WO2006077767A1 - Organic el element manufacturing method and organic el element obtained by the same - Google Patents

Organic el element manufacturing method and organic el element obtained by the same Download PDF

Info

Publication number
WO2006077767A1
WO2006077767A1 PCT/JP2006/300298 JP2006300298W WO2006077767A1 WO 2006077767 A1 WO2006077767 A1 WO 2006077767A1 JP 2006300298 W JP2006300298 W JP 2006300298W WO 2006077767 A1 WO2006077767 A1 WO 2006077767A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
electrode
sealing film
laminate
repair
Prior art date
Application number
PCT/JP2006/300298
Other languages
French (fr)
Japanese (ja)
Inventor
Ayako Yoshida
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Publication of WO2006077767A1 publication Critical patent/WO2006077767A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/861Repairing

Definitions

  • the present technology relates to a method for manufacturing an organic electoric luminescent element (hereinafter referred to as "organic EL element”) and an organic EL element obtained thereby. More specifically, the present technology relates to improvement of sealing film formation in an organic EL element having a sealing film.
  • An organic EL element has been attracting attention in recent years because it can be driven at a relatively low voltage, can produce a flat panel display with a high luminance and does not require a backlight, and is lightweight.
  • FIG. 1 is a cross-sectional view schematically showing the structure of an organic EL element having such a sealing can.
  • reference numeral 10 denotes a substrate
  • 20 denotes a first electrode
  • 30 denotes an organic light emitting layer
  • 40 denotes a second electrode
  • 50 denotes a sealing can.
  • FIG. 2 is a cross-sectional view schematically showing the structure of the organic EL element having such a sealing film.
  • reference numeral 10 denotes a substrate
  • 20 denotes a first electrode
  • 30 denotes an organic light emitting layer
  • 40 denotes a second electrode
  • 60 denotes a sealing film.
  • an object of the present technology is to provide a method of manufacturing an organic EL element obtained by solving the above-described problems in the prior art and an organic EL element obtained thereby.
  • This technology also provides technical improvements such as eliminating the generation of defects in the formed sealing film and reducing the expansion of dark spots after storage of the organic EL element in the manufacture of organic EL elements having a sealing film.
  • An example of the problem is to provide a method for manufacturing an organic EL element that can be manufactured and an organic EL element obtained thereby.
  • the technology according to claim 3, which solves the above problem, is an organic EL device in which a sealing film is formed on a laminate including at least a first electrode, an organic light emitting layer, and a second electrode formed on a substrate.
  • a method for manufacturing an element comprising:
  • FIG. 1 is a schematic cross-sectional view showing an example of the structure of a conventional organic EL element.
  • FIG. 2B is a schematic cross-sectional view showing another example of the structure of a conventional organic EL element, showing a state in which the protective film is damaged by the leak.
  • FIG. 3A is a diagram schematically showing the change over time of dark spots generated in a conventional organic EL device, showing a state before storage.
  • FIG. 3B is a diagram schematically showing the change over time of dark spots generated in a conventional organic EL device, showing the state after storage.
  • FIG. 5 is a schematic cross-sectional view showing an example of the structure of an organic EL element obtained by the first technique.
  • FIG. 8 is a flowchart showing the flow of each step in the method for manufacturing an organic EL element according to the second technique.
  • FIG. 5 is a cross-sectional view in the thickness direction schematically showing the structure of the organic EL device obtained by the method for manufacturing an organic EL device according to one embodiment of the present technology.
  • the thickness of each layer is exaggerated.
  • FIG. 7 is a flowchart showing the flow of each process in the method for manufacturing an organic EL element according to the present technology.
  • the disclosed first technique is a laminate formed of at least a first electrode 20, an organic light emitting layer 30, and a second electrode 40 formed on a substrate 10.
  • a method of manufacturing an organic EL element in which a sealing film 60 is formed as shown in FIG. 7, after the formation of the laminate, prior to the formation of the sealing film 60, the first electrode 20 and the first
  • the potential defect is positively manifested as an initial defect such as an initial leak or a short circuit by energization
  • the repair is performed, and then the unevenness 42 on the surface of the second electrode 40 generated by the repair is flattened, and then the sealing film 60 is formed on the flattened laminate.
  • This is a method for manufacturing organic EL devices.
  • the structure of the laminated body in the organic EL device according to the first technique is not limited to that in the example shown in Fig. 5 and may have various known configurations.
  • the organic light emitting layer can be divided into a hole transport layer and an electron transport layer to improve the light emission efficiency in addition to a single layer type as shown in the drawing, and can be made into a function separation type.
  • a configuration in which an electron injecting and transporting layer is provided between the light emitting layer and the second electrode a configuration in which both a hole injecting and transporting layer and an electron injecting and transporting layer are provided, or a hole injecting and transporting layer is mixed with the light emitting layer. It can be set as the configuration etc.
  • the substrate 10 and the first electrode 20 as shown in FIG. 4 are used to prevent intrusion of moisture, oxygen gas, etc. from the substrate side.
  • a barrier film 11 can be provided between the two.
  • the first electrode provided on the substrate side can be an anode or, conversely, a cathode
  • the second electrode can be a cathode or an anode correspondingly.
  • the material in the substrate and the laminate formed thereon is not particularly limited, and various conventionally known materials can be used.
  • the substrate 10 for example, quartz glass or glass plate, metal plate or metal foil, plastic glass or sheet, or the like glass plate, or transparent such as polyester, polymeta acrylate, poly strength polycarbonate, polysulfone, etc.
  • a plastic substrate can also be used.
  • a top emission type in which the above substrate is used and the cathode is made transparent or semi-transparent may be used.
  • this barrier film 11 for example, a nitride key is used.
  • silicon, silicon oxynitride, aluminum oxide, or silicon oxide can be used.
  • the first electrode 20 can be an anode or a cathode
  • the second electrode 40 can be a cathode or an anode accordingly.
  • the anode is a force that plays a role of hole injection into the organic light emitting layer 30.
  • metals such as aluminum, gold, silver, nickel, palladium, tellurium, indium and Z or tin oxides It is composed of a metal oxide such as ITO (typically ITO), copper iodide, carbon black, or a conductive polymer such as poly (3-methylthiophene).
  • ITO typically ITO
  • copper iodide copper iodide
  • carbon black or a conductive polymer such as poly (3-methylthiophene
  • the anode is formed by a sputtering method, a vacuum deposition method, or the like, but when it is made of a conductive polymer, it can also be formed by a coating method, a CVD method, or the like.
  • the cathode plays a role of injecting electrons into the organic light emitting layer 30, and the material used for the anode can be used.
  • the material used for the anode can be used.
  • a suitable metal such as tin, magnesium, indium, aluminum, silver, or an alloy thereof is used.
  • Examples of the single-layer type organic light-emitting layer include poly (p-phenylene vinylene), poly [2-methyoxy 5- (2-ethylhexyloxy) 1,4 phenol-biylene], poly A polymer material such as (3 alkylthiophene) or a system in which a light-emitting material and an electron transfer material are mixed with a polymer such as polyvinylcarbazole can be used.
  • Such a single layer type organic light emitting layer can be formed by, for example, a coating method or a vacuum deposition method.
  • the hole transport layer is, for example, a tertiary fragrance such as 1, 1 bis (4 di-p-triarylaminophenol) cyclohexane.
  • a hole transporting polymer for example, a hole transporting polymer such as polyvinylcarbazole or polysilane.
  • p-type hydrogenated amorphous silicon, P-type hydrogenated amorphous silicon carbide, p-type hydrogenated microcrystalline silicon carbide, or inorganic materials such as p-type zinc sulfide and p-type selenium zinc can also be used. it can .
  • the hole transport layer can be used for vacuum deposition, coating, or CVD. Therefore, in the case of an inorganic substance, it is formed by a CVD method, a plasma CVD method, a vacuum deposition method, a sputtering method, or the like.
  • aromatic compounds such as tetraphenylbutadiene, metal complexes such as aluminum complexes of 8-hydroxyquinoline, cyclopentagen derivatives, perinone derivatives, oxadiazole derivatives, bisstyrylbenzene derivatives , Perylene derivatives, coumarin derivatives, rare earth complexes, distyryl virazine derivatives, p-phenylene di compounds, thiadiazolo pyridine derivatives, pyroguchi pyridine derivatives, naphthyridine derivatives, and the like. Is possible.
  • an electron transport layer using these compounds simultaneously plays a role of transporting electrons and a role of emitting light upon recombination of holes and electrons.
  • the organic hole transport layer has a light emitting function
