected by the proximity sensor 200.
[0120] また、対物レンズソケット 170では、マグネット 181〜186を利用して固浸レンズホル ダ 8を取り付けているため、被検出体 Dを近接センサ 200の前方により確実に配置で きる。  [0120] Further, in the objective lens socket 170, since the solid immersion lens holder 8 is attached using the magnets 181 to 186, the detection object D can be reliably arranged in front of the proximity sensor 200.
[0121] また、対物レンズソケット 170において、ベース部 70と可動部材 80とは、 3つのバネ 収容溝 76, 76, 76にそれぞれ収容されたバネ(弾性体) 100, 100, 100を挟んで 嵌め合わされることは、対物レンズソケット 9の場合と同様である。これによつて、半導 体デバイス 11を観察するときには、固浸レンズ 6は、半導体デバイス 11に付勢されて 確実に密着することになる。  [0121] In the objective lens socket 170, the base 70 and the movable member 80 are fitted with the springs (elastic bodies) 100, 100, 100 accommodated in the three spring accommodating grooves 76, 76, 76, respectively. The matching is the same as in the case of the objective lens socket 9. Thus, when observing the semiconductor device 11, the solid immersion lens 6 is urged by the semiconductor device 11 and is securely adhered.
[0122] なお、対物レンズソケット 170の可動部材 80に金属板 114が設けられていること、 及び、ベース部 70に部材位置検出手段 110が設けられていることは対物レンズソケ ット 9の場合と同様である。  It should be noted that the fact that the metal plate 114 is provided on the movable member 80 of the objective lens socket 170 and that the member position detecting means 110 is provided on the base portion 70 are the same as in the case of the objective lens socket 9. It is the same.
[0123] 以上説明した対物レンズソケット 170を利用した半導体検查装置 1の観察方法は、 固浸レンズホルダ 8の取付状態の確認を近接センサ 200を利用して行う点以外は、 対物レンズソケット 9を利用した第 1の実施形態の場合と同様である。 [0124] すなわち、近接センサ 200が被検出体 Dを検出していることによって、固浸レンズホ ルダ 8が装着されていることを確認してから、対物レンズソケット 9を利用した第 1の実 施形態の場合と同様にして試料 10を観察する。 The observation method of the semiconductor inspection apparatus 1 using the objective lens socket 170 described above is the same as that of the objective lens socket 9 except that the attachment state of the solid immersion lens holder 8 is checked using the proximity sensor 200. This is the same as in the case of the first embodiment using. [0124] That is, after the proximity sensor 200 detects the detection object D, it is confirmed that the solid immersion lens holder 8 is attached, and then the first implementation using the objective lens socket 9 is performed. Observe sample 10 in the same way as for morphology.
[0125] この場合、例えば、光学的に検出する場合に比べて、構成が簡易であって、磁場を 利用した近接センサ 200を採用していることから、例えば、レーザのように ON/OFF 制御する必要がない。その結果、半導体検查装置 1の操作がより容易になっている。  [0125] In this case, for example, the proximity sensor 200 using a magnetic field is simpler than in the case of optical detection, and the ON / OFF control is performed like a laser, for example. There is no need to do. As a result, the operation of the semiconductor inspection apparatus 1 becomes easier.
[0126] ここでは、被検出体 Dを有する固浸レンズホルダ 8を取り付ける対物レンズソケット 1 70がリニアガイド 190を有するとした力 図 2に示した対物レンズソケット 9がリニアガ イド 190を有していてもよレ、。また、リニアガイド 190の個数は 3個に限らず、 1個又は 2個、更に 4個以上でもよレ、。ただし、可動部材 80をベース部 70に対してより安定し て摺動させる観点からリニアガイド 190は複数設けられていることが好ましい。  Here, the force that the objective lens socket 170 to which the solid immersion lens holder 8 having the detection object D is attached has the linear guide 190. The objective lens socket 9 shown in FIG. 2 has the linear guide 190. Anyway. Also, the number of linear guides 190 is not limited to three, but one or two, and even four or more. However, it is preferable that a plurality of linear guides 190 are provided from the viewpoint of sliding the movable member 80 with respect to the base portion 70 more stably.
