WO2006077829A1 - 移動通信端末およびマルチパス干渉除去方法 - Google Patents

移動通信端末およびマルチパス干渉除去方法 Download PDF

Info

Publication number
WO2006077829A1
WO2006077829A1 PCT/JP2006/300529 JP2006300529W WO2006077829A1 WO 2006077829 A1 WO2006077829 A1 WO 2006077829A1 JP 2006300529 W JP2006300529 W JP 2006300529W WO 2006077829 A1 WO2006077829 A1 WO 2006077829A1
Authority
WO
WIPO (PCT)
Prior art keywords
delay amount
path
mobile communication
reception
reception path
Prior art date
Application number
PCT/JP2006/300529
Other languages
English (en)
French (fr)
Inventor
Yousuke Iizuka
Takeshi Nakamori
Shinsuke Ogawa
Original Assignee
Ntt Docomo, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntt Docomo, Inc. filed Critical Ntt Docomo, Inc.
Priority to EP06711809A priority Critical patent/EP1845628A4/en
Priority to US11/814,221 priority patent/US20080253310A1/en
Priority to JP2006553895A priority patent/JPWO2006077829A1/ja
Publication of WO2006077829A1 publication Critical patent/WO2006077829A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/711Interference-related aspects the interference being multi-path interference
    • H04B1/7113Determination of path profile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1081Reduction of multipath noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/22Negotiating communication rate