  • the electron transport layer only plays a role of transporting electrons.
  • a laser fluorescent dye such as coumarin using, for example, an aluminum complex of 8-hydroxyquinoline as a host material.
  • the organic electron transport layer can also be formed by the same method as the organic hole transport layer, but usually a vacuum deposition method is used, but a spin coating method may also be used.
  • another electron transport layer can be further laminated on the electron transport layer.
  • the other electron transport layer is, for example, an oxaziazole derivative or a system in which they are dispersed in a resin such as polymethylmethacrylate, a phenantorin phosphorus derivative, n-type hydrogenated amorphous silicon carbide, n-type zinc sulfide, n-type selenium zinc can be used.
  • the hole injection layer can be composed of, for example, a phthalocyanine compound or a borfilin compound.
  • an interface layer can be formed as needed to improve the contact between the cathode and the organic layer.
  • the interface layer is, for example, an aromatic diamine compound, a quinacridone compound, a naphthacene derivative, an organic silicon compound, an organic phosphorus compound, an N-phenylcarbazole derivative, or an N-vinylcarbazole polymer.
  • Etc. can be constituted by.
  • the first electrode 20 is formed on the top thereof by, for example, a sputtering method, and after polishing the surface, the organic light emitting layer 30 composed of a single layer or a plurality of layers is formed by a vacuum deposition method or the like.
  • the second electrode is further formed by, for example, vapor deposition or sputtering to form a laminated body having a predetermined organic EL element structure, and then the first electrode 20 and the second electrode 40 are energized. Test whether or not the device has initial defects such as initial leak or short circuit.
  • This energization is performed by applying a higher load between the electrodes than the driving conditions in the market of the organic EL element to be manufactured.
  • driving is performed in advance at a current density within a predetermined range of driving current density used when actually driving the element.
  • the energization process that causes the occurrence of such an initial defect can be performed as a part of a process generally called "aging". Moreover, you may carry out by a reverse bias application process.
  • This aging process is a process in which initial defects in the use of organic EL elements are generated and removed in advance. By applying the current as described above between the first electrode and the second electrode for a predetermined period of time, a small leak path existing in the element is self-repaired due to initial defects, and contact at the interface between the electrode and the organic layer is made. It improves and stabilizes the light emission characteristics.
  • Such an aging process can be completed in a short time if the current density is increased. Practically, the aging treatment is preferably completed within 10 hours.
  • the current waveform during aging may be any of direct current, alternating current, and pulse.
  • the aging process is performed as follows, for example. First, usually, the substrate 10 on which the stacked body as described above is formed is transported to a globe box connected to a film forming apparatus that is not exposed to the atmosphere. This glove box is filled with a mixed gas of dry nitrogen and oxygen.
  • the dew point is, for example, at least ⁇ 50 ° C. or lower, more preferably ⁇ 80 ° C. or lower, and is a condition in which dark spots are not easily generated and grown.
  • the oxygen concentration is preferably about 1 to 10%, for example. If it is extremely lower than this range, the aging effect is weakened, the short circuit between the cathode and the anode frequently occurs, and it may be difficult to produce a desired initial defect. On the other hand, if it is extremely high, the growth of dark spots may become prominent.
  • the dew point and oxygen concentration conditions depend on the exposure time to the aging atmosphere. The shorter the interval, the higher the dew point and the higher the oxygen concentration.
  • the process for repairing the generated initial defect is not limited to the self-repairing method such as aging as described above in which a current is applied for a predetermined time or thermal aging by annealing.
  • a flattening process is performed to cover the irregularities 42 generated on the surface of the second electrode 40.
  • This planarization process is performed by forming a planarization layer 70 that covers the unevenness 40 of the second electrode 40 and planarizes the exposed surface.
  • the flattened layer 70 is not particularly limited as long as it is formed by a material that can fill the unevenness 40 and has a good surface coverage or shape following property and a film forming method.
  • a material that can fill the unevenness 40 has a good surface coverage or shape following property and a film forming method.
  • UV curable resins electron beam curable resins, epoxy resins, silicone resins, and other curable type resins; for example, polyparaxylylene films, etc., CVD films; Plasma polymerized films of resins such as organic silicone resins such as siloxane, fluorine-containing resins, polyethylene, polystyrene, and (meth) acrylic resins; vapor deposited polymer films of resins such as polyimides; or various Examples thereof include a film formed by a thermoplastic resin coating method.
  • the thickness of the flattened layer 70 is particularly limited because it depends on the structure of the laminated body to be coated, the material constituting the flattened layer, the forming method, and the like. is not. If the thickness of the flat layer 70 is extremely thin, the unevenness 40 as described above cannot be sufficiently filled, and the original function may not be achieved. If it is thick, it will be against the demand for thinner devices.
  • the sealing film 60 is formed on the upper portion so as to cover the stacked body.
  • the sealing film 60 to be formed is not particularly limited as long as it has no moisture or low gas permeability such as oxygen, and examples thereof include silicon oxide and aluminum oxide.
  • Metal oxides such as aluminum fluoride, metal fluorides such as aluminum fluoride, metal nitrides such as silicon nitride, aluminum nitride, and chromium nitride, single layers and laminates such as amorphous silicon and amorphous carbon, vacuum deposition, sputtering, etc. Examples thereof include those formed by a CVD method or the like.
  • the thickness of the sealing film 60 is not particularly limited. Even if the thickness of the sealing film 60 is thin to some extent as described above, since the covering surface is flattened by the flat layer 70 as described above, the sealing film 60 is good without defects. A film can be formed. In addition, there is less risk of the occurrence of film cracking or the like due to a thicker film made of a material with less good shape followability.
  • the surface of the laminated body to be covered with the sealing film 60 is flattened by the planarizing layer 70. Therefore, the sealing formed in this step is performed. Even if the film 60 is thin and is not very good in shape followability, the laminate can be coated very well and defects in the sealing film are unlikely to occur. Therefore, in the organic EL device obtained by this technology, the expansion of dark spots (non-light-emitting parts) after storage is effectively suppressed.
  • FIG. 6 is a cross-sectional view in the thickness direction schematically showing the structure of the organic EL device obtained by the method of manufacturing an organic EL device according to one embodiment of the present technology.
  • the thickness of each layer is exaggerated.
  • FIG. 8 is a flowchart showing the flow of each step in the method for manufacturing an organic EL element according to the present technology.
  • the disclosed second technique is based on a laminate including at least the first electrode 20, the organic light emitting layer 30, and the second electrode 40 formed on the substrate 10.
  • FIG. 8 shows a method of manufacturing an organic EL element in which a sealing film is formed, and as shown in FIG.
  • a first sealing film 61 is formed on the surface of the repaired second electrode 40, and then a flat layer 70 is deposited on the first sealing film 61.
  • the unevenness on the surface of the first sealing film is flattened, and then the upper force also forms the second sealing film 62.
  • the second technique is substantially the same as the first technique, except that after the repair of the initial defect portion, the process of forming the sealing film 61 is once considered. .
  • the first sealing film is formed by the presence of the unevenness 42 on the surface of the second electrode 40 as described above.
  • the upper portion of the first sealing film 61 is then covered with a flat layer 70 and then again.
  • the second sealing film 62 is sealed by the second sealing film 62. From the same point as in the first technique, the second sealing film 62 covers the entire element as a good film having no defect.
  • the organic EL device obtained with the first technology the expansion of dark spots (non-light emitting parts) after storage is effectively suppressed in the organic EL device obtained with the second technology. It becomes. Furthermore, although the number of manufacturing steps is increased compared to the first technology, a double sealing film is formed, so that an improvement in reliability can be expected.
  • first sealing film 61 and the second sealing film 62 a method of forming the first sealing film 61 and the second sealing film 62, materials used, and the like will be described with respect to the sealing film 60 in the first technique. It is the same as that. Further, the thicknesses of the first sealing film 61 and the second sealing film 62 are not particularly limited.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