[0127] 更にまた、以上の説明では、対物レンズソケット 9, 170は、弾性体としてのバネ 100 を備えているとした力 S、正立型の顕微鏡に対物レンズソケット 9, 170を適用する際に は、 自重によって半導体デバイス 11に密着するので必ずしも弾性体を利用しなくても よい。  [0127] Furthermore, in the above description, the objective lens socket 9, 170 is assumed to have the spring 100 as the elastic body, and the force S is applied when the objective lens socket 9, 170 is applied to an upright microscope. In addition, since it adheres to the semiconductor device 11 by its own weight, it is not always necessary to use an elastic body.
[0128] また、対物レンズソケット 170では、対物レンズソケット 9の場合と同様に図 13で示し たパネ収容溝 161のように周壁 55の全周に渡って形成されたパネ収容溝とすること も可能である。更に、対物レンズソケット 170に固浸レンズホルダ 160を取り付けるよう にすることも可能である。この際には、固浸レンズホルダ 160の周壁にマグネット 181 〜183を設けておけばよい。  Further, in the objective lens socket 170, as in the case of the objective lens socket 9, a panel housing groove formed over the entire circumference of the peripheral wall 55 like the panel housing groove 161 shown in FIG. Is possible. Further, it is possible to attach the solid immersion lens holder 160 to the objective lens socket 170. At this time, magnets 181 to 183 may be provided on the peripheral wall of the solid immersion lens holder 160.
[0129] なお、固浸レンズ 6を用いて半導体デバイス 11を観察する場合、最適な観察条件 を得るために、対物レンズ 21に取り付けられる固浸レンズ 6の光学パラメータをあらか じめ把握しておく必要がある。例えば、固浸レンズ 6の光学パラメータとしては、屈折 率 n、厚さ d、及び球面状のレンズ面(上面 6a)の曲率半径 Rが挙げられる。  [0129] When observing the semiconductor device 11 using the solid immersion lens 6, the optical parameters of the solid immersion lens 6 attached to the objective lens 21 should be grasped in advance in order to obtain optimal observation conditions. It is necessary to keep. For example, the optical parameters of the solid immersion lens 6 include a refractive index n, a thickness d, and a radius of curvature R of a spherical lens surface (upper surface 6a).
R  R
[0130] 具体的に、図 1及び図 2を参照して説明する。検査対象となる半導体デバイス 11に 対して観察に好適な光学パラメータを有する固浸レンズ 6を選択し、その固浸レンズ 6を対物レンズ 21にセットする。そして、選択された固浸レンズ 6の屈折率 n、厚さ d、  [0130] This will be specifically described with reference to FIGS. A solid immersion lens 6 having optical parameters suitable for observation is selected for the semiconductor device 11 to be inspected, and the solid immersion lens 6 is set on the objective lens 21. And the refractive index n, thickness d,
R  R
及び曲率半径 Rの各光学パラメータを、解析部 Cに設けられた図示しない入力装置 を介して入力する。次いで、制御部 Bは、入力された半導体デバイス 11の基板の屈 折率及び厚さと、入力された固浸レンズ 6の光学パラメータとを利用して、最適な観察 条件を算出する。 And an optical device (not shown) provided in the analysis unit C for each optical parameter of the radius of curvature R Enter through. Next, the control unit B calculates optimal observation conditions using the input refractive index and thickness of the substrate of the semiconductor device 11 and the input optical parameters of the solid immersion lens 6.
[0131] ここで、固浸レンズ 6の光学パラメータの入力は、入力装置を介して個別に入力す る構成以外に、固浸レンズ 6の型番を選択することにより予め用意したパラメータを読 み込ませる構成や、パラメータの値が記憶された ICチップなどの記憶媒体を被検出 体 Dに設けておいて使用時にデータを読み出す構成などを用いても良い。  [0131] Here, in addition to the configuration in which the optical parameters of the solid immersion lens 6 are individually input via the input device, the parameters prepared in advance are read by selecting the model number of the solid immersion lens 6. For example, a configuration in which a storage medium such as an IC chip in which parameter values are stored is provided in the detection target D and data is read out during use may be used.