Definitions

  • the present invention relates to a mobile communication terminal and a multipath interference cancellation method.
  • next-generation wireless access method for realizing high-speed wireless communication in the field of mobile communication is being actively conducted.
  • HSDPA High Speed
  • AMC adaptive modulation and channel coding
  • the throughput is determined according to the reception environment of the mobile communication terminal (mobile device).
  • Downlink Packet Access Downlink Packet Access
  • the throughput and data channel error rate decrease due to interference from the delayed signal. Therefore, the reception capability of mobile communication terminals is improved by applying linear equalizers and interference cancellers that remove multipath interference.
  • the mobile communication terminal MS measures the reception path from the common pilot channels (CPICH) C1 to C3 transmitted from the base station BS, and uses this reception path as the reception path. Based on this, a delay profile is generated. Based on the delay profile, the received power P1 to P3 of the receiving paths A1 to A3 and the delay amount (consent to the receiving timing and delay time) Q12 and Q13 are measured. For these measurements, for example, a known measurement method performed in a normal CDMA compatible mobile communication terminal can be used. Delay amount Q12 is the delay time difference between receiving reception path A1 and receiving reception path A2 (delayed wave). Delay amount Q13 is reception path A3 (delay This is the delay time difference until a wave is received.
  • CPICH common pilot channels
  • the horizontal axis of the delay profile shown in Fig. 1 (b) is the time.
  • the vertical axis represents received power.
  • P12 shown in Fig. 1 (b) indicates the power difference between the received power P1 of the receiving path A1 and the received power P2 of the receiving path A2, and P13 is the received power P1 of the receiving path A1 and the received path A3. Indicates the power difference from the received power P3.
  • FIG. 2 (a) is a diagram showing only the lower part of the delay profile shown in FIG. 1 (b).
  • a weight matrix is generated based on the generated channel matrix, and interference is removed by multiplying the weight matrix by a channel on which data information is actually placed.
  • the delay profile creation unit 91 despreads the signal transmitted from the base station using the common pilot channel to generate, for example, the delay profile shown in FIG. 1 (b).
  • the delay profile creation unit 91 measures the received powers P1 to P3 and the delay amounts Q12 and Q13 of the reception paths A1 to A3 based on the delay profile shown in FIG.
  • the delay profile creation unit 91 has an MF (Matched Filter) function.
  • the channel matrix generation unit 92 generates the channel matrix shown in FIG. 2 (b) based on the number of samples W and the maximum delay amount D shown in FIG. 2 (a).
  • the channel matrix is represented as a (W + D) -by-W matrix.
  • the weight matrix generation unit 93 generates a weight matrix by performing an inverse matrix operation on the channel matrix shown in FIG. 2 (b).
  • the interference removal unit 94 removes multipath interference by multiplying the data on the channel by a weight matrix.
  • Non-Patent Document 1 discloses a technique related to the above-described conventional interference cancellation method.
  • the interference canceling device enables higher-speed wireless communication by removing interference due to a delayed wave of its own signal.
  • the interference cancellers that have been studied in the past perform interference cancellation by using predetermined parameters. Therefore, even though interference cancellation is performed by increasing power consumption, it cannot cope with various changes in the environment of the receiving path and cannot contribute to the improvement of characteristics. It will be born. Cases that cannot contribute to the improvement of characteristics will be described in detail with reference to Figs.
  • the present invention can perform interference removal according to various reception path environments and can improve characteristics. It is an object of the present invention to provide a path interference removal method.
  • the mobile communication terminal of the present invention includes setting means for setting a maximum delay amount according to a delay amount of a reception path farthest from a reference reception path, a predetermined number of samples, and the set maximum value It is characterized by comprising: generating means for generating a channel matrix based on the delay amount; and interference removing means for performing interference cancellation based on the generated channel matrix.
  • the multipath interference canceling method of the present invention is a multipath interference canceling method in a mobile communication terminal, wherein the maximum delay amount is set according to the delay amount of the receiving path farthest from the reference receiving path.
  • a channel matrix is generated based on the predetermined number of samples and the set maximum delay amount, and interference cancellation is performed based on the generated channel matrix.
  • the farthest received path is the most delayed among paths having a power value equal to or higher than a predetermined threshold value compared to the power value of the reference receiving path.
  • the amount is large, preferably a pass.
  • the mobile communication terminal and multipath interference cancellation method of the present invention it is possible to perform interference cancellation according to the environment of various reception paths, and to improve the characteristics.
  • FIG. 1 (a) schematically shows a situation in which a mobile communication terminal receives a reception path from a base station, and (b) is a diagram for explaining a delay profile.
  • FIG. 2 (a) is a diagram showing a part of the delay profile, and (b) is a diagram for explaining the channel matrix.
  • FIG. 3 is a diagram illustrating a functional configuration of a conventional interference cancellation device.
  • FIG. 4 is a diagram for explaining a range having an interference removal effect when the delay amount of the reception path is small.
  • FIG. 5 is a diagram for explaining a range having an interference removal effect when the delay amount of the reception path is large.
  • FIG. 6 is a diagram for explaining a range having an interference removal effect when the power amount of the reception path is small.
  • FIG. 7 is a diagram exemplifying a functional configuration of an interference cancellation device in the embodiment.
  • FIG. 8] (a) and (b) are diagrams for explaining the method of setting the maximum delay amount according to the delay amount of the reception path and the received power.
  • FIG. 9 is a flowchart showing a procedure of an interference removal method in the present embodiment.
  • FIG. 10 is a diagram for explaining the maximum delay amount control when the delay amount of the reception path is small.
  • FIG. 11 is a diagram for explaining the maximum delay amount control when the delay amount of the reception path is large.
  • FIG. 12 is a diagram for explaining maximum delay amount control when the power of the reception path is small. Explanation of symbols
  • 11 Delay profile creation unit, 12 ⁇ 'Maximum delay amount setting unit, 13 ⁇ Channel matrix generation unit, 14 ⁇ ⁇ ⁇ Weight matrix generation unit, 15 ⁇ ⁇ ⁇ Interference cancellation unit.
  • the mobile communication terminal in the present embodiment is equipped with a high-speed wireless communication function based on HSDPA, for example, high-rate error correction code, multi-value such as 16QAM (Quadrature Amplitude Modulation), 64QAM, etc. By using modulation, the frequency utilization efficiency is improved and high-speed wireless communication is realized.
  • mobile communication terminals include, for example, cellular phones, simple cellular phones (PHS), and portable information terminals (PD) having communication functions. A) etc. are applicable.
  • FIG. 7 is a diagram illustrating an example of a functional configuration of the interference cancellation device mounted on the mobile communication terminal according to the embodiment.
  • the interference canceller mounted on the mobile communication terminal includes a delay profile creation unit 11, a maximum delay amount setting unit 12 (setting unit), a channel matrix generation unit 13 (generation unit), A weight matrix generation unit 14 and an interference removal unit 15 (interference removal means) are included.
  • the delay profile creation unit 11 measures the signal reception path transmitted from the base station using the common pilot channel, and receives the received signal. Based on the path, a delay profile as shown in Fig. 1 (b) is generated. The delay profile creation unit 11 also measures the received power of each reception path and the amount of delay between the reference reception path (hereinafter referred to as the reference path) and other reception paths based on the generated delay profile. To do.