There is provided an organic EL element manufacturing method for forming a seal film on a layered body of at least a first electrode, an organic light emitting layer, and a second electrode formed on a substrate. After the layered body is formed, electric connection is made between the first electrode and the second electrode. When a potential defective portion of the layered body is found by the electric connection, this is actively made explicit as an initial defective portion and it is repaired. Next, a convex/concave portions on the surface of the second electrode caused by the repair is smoothed. After this, the seal film is formed on the smoothed layered body. In manufacturing an organic EL element, it is possible to eliminate generation of defects in the seal film formed and reduce enlargement of a dark spot after the organic EL element is stored.

Description

明 細 書  Specification
有機 EL素子の製造方法およびこれにより得られた有機 EL素子 技術分野  Manufacturing method of organic EL element and organic EL element obtained thereby
[0001] 本技術は、有機エレクト口ルミネッセント素子(以下、「有機 EL素子」と称する。)の 製造方法およびこれにより得られた有機 EL素子に関するものである。詳しく述べると 本技術は、封止膜を有する有機 EL素子における封止膜形成の改良等に関する。 背景技術  [0001] The present technology relates to a method for manufacturing an organic electoric luminescent element (hereinafter referred to as "organic EL element") and an organic EL element obtained thereby. More specifically, the present technology relates to improvement of sealing film formation in an organic EL element having a sealing film. Background art
[0002] 有機 EL素子は、比較的低電圧で駆動でき、高輝度でバックライトを必要とせず、軽 量なフラットパネルディスプレイを作製できることから、近年注目されている。  An organic EL element has been attracting attention in recent years because it can be driven at a relatively low voltage, can produce a flat panel display with a high luminance and does not require a backlight, and is lightweight.
[0003] この有機 EL素子は、例えば、基板上に形成された対向する第 1電極と第 2電極間 に、有機発光層を挟持する構成のものである。  [0003] This organic EL element has, for example, a configuration in which an organic light emitting layer is sandwiched between opposing first and second electrodes formed on a substrate.
[0004] し力しながら、有機 EL素子は、大気中の水分や酸素が吸着することによって、例え ば、発光素子中に、黒い斑点状のダークスポットが発生し、発生したダークスポットが 成長して、有機 EL素子の寿命及び表示品位を低下させるという問題がある。  [0004] However, the organic EL element absorbs moisture and oxygen in the atmosphere, and for example, a black spot-like dark spot is generated in the light emitting element, and the generated dark spot grows. As a result, there is a problem that the lifetime and display quality of the organic EL element are lowered.
[0005] このような水分や酸素力 有機層を保護するために、従来、乾燥剤を収納した封止 缶と呼ばれる囲繞体で、有機 EL素子の封止を行っている。図 1は、このようなの封止 缶を有する有機 EL素子の構造を模式的に示す断面図である。図中、符号 10は基板 、 20は第 1電極、 30は有機発光層、 40は第 2電極、 50は封止缶をそれぞれ示すも のである。  [0005] In order to protect such an organic layer with moisture and oxygen, conventionally, an organic EL element is sealed with an enclosure called a sealing can containing a desiccant. FIG. 1 is a cross-sectional view schematically showing the structure of an organic EL element having such a sealing can. In the figure, reference numeral 10 denotes a substrate, 20 denotes a first electrode, 30 denotes an organic light emitting layer, 40 denotes a second electrode, and 50 denotes a sealing can.
[0006] しかしながら、このような封止缶を形成するとディスプレイパネルの厚みが大きくなつ てしまうため、パネルの薄膜ィ匕の要請にそぐわないことになる。  [0006] However, when such a sealing can is formed, the thickness of the display panel is increased, which does not meet the demand for the thin film panel.
[0007] このため有機 EL素子を、これに接する薄膜で封止しようとする試みがなされている 図 2はこのような封止膜を有する有機 EL素子の構造を模式的に示す断面図である。 図中、符号 10は基板、 20は第 1電極、 30は有機発光層、 40は第 2電極、 60は封止 膜をそれぞれ示すものである。 For this reason, attempts have been made to seal the organic EL element with a thin film in contact with the organic EL element. FIG. 2 is a cross-sectional view schematically showing the structure of the organic EL element having such a sealing film. . In the figure, reference numeral 10 denotes a substrate, 20 denotes a first electrode, 30 denotes an organic light emitting layer, 40 denotes a second electrode, and 60 denotes a sealing film.
[0008] 図 1に示すような従来例においては、封止が封止缶 50により行われているため、第 2電極 40と封止缶 50との間に空間が存在している。このため素子部にリークや短絡( ショート)が生じても、その箇所の電極が破損を受け非発光部となる力 リークによる 被害が拡大することはない。また、封止缶内部には、通常乾燥剤が入れてあるため、 保存後にその非発光部が拡大することはない。 In the conventional example as shown in FIG. 1, since the sealing is performed by the sealing can 50, There is a space between the two electrodes 40 and the sealing can 50. For this reason, even if a leak or short circuit occurs in the element part, the damage caused by the force leak that causes the electrode at that point to be damaged and becomes a non-light emitting part will not be expanded. Moreover, since the desiccant is usually contained in the inside of the sealing can, the non-light emitting part does not expand after storage.
[0009] これに対し、図 2Aに示すような封止膜 60を用いた素子構成の場合、リークやショー トが生じた場合、図 2Bに示すように、リーク発生部位 Lにおいては、電極 40に接する 封止膜 60も損傷を受けることになり、初期の非発光部のみならず、保存後に封止膜 の損傷部から、水分や酸素等のガスが素子部に進入し、図 3Aに示す保存前の非発 光部 100より、図 3Bに示す保存後の非発光部 100の領域が拡大していく。さらに、基 板 10がガラス基板ではなぐプラスチック基板である場合には、図 4に示すように基板 10側力もの水分やガスの侵入を防ぐために基板 10と第 1電極 20との間にバリア膜 1 1が設けてあるが、このノリア膜がリークによる熱で損傷することになり、被害は甚大と なる。 On the other hand, in the case of the element configuration using the sealing film 60 as shown in FIG. 2A, when leakage or short occurs, as shown in FIG. The sealing film 60 in contact with the film is also damaged, and moisture, oxygen, and other gases enter the element part not only from the initial non-light emitting part but also from the damaged part of the sealing film after storage, as shown in FIG. 3A. The area of the non-light emitting portion 100 after storage shown in FIG. 3B is expanded from the non-light emitting portion 100 before storage. Further, when the substrate 10 is a plastic substrate rather than a glass substrate, a barrier film is interposed between the substrate 10 and the first electrode 20 in order to prevent intrusion of moisture or gas as much as possible on the substrate 10 side as shown in FIG. 1 1 is provided, but this noria film will be damaged by heat due to leakage, and the damage will be enormous.
[0010] このように、封止膜による保護構造を有する有機 EL素子においては、上記したよう なリークによる封止膜の損傷をいかに防ぐかが重要である。  [0010] Thus, in an organic EL element having a protective structure with a sealing film, it is important how to prevent damage to the sealing film due to leakage as described above.
[0011] このような観点カゝら特許文献 1においては、保護膜を形成する前に、第 1電極と第 2 電極との間に電流を印加するエージングを行い、初期のリークを発生させた後に封 止膜を成膜させる方法が開示されている。この方法によれば、初期リーク発生に起因 して封止膜が損傷を受けることがないため、上述したような保存後における非発光部 100の拡大の虞が低減される。しかし、このエージングのような通電による初期欠陥 部の除去操作を行った場合、図 4に示すように、短絡を起こした部位やリークを積極 的に修理した部位においては、電極 40の突沸やめくれ等により表面に凹凸が発生し 、平坦性に欠けるものとなる。  In such a viewpoint, K. et al., In Patent Document 1, aging was performed by applying a current between the first electrode and the second electrode before the protective film was formed, and an initial leak was generated. A method for forming a sealing film later is disclosed. According to this method, since the sealing film is not damaged due to the occurrence of the initial leak, the possibility that the non-light emitting portion 100 is enlarged after storage as described above is reduced. However, when the initial defect removal operation by energization such as this aging is performed, as shown in Fig. 4, bumping or turning over of the electrode 40 is performed at the portion where the short circuit is caused or the portion where the leak is actively repaired. As a result, unevenness is generated on the surface, and flatness is lacking.
一方、その上部に形成される封止膜は、高い防湿防ガス性能が要求されるため、例 えば、窒化珪素、窒酸化珪素、酸ィ匕アルミニウム、酸ィ匕珪素などといった、概して被 覆性 ·表面追従性に劣る無機物を薄く堆積することによるものであるため、このように 平坦性に欠ける面上に形成されると封止膜に欠陥が生じやすぐ問題であった。  On the other hand, since the sealing film formed on the upper part is required to have high moisture-proof and gas-proof performance, for example, silicon nitride, silicon oxynitride, acid-aluminum, acid-silicon, etc. are generally covered. · This is due to the thin deposition of inorganic materials with inferior surface follow-up properties. If formed on a surface lacking flatness, defects in the encapsulating film would occur immediately.
[0012] 特許文献 1 :日本国特開 2003— 173873号公報 発明の開示 Patent Document 1: Japanese Patent Application Laid-Open No. 2003-173873 Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0013] 従って、本技術は、上記したような従来技術における問題点等を解決してなる有機 EL素子の製造方法およびこれにより得られた有機 EL素子を提供することを課題の 例とする。本技術はさらに、封止膜を有する有機 EL素子の製造において、形成され る封止膜の欠陥発生をなくし、有機 EL素子の保存後におけるダークスポット等の拡 大を低減できる等の技術的改善がなされる有機 EL素子の製造方法およびこれにより 得られた有機 EL素子を提供することを課題の例とする。  [0013] Therefore, an object of the present technology is to provide a method of manufacturing an organic EL element obtained by solving the above-described problems in the prior art and an organic EL element obtained thereby. This technology also provides technical improvements such as eliminating the generation of defects in the formed sealing film and reducing the expansion of dark spots after storage of the organic EL element in the manufacture of organic EL elements having a sealing film. An example of the problem is to provide a method for manufacturing an organic EL element that can be manufactured and an organic EL element obtained thereby.