[0132] 例えば、固浸レンズ 6の光学パラメータの入力は、被検出体 Dに取り付けた半導体 デバイス Z磁気デバイスなどの記憶媒体に、固浸レンズ 6の型番、シリアル番号、曲 率半径、厚さ、屈折率などのパラメータを記憶しておく構成を用いることができる。こ の場合のデータの読み出し方法としては、電波による受信、アーム及びマニピユレ一 タによる電気的接触を介した受信などがある。この場合、上記近接センサ 200に代え て、センサ保持部材 201にそれぞれの受信方法に適用されるセンサを取り付ければ 良い。また、被検出体 Dにバーコードなどを付しておき、それを読み取ることよってデ ータを読み出す構成としても良い。  [0132] For example, optical parameters of the solid immersion lens 6 are input to a storage medium such as a semiconductor device Z magnetic device attached to the detection object D, the model number, serial number, radius of curvature, and thickness of the solid immersion lens 6 A configuration in which parameters such as a refractive index are stored can be used. In this case, the data reading method includes reception by radio waves and reception through electrical contact by an arm and a manipulator. In this case, instead of the proximity sensor 200, a sensor applicable to each receiving method may be attached to the sensor holding member 201. Further, a configuration may be adopted in which data is read by attaching a barcode or the like to the detection object D and reading it.
[0133] このような構成を採用することにより、固浸レンズホルダ 8が可動部材 80に取り付け られているか否力を判別ができるとともに、取り付けられている場合には、固浸レンズ 6の光学パラメータを簡便に把握することができる。  [0133] By adopting such a configuration, it is possible to determine whether or not the solid immersion lens holder 8 is attached to the movable member 80, and when it is attached, the optical parameters of the solid immersion lens 6 are determined. Can be easily grasped.
[0134] ここで、対物レンズソケットは、上述したように、対物レンズの鏡筒の先端部に取り付 けられるベース部と、固浸レンズホルダが取り付けられると共に、ベース部に対物レン ズの光軸方向に摺動可能に取り付けられる可動部材と、を備え、固浸レンズホルダを 対物レンズの前方に配置することが好ましレ、。  Here, as described above, the objective lens socket is provided with a base portion attached to the tip of the lens barrel of the objective lens and a solid immersion lens holder, and the light of the objective lens is attached to the base portion. And a movable member that is slidably mounted in the axial direction, and the solid immersion lens holder is preferably disposed in front of the objective lens.
[0135] また、上記対物レンズソケットでは、ベース部の周壁外面には、光軸方向に延びるリ ユアガイドが設けられており、可動部材は、リニアガイドを介してベース部に摺動可能 に取り付けられることが好ましい。リニアガイドを介して可動部材がベース部に摺動可 能に取り付けられているので、ベース部と可動部材との間のガタを小さくでき、高い位 置精度を実現できる。  [0135] In the objective lens socket, a linear guide extending in the optical axis direction is provided on the outer peripheral surface of the base portion, and the movable member is slidably attached to the base portion via the linear guide. It is preferable. Since the movable member is slidably attached to the base portion via the linear guide, the backlash between the base portion and the movable member can be reduced, and high positioning accuracy can be realized.
[0136] 更に、上記対物レンズソケットでは、ベース部と可動部材との間に設けられると共に 、可動部材を光軸方向に付勢する弾性体を備えることが好適である。 [0136] Further, the objective lens socket is provided between the base portion and the movable member. It is preferable to provide an elastic body that urges the movable member in the optical axis direction.