  • the reference path for example, the path with the maximum received power or the path with the earliest arrival time from the base station is applicable.
  • the received power and the delay amount can be measured using, for example, a known measurement method performed in a normal CDMA compatible mobile communication terminal.
  • the delay profile creation unit 11 has an MF (Matched Filter) function.
  • the maximum delay amount setting unit 12 sets the maximum delay amount D according to the delay amount of the reception path farthest from the reference path. This amount of delay is represented by the difference in delay time from the reference path to the predetermined reception path.
  • the maximum delay amount setting unit 12 selects the power value of the reference path and the reception value farthest from the reference path when selecting the reception path farthest from the reference path used when setting the maximum delay amount D. Compare the power value of the path. If it is determined that the power value of the farthest reception path is equal to or less than a predetermined threshold (for example, 10 dB), it is excluded from the reception path selection targets used when setting the maximum delay amount D. .
  • a predetermined threshold for example, 10 dB
  • the maximum delay amount setting unit 12 compares the power value of the reception path far from the reference path next to the excluded reception path with the power value of the reference path. That is, the maximum delay amount setting unit 12 compares the power value of the reference path with the power value greater than or equal to a predetermined threshold value, and the delay amount is the largest, and the maximum delay amount is set in accordance with the delay amount of the reception path. Set the delay amount D. As a result, reception paths with low reception power can be excluded from interference cancellation, so The number of calculations can be reduced.
  • FIG. 8 (a) is a diagram showing the maximum delay amount when the power difference between the reference path P1 having the largest power and the reception paths P2 to P4 which are delayed waves is less than 10 dB.
  • the reception path P4 is selected as the reception path farthest from the reference path P1, and the delay amount of the reception path P4 with respect to the reference path P1 is set as the maximum delay amount D.
  • FIG. 8 (b) shows the maximum delay when the power difference between the reference path P1 with the largest power and the reception path P4 among the reception paths P2 to P4, which is a delayed wave, is 10 dB or more.
  • FIG. 8 (b) since the power difference P14 between the reference path P1 and the reception path P4 is 10 dB or more, the reception path P4 is excluded from the selection target as the reception path farthest from the reference path.
  • the reception path P3 is selected as the reception path farthest from the reference path P1, and the delay amount of the reception path P3 with respect to the reference path P1 is set as the maximum delay amount D.
  • Channel matrix generation unit 13 generates a channel matrix shown in FIG. 2 (b) based on a predetermined number of samples W and maximum delay amount D set by maximum delay amount setting unit 12. .
  • the weight matrix generation unit 14 generates a weight matrix based on the channel matrix generated by the channel matrix generation unit 13 in the same manner as the weight matrix generation unit 93 in the background art described above.
  • the interference cancellation unit 15 multiplies the data on the channel by the weight matrix generated by the weight matrix generation unit 14. Remove interference.
  • the delay profile creation unit 11 of the mobile communication terminal measures a reception path based on the common pilot channel transmitted from the base station (step S1), generates a delay profile, and generates each reception path. Measure the received power and the amount of delay between the reference path and other received paths.
  • the maximum delay amount setting unit 12 determines whether or not the power difference between the reference path and the reception path farthest from the reference path is 10 dB or less (step S2). When this determination is NO (step S2; NO), the maximum delay amount setting unit 12 sets the reception path determined this time to the reception path farthest from the reference path used when setting the maximum delay amount D. Excluded from selection. Then, the process proceeds to step S2.
  • step S2 when the determination in step S2 is YES (step S2; YES), the maximum delay amount setting unit 12 selects the reception path determined this time as the reception path farthest from the reference path, The delay amount from the reference path in the selected reception path is set as the maximum delay amount (step S3). Thereafter, a channel matrix is generated based on the set maximum delay amount and a predetermined number of samplings. Then, the weight matrix generated based on this channel matrix is multiplied by the channel on which the data information is actually placed, thereby eliminating interference.
  • the maximum delay amount D is reduced in accordance with the delay amount, so that the interference can be performed without performing unnecessary calculation. It is possible to remove S.
  • the maximum delay is matched to this delay amount Q12.
  • the quantity D can be set.
  • the range for generating the channel matrix is the range indicated by R1
  • the delay amount Q12 in the present embodiment is With the maximum delay amount D set together, the channel matrix generation range is reduced to the range indicated by R2. As a result, the number of rows and columns of the channel matrix can be reduced, and the number of computations can be reduced.
  • the delay amount of the reception path is large, the characteristic by interference cancellation can be improved by increasing the maximum delay amount D according to the delay amount.
  • the maximum delay is matched to this delay amount Q13.
  • the amount of extension D can be set.
  • the range for generating the channel matrix is limited to the range indicated by R1.
  • the maximum delay amount D set in accordance with the delay amount Q 13 of this embodiment the range for generating the channel matrix is expanded to the range indicated by R2.
  • the maximum delay amount D is set according to the delay amount of the reception path excluding the reception path with low reception power, so that the number of operations can be calculated. Can be reduced to increase the effect of interference cancellation.
  • the reference path P1 when the received power of the reception path P3 is smaller than the reception power of the reference path P1, the reference path P1 The maximum delay amount D can be set in accordance with the delay amount Q12 of the reception path P2, which exceeds a predetermined threshold value compared to the received power of. In this case, as shown in FIG.
  • the range for generating the channel matrix is the range indicated by R1, whereas the delay amount Q 12 in this embodiment is used.
  • the range for generating the channel matrix is reduced to the range indicated by R2.
  • the multipath interference cancellation method according to the present invention is a multipath interference cancellation method in a mobile communication terminal, and sets a maximum delay width according to a delay amount of a reception path or a path power of the reception path.
  • a channel matrix is generated based on a predetermined number of samples and the set maximum delay width, and interference cancellation is performed based on the generated channel matrix.
  • the control of “setting the maximum delay amount D from the path delay amount and the received power obtained by the delay profile” is performed. By preparing, it is possible to generate an optimal channel matrix for performing interference cancellation.
  • the mobile communication terminal generates a common pilot channel power delay profile file transmitted from the base station, and measures the received power and delay amount (reception timing and agreement) of the reception path (see Fig. 1). Note that these measurements are performed on a normal CDMA mobile communication terminal. If it is, it can measure easily.
  • the delay amount of the reception path P4 farthest from the matrix generation reference point (the reception path with the maximum reception power or the reception path with the earliest arrival time) is set as the maximum delay amount D (Fig. (See 8 (a)).
  • the reception path P1 with the maximum received power is the generation reference point.
  • the received power of the farthest receiving path P4 is higher than the receiving power of the receiving power with the highest power (main path (reference path)) P1 (for example, 10 dB )
  • the delay amount of the next separated reception path P3 is set as the maximum delay amount D without using the interference cancellation path.
  • a weight matrix is generated based on the generated channel matrix, and interference cancellation is performed by multiplying the channel on which data information is actually placed (see Fig. 7).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Noise Elimination (AREA)