課題を解決するための手段  Means for solving the problem
[0014] 上記課題を解決する本技術は、基板上に形成される少なくとも第 1電極、有機発光 層および第 2電極からなる積層体に対し、封止膜を形成してなる有機 EL素子の製造 方法であって、 [0014] The present technology for solving the above-described problem is to manufacture an organic EL element in which a sealing film is formed on a laminate including at least a first electrode, an organic light emitting layer, and a second electrode formed on a substrate. A method,
前記積層体の形成後、前記第 1電極と第 2電極の間に通電を行い、通電によって、 前記積層体に潜在的欠陥部が存在する場合に、これを積極的に初期欠陥として顕 在化させると共にその修理を行 、、  After the formation of the laminate, energization is performed between the first electrode and the second electrode, and when energization has a potential defect portion in the laminate, this is positively manifested as an initial defect. And repair it,
次いで、修理によって生じた第 2電極表面の凹凸を平坦ィ匕し、その後、平坦化され た前記積層体上に封止膜を形成することを特徴とする有機 EL素子の製造方法であ る。  Next, the unevenness of the surface of the second electrode caused by the repair is flattened, and then a sealing film is formed on the flattened laminate.
上記課題を解決する請求項 3に記載の技術は、基板上に形成される少なくとも第 1 電極、有機発光層および第 2電極からなる積層体に対し、封止膜を形成してなる有 機 EL素子の製造方法であって、  The technology according to claim 3, which solves the above problem, is an organic EL device in which a sealing film is formed on a laminate including at least a first electrode, an organic light emitting layer, and a second electrode formed on a substrate. A method for manufacturing an element, comprising:
前記積層体の形成後、前記第 1電極と第 2電極の間に通電を行い、通電によって、 前記積層体に潜在的欠陥部が存在する場合に、これを積極的に初期欠陥として顕 在化させると共にその修理を行 、、  After the formation of the laminate, energization is performed between the first electrode and the second electrode, and when energization has a potential defect portion in the laminate, this is positively manifested as an initial defect. And repair it,
次いで、修理された第 2電極表面に第 1の封止膜を形成し、その後、該第 1の封止 膜表面の凹凸を平坦化し、その上部から第 2の封止膜を形成するものであることを特 徴とする有機 EL素子の製造方法である。 図面の簡単な説明 Next, a first sealing film is formed on the repaired second electrode surface, and then the unevenness on the surface of the first sealing film is flattened, and a second sealing film is formed from the top. This is a method for manufacturing an organic EL device characterized by the fact that it exists. Brief Description of Drawings
[0015] [図 1]従来の有機 EL素子の構造の一例を示す概略断面図である。 FIG. 1 is a schematic cross-sectional view showing an example of the structure of a conventional organic EL element.
[図 2A]従来の有機 EL素子の構造の別の例を示す概略断面図であり、リークの発生 状態を示すものである。  FIG. 2A is a schematic cross-sectional view showing another example of the structure of a conventional organic EL device, showing a state of occurrence of a leak.
[図 2B]従来の有機 EL素子の構造の当該別の例を示す概略断面図であり、当該リー クにより保護膜が損傷を受けた状態を示すものである。  FIG. 2B is a schematic cross-sectional view showing another example of the structure of a conventional organic EL element, showing a state in which the protective film is damaged by the leak.
[図 3A]従来の有機 EL素子において発生したダークスポットの経時変化を模式的に 示す図であり、保存前の状態を示すものである。  FIG. 3A is a diagram schematically showing the change over time of dark spots generated in a conventional organic EL device, showing a state before storage.
[図 3B]従来の有機 EL素子において発生したダークスポットの経時変化を模式的に 示す図であり、保存後の状態を示すものである。  FIG. 3B is a diagram schematically showing the change over time of dark spots generated in a conventional organic EL device, showing the state after storage.
[図 4]従来の有機 EL素子の構造のさらに別の例を示す概略断面図である。  FIG. 4 is a schematic sectional view showing still another example of the structure of a conventional organic EL element.
[図 5]本第 1の技術により得られた有機 EL素子の構造の一例を示す概略断面図であ る。  FIG. 5 is a schematic cross-sectional view showing an example of the structure of an organic EL element obtained by the first technique.
[図 6]本第 2の技術により得られた有機 EL素子の構造の一例を示す概略断面図であ る。  FIG. 6 is a schematic sectional view showing an example of the structure of an organic EL element obtained by the second technique.
[図 7]本第 1の技術に係る有機 EL素子の製造方法における各工程の流れを示すフロ 一図である。  FIG. 7 is a flowchart showing the flow of each step in the method of manufacturing an organic EL element according to the first technology.
[図 8]本第 2の技術に係る有機 EL素子の製造方法における各工程の流れを示すフロ 一図である。  FIG. 8 is a flowchart showing the flow of each step in the method for manufacturing an organic EL element according to the second technique.
符号の説明  Explanation of symbols
[0016] 10 基材 [0016] 10 substrate
11 保護膜  11 Protective film
20 第一電極  20 First electrode
30 有機発光層  30 Organic light emitting layer
40 第二電極  40 Second electrode
42 第二電極表面の凹凸 61 第 1の封止膜 42 Unevenness on the surface of the second electrode 61 First sealing film
62 第 2の封止膜  62 Second sealing film
70 平坦化層  70 Planarization layer
100 非発光部  100 Non-light emitting part
L リーク発生部位  L Leakage site
D 修理箇所  D Repair location
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 以下、図面を参照しつつ、本技術に係る一実施形態の有機 EL素子の製造方法お よびこれにより得られた有機 EL素子について具体的に説明する。  Hereinafter, with reference to the drawings, an organic EL device manufacturing method according to an embodiment of the present technology and the organic EL device obtained thereby will be specifically described.
[0018] 図 5は、本技術に係る一実施形態の有機 EL素子の製造方法により得られた有機 E L素子の構造を模式的に示す厚さ方向断面図である。なお、図 5においては、各層 の厚さは誇張して描かれている。また図 7は、本技術に係る有機 EL素子の製造方法 における各工程の流れを示すフロー図である。  FIG. 5 is a cross-sectional view in the thickness direction schematically showing the structure of the organic EL device obtained by the method for manufacturing an organic EL device according to one embodiment of the present technology. In FIG. 5, the thickness of each layer is exaggerated. FIG. 7 is a flowchart showing the flow of each process in the method for manufacturing an organic EL element according to the present technology.
[0019] 開示される第 1の技術は、図 5に示されるように、基板 10上に形成される、少なくとも 第 1電極 20、有機発光層 30および第 2電極 40からなる積層体に対し、封止膜 60を 形成してなる有機 EL素子の製造方法であって、図 7に示すように、前記積層体の形 成後、封止膜 60の形成に先立ち、前記第 1電極 20と第 2電極 40の間に通電を行い 、前記積層体に潜在的欠陥部が存在する場合に、通電によって、前記潜在的欠陥 部を積極的に初期リークやショート等の初期欠陥として顕在化させると共に、その修 理を行い、次いで、修理によって生じた第 2電極 40表面の凹凸 42を平坦ィ匕し、その 後、平坦化された前記積層体上に封止膜 60を形成することを特徴とする有機 EL素 子の製造方法である。  [0019] As shown in FIG. 5, the disclosed first technique is a laminate formed of at least a first electrode 20, an organic light emitting layer 30, and a second electrode 40 formed on a substrate 10. A method of manufacturing an organic EL element in which a sealing film 60 is formed, as shown in FIG. 7, after the formation of the laminate, prior to the formation of the sealing film 60, the first electrode 20 and the first When energization is performed between the two electrodes 40 and there is a potential defect in the laminate, the potential defect is positively manifested as an initial defect such as an initial leak or a short circuit by energization, The repair is performed, and then the unevenness 42 on the surface of the second electrode 40 generated by the repair is flattened, and then the sealing film 60 is formed on the flattened laminate. This is a method for manufacturing organic EL devices.
[0020] なお本第 1の技術に係る有機 EL素子における積層体の構造としては、上記図 5に 示す例におけるものに限定されるものではなぐ公知の種々の構成のものとすること ができる。例えば、有機発光層は、図示するような、単層型のほか、発光効率の向上 のために正孔輸送層と電子輸送層とに分割して機能分離型にすることも可能である 。また、発光層と第二電極との間に電子注入輸送層を設ける構成、正孔注入輸送層 と電子注入輸送層の双方を設ける構成、あるいは正孔注入輸送層を発光層と混合し た構成等とすることができる。また、基板として、プラスチック製基板等をもちいた場合 などにおいては、基板側からの水分、酸素ガス等の侵入を防止するために、前述し た図 4に示すように基板 10と第 1電極 20との間にバリア膜 11を有することができる。さ らに基板側に設けられる第 1電極は、陽極とすることも逆に陰極とすることもでき、これ に対応して第 2電極は、陰極とすることも陽極とすることもできる。 [0020] The structure of the laminated body in the organic EL device according to the first technique is not limited to that in the example shown in Fig. 5 and may have various known configurations. For example, the organic light emitting layer can be divided into a hole transport layer and an electron transport layer to improve the light emission efficiency in addition to a single layer type as shown in the drawing, and can be made into a function separation type. In addition, a configuration in which an electron injecting and transporting layer is provided between the light emitting layer and the second electrode, a configuration in which both a hole injecting and transporting layer and an electron injecting and transporting layer are provided, or a hole injecting and transporting layer is mixed with the light emitting layer. It can be set as the configuration etc. When a plastic substrate is used as the substrate, the substrate 10 and the first electrode 20 as shown in FIG. 4 are used to prevent intrusion of moisture, oxygen gas, etc. from the substrate side. A barrier film 11 can be provided between the two. Furthermore, the first electrode provided on the substrate side can be an anode or, conversely, a cathode, and the second electrode can be a cathode or an anode correspondingly.