[0137] この構成では、摺動可能に取り付けられたベース部と可動部材との間に弾性体が 設けられ、可動部材は、弾性体によって対物レンズの光軸方向に付勢されることから 、固浸レンズホルダで保持された固浸レンズも対物レンズの光軸方向に付勢されるこ となる。その結果として、例えば、固浸レンズホルダで保持された固浸レンズを利用し て観察対象物を観察する際には、固浸レンズは観察対象物に向けて押しつけられる ことになる。  [0137] In this configuration, an elastic body is provided between the base portion slidably attached and the movable member, and the movable member is urged by the elastic body in the optical axis direction of the objective lens. The solid immersion lens held by the solid immersion lens holder is also biased in the optical axis direction of the objective lens. As a result, for example, when observing the observation object using the solid immersion lens held by the solid immersion lens holder, the solid immersion lens is pressed toward the observation object.
[0138] また、上記対物レンズソケットでは、弾性体は、対物レンズの鏡筒の周囲に配置さ れることが好適である。これによつて、対物レンズソケットを対物レンズの鏡筒に取り付 けたとしても、対物レンズの光軸方向における対物レンズソケットの長さを短くすること が可能であり、その結果として、対物レンズのワーキングディスタンスを確保すること ができる。  [0138] In the objective lens socket, it is preferable that the elastic body is disposed around the lens barrel of the objective lens. As a result, even if the objective lens socket is attached to the lens barrel of the objective lens, the length of the objective lens socket in the optical axis direction of the objective lens can be shortened. A working distance can be secured.
[0139] 更にまた、上記対物レンズソケットでは、ベース部の周壁には、光軸方向に延びて おり弾性体を収容する弾性体収容溝が形成されており、弾性体は、弾性体収容溝に 収容されること力 S好適である。弾性体が弾性体収容溝に収容されているので、対物レ ンズの光軸方向における対物レンズソケットの長さを更に短くすることが可能であり、 その結果として、対物レンズのワーキングディスタンスを確保することができる。  [0139] Furthermore, in the objective lens socket, the peripheral wall of the base portion is formed with an elastic body accommodating groove that extends in the optical axis direction and accommodates the elastic body, and the elastic body is formed in the elastic body accommodating groove. The capacity to be accommodated S is suitable. Since the elastic body is housed in the elastic body housing groove, the length of the objective lens socket in the optical axis direction of the objective lens can be further shortened, and as a result, the working distance of the objective lens is ensured. be able to.
[0140] また、上記対物レンズソケットにおいては、可動部材への固浸レンズホルダの取付 状態を検出するホルダ検出部を更に備えることが好ましい。これによつて、例えば、 観察対象物を喑室内で観察するときでも可動部材に固浸レンズホルダが取り付けら れてレ、るか否かを容易に検出できる。  [0140] The objective lens socket preferably further includes a holder detection unit that detects the attachment state of the solid immersion lens holder to the movable member. Thereby, for example, even when the observation object is observed in the tub room, it can be easily detected whether or not the solid immersion lens holder is attached to the movable member.
[0141] このホルダ検出部は、予め固浸レンズホルダに取り付けられている被検出体を検出 することによって固浸レンズホルダを検出することが好適である。この場合、ホルダ検 出部による被検出体の検出の有無で固浸レンズホルダの取付状態を容易に判別す ることが可能である。  [0141] It is preferable that the holder detection unit detects the solid immersion lens holder by detecting an object to be detected that is previously attached to the solid immersion lens holder. In this case, it is possible to easily determine the mounting state of the solid immersion lens holder based on whether or not the detection object is detected by the holder detection unit.