Abstract

 様々な受信パスの環境に応じた干渉除去を行わせることができ、特性を向上させる。移動通信端末は基地局から送信された共通パイロットチャネルから遅延プロファイルを生成し、受信パスの受信電力および、遅延量の測定を行う。次に、遅延プロファイルに基づいて、基準パスP1から最も離れた受信パスP4の遅延量を最大遅延量Dに設定する。ただし、最も離れた受信パスP4の電力値が、基準パスP1の電力値と比較して10dB以上の開きがある場合には干渉除去の対象から除外し、基準パスP1から次に離れた受信パスP3の遅延量を最大遅延量Dとして設定する。その後、サンプル数と最大遅延量Dに基づいてチャネル行列を生成し、このチャネル行列に基づいて生成された重み行列を、実際にデータ情報が乗せられるチャネルに乗算することで、干渉除去を行う。

Description

明 細 書
移動通信端末およびマルチパス干渉除去方法
技術分野
[0001] 本発明は、移動通信端末およびマルチパス干渉除去方法に関する。
背景技術
[0002] 近年、インターネットが急速に普及し、情報の多元化ゃ大容量化が進んでいる。こ れに伴い、移動通信の分野でも高速無線通信を実現するための次世代無線ァクセ ス方式にっレ、ての研究や開発が盛んに行われてレ、る。この次世代無線アクセス方式 として、例えば、移動通信端末 (移動機)の受信環境に応じてスループットが決まる適 応変復調'誤り訂正符号化(AMC : Adaptive Modulation and channel Coding)を用 いた HSDPA (High Speed Downlink Packet Access)システムがある。高速無線通信 では、 自信号の遅延波による干渉により、スループットの低下やデータチャネルのェ ラーレートの低下が起こる。そのため、マルチパス干渉を除去する線形等化器や干 渉キャンセラ等を適用することによって、移動通信端末の受信能力を向上させている
[0003] 以下にぉレ、て、従来検討されてレ、る干渉除去装置を搭載した移動通信端末 (ここ では特に線形等化器)における干渉除去時の動作手順について、図 1〜図 3を参照 して説明する。
[0004] まず、図 1に示すように、移動通信端末 MSは、基地局 BSから送信された共通パイ ロットチヤネノレ(CPICH: Common Pilot Channel) C1〜C3から受信パスを測定し、こ の受信パスに基づいて、遅延プロファイルを生成する。そして、遅延プロファイルに基 づいて、受信パス A1〜A3の受信電力 P1〜P3および、遅延量 (受信タイミング、遅 延時間と同意) Q12, Q13の測定を行う。これらの測定は、例えば、通常の CDMA対 応型の移動通信端末で行われている公知の測定方法を用いることができる。遅延量 Q12は、受信パス A1を受信してから受信パス A2 (遅延波)を受信するまでの遅延時 間差であり、遅延量 Q13は、受信パス A1を受信してから受信パス A3 (遅延波)を受 信するまでの遅延時間差である。なお、図 1 (b)に示す遅延プロファイルの横軸は時 間を表し、縦軸は受信電力を表す。また、図 1 (b)に示す P12は、受信パス A1の受 信電力 P1と受信パス A2の受信電力 P2との電力差を示し、 P13は、受信パス A1の 受信電力 P1と受信パス A3の受信電力 P3との電力差を示す。
[0005] 次に、図 2 (a)に示す遅延プロファイルに含まれる予め定められた干渉除去装置の サンプル数 W (任意に設定可能)および最大遅延量 Dに従って、図 2 (b)に示すチヤ ネル行列を生成する。なお、図 2 (a)は、図 1 (b)に示す遅延プロファイルのうちの下 部にあたる部分のみを示した図である。
[0006] 次に、生成したチャネル行列に基づいて重み行列を生成し、この重み行列を、実際 にデータ情報が乗せられるチャネルに乗算することで、干渉が除去される。
[0007] 上述した従来の干渉除去時の動作手順について、図 3を参照して具体的に説明す る。
[0008] まず、遅延プロファイル作成部 91が、共通パイロットチャネルを用いて基地局から 送信された信号を逆拡散して、例えば図 1 (b)に示す遅延プロファイルを生成する。 遅延プロファイル作成部 91は、図 1 (b)に示す遅延プロファイルに基づいて、各受信 パス A1〜A3の受信電力 P1〜P3および遅延量 Q12, Q13を測定する。なお、遅延 プロファイル作成部 91は、 MF (Matched Filter)機能を有している。
[0009] 次に、チャネル行列生成部 92は、図 2 (a)に示すサンプル数 Wおよび最大遅延量 Dに基づいて、図 2 (b)に示すチャネル行列を生成する。チャネル行列は、(W+D) 行 W列の行列として表される。次に、重み行列生成部 93は、図 2 (b)に示すチャネル 行列を逆行列演算して重み行列を生成する。次に、干渉除去部 94は、チャネル上の データに重み行列を乗算することによりマルチパス干渉を除去する。
[0010] 上述した従来の動作手順では、重み行列を生成する際に逆行列演算が必要となる ため、チャネル行列の大きさ(行列の行数および列数(図 2 (b)の Wおよび W + D) ) が、重み行列生成の際の演算回数に大きく依存することになる。一般に、 X行 X列の 逆行列を生成する場合には、 X3回強の乗算回数を要する。
[0011] 下記非特許文献 1には、上述した従来の干渉除去方法に関する技術が開示されて いる。
特午文献 1: A. Klein, Data Detection Algorithms Specially Designed for the Dow nlink of Mobile Radio Systems," Proc. of IEEE VTC'97, pp. 203-207, Phoenix, May 1997. T. Kawamura, K. Higuchi, ί . Kishiyama, and M. Sawahashi, "Comparison betw een multipath interference canceller and chip equalizer in HSDPA in multipath chan nel," Proc. of IEEE VTC 2002, pp. 459-463, Birmingham, May 2002.
発明の開示
発明が解決しょうとする課題
[0012] 上述したように、干渉除去装置は、 自信号の遅延波による干渉を除去することによ つて、より高速な無線通信を可能とするものである。し力 ながら、従来検討されてい る干渉除去装置では、予め定められたパラメータを用いて干渉除去を行っている。し たがって、消費電力を増大させて干渉除去を行っているにもかかわらず、様々な受 信パスの環境変化に対応することができずに、特性の改善に貢献し得なレ、場合が生 じてしまう。特性の改善に貢献し得ない場合について、図 4〜図 6を参照して具体的 に説明する。
[0013] 図 4に示すように、例えば、受信パス間の遅延量 Q12が小さい場合に、最大遅延量 Dを受信パスの遅延時間以上に設定したとしても、干渉除去による効果は変わらない 。しかし、最大遅延量 Dを必要以上に大きく設定してしまうと、演算回数が増大してし まう。つまり、干渉除去による効果に影響を及ぼさない範囲についてまで演算の対象 に含むこととなり、大幅に演算回数が増大してしまう。これにより消費電力も増大して しまう。ここで、図 4に示す R1は、チャネル行列を生成する範囲を示し、 R2は、干渉 除去による効果がある範囲を示す。
[0014] 一方、図 5に示すように、例えば、受信パス間の遅延量 Q12が最大遅延量 Dよりも 大きい場合には、チャネル行列を生成しても干渉を除去することができない。したが つて、このような場合には、演算回数が増加して消費電力が増大するにもかかわらず 特性が向上しないこととなる。