[0021] また基板およびその上部に形成される積層体中の材料としても特に限定されるもの ではなぐ従来公知の各種のものを用いることができる。  [0021] Further, the material in the substrate and the laminate formed thereon is not particularly limited, and various conventionally known materials can be used.
[0022] 基板 10としては、例えば、石英やガラス板、金属板や金属箔、プラスチックフィルム やシートなどが用いられる力 ガラス板や、ポリエステル、ポリメタアタリレート、ポリ力 ーボネート、ポリスルホンなどの透明なプラスチック基板を用いることもできる。また、 上記基板を用いると共に陰極を透明な 、し半透明にしたトップェミッションタイプにし ても良い。プラスチック基板を用いる場合には、基板側からの水分、ガス等の侵入を 防止するために、さらにその上部にノ リア膜 11を設けることが望ましいが、このバリア 膜 11としては、例えば、窒化ケィ素、酸窒化ケィ素、酸ィ匕アルミニウム、酸化ケィ素な どを用いることができる。  [0022] As the substrate 10, for example, quartz glass or glass plate, metal plate or metal foil, plastic glass or sheet, or the like glass plate, or transparent such as polyester, polymeta acrylate, poly strength polycarbonate, polysulfone, etc. A plastic substrate can also be used. Further, a top emission type in which the above substrate is used and the cathode is made transparent or semi-transparent may be used. In the case of using a plastic substrate, it is desirable to further provide a noria film 11 on the upper portion in order to prevent intrusion of moisture, gas, etc. from the substrate side. As this barrier film 11, for example, a nitride key is used. For example, silicon, silicon oxynitride, aluminum oxide, or silicon oxide can be used.
[0023] 第 1電極 20は、陽極とすることも陰極とすることもでき、第 2電極 40はこれに応じて 陰極とすることち陽極とすることちでさる。  [0023] The first electrode 20 can be an anode or a cathode, and the second electrode 40 can be a cathode or an anode accordingly.
[0024] 陽極は有機発光層 30への正孔注入の役割を果たすものである力 例えば、アルミ ユウム、金、銀、ニッケル、パラジウム、テルル等の金属、インジウム及び Zまたはスズ の酸ィ匕物(代表的には ITO)などの金属酸ィ匕物やヨウ化銅、カーボンブラック、あるい は、ポリ(3—メチルチオフェン)等の導電性高分子などにより構成される。陽極の形 成はスパッタリング法、真空蒸着法などにより行われるが、導電性高分子より構成す る場合にはコーティング法、 CVD法等によって形成されることもできる。一方、陰極は 、有機発光層 30に電子を注入する役割を果たものであり、前記陽極に使用される材 料を用いることが可能であるが、効率よく電子注入を行なうには、例えば、スズ、マグ ネシゥム、インジウム、アルミニウム、銀等の適当な金属またはそれらの合金が用いら れる。  [0024] The anode is a force that plays a role of hole injection into the organic light emitting layer 30. For example, metals such as aluminum, gold, silver, nickel, palladium, tellurium, indium and Z or tin oxides It is composed of a metal oxide such as ITO (typically ITO), copper iodide, carbon black, or a conductive polymer such as poly (3-methylthiophene). The anode is formed by a sputtering method, a vacuum deposition method, or the like, but when it is made of a conductive polymer, it can also be formed by a coating method, a CVD method, or the like. On the other hand, the cathode plays a role of injecting electrons into the organic light emitting layer 30, and the material used for the anode can be used. For efficient electron injection, for example, A suitable metal such as tin, magnesium, indium, aluminum, silver, or an alloy thereof is used.
[0025] 有機発光層 30は、電界を与えられた電極間において、陽極から注入された正孔と 陰極から注入された電子とを効率よく輸送して再結合させ、かつ、再結合により効率 よく発光する材料から形成される。 [0025] The organic light emitting layer 30 includes holes injected from the anode between electrodes to which an electric field is applied. It is formed from a material that efficiently transports and recombines electrons injected from the cathode and emits light efficiently by recombination.
[0026] 単層型の有機発光層としては、例えば、ポリ(p フエ二レンビニレン)、ポリ [2—メト キシ一 5— (2—ェチルへキシルォキシ) 1, 4 フエ-レンビ-レン]、ポリ(3 アル キルチオフェン)等の高分子材料や、ポリビニルカルバゾール等の高分子に発光材 料と電子移動材料とを混合した系などを用いることができる。このような単層型の有機 発光層は、例えばコーティング法や真空蒸着法により形成することができる。  [0026] Examples of the single-layer type organic light-emitting layer include poly (p-phenylene vinylene), poly [2-methyoxy 5- (2-ethylhexyloxy) 1,4 phenol-biylene], poly A polymer material such as (3 alkylthiophene) or a system in which a light-emitting material and an electron transfer material are mixed with a polymer such as polyvinylcarbazole can be used. Such a single layer type organic light emitting layer can be formed by, for example, a coating method or a vacuum deposition method.
[0027] 一方、正孔輸送層と電子輸送層との機能分離型の場合、正孔輸送層は、例えば、 1 , 1 ビス(4 ジ— p トリルァミノフエ-ル)シクロへキサン等の 3級芳香族アミンュ ニットを連結した芳香族ジァミンィ匕合物、 4, 4'—ビス [フエ-ル— 1—ナフチルァミノ] ビフエ-ルで代表される 2個以上の 3級アミノ基を有しかつ 2個以上の縮合芳香族環 が窒素原子に置換した芳香族ァミン、トリフエ-ルベンゼンの誘導体でスターバースト 構造を有する芳香族トリァミン、 N, N,ージフエ-ルー N, N,一ビス(3—メチルフエ- ル)—(1 , 1, ビフエ-ル) 4, 4,—ジァミン等の芳香族ジァミン、 α , α , α ' , α ' —テトラメチル一 α , ,一ビス(4—ジ一 p トリルァミノフエ-ル) p キシレン、立 体的に非対称なトリフエ-ルァミン誘導体、ピレニル基に芳香族ジァミノ基が複数個 置換した化合物、エチレン基で 3級芳香族ァミンユニットを連結した芳香族ジァミン、 スチリル構造を有する芳香族ジァミン、チォフェン基で芳香族 3級ァミンユニットを連 結し化合物、スターバースト型芳香族トリァミン、ベンジルフエ-ル化合物、フルォレ ン基で 3級ァミンを連結した化合物、トリアミンィ匕合物、ビス (ジピリジルァミノ)ビフエ- ル、 N, N, N—トリフエ-ルァミン誘導体、フエノキサジン構造を有する芳香族ジアミ ン、ジァミノフエ-ルフエナントリジン誘導体、ヒドラゾンィ匕合物、シラザンィ匕合物、シラ ナミン誘導体、ホスファミン誘導体、キナクリドンィ匕合物等を単独であるいは複数組み 合わせて構成することができる。また、正孔輸送性ポリマー、例えば、ポリビニルカル バゾールゃポリシラン等の正孔輸送性ポリマーを用いることも可能である。さらに、 p 型水素化非晶質シリコン、 P型水素化非晶質炭化シリコン、 p型水素化微結晶性炭化 シリコン、あるいは、 p型硫化亜鉛、 p型セレンィ匕亜鉛等の無機物を用いることもできる 。正孔輸送層は、有機物の場合、真空蒸着法、コーティング法あるいは CVD法等に よって、無機物の場合、 CVD法、プラズマ CVD法、真空蒸着法、スパッタ法等により 形成される。 [0027] On the other hand, in the case of the functional separation type of the hole transport layer and the electron transport layer, the hole transport layer is, for example, a tertiary fragrance such as 1, 1 bis (4 di-p-triarylaminophenol) cyclohexane. Aromatic diamine compounds in which aromatic amine units are linked, having 4 or more tertiary amino groups typified by 4, 4'-bis [phenyl-1-naphthylamino] biphenyl, and two or more Aromatic amines in which the condensed aromatic ring is substituted with a nitrogen atom, derivatives of triphenylbenzene, and aromatic triamines with a starburst structure, N, N, diphenol-N, N, monobis (3-methylphenol) — (1, 1, Biphenyl) 4, 4, — Aromatic diamines such as diamine, α, α, α ', α' — Tetramethyl mono α,, monobis (4-di-p-tolylaminophenol) p Xylene, a sterically asymmetric triphenylamine derivative, an aromatic diamine on the pyrenyl group A compound in which a plurality of alkyl groups are substituted, an aromatic diamine in which a tertiary aromatic amine unit is linked by an ethylene group, an aromatic diamine having a styryl structure, a compound in which an aromatic tertiary amine unit is linked by a thiophene group, Starburst type aromatic triamine, benzylphenol compound, compound with tertiary amine linked by fluorene group, triamine compound, bis (dipyridylamino) biphenyl, N, N, N-triphenylamine derivative, phenoxazine structure Aromatic diamines, diaminophenol enanthridine derivatives, hydrazone compounds, silazane compounds, silanamine compounds, phosphamine derivatives, quinacridone compounds, etc., having a fragrance can be constituted alone or in combination. . It is also possible to use a hole transporting polymer, for example, a hole transporting polymer such as polyvinylcarbazole or polysilane. Furthermore, p-type hydrogenated amorphous silicon, P-type hydrogenated amorphous silicon carbide, p-type hydrogenated microcrystalline silicon carbide, or inorganic materials such as p-type zinc sulfide and p-type selenium zinc can also be used. it can . In the case of organic materials, the hole transport layer can be used for vacuum deposition, coating, or CVD. Therefore, in the case of an inorganic substance, it is formed by a CVD method, a plasma CVD method, a vacuum deposition method, a sputtering method, or the like.
[0028] 次に電子輸送層としては、例えば、テトラフエ-ルブタジエンなどの芳香族化合物、 8—ヒドロキシキノリンのアルミニウム錯体などの金属錯体、シクロペンタジェン誘導体 、ペリノン誘導体、ォキサジァゾール誘導体、ビススチリルベンゼン誘導体、ペリレン 誘導体、クマリンィ匕合物、希土類錯体、ジスチリルビラジン誘導体、 p—フエ二レンィ匕 合物、チアジアゾロピリジン誘導体、ピロ口ピリジン誘導体、ナフチリジン誘導体など の有機物を用いて形成することが可能である。なお、これらの化合物を用いた電子輸 送層は、電子を輸送する役割と、正孔と電子の再結合の際に発光をもたらす役割を 同時に果している。有機正孔輸送層が発光機能を有する場合は、電子輸送層は電 子を輸送する役割だけを果たす。さらに、素子の発光効率を向上させるとともに発光 色を変える目的で、例えば、 8—ヒドロキシキノリンのアルミニウム錯体をホスト材料とし て、クマリン等のレーザ用蛍光色素をドープすることも可能である。有機電子輸送層 も有機正孔輸送層と同様の方法で形成することができるが、通常は真空蒸着法が用 いられるが、スピンコート法でもよい。  Next, as the electron transport layer, for example, aromatic compounds such as tetraphenylbutadiene, metal complexes such as aluminum complexes of 8-hydroxyquinoline, cyclopentagen derivatives, perinone derivatives, oxadiazole derivatives, bisstyrylbenzene derivatives , Perylene derivatives, coumarin derivatives, rare earth complexes, distyryl virazine derivatives, p-phenylene di compounds, thiadiazolo pyridine derivatives, pyroguchi pyridine derivatives, naphthyridine derivatives, and the like. Is possible. Note that an electron transport layer using these compounds simultaneously plays a role of transporting electrons and a role of emitting light upon recombination of holes and electrons. When the organic hole transport layer has a light emitting function, the electron transport layer only plays a role of transporting electrons. Furthermore, for the purpose of improving the light emission efficiency of the device and changing the emission color, it is possible to dope a laser fluorescent dye such as coumarin using, for example, an aluminum complex of 8-hydroxyquinoline as a host material. The organic electron transport layer can also be formed by the same method as the organic hole transport layer, but usually a vacuum deposition method is used, but a spin coating method may also be used.