[0142] また、ホルダ検出部は、固浸レンズホルダからの反射光を取得することで固浸ホル ダを検出することも有効である。このように光学的に固浸レンズホルダを検出すること によって非接触で固浸レンズホルダを検出できるので、検出に伴う固浸レンズホルダ への影響を小さくすることが可能である。 [0142] It is also effective for the holder detection unit to detect the solid immersion holder by acquiring the reflected light from the solid immersion lens holder. By detecting the solid immersion lens holder optically in this way, the solid immersion lens holder can be detected in a non-contact manner. It is possible to reduce the influence on
[0143] 更に、上記対物レンズソケットにおいては、ベース部に対する可動部材の光軸方向 における部材位置を検出する部材位置検出手段を更に備えることが好適である。可 動部材の位置に応じて、弾性体から受ける付勢力が変化する。したがって、部材位 置検出手段で可動部材の部材位置を検出することで、弾性体から可動部材に加えら れる付勢力を検出することができる。そして、可動部材が弾性体力 受ける付勢力は 、観察時には、固浸レンズを介して観察対象物に加えられるので、上記のように観察 対象物に加えられている付勢力を知ることで観察対象物に損傷を与えずに観察対象 物を観察することが可能である。  [0143] Further, it is preferable that the objective lens socket further includes a member position detecting means for detecting a member position in the optical axis direction of the movable member with respect to the base portion. The urging force received from the elastic body changes according to the position of the movable member. Therefore, the biasing force applied to the movable member from the elastic body can be detected by detecting the member position of the movable member by the member position detecting means. The urging force that the movable member receives the elastic body force is applied to the observation object through the solid immersion lens at the time of observation. Therefore, the observation object is obtained by knowing the urging force applied to the observation object as described above. It is possible to observe the observation object without damaging it.
[0144] また、上記対物レンズソケットが有する部材位置検出手段は、固浸レンズホルダが 保持する固浸レンズが観察対象物と接触するときの部材位置を検出する接触位置検 出部を有することが好ましい。接触位置検出部によって固浸レンズが観察対象物に 接触したことを知ることができる。  [0144] Further, the member position detecting means of the objective lens socket may include a contact position detecting unit that detects a member position when the solid immersion lens held by the solid immersion lens holder comes into contact with the observation object. preferable. The contact position detection unit can know that the solid immersion lens has contacted the observation object.
[0145] また、上記対物レンズソケットが有する部材位置検出手段は、固浸レンズホルダが 保持する固浸レンズを介した弾性体による観察対象物への付勢を停止するための部 材位置を検出する停止位置検出部を有することが好適である。この構成では、停止 位置検出部が部材位置を検出することで、弾性体による観察対象物への付勢を停 止するので、観察対象物に一定以上の負荷が加わらない。その結果として、観察対 象物の保護が図られている。  [0145] Further, the member position detecting means of the objective lens socket detects a member position for stopping the urging of the object to be observed by the elastic body via the solid immersion lens held by the solid immersion lens holder. It is preferable to have a stop position detection unit. In this configuration, since the stop position detection unit detects the member position, the urging of the elastic body to the observation target object is stopped, so that a certain load is not applied to the observation target object. As a result, the observation object is protected.
産業上の利用可能性  Industrial applicability
[0146] 本発明は、簡易な構成で固浸レンズを観察対象物に密着させることが可能な対物 レンズソケットとして利用可能である。  The present invention can be used as an objective lens socket capable of bringing a solid immersion lens into close contact with an observation object with a simple configuration.