[0015] さらに、図 6で示すように、遅延波である受信パス P3の電力が小さい場合には、マ ルチパス干渉の影響が小さいため、このパスの干渉を除去しても特性の向上にあまり 影響しない。このような場合に、最大遅延量 Dを大きく設定すると、演算回数が増大 するにもかかわらず、干渉除去による効果が望めない場合も生じてしまう。 課題を解決するための手段
[0016] そこで、本発明は、上述した課題を解決するために、様々な受信パスの環境に応じ た干渉除去を行わせることができ、特性を向上させることができる移動通信端末およ びマルチパス干渉除去方法を提供することを目的とする。
[0017] 本発明の移動通信端末は、基準となる受信パスから最も離れた受信パスの遅延量 に応じて最大遅延量を設定する設定手段と、予め定められたサンプル数および上記 設定された最大遅延量に基づレ、てチャネル行列を生成する生成手段と、上記生成さ れたチャネル行列に基づいて干渉除去を行う干渉除去手段と、を備えることを特徴と する。
[0018] また、本発明のマルチパス干渉除去方法は、移動通信端末におけるマルチパス干 渉除去方法であって、基準となる受信パスから最も離れた受信パスの遅延量に応じ て最大遅延量を設定し、予め定められたサンプル数および上記設定された最大遅延 量に基づいてチャネル行列を生成し、上記生成されたチャネル行列に基づいて干渉 除去を行うことを特徴とする。
[0019] これらの発明によれば、様々な受信パスの環境に応じた干渉除去を行わせることが でき、特性を向上させることができる。
[0020] 本発明の移動通信端末において、上記最も離れた受信パスは、上記基準となる受 信パスの電力値と比較して、所定の閾値以上の電力値を有するパスのうち、最も遅 延量が大きレ、パスであることが好ましレ、。
発明の効果
[0021] 本発明に係る移動通信端末およびマルチパス干渉除去方法によれば、様々な受 信パスの環境に応じた干渉除去を行わせることができ、特性を向上させることができ る。
図面の簡単な説明
[0022] [図 1] (a)は移動通信端末が基地局から受信パスを受信する状況を模式的に表した 図であり、 (b)は遅延プロファイルを説明するための図である。
[図 2] (a)は遅延プロファイルの一部を示す図であり、 (b)はチャネル行列を説明する ための図である。 [図 3]従来の干渉除去装置の機能構成を例示する図である。
[図 4]受信パスの遅延量が小さい場合の干渉除去効果がある範囲を説明するための 図である。
[図 5]受信パスの遅延量が大きい場合の干渉除去効果がある範囲を説明するための 図である。
[図 6]受信パスの電力量が小さい場合の干渉除去効果がある範囲を説明するための 図である。
[図 7]実施形態における干渉除去装置の機能構成を例示する図である。
[図 8] (a), (b)は受信パスの遅延量および受信電力に応じて最大遅延量を設定する 方法を説明するための図である。
[図 9]本実施形態における干渉除去方法の手順を示すフローチャートである。
[図 10]受信パスの遅延量が小さい場合の最大遅延量制御を説明するための図であ る。
[図 11]受信パスの遅延量が大きい場合の最大遅延量制御を説明するための図であ る。
[図 12]受信パスの電力が小さい場合の最大遅延量制御を説明するための図である。 符号の説明
[0023] 11 · · ·遅延プロファイル作成部、 12 · · '最大遅延量設定部、 13 · · 'チャネル行列生 成部、 14· · ·重み行列生成部、 15 · · ·干渉除去部。
発明を実施するための最良の形態
[0024] 以下、本発明に係る移動通信端末およびマルチパス干渉除去方法の実施形態を 図面に基づき説明する。なお、各図において、同一要素には同一符号を付して重複 する説明を省略する。
[0025] 本実施形態における移動通信端末は、例えば、 HSDPAによる高速無線通信機能 を搭載しており、ハイレートな誤り訂正符号や、 16QAM (Quadrature Amplitude Mod ulation ;直行振幅変調)、 64QAM等の多値変調を用いることによって、周波数利用 効率を高めて高速無線通信を実現している。なお、移動通信端末としては、例えば、 携帯電話機、簡易型携帯電話機 (PHS)、通信機能を有する携帯型情報端末 (PD A)等が該当する。
[0026] 図 7は、実施形態における移動通信端末に搭載される干渉除去装置の機能構成を 例示する図である。図 7に示すように、移動通信端末に搭載される干渉除去装置は、 遅延プロファイル作成部 11と、最大遅延量設定部 12 (設定手段)と、チャネル行列生 成部 13 (生成手段)と、重み行列生成部 14と、干渉除去部 15 (干渉除去手段)とを 有する。
[0027] 遅延プロファイル作成部 11は、上述した背景技術で説明した遅延プロファイル作 成部 91と同様に、共通パイロットチャネルを用いて基地局から送信された信号カ 受 信パスを測定し、この受信パスに基づいて、図 1 (b)に示すような遅延プロファイルを 生成する。また、遅延プロファイル作成部 11は、生成した遅延プロファイルに基づい て、各受信パスの受信電力、および基準となる受信パス(以下、基準パスという)と他 の受信パスとの間の遅延量を測定する。基準パスとしては、例えば、最大受信電力 のパス、または基地局からの到達時間が最も早いパスが該当する。受信電力や遅延 量の測定は、例えば、通常の CDMA対応型の移動通信端末で行われている公知の 測定方法を用いることができる。なお、遅延プロファイル作成部 11は、 MF (Matched Filter)機能を有している。
[0028] 最大遅延量設定部 12は、基準パスから最も離れた受信パスの遅延量に応じて最 大遅延量 Dを設定する。この遅延量は、基準パスから所定の受信パスまでの遅延時 間差により表される。ここで、最大遅延量設定部 12は、最大遅延量 Dを設定する際に 用いる基準パスから最も離れた受信パスを選定する際に、基準パスの電力値と、この 基準パスから最も離れた受信パスの電力値とを比較する。そして、最も離れた受信パ スの電力値が所定の閾値 (例えば、 10dB)以下であると判定した場合には、最大遅 延量 Dを設定する際に用いる上記受信パスの選定対象から除外する。その後、最大 遅延量設定部 12は、除外した受信パスの次に基準パスから離れた受信パスの電力 値と、基準パスの電力値とを比較することになる。すなわち、最大遅延量設定部 12は 、基準パスの電力値と比較して、所定の閾値以上の電力値を有する受信パスのうち、 最も遅延量が大きレ、受信パスの遅延量に応じて最大遅延量 Dを設定する。これによ り、受信電力の小さな受信パスを干渉除去の対象から除外することができるため、演 算回数を減少させることができる。
[0029] ここで、図 8を参照して、最も離れた受信パスの遅延量に応じて最大遅延量が設定 される方法について具体的に説明する。まず、図 8 (a)は、最も電力の大きい基準パ ス P1と遅延波である受信パス P2〜P4との電力差が 10dB未満である場合の最大遅 延量を示す図である。図 8 (a)では、基準パス P1から最も離れた受信パスとして、受 信パス P4が選定され、基準パス P1に対する受信パス P4の遅延量が、最大遅延量 D として設定される。次に、図 8 (b)は、最も電力の大きい基準パス P1と、遅延波である 受信パス P2〜P4のうちの受信パス P4との電力差が 10dB以上である場合の最大遅 延量を示す図である。図 8 (b)では、基準パス P1と受信パス P4との電力差 P14が 10 dB以上あるため、受信パス P4は、基準パスから最も離れた受信パスとしての選定対 象から除外される。この場合には、基準パス P1から最も離れた受信パスとして、受信 パス P3が選定され、基準パス P1に対する受信パス P3の遅延量が最大遅延量 Dとし て設定される。