[0029] 有機電界発光素子の発光効率をさらに向上させる方法として、電子輸送層の上に さらに他の電子輸送層を積層することもできる。当該他の電子輸送層は、例えば、ォ キサジァゾール誘導体やそれらをポリメチルメタタリレート等の樹脂に分散した系、フ ヱナント口リン誘導体、 n型水素化非晶質炭化シリコン、 n型硫化亜鉛、 n型セレンィ匕 亜鉛等により構成することができる。  [0029] As a method for further improving the luminous efficiency of the organic electroluminescent device, another electron transport layer can be further laminated on the electron transport layer. The other electron transport layer is, for example, an oxaziazole derivative or a system in which they are dispersed in a resin such as polymethylmethacrylate, a phenantorin phosphorus derivative, n-type hydrogenated amorphous silicon carbide, n-type zinc sulfide, n-type selenium zinc can be used.
[0030] さらに、必要に応じて、陽極力もの正孔注入の効率を上げ、駆動電圧を下げる機能 を有する正孔注入層を形成することも可能である。正孔注入層は、例えば、フタロシ ァニン化合物やボルフイリンィ匕合物により構成することができる。また、必要に応じ、 陰極と有機層とのコンタクトを向上させるために界面層を形成することも可能である。 界面層は、例えば、芳香族ジァミンィ匕合物、キナクリドンィ匕合物、ナフタセン誘導体、 有機シリコンィ匕合物、有機リンィ匕合物、 N—フエ-ルカルバゾール誘導体、 N—ビ- ルカルバゾール重合体等がにより構成することができる。  [0030] Furthermore, if necessary, it is possible to form a hole injection layer having a function of increasing the efficiency of hole injection with an anodic power and lowering the driving voltage. The hole injection layer can be composed of, for example, a phthalocyanine compound or a borfilin compound. In addition, an interface layer can be formed as needed to improve the contact between the cathode and the organic layer. The interface layer is, for example, an aromatic diamine compound, a quinacridone compound, a naphthacene derivative, an organic silicon compound, an organic phosphorus compound, an N-phenylcarbazole derivative, or an N-vinylcarbazole polymer. Etc. can be constituted by.
[0031] 本第 1の技術に係る有機 EL素子の製造方法においては、例えば、上述したような 基板 10、洗浄後、その上部に、第 1電極 20を例えば、スパッタ法等により形成し、そ の表面を研磨した後、単層または複数層からなる有機発光層 30を真空蒸着法等に より形成し、さらに第 2電極を例えば蒸着法またはスパッタ法等により形成し、所定の 有機 EL素子構造となる積層体を形成した後、前記第 1電極 20と第 2電極 40の間に 通電を行い、デバイスに初期リークやショート等の初期欠陥が生じる力否かにつき、 検定を行う。 [0031] In the method of manufacturing the organic EL element according to the first technique, for example, as described above. After cleaning the substrate 10, the first electrode 20 is formed on the top thereof by, for example, a sputtering method, and after polishing the surface, the organic light emitting layer 30 composed of a single layer or a plurality of layers is formed by a vacuum deposition method or the like. Then, the second electrode is further formed by, for example, vapor deposition or sputtering to form a laminated body having a predetermined organic EL element structure, and then the first electrode 20 and the second electrode 40 are energized. Test whether or not the device has initial defects such as initial leak or short circuit.
[0032] この通電は、製造される有機 EL素子の市場における駆動条件よりも、高い負荷を 両電極間に加えることにより行われる。特に限定されることはないが、例えば、実際に 素子を駆動する時に用いる駆動電流密度の所定範囲の電流密度で予め駆動する。  This energization is performed by applying a higher load between the electrodes than the driving conditions in the market of the organic EL element to be manufactured. Although not particularly limited, for example, driving is performed in advance at a current density within a predetermined range of driving current density used when actually driving the element.
[0033] このような初期欠陥の発生をもたらす通電処理は、一般に「エージング」と呼ばれる 処理の一部として行うことができる。また逆バイアス印加工程により行っても良い。この エージング処理は、有機 EL素子の使用における初期欠陥を前もって発生させて、除 外してしまう工程である。上記のような電流を第 1電極および第 2電極間に、所定時間 印加することで、初期欠陥によって、素子中に存在する微少なリークパスを自己修理 するとともに、電極と有機層界面でのコンタクトを向上させ、発光特性を安定化させる るものである。このようなエージング処理は、電流密度を高くすれば短時間で完了す る。実用的には 10時間以内でエージング処理が終了することが好ましい。また、エー ジング時の電流波形は直流、交流、パルスのいずれでもよい。  [0033] The energization process that causes the occurrence of such an initial defect can be performed as a part of a process generally called "aging". Moreover, you may carry out by a reverse bias application process. This aging process is a process in which initial defects in the use of organic EL elements are generated and removed in advance. By applying the current as described above between the first electrode and the second electrode for a predetermined period of time, a small leak path existing in the element is self-repaired due to initial defects, and contact at the interface between the electrode and the organic layer is made. It improves and stabilizes the light emission characteristics. Such an aging process can be completed in a short time if the current density is increased. Practically, the aging treatment is preferably completed within 10 hours. The current waveform during aging may be any of direct current, alternating current, and pulse.
[0034] エージング処理は、例えば、次のようにして行われる。まず、通常、上記のごとき積 層体を形成した基板 10を、大気中に暴露することなぐ成膜装置と連結されたグロ一 ブボックスに搬送する。このグローブボックス内には、乾燥窒素と酸素の混合ガスが 充填されている。その露点は、例えば、少なくとも— 50°C以下、より好ましくは— 80°C 以下に保持され、ダークスポットの発生、成長が起こりにくい条件とされている。また、 酸素濃度は、例えば 1〜10%程度とすることが望ましい。この範囲より極端に低いも のとなると、エージング効果が弱くなり、陰極一陽極間のショートが多発するようになり 、所望の初期欠陥を生じさせることが困難になる虞れがある。一方、極端に高いもの であると、ダークスポットの成長が顕著になってしまう虞れがある。しかし、露点、酸素 濃度条件は、エージング雰囲気への暴露時間に依存するものであり、エージング時 間がより短時間になるほど、露点を高くしたり、酸素濃度を上げることは可能である。 The aging process is performed as follows, for example. First, usually, the substrate 10 on which the stacked body as described above is formed is transported to a globe box connected to a film forming apparatus that is not exposed to the atmosphere. This glove box is filled with a mixed gas of dry nitrogen and oxygen. The dew point is, for example, at least −50 ° C. or lower, more preferably −80 ° C. or lower, and is a condition in which dark spots are not easily generated and grown. The oxygen concentration is preferably about 1 to 10%, for example. If it is extremely lower than this range, the aging effect is weakened, the short circuit between the cathode and the anode frequently occurs, and it may be difficult to produce a desired initial defect. On the other hand, if it is extremely high, the growth of dark spots may become prominent. However, the dew point and oxygen concentration conditions depend on the exposure time to the aging atmosphere. The shorter the interval, the higher the dew point and the higher the oxygen concentration.
[0035] なお、発生した初期欠陥を修理する処理は、所定時間電流を印加する上記したよう なエージング、あるいはァニールによる熱的エージングといったによる自己修理によ る方法に限られない。  It should be noted that the process for repairing the generated initial defect is not limited to the self-repairing method such as aging as described above in which a current is applied for a predetermined time or thermal aging by annealing.
[0036] 本第 1の技術においては、このように積層体上に封止膜 60を形成する前に、初期 欠陥モードの発生およびその修理を行うために、リークが発生した箇所や、修理した 箇所 Dにおいて、封止膜 60が損傷を受けるということが本質的に生じない。また、封 止膜 60を作製する以前の方力 例えばエージング等による自己修理をしやすいため 、リークによる熱の発生による損傷も少なくなり、特にプラスチック基板を用いた有機 E L素子の場合には、基板 10側力もの水分等の侵入を防ぐために設けてあるバリア膜 12の損傷も最小限ですむ。また、封止膜が設けられていないため、修理処理として、 レーザー光照射と 、つた態様を採択し得ることとなる。  [0036] In the first technique, before forming the sealing film 60 on the stacked body in this way, in order to generate and repair the initial defect mode, the location where the leak occurred or the repair was performed. In place D, the sealing film 60 is essentially not damaged. In addition, since the force prior to manufacturing the sealing film 60 is easy to self-repair due to, for example, aging, damage due to heat generation due to leakage is reduced, especially in the case of organic EL elements using plastic substrates. Damage to the barrier film 12 provided to prevent the entry of moisture, etc., with 10 side forces can be minimized. Further, since the sealing film is not provided, the laser beam irradiation can be adopted as the repair process.
[0037] このようにして、第 1電極と第 2電極との間に電流を印加し、潜在的欠陥部が存在す る場合に、これらの部位にショートやリークといった初期欠陥を積極的に生じさせ、こ れを修理するという処理を行った場合、ショートが発生した箇所や、修理した箇所 D においては、図 5に示すように、第 2電極 40の突沸やめくれ等により表面に凹凸 42が 発生し、平坦性に欠けた状態となる。  [0037] In this way, when a current is applied between the first electrode and the second electrode and there are potential defect portions, initial defects such as short-circuits and leaks are positively generated in these portions. When the process of repairing this is performed, at the location where the short circuit occurred or at the repaired location D, as shown in FIG. Occurs and is in a state of lack of flatness.
[0038] そこで、本第 1技術においては、この修理処理の後、第 2電極 40表面に生じた凹凸 42を覆う平坦化処理を行う。この平坦化処理は、第 2電極 40の凹凸 40を覆いその露 出表面を平坦化する平坦化層 70を形成することにより行われる。  Therefore, in the first technique, after the repair process, a flattening process is performed to cover the irregularities 42 generated on the surface of the second electrode 40. This planarization process is performed by forming a planarization layer 70 that covers the unevenness 40 of the second electrode 40 and planarizes the exposed surface.