Claims

請求の範囲 The scope of the claims
[1] 対物レンズの鏡筒の先端部に取り付けられるベース部と、  [1] a base part attached to the tip of the objective lens barrel;
固浸レンズホルダが取り付けられると共に、前記ベース部に前記対物レンズの光軸 方向に摺動可能に取り付けられる可動部材と、  A movable member attached to the base portion so as to be slidable in the optical axis direction of the objective lens;
を備え、  With
前記固浸レンズホルダを前記対物レンズの前方に配置することを特徴とする対物レ ンズソケット。  An objective lens socket, wherein the solid immersion lens holder is disposed in front of the objective lens.
[2] 前記ベース部の周壁外面には、前記光軸方向に延びるリニアガイドが設けられて おり、  [2] A linear guide extending in the optical axis direction is provided on the outer peripheral surface of the base portion,
前記可動部材は、前記リニアガイドを介して前記ベース部に摺動可能に取り付けら れることを特徴とする請求項 1に記載の対物レンズソケット。  2. The objective lens socket according to claim 1, wherein the movable member is slidably attached to the base portion via the linear guide.
[3] 前記ベース部と前記可動部材との間に設けられると共に、前記可動部材を前記光 軸方向に付勢する弾性体を備えることを特徴とする請求項 1又は 2に記載の対物レン ズソケット。 [3] The objective lens socket according to claim 1 or 2, further comprising an elastic body provided between the base portion and the movable member and biasing the movable member in the optical axis direction. .
[4] 前記弾性体は、前記対物レンズの前記鏡筒の周囲に配置されることを特徴とする 請求項 3に記載の対物レンズソケット。  4. The objective lens socket according to claim 3, wherein the elastic body is disposed around the lens barrel of the objective lens.
[5] 前記ベース部の周壁には、前記光軸方向に延びており前記弾性体を収容する弾 性体収容溝が形成されており、 [5] An elastic body accommodating groove that extends in the optical axis direction and accommodates the elastic body is formed on the peripheral wall of the base portion,
前記弾性体は、前記弾性体収容溝に収容されることを特徴とする請求項 3又は 4に 記載の対物レンズソケット。  5. The objective lens socket according to claim 3, wherein the elastic body is accommodated in the elastic body accommodating groove.
[6] 前記可動部材への前記固浸レンズホルダの取付状態を検出するホルダ検出部を 更に備えることを特徴とする請求項 1〜5の何れか一項に記載の対物レンズソケット。 6. The objective lens socket according to any one of claims 1 to 5, further comprising a holder detection unit that detects an attachment state of the solid immersion lens holder to the movable member.
[7] 前記ホルダ検出部は、予め前記固浸レンズホルダに取り付けられている被検出体 を検出することによって前記固浸レンズホルダを検出することを特徴とする請求項 6 に記載の対物レンズソケット。 7. The objective lens socket according to claim 6, wherein the holder detection unit detects the solid immersion lens holder by detecting a detection object attached in advance to the solid immersion lens holder. .
[8] 前記ホルダ検出部は、前記固浸レンズホルダからの反射光を取得することで前記 固浸レンズホルダを検出することを特徴とする請求項 6に記載の対物レンズソケット。 8. The objective lens socket according to claim 6, wherein the holder detection unit detects the solid immersion lens holder by acquiring reflected light from the solid immersion lens holder.
[9] 前記ベース部に対する前記可動部材の前記光軸方向における部材位置を検出す る部材位置検出手段を更に備えることを特徴とする請求項 1〜8の何れか一項に記 載の対物レンズソケット。 [9] A member position in the optical axis direction of the movable member with respect to the base portion is detected. The objective lens socket according to any one of claims 1 to 8, further comprising a member position detecting unit.
[10] 前記部材位置検出手段は、前記固浸レンズが観察対象物と接触するときの前記部 材位置を検出する接触位置検出部を有することを特徴とする請求項 9に記載の対物 レンズソケット。 10. The objective lens socket according to claim 9, wherein the member position detection means includes a contact position detection unit that detects the position of the member when the solid immersion lens contacts an observation object. .
[11] 前記部材位置検出手段は、前記固浸レンズを介した前記弾性体による観察対象物 への付勢を停止するための前記部材位置を検出する停止位置検出部を有すること を特徴とする請求項 9又は 10に記載の対物レンズソケット。  [11] The member position detecting means includes a stop position detecting unit that detects the member position for stopping the biasing of the elastic body to the observation object via the solid immersion lens. The objective lens socket according to claim 9 or 10.
PCT/JP2006/300538 2005-01-19 2006-01-17 Objective lens socket WO2006077833A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005012126 2005-01-19
JP2005-012126 2005-01-19
JP2005182413A JP4772394B2 (en) 2005-01-19 2005-06-22 Objective lens socket
JP2005-182413 2005-06-22

Publications (1)

Publication Number Publication Date
WO2006077833A1 true WO2006077833A1 (en) 2006-07-27

Family

ID=36692222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300538 WO2006077833A1 (en) 2005-01-19 2006-01-17 Objective lens socket