[0030] チャネル行列生成部 13は、予め定められたサンプル数 W、および最大遅延量設定 部 12により設定された最大遅延量 Dに基づいて、図 2 (b)に示すチャネル行列を生 成する。
[0031] 重み行列生成部 14は、上述した背景技術における重み行列生成部 93と同様にし て、チャネル行列生成部 13により生成されたチャネル行列に基づいて重み行列を生 成する。
[0032] 干渉除去部 15は、上述した背景技術における干渉除去部 94と同様にして、チヤネ ル上のデータに、重み行列生成部 14により生成された重み行列を乗算することによ つてマルチパス干渉を除去する。
[0033] 次に、図 9に示すフローチャートを参照して、本実施形態における干渉除去方法の 手順について説明する。
[0034] まず、移動通信端末の遅延プロファイル作成部 11は、基地局から送信された共通 パイロットチャネルに基づいて、受信パスを測定する (ステップ S1)とともに、遅延プロ ファイルを生成し、各受信パスの受信電力および基準パスと他の受信パスとの間の 遅延量を測定する。 [0035] 次に、最大遅延量設定部 12は、基準パスと、この基準パスから最も離れた受信パ スとの間の電力差が 10dB以下であるか否かを判定する(ステップ S2)。この判定が N Oである場合 (ステップ S2 ; NO)に、最大遅延量設定部 12は、今回判定した受信パ スを、最大遅延量 Dを設定する際に用いる基準パスから最も離れた受信パスの選定 対象から除外する。そして、処理をステップ S2に移行する。
[0036] 一方、ステップ S2の判定が YESである場合 (ステップ S2 ; YES)に、最大遅延量設 定部 12は、今回判定した受信パスを、基準パスから最も離れた受信パスとして選定 し、この選定した受信パスにおける基準パスからの遅延量を最大遅延量として設定 する(ステップ S3)。この後、設定された最大遅延量および予め定められたサンプノレ 数に基づいてチャネル行列が生成される。そして、このチャネル行列に基づいて生 成される重み行列が、実際にデータ情報が乗せられるチャネルに乗算されることで、 干渉が除去される。
[0037] 以上のように干渉除去を行うことで、受信パスの遅延量が小さい場合には、この遅 延量に合わせて最大遅延量 Dを小さくすることで、無駄な演算を行うことなく干渉を除 去すること力 S可能となる。図 10を参照して具体的に説明すると、本実施形態における 移動通信端末では、基準パス P1と受信パス P2との間の遅延量 Q12が小さい場合に は、この遅延量 Q12に合わせて最大遅延量 Dを設定することができる。この場合には 、図 10に示すように、従来の固定された最大遅延量 Dfでは、チャネル行列を生成す る範囲が R1で示される範囲であるのに対し、本実施形態における遅延量 Q12に合 わせて設定された最大遅延量 Dでは、チャネル行列を生成する範囲が R2で示される 範囲に減縮される。これにより、チャネル行列の行数および列数を小さくすることがで きるため、演算回数を減少させることができる。
[0038] また、受信パスの遅延量が大きい場合には、この遅延量に合わせて最大遅延量 D を大きくすることで、干渉除去による特性を向上させることができる。図 11を参照して 具体的に説明すると、本実施形態における移動通信端末では、基準パス P1と受信 パス P3との間の遅延量 Q13が大きい場合には、この遅延量 Q13に合わせて最大遅 延量 Dを設定することができる。この場合には、図 11に示すように、従来の固定され た最大遅延量 Dfでは、チャネル行列を生成する範囲が R1で示される範囲に限定さ れてしまうのに対し、本実施形態の遅延量 Q 13に合わせて設定された最大遅延量 D では、チャネル行列を生成する範囲が R2で示される範囲に拡大される。これにより、 従来の技術では除去することができなかった受信パス P3による干渉も除去すること ができるため、干渉除去による効果が増大する。
[0039] さらに、受信電力の小さい受信パスが含まれる場合には、この受信電力の小さい受 信パスを除外した受信パスの遅延量に合わせて最大遅延量 Dを設定することで、演 算回数を減少させて、干渉除去による効果を増大させることができる。図 12を参照し て具体的に説明すると、本実施形態における移動通信端末では、受信パス P3の受 信電力が基準パス P1の受信電力に比べて所定の閾値以上小さい場合には、基準 パス P1の受信電力に比べて所定の閾値超となる受信パス P2の遅延量 Q 12に合わ せて最大遅延量 Dを設定することができる。この場合には、図 12に示すように、従来 の固定された最大遅延量 Dfでは、チャネル行列を生成する範囲が R1で示される範 囲であるのに対し、本実施形態における遅延量 Q 12に合わせて設定された最大遅 延量 Dでは、チャネル行列を生成する範囲が R2で示される範囲に減縮される。これ により、チャネル行列の行数および列数を小さくすることができるため、演算回数が減 少することになる。
[0040] 最後に、本発明に係るマルチパス干渉除去方法は、移動通信端末におけるマルチ パス干渉除去方法であって、受信パスの遅延量または受信パスのパス電力に応じて 最大遅延幅を設定し、予め定められたサンプル数および上記設定された最大遅延 幅に基づレ、てチャネル行列を生成し、上記生成されたチャネル行列に基づレ、て干渉 除去を行うことを一の特徴とする。ここで、本実施形態における移動通信端末および マルチパス干渉除去方法では、図 7に示すように「遅延プロファイルで得られたパス の遅延量および受信電力から最大遅延量 Dを設定する」制御をカ卩えることによって、 干渉除去を行うために最適なチャネル行列の生成が可能となる。次に、図 9に示すフ ローチャートを参照して、本実施形態における干渉除去方法の手順について説明す る。まず、移動通信端末は基地局から送信された共通パイロットチャネル力 遅延プ 口ファイルを生成し、受信パスの受信電力および、遅延量 (受信タイミングと同意)の 測定を行う(図 1参照)。なお、これらの測定は通常の CDMA対応移動通信端末であ れば容易に測定することができる。次に、遅延プロファイルに基づいて、行列生成基 準点 (最大受信電力の受信パスまたは最も到達時間の早い受信パス)から最も離れ た受信パス P4の遅延量を最大遅延量 Dとして設定する(図 8 (a)参照)。図 8では最 大受信電力の受信パス P1を生成基準点とする。ただし、図 8 (b)に示すように、最も 離れた受信パス P4の受信電力が、最も電力の大きい受信パス (メインパス (基準パス ) ) P1の受信電力と比較して閾値 (例えば、 10dB)以下である場合には、干渉除去パ スとはせずに、次に離れた受信パス P3の遅延量を最大遅延量 Dとして設定する。次 に、生成したチャネル行列に基づいて重み行列を生成し、実際にデータ情報が乗せ られるチャネルに乗算することで、干渉除去を行う(図 7参照)。このような制御を行う ことで、受信パスの遅延量が小さい場合には、最大遅延量 Dを小さくすることで、無駄 な演算を行うことなく干渉の除去が可能となり(図 10参照)、受信パスの遅延量が大き い場合には、最大遅延量 Dを大きくすることで干渉除去による特性改善が望める(図 11参照)。さらに、受信電力の小さいパスを除外することで、演算回数を減少させて、 干渉除去の効果を上げることが可能となる(図 12参照)。