[0039] 平坦ィ匕層 70は、前記凹凸 40を埋めることのできる、表面被覆性ないし形状追従性 の良好な材料および成膜法により形成されるものであれば特に限定されるものでは ないが、例えば、紫外線硬化性榭脂、電子線硬化性榭脂、エポキシ榭脂、シリコーン 榭脂等の硬化型榭脂による膜;例えば、ポリパラキシリレン膜などのような CVDによる 膜;例えば、オルガノシロキサンなどのような有機ケィ素系榭脂、含フッ素系榭脂、ポ リエチレン系、ポリスチレン系、(メタ)アクリル系等の樹脂のプラズマ重合膜;ポリイミド 系など榭脂の蒸着重合膜;あるいは各種熱可塑性榭脂の塗布法による膜などが例示 できる。さらに、形状追従性の良好な塗布法による無機系の膜を用いることもできる。 [0040] このような平坦ィ匕層 70の厚さとしては、被覆しょうとする積層体の構造、平坦化層を 構成する材質および形成方法等によっても左右されるので、特に、限定されるわけで はない。平坦ィ匕層 70の厚さが極端に薄いものであると、上記したような凹凸 40を十 分に埋めることができず、その本来の作用をもたらすことができない虞れがあり、一方 極端に厚いものであると、デバイスの薄肉化の要請に反することとなってしまう。 [0039] The flattened layer 70 is not particularly limited as long as it is formed by a material that can fill the unevenness 40 and has a good surface coverage or shape following property and a film forming method. For example, UV curable resins, electron beam curable resins, epoxy resins, silicone resins, and other curable type resins; for example, polyparaxylylene films, etc., CVD films; Plasma polymerized films of resins such as organic silicone resins such as siloxane, fluorine-containing resins, polyethylene, polystyrene, and (meth) acrylic resins; vapor deposited polymer films of resins such as polyimides; or various Examples thereof include a film formed by a thermoplastic resin coating method. Furthermore, an inorganic film formed by a coating method having good shape following property can also be used. [0040] The thickness of the flattened layer 70 is particularly limited because it depends on the structure of the laminated body to be coated, the material constituting the flattened layer, the forming method, and the like. is not. If the thickness of the flat layer 70 is extremely thin, the unevenness 40 as described above cannot be sufficiently filled, and the original function may not be achieved. If it is thick, it will be against the demand for thinner devices.
[0041] そして本技術においては、平坦ィ匕層 70が形成され前記凹凸 40が埋められた後に 、最後に、その上部に積層体を覆うように封止膜 60を形成する。  In the present technology, after the flat layer 70 is formed and the unevenness 40 is filled, finally, the sealing film 60 is formed on the upper portion so as to cover the stacked body.
[0042] 形成される封止膜 60としては、水分な 、しは酸素等のガスの透過性の低 、もので あれば特に限定されるものではないが、例えば、酸化珪素、酸ィ匕アルミニウム等の金 属酸化物、フッ化アルミニウム等の金属フッ化物、窒化珪素、窒化アルミニウム、窒化 クロム等の金属窒化物、アモルファスシリコン、アモルファスカーボン等の単層、積層 体などを、真空蒸着、スパッタ、 CVD法等により成膜したものを挙げることができる。  The sealing film 60 to be formed is not particularly limited as long as it has no moisture or low gas permeability such as oxygen, and examples thereof include silicon oxide and aluminum oxide. Metal oxides such as aluminum fluoride, metal fluorides such as aluminum fluoride, metal nitrides such as silicon nitride, aluminum nitride, and chromium nitride, single layers and laminates such as amorphous silicon and amorphous carbon, vacuum deposition, sputtering, etc. Examples thereof include those formed by a CVD method or the like.
[0043] また封止膜 60の厚さとしては、特に限定されるものではない。なお、封止膜 60の厚 さがこのようにある程度薄 、ものであっても、上述したようにその被覆面は平坦ィ匕層 7 0により平坦化されているために、欠陥のない良好な膜を形成できる。また、形状追 従性のあまり良好でない材料を用いてより厚膜とすることによる膜の割れ等の発生す る虞れも少なくなる。 [0043] The thickness of the sealing film 60 is not particularly limited. Even if the thickness of the sealing film 60 is thin to some extent as described above, since the covering surface is flattened by the flat layer 70 as described above, the sealing film 60 is good without defects. A film can be formed. In addition, there is less risk of the occurrence of film cracking or the like due to a thicker film made of a material with less good shape followability.
[0044] 本技術においては、前記したようにこの封止膜 60が被覆しょうとする積層体表面は 前記平坦化層 70により、平坦なものとされているため、この工程で形成される封止膜 60が薄くかつあまり形状追従性の良好でない膜であっても、極めて良好に積層体を 被覆することができ、かつ該封止膜に欠陥が生じにくいものとなる。従って、本技術に より得られる有機 EL素子においては、保存後におけるダークスポット (非発光部)の 拡大が効果的に抑制されることとなる。  [0044] In the present technology, as described above, the surface of the laminated body to be covered with the sealing film 60 is flattened by the planarizing layer 70. Therefore, the sealing formed in this step is performed. Even if the film 60 is thin and is not very good in shape followability, the laminate can be coated very well and defects in the sealing film are unlikely to occur. Therefore, in the organic EL device obtained by this technology, the expansion of dark spots (non-light-emitting parts) after storage is effectively suppressed.
[0045] 次に第 2の技術に係る有機 EL素子の製造方法につき説明する。  Next, a method for manufacturing an organic EL element according to the second technique will be described.
図 6は、本技術に係る一実施形態の有機 EL素子の製造方法により得られた有機 E L素子の構造を模式的に示す厚さ方向断面図である。なお、図 6においては、各層 の厚さは誇張して描かれている。また図 8は、本技術に係る有機 EL素子の製造方法 における各工程の流れを示すフロー図である。 [0046] 開示される第 2の技術は、図 6に示されるように、基板 10上に形成される、少なくとも 第 1電極 20、有機発光層 30および第 2電極 40からなる積層体に対し、封止膜を形 成してなる有機 EL素子の製造方法であって、図 8に示すように、前記積層体の形成 後、封止膜 61、 62の形成に先立ち、前記第 1電極 20と第 2電極 40の間に通電を行 い、積層体に潜在的欠陥部が存在した場合に、この通電によって当該部位を初期リ ークゃショート等の初期欠陥として顕在化させると共に、初期欠陥部の修理を行!、、 次いで、修理された第 2電極 40表面に第 1の封止膜 61を形成し、その後、この第 1の 封止膜 61上に、平坦ィ匕層 70を堆積して該第 1の封止膜表面の凹凸を平坦ィ匕し、そ の後、その上部力も第 2の封止膜 62を形成するものである。 FIG. 6 is a cross-sectional view in the thickness direction schematically showing the structure of the organic EL device obtained by the method of manufacturing an organic EL device according to one embodiment of the present technology. In FIG. 6, the thickness of each layer is exaggerated. FIG. 8 is a flowchart showing the flow of each step in the method for manufacturing an organic EL element according to the present technology. [0046] As shown in FIG. 6, the disclosed second technique is based on a laminate including at least the first electrode 20, the organic light emitting layer 30, and the second electrode 40 formed on the substrate 10. FIG. 8 shows a method of manufacturing an organic EL element in which a sealing film is formed, and as shown in FIG. 8, after the formation of the stacked body, prior to the formation of the sealing films 61 and 62, the first electrode 20 and When energization is performed between the second electrodes 40 and a potential defect exists in the laminate, the current is made to manifest as an initial defect such as an initial leak by this energization, and the initial defect Next, a first sealing film 61 is formed on the surface of the repaired second electrode 40, and then a flat layer 70 is deposited on the first sealing film 61. Thus, the unevenness on the surface of the first sealing film is flattened, and then the upper force also forms the second sealing film 62.
[0047] 本第 2の技術は、前記第 1の技術とは、初期欠陥部の修理後に、一旦、封止膜 61 を形成する工程をカ卩えた点以外においては、ほぼ同様のものである。  [0047] The second technique is substantially the same as the first technique, except that after the repair of the initial defect portion, the process of forming the sealing film 61 is once considered. .
[0048] 初期欠陥部の修理処理後に、第 2電極 40上に封止膜を直接形成した場合、上述 したように、第 2電極 40表面の凹凸 42の存在によって、当該第 1の封止膜 61自体は 、欠陥のない良好な膜として形成されない虞れはあるが、本第 2技術においては、そ の後、この第 1の封止膜 61の上部を平坦ィ匕層 70で覆い、再度第 2の封止膜 62にて 封止するものであり、前記第 1の技術におけると同様の点から、この第 2の封止膜 62 は、欠陥のない良好な膜として素子全体を覆うこととなるため、本第 2技術により得ら れる有機 EL素子も、第 1技術により得られる有機 EL素子と同様に、保存後における ダークスポット (非発光部)の拡大が効果的に抑制されることとなる。さらに、第 1の技 術と比較すると製造工程数は増えるものの、 2重の封止膜を形成することとなるため、 信頼性が向上することが期待できるものである。  [0048] When the sealing film is directly formed on the second electrode 40 after the repair process of the initial defect portion, the first sealing film is formed by the presence of the unevenness 42 on the surface of the second electrode 40 as described above. Although there is a possibility that 61 itself is not formed as a good film without defects, in this second technique, the upper portion of the first sealing film 61 is then covered with a flat layer 70 and then again. The second sealing film 62 is sealed by the second sealing film 62. From the same point as in the first technique, the second sealing film 62 covers the entire element as a good film having no defect. Therefore, as with the organic EL device obtained with the first technology, the expansion of dark spots (non-light emitting parts) after storage is effectively suppressed in the organic EL device obtained with the second technology. It becomes. Furthermore, although the number of manufacturing steps is increased compared to the first technology, a double sealing film is formed, so that an improvement in reliability can be expected.
[0049] 本第 2の技術において、前記第 1の封止膜 61および第 2の封止膜 62の形成方法 および用いられる材質等は、前記した第 1の技術における封止膜 60に関して説明し たものと同様のものである。また、第 1の封止膜 61および第 2の封止膜 62の厚さとし ては、特に限定されるものではない。  [0049] In the second technique, a method of forming the first sealing film 61 and the second sealing film 62, materials used, and the like will be described with respect to the sealing film 60 in the first technique. It is the same as that. Further, the thicknesses of the first sealing film 61 and the second sealing film 62 are not particularly limited.
[0050] なお、本第 2の技術において、基板の材質、第 1および第 2電極の材質および形成 方法、有機発光層の材質および形成方法、積層体の各種態様、通電および修理処 理の方法、平坦化層の材質、厚さおよび形成方法などといったその他の点に関して は、第 1の技術に関して先に詳述したものとほぼ同様のものであるため、説明を省略 する。 [0050] In the second technique, the material of the substrate, the material and the forming method of the first and second electrodes, the material and the forming method of the organic light emitting layer, various aspects of the laminated body, the method of energization and repair processing , Other aspects such as the material, thickness and formation method of the planarization layer Since this is almost the same as that described in detail with respect to the first technology, the description thereof will be omitted.