Country Status (3)

Country Link
JP (1) JP4772394B2 (en)
TW (1) TWI408433B (en)
WO (1) WO2006077833A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI720271B (en) * 2016-12-14 2021-03-01 日商濱松赫德尼古斯股份有限公司 Solid immersion lens unit and semiconductor inspection device
US11256079B2 (en) 2016-12-14 2022-02-22 Hamamatsu Photonics K.K. Solid immersion lens unit and semiconductor detector device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5364452B2 (en) 2009-06-03 2013-12-11 浜松ホトニクス株式会社 Immersion lens support device
JP5606393B2 (en) * 2011-05-24 2014-10-15 浜松ホトニクス株式会社 Sample observation method and lens holder
KR101403992B1 (en) 2013-04-22 2014-06-10 한국기초과학지원연구원 Fixing device for sil
JP2020020994A (en) * 2018-08-02 2020-02-06 浜松ホトニクス株式会社 Solid immersion lens unit and semiconductor inspection device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10123426A (en) * 1996-10-22 1998-05-15 Nikon Corp Objective lens for microscope
JPH11133842A (en) * 1997-10-24 1999-05-21 Sony Corp Optical information recording device, optical information reproducing device, and optical information record medium
JP2000099984A (en) * 1998-09-25 2000-04-07 Sanyo Electric Co Ltd Optical pickup device and optical disk device
JP2003005086A (en) * 2001-06-20 2003-01-08 Olympus Optical Co Ltd Microscopic apparatus
JP2003181672A (en) * 2001-10-09 2003-07-02 Fujikura Ltd Method for laser processing
WO2005043210A1 (en) * 2003-10-31 2005-05-12 Hamamatsu Photonics K.K. Solid immersion lens holder

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10123426A (en) * 1996-10-22 1998-05-15 Nikon Corp Objective lens for microscope
JPH11133842A (en) * 1997-10-24 1999-05-21 Sony Corp Optical information recording device, optical information reproducing device, and optical information record medium
JP2000099984A (en) * 1998-09-25 2000-04-07 Sanyo Electric Co Ltd Optical pickup device and optical disk device
JP2003005086A (en) * 2001-06-20 2003-01-08 Olympus Optical Co Ltd Microscopic apparatus
JP2003181672A (en) * 2001-10-09 2003-07-02 Fujikura Ltd Method for laser processing
WO2005043210A1 (en) * 2003-10-31 2005-05-12 Hamamatsu Photonics K.K. Solid immersion lens holder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI720271B (en) * 2016-12-14 2021-03-01 日商濱松赫德尼古斯股份有限公司 Solid immersion lens unit and semiconductor inspection device
US11256079B2 (en) 2016-12-14 2022-02-22 Hamamatsu Photonics K.K. Solid immersion lens unit and semiconductor detector device

Also Published As

Publication number Publication date
JP2006227565A (en) 2006-08-31
TW200636317A (en) 2006-10-16
JP4772394B2 (en) 2011-09-14
TWI408433B (en) 2013-09-11

Similar Documents

Publication Publication Date Title
US8094389B2 (en) Solid immersion lens holder
JP4643994B2 (en) Solid immersion lens holder
US7312921B2 (en) Microscope and sample observation method
KR101184771B1 (en) Microscope and sample observation method
KR100990028B1 (en) Methods and apparatus for utilizing an optical reference
KR101074560B1 (en) Microscope and sample observing method
JP5001075B2 (en) Observation apparatus and method
US8947776B2 (en) Suction apparatus, semiconductor device observation device, and semiconductor device observation method
JP4772394B2 (en) Objective lens socket
JP4417041B2 (en) Objective lens and optical device
WO2018110221A1 (en) Solid immersion lens unit and semiconductor detector device
JP2005049197A (en) Nozzle tip position measuring device and spotting device using it
JP2007324457A (en) Support jig used in failure analysis of semiconductor device and failure analysis method using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06711818

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6711818

Country of ref document: EP