Claims

請求の範囲
[1] 基準となる受信パスから最も離れた受信パスの遅延量に応じて最大遅延量を設定 する設定手段と、
予め定められたサンプル数および前記設定された最大遅延量に基づいてチャネル 行列を生成する生成手段と、
前記生成されたチャネル行列に基づいて干渉除去を行う干渉除去手段と、 を備えることを特徴とする移動通信端末。
[2] 前記最も離れた受信パスは、前記基準となる受信パスの電力値と比較して、所定の 閾値以上の電力値を有するパスのうち、最も遅延量が大きいパスであることを特徴と する請求項 1記載の移動通信端末。
[3] 移動通信端末におけるマルチパス干渉除去方法であって、
基準となる受信パスから最も離れた受信パスの遅延量に応じて最大遅延量を設定 し、
予め定められたサンプル数および前記設定された最大遅延量に基づいてチャネル 行列を生成し、
前記生成されたチャネル行列に基づいて干渉除去を行う
ことを特徴とするマルチパス干渉除去方法。
PCT/JP2006/300529 2005-01-18 2006-01-17 移動通信端末およびマルチパス干渉除去方法 WO2006077829A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06711809A EP1845628A4 (en) 2005-01-18 2006-01-17 MOBILE COMMUNICATION TERMINAL AND METHOD OF ELIMINATING MULTI-PATH INTERFERENCE
US11/814,221 US20080253310A1 (en) 2005-01-18 2006-01-17 Mobile Communication Terminal, and Multipath Interference Eliminating Method
JP2006553895A JPWO2006077829A1 (ja) 2005-01-18 2006-01-17 移動通信端末およびマルチパス干渉除去方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-010848 2005-01-18
JP2005010848 2005-01-18

Publications (1)

Publication Number Publication Date
WO2006077829A1 true WO2006077829A1 (ja) 2006-07-27

Family

ID=36692218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300529 WO2006077829A1 (ja) 2005-01-18 2006-01-17 移動通信端末およびマルチパス干渉除去方法

Country Status (7)

Country Link
US (1) US20080253310A1 (ja)
EP (1) EP1845628A4 (ja)
JP (1) JPWO2006077829A1 (ja)
KR (1) KR100899302B1 (ja)
CN (1) CN101103549A (ja)
TW (1) TW200642306A (ja)
WO (1) WO2006077829A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1753151A2 (en) 2005-08-10 2007-02-14 NTT DoCoMo INC. Mobile communication terminal
JP2012049733A (ja) * 2010-08-25 2012-03-08 Mitsubishi Electric Corp 復調器および復調方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101170319B (zh) * 2007-11-27 2012-09-05 中兴通讯股份有限公司 一种滤除干扰信号的方法及基站
WO2010038273A1 (ja) * 2008-09-30 2010-04-08 富士通株式会社 伝搬路推定装置、受信機、及び伝搬路推定方法
CN104252863A (zh) * 2013-06-28 2014-12-31 上海通用汽车有限公司 车载收音机的音频降噪处理系统及方法
EP3255805B1 (en) * 2016-06-08 2020-09-02 Nxp B.V. Signal processing system and method
US10939400B2 (en) * 2017-12-19 2021-03-02 Qualcomm Incorporated Time synchronization techniques for wireless communications

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002009668A (ja) * 2000-06-26 2002-01-11 Ntt Docomo Inc 通信装置および検波方法
JP2002252575A (ja) * 2000-12-19 2002-09-06 Ntt Docomo Inc 適応等化方法及び適応等化器
JP2002353853A (ja) * 2001-05-25 2002-12-06 Matsushita Electric Ind Co Ltd 無線受信装置及び無線受信方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3312825A1 (de) * 1983-04-09 1984-10-18 INKOMA Industrie-Konstruktion Maschinenbau, 3302 Cremlingen Ausgleichskupplung
JP2991170B2 (ja) * 1997-10-01 1999-12-20 日本電気株式会社 Cdma受信装置および方法
US7336719B2 (en) * 2001-11-28 2008-02-26 Intel Corporation System and method for transmit diversity base upon transmission channel delay spread
JP4129014B2 (ja) * 2005-08-10 2008-07-30 株式会社エヌ・ティ・ティ・ドコモ 移動通信端末

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002009668A (ja) * 2000-06-26 2002-01-11 Ntt Docomo Inc 通信装置および検波方法
JP2002252575A (ja) * 2000-12-19 2002-09-06 Ntt Docomo Inc 適応等化方法及び適応等化器
JP2002353853A (ja) * 2001-05-25 2002-12-06 Matsushita Electric Ind Co Ltd 無線受信装置及び無線受信方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KAWAMURA T. ET AL.: "Comparison Between Multipath Interference Canceller and Chip Equalizer with Other-Cell Interference Suppression in HSDPA in Multipath Channel", THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMM. ENGINEERS (TECHNICAL REPORT OF IEICE), vol. 102, no. 22, 12 April 2002 (2002-04-12), pages 123 - 128, XP002998677 *
MAEDA N., SAMPEI S., MORINAGA N.: "A complexity reduced decision feedback equalizer using delay profile estimation", THE INSTITUTE OF ELECTR., INF. AND COMM. ENGINEERS (TECHN. REPORT OF IEICE), vol. 97, no. 322, 16 October 1997 (1997-10-16), pages 79 - 86, XP002998678 *
NAKAMORI T. ET AL.: "Field Experiment Results on Throughput Performance of Linear Equalizer in WCDMA HSDPA", 8 September 2004 (2004-09-08), pages 361, XP002998676 *
See also references of EP1845628A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1753151A2 (en) 2005-08-10 2007-02-14 NTT DoCoMo INC. Mobile communication terminal
EP1753151A3 (en) * 2005-08-10 2007-09-19 NTT DoCoMo INC. Mobile communication terminal
US7817710B2 (en) 2005-08-10 2010-10-19 Ntt Docomo, Inc. Mobile communication terminal
JP2012049733A (ja) * 2010-08-25 2012-03-08 Mitsubishi Electric Corp 復調器および復調方法

Also Published As

Publication number Publication date
EP1845628A1 (en) 2007-10-17
EP1845628A4 (en) 2009-04-01
CN101103549A (zh) 2008-01-09
TW200642306A (en) 2006-12-01
US20080253310A1 (en) 2008-10-16
KR20070103461A (ko) 2007-10-23
KR100899302B1 (ko) 2009-05-27
JPWO2006077829A1 (ja) 2008-06-19

Similar Documents

Publication Publication Date Title
JP4444961B2 (ja) 伝送チャネルのチャネル評価の決定
JP4425283B2 (ja) 移動通信端末およびマルチパス干渉除去装置の起動を制御する方法
JP4464020B2 (ja) スペクトル拡散信号特性の知識から得られる重み係数を使用するrake組合わせ方法と装置
JP4933646B2 (ja) チャネル推定を改善するシステム及び方法
KR101059053B1 (ko) 핑거 로크 상태를 설정하기 위한 시스템들, 방법들 및 장치
US8842658B2 (en) Synchronization channel interference cancellation
US7860199B2 (en) Method and system for single antenna receiver system for HSDPA
JP4216597B2 (ja) スペクトラム拡散通信システムにおいて無線チャネル・パラメータを推定するシステム、方法および装置
WO2006077829A1 (ja) 移動通信端末およびマルチパス干渉除去方法
US8265131B2 (en) Control apparatus for and control method of equalizer, and wireless terminal having that control apparatus
US8351487B1 (en) Equalizer with adaptive noise loading
EP1480350A1 (en) Determination of a channel estimate of a transmission channel
JP4129014B2 (ja) 移動通信端末
B Baltzis The rake receiver principle: Past, present and future
JP2010530701A (ja) 時分割二重システムに基づくcdmaシステムにおける適応結合チャネル推定方法およびシステム
Zentner et al. Methods to Increase the Number of Mobile Users in a Wireless Network
WO2004083886A2 (en) Soft decision-based decorrelator for estimating spatial signatures in a wireless communications systems
WO2012171550A1 (en) Method and device for error compensation in a communications network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006553895

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200680001930.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006711809

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077018943

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2006711809

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11814221

Country of ref document: US