Claims

請求の範囲 The scope of the claims
[1] 基板上に形成される少なくとも第 1電極、有機発光層および第 2電極からなる積層 体に対し、封止膜を形成してなる有機 EL素子の製造方法であって、  [1] A method for producing an organic EL element, in which a sealing film is formed on a laminate comprising at least a first electrode, an organic light emitting layer, and a second electrode formed on a substrate,
前記積層体の形成後、前記第 1電極と第 2電極の間に通電を行い、通電によって、 前記積層体に潜在的欠陥部が存在する場合に、これを積極的に初期欠陥として顕 在化させると共にその修理を行 、、  After the formation of the laminate, energization is performed between the first electrode and the second electrode, and when energization has a potential defect portion in the laminate, this is positively manifested as an initial defect. And repair it,
次いで、修理によって生じた第 2電極表面の凹凸を平坦ィ匕し、その後、平坦化され た前記積層体上に封止膜を形成することを特徴とする有機 EL素子の製造方法。  Next, the unevenness of the surface of the second electrode generated by the repair is flattened, and then a sealing film is formed on the flattened laminate.
[2] 上部電極表面の凹凸の平坦化が、第 2電極表面上への有機薄膜の堆積により行 われるものである請求項 1記載の有機 EL素子の製造方法。 [2] The method for producing an organic EL device according to [1], wherein the unevenness on the surface of the upper electrode is flattened by depositing an organic thin film on the surface of the second electrode.
[3] 基板上に形成される少なくとも第 1電極、有機発光層および第 2電極からなる積層 体に対し、封止膜を形成してなる有機 EL素子の製造方法であって、 [3] A method for producing an organic EL element, in which a sealing film is formed on a laminate composed of at least a first electrode, an organic light emitting layer and a second electrode formed on a substrate,
前記積層体の形成後、前記第 1電極と第 2電極の間に通電を行い、通電によって、 前記積層体に潜在的欠陥部が存在する場合に、これを積極的に初期欠陥として顕 在化させると共にその修理を行 、、  After the formation of the laminate, energization is performed between the first electrode and the second electrode, and when energization has a potential defect portion in the laminate, this is positively manifested as an initial defect. And repair it,
次いで、修理された第 2電極表面に第 1の封止膜を形成し、その後、この第 1の封 止膜表面の凹凸を平坦ィ匕し、その上部から第 2の封止膜を形成するものであることを 特徴とする有機 EL素子の製造方法。  Next, a first sealing film is formed on the repaired second electrode surface, and then the unevenness on the surface of the first sealing film is flattened, and a second sealing film is formed from the top. A method for producing an organic EL element, characterized in that
[4] 第 1の封止膜表面の凹凸の平坦化が、第 1の封止膜上への有機薄膜の堆積により 行われるものである請求項 3記載の有機 EL素子の製造方法。 [4] The method of manufacturing an organic EL element according to claim 3, wherein the unevenness on the surface of the first sealing film is flattened by depositing an organic thin film on the first sealing film.
[5] 前記初期欠陥部の修理が、レーザー光照射を併用して行われるものである請求項[5] The repair of the initial defect portion is performed using laser light irradiation in combination.
1に記載の有機 EL素子の製造方法。 2. A method for producing an organic EL device according to 1.
[6] 前記初期欠陥部の修理が、レーザー光照射を併用して行われるものである請求項[6] The repair of the initial defect portion is performed using laser light irradiation in combination.
3に記載の有機 EL素子の製造方法。 4. A method for producing an organic EL device according to 3.
[7] 基板上に形成される少なくとも第 1電極、有機発光層および第 2電極からなる積層 体に対し、封止膜を形成してなる有機 EL素子であって、 [7] An organic EL element in which a sealing film is formed on a laminate composed of at least a first electrode, an organic light emitting layer and a second electrode formed on a substrate,
前記積層体の形成後、前記第 1電極と第 2電極の間に通電を行い、通電によって、 前記積層体に潜在的欠陥部が存在する場合に、これを積極的に初期欠陥として顕 在化させると共にその修理を行 、、 After the laminate is formed, energization is performed between the first electrode and the second electrode, and when energization has a potential defect portion in the laminate, this is positively manifested as an initial defect. And then repair it,
次いで、修理によって生じた第 2電極表面の凹凸を平坦ィ匕し、その後、平坦化され た前記積層体上に封止膜を形成することにより得られたことを特徴とする有機 EL素 子。  Next, an organic EL device obtained by flattening irregularities on the surface of the second electrode caused by repair, and then forming a sealing film on the flattened laminate.
基板上に形成される少なくとも第 1電極、有機発光層および第 2電極からなる積層 体に対し、封止膜を形成してなる有機 EL素子であって、  An organic EL element in which a sealing film is formed on a laminate including at least a first electrode, an organic light emitting layer, and a second electrode formed on a substrate,
前記積層体の形成後、前記第 1電極と第 2電極の間に通電を行い、通電によって、 前記積層体に潜在的欠陥部が存在する場合に、これを積極的に初期欠陥として顕 在化させると共にその修理を行 、、  After the formation of the laminate, energization is performed between the first electrode and the second electrode, and when energization has a potential defect portion in the laminate, this is positively manifested as an initial defect. And repair it,
次いで、修理された第 2電極表面に第 1の封止膜を形成し、その後、この第 1の封 止膜表面の凹凸を平坦ィ匕し、その上部から第 2の封止膜を形成することにより得られ たことを特徴とする有機 EL素子。  Next, a first sealing film is formed on the repaired second electrode surface, and then the unevenness on the surface of the first sealing film is flattened, and a second sealing film is formed from the top. An organic EL device characterized by
PCT/JP2006/300298 2005-01-21 2006-01-12 Organic el element manufacturing method and organic el element obtained by the same WO2006077767A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-014096 2005-01-21
JP2005014096A JP2008097828A (en) 2005-01-21 2005-01-21 Manufacturing method of organic el device, and organic el element obtained by this

Publications (1)

Publication Number Publication Date
WO2006077767A1 true WO2006077767A1 (en) 2006-07-27

Family

ID=36692157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300298 WO2006077767A1 (en) 2005-01-21 2006-01-12 Organic el element manufacturing method and organic el element obtained by the same

Country Status (3)

Country Link
JP (1) JP2008097828A (en)
TW (1) TW200633572A (en)
WO (1) WO2006077767A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008171752A (en) * 2007-01-15 2008-07-24 Denso Corp Color organic el display and its manufacturing method
CN103733728A (en) * 2012-06-14 2014-04-16 松下电器产业株式会社 Defect detection method, method for repairing organic EL element, and organic EL display panel
CN112614959A (en) * 2020-12-16 2021-04-06 武汉华星光电半导体显示技术有限公司 Display panel, preparation method thereof and display device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010131171A2 (en) * 2009-05-14 2010-11-18 Koninklijke Philips Electronics N.V. Short circuit prevention in electroluminescent devices
EP2436059B1 (en) 2009-05-27 2017-03-29 Koninklijke Philips N.V. Sealed thin-film device, method of and system for repairing a sealing layer applied to a thin-film device
JP5708602B2 (en) * 2012-09-20 2015-04-30 株式会社デンソー Organic EL display device and manufacturing method thereof
WO2014147789A1 (en) * 2013-03-21 2014-09-25 株式会社島津製作所 Organic electroluminescence device, organic electroluminescence device manufacturing method, and film forming method
KR102587876B1 (en) * 2016-10-31 2023-10-11 엘지디스플레이 주식회사 Organic Light Emitting Display device having a repair area
KR102178626B1 (en) * 2018-10-30 2020-11-16 에이피시스템 주식회사 Method of Peeling Lamination Structure, Method of Repairing Organic Light Emitting Device and Apparatus of Peeling Lamination Structure

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5630288A (en) * 1979-08-20 1981-03-26 Fujitsu Ltd Method of manufacturing el display element
JPS63248091A (en) * 1987-04-02 1988-10-14 アルプス電気株式会社 Manufacture of thin film el device
JPH02256192A (en) * 1988-12-02 1990-10-16 Yokogawa Electric Corp Thin film el element and manufacture thereof
JPH10312883A (en) * 1997-05-12 1998-11-24 Matsushita Electric Ind Co Ltd Organic electroluminescent element
JP2001176661A (en) * 1999-12-20 2001-06-29 Toyota Motor Corp Brightness restoration method of organic el element and organic el element
JP2003173873A (en) * 2001-12-06 2003-06-20 Denso Corp Manufacturing method of organic el element
WO2003061346A1 (en) * 2002-01-15 2003-07-24 Seiko Epson Corporation Electronic element barrier property thin film sealing structure , display device, electronic equipment, and electronic element manufacturing method
JP2003208975A (en) * 2002-01-11 2003-07-25 Denso Corp Manufacturing method of organic el device
JP2003264073A (en) * 2002-03-08 2003-09-19 Fuji Electric Co Ltd Manufacturing method of organic el display
JP2004127606A (en) * 2002-09-30 2004-04-22 Seiko Epson Corp Electrooptical device and electronic apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5630288A (en) * 1979-08-20 1981-03-26 Fujitsu Ltd Method of manufacturing el display element
JPS63248091A (en) * 1987-04-02 1988-10-14 アルプス電気株式会社 Manufacture of thin film el device
JPH02256192A (en) * 1988-12-02 1990-10-16 Yokogawa Electric Corp Thin film el element and manufacture thereof
JPH10312883A (en) * 1997-05-12 1998-11-24 Matsushita Electric Ind Co Ltd Organic electroluminescent element
JP2001176661A (en) * 1999-12-20 2001-06-29 Toyota Motor Corp Brightness restoration method of organic el element and organic el element
JP2003173873A (en) * 2001-12-06 2003-06-20 Denso Corp Manufacturing method of organic el element
JP2003208975A (en) * 2002-01-11 2003-07-25 Denso Corp Manufacturing method of organic el device
WO2003061346A1 (en) * 2002-01-15 2003-07-24 Seiko Epson Corporation Electronic element barrier property thin film sealing structure , display device, electronic equipment, and electronic element manufacturing method
JP2003264073A (en) * 2002-03-08 2003-09-19 Fuji Electric Co Ltd Manufacturing method of organic el display
JP2004127606A (en) * 2002-09-30 2004-04-22 Seiko Epson Corp Electrooptical device and electronic apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008171752A (en) * 2007-01-15 2008-07-24 Denso Corp Color organic el display and its manufacturing method
CN103733728A (en) * 2012-06-14 2014-04-16 松下电器产业株式会社 Defect detection method, method for repairing organic EL element, and organic EL display panel
CN103733728B (en) * 2012-06-14 2017-03-08 株式会社日本有机雷特显示器 Defect inspection method, the restorative procedure of organic EL element and organic EL display panel
CN112614959A (en) * 2020-12-16 2021-04-06 武汉华星光电半导体显示技术有限公司 Display panel, preparation method thereof and display device

Also Published As

Publication number Publication date
TW200633572A (en) 2006-09-16
JP2008097828A (en) 2008-04-24

Similar Documents

Publication Publication Date Title
WO2006077767A1 (en) Organic el element manufacturing method and organic el element obtained by the same
CN1838426B (en) Organic electroluminescent display device and curing method of the device
TWI552407B (en) Organic electronic device and method for producing of organic electronic device
US6420031B1 (en) Highly transparent non-metallic cathodes
US8018137B2 (en) Organic el element, organic el display device, and process for producing organic el element
US8070546B2 (en) Laser irradiation apparatus for bonding and method of manufacturing display device using the same
JP2005165324A (en) Organic electroluminescence display
JPH10312883A (en) Organic electroluminescent element
JP2007066775A (en) Manufacturing method of organic el element and organic el element
JP3963712B2 (en) Organic EL element structure
KR100744282B1 (en) Organic el panel and its manufacturing method
JPH10214682A (en) Manufacturing device and manufacture of organic electroluminescent element
US7259513B2 (en) Electroluminescent display device having surface treated organic layer and method of fabricating the same
US7247074B2 (en) Organic electroluminescent element and process for its manufacture
TWI226026B (en) Organic electroluminescent display panel and manufacturing method therefor
JP4114477B2 (en) Organic EL device
JP4310843B2 (en) Method for manufacturing organic electroluminescent device
JPH01313892A (en) Image display device and manufacture thereof
KR100685832B1 (en) inorganic layer and Fabricating method of the same
KR102102913B1 (en) Method for Manufacturing Organic Emitting Display Device and Display Device Applying the Same
JP2007234325A (en) Organic electroluminescent element and its manufacturing method
JP4188846B2 (en) Luminescence suppression element and image display device based thereon
JP4867317B2 (en) Manufacturing method of conductive substrate for organic EL device
US20140295085A1 (en) Method for manufacturing donor substrate
JP2003258267A (en) Organic thin film semiconductor element and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06711621

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6711621

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP