WO2006077736A1 - Gene participating in silicon absorption and utilization of the same - Google Patents

Gene participating in silicon absorption and utilization of the same Download PDF

Info

Publication number
WO2006077736A1
WO2006077736A1 PCT/JP2005/024048 JP2005024048W WO2006077736A1 WO 2006077736 A1 WO2006077736 A1 WO 2006077736A1 JP 2005024048 W JP2005024048 W JP 2005024048W WO 2006077736 A1 WO2006077736 A1 WO 2006077736A1
Authority
WO
WIPO (PCT)
Prior art keywords
polynucleotide
seq
absorption
polypeptide
gene
Prior art date
Application number
PCT/JP2005/024048
Other languages
French (fr)
Japanese (ja)
Inventor
Jian Feng Ma
Original Assignee
National University Corporation Kagawa University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Kagawa University filed Critical National University Corporation Kagawa University
Publication of WO2006077736A1 publication Critical patent/WO2006077736A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8286Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for insect resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Definitions

  • the present invention relates to a gene involved in absorption of potassium that regulates the growth and hardness of plants, and the use thereof.
  • Monocotyledonous plants such as rice and wheat are typical plants that absorb a large amount of silicon (Si).
  • Si silicon
  • key is not an essential element of plants, the properties of plants vary greatly depending on the amount of key accumulated.
  • key elements are involved in plant growth, and when the amount of key elements accumulated increases,
  • the key element is also involved in the hardness (viscosity) of the plant, and when the amount of accumulated key element decreases, the plant becomes softer.
  • soft rice has a low amount of accumulated keyine. This is because polymer (silica) is formed when the amount of cell accumulation in cells increases. This is to harden 1S cells.
  • An object of the present invention is to identify a gene involved in absorption of silicon that has not been identified so far and to provide a method for using the gene.
  • the inventors of the present invention diligently studied a gene involved in strong absorption of key that has not been obtained so far. As a result, the gene was identified by map-based cloning using an F2 population obtained by crossing a mutant (lsil mutant) with a lower ability to absorb kaen compared to the wild type and Kasalath. As a result, the present inventors have succeeded in identifying the sequence and completed the present invention.
  • the polynucleotide according to the present invention is a polynucleotide involved in the absorption of silicon
  • catheter absorption refers to the absorption of kaen and compounds containing kaen (such as caic acid). For example, plants usually absorb keen as caustic acid.
  • involved in absorption of key indicates that it is involved in suppression or promotion of such absorption.
  • the "polynucleotide involved in the absorption of silicon” refers to a polypeptide that promotes absorption of the key or a polynucleotide that encodes a polypeptide that suppresses absorption of the key.
  • a polypeptide involved in the absorption of silicon can be obtained as a translation product.
  • a polypeptide that suppresses the absorption of silicon can be obtained as a translation product.
  • a polypeptide that promotes absorption of silicon can be obtained as a translation product.
  • FIG. 1 is a genetic map of the Lsil gene that is useful in the present invention.
  • FIG. 2 is a schematic diagram showing the structure and base substitution site on the genome of Lsil gene.
  • SEQ ID NO: 1 is the nucleotide sequence of the Lsil gene (cDN A) of mutant rice.
  • SEQ ID NO: 2 is an amino acid sequence encoded by the Lsil gene of the mutant rice of SEQ ID NO: 1.
  • SEQ ID NO: 3 is the wild-type rice Lsil gene ( cDNA).
  • SEQ ID NO: 4 is an amino acid sequence encoded by the Lsil gene of wild-type rice (vertical) of SEQ ID NO: 3.
  • SEQ ID NO: 5 is the genome sequence of the Lsil gene of wild-type rice (Nipponbare).
  • the polynucleotide useful in the present invention encodes a polypeptide involved in the absorption of silicon.
  • polynucleotide can also be referred to as “nucleic acid” or “nucleic acid molecule”, and is intended to be a polymer of nucleotides.
  • the “base sequence” can also be referred to as a “nucleic acid sequence” or a “nucleotide sequence”, and is indicated as a sequence of deoxyribonucleotides (abbreviated as A, G, C and T).
  • the “polynucleotide having the base sequence ability shown in SEQ ID NO: 1” refers to a polynucleotide comprising the sequence shown by each of the dioxynucleotides A, G, C and Z or T of SEQ ID NO: 1. .
  • the polynucleotides of the invention may exist in the form of RNA (eg, mRNA) or in the form of DNA (eg, cDNA or genomic DNA).
  • the DNA may be double stranded or single stranded.
  • Single-stranded DNA or RNA can be the coding strand (also known as the sense strand) or the non-coding strand (also known as the antisense strand)! /.
  • the polynucleotide useful in the present invention is a polynucleotide involved in the absorption of silicon, and is any of the following (a) to (d)!
  • the polynucleotide (a) or (b) is a polynucleotide that suppresses absorption of silicon.
  • the polynucleotide (c) or (d) is a polynucleotide that promotes absorption of silicon.
  • stringent conditions refer to hybrids only when at least 90% identity, preferably at least 95% identity, most preferably at least 97% identity exists between sequences. This means that a sesion occurs, for example, binding at 60 ° C under 2 X SSC wash conditions.
  • the above hybridization can be performed by a conventionally known method such as the method described in “Molecular Cloning (Third Edition)” (J. bambrook & DW Russell, old Spring Harbor Laboratory Press, 2001). . Generally, the higher the temperature and the lower the salt concentration, the higher the stringency.
  • the polynucleotide consisting of the nucleotide sequences shown in SEQ ID NOS: 1 and 3 is a gene involved in the absorption of silicon, which was first identified in the plant kingdom.
  • the polynucleotide of SEQ ID NO: 1 is a base sequence (cDNA sequence) of a mutant Lsil gene derived from a rice mutant (lsil mutant).
  • the lsil mutant is a mutant that has a lower ability to absorb keyine than wild-type rice.
  • lsi mutants are softer than wild type because they have a small amount of accumulated potassium.
  • SEQ ID NO: 1 is a polynucleotide (mutant Lsil gene) that suppresses the absorption of potassium derived from the lsil mutant having a low ability to absorb the key.
  • the polynucleotide of SEQ ID NO: 3 is the nucleotide sequence (cDNA) of the Lsil gene derived from wild type rice (vertical), which is expressed in the wild type rice.
  • Rice is a typical plant that absorbs large amounts of potassium. Rice has a large amount of accumulated silicon, so it has resistance to diseases and insects, salt and drought resistance, and resistance to mineral stress.
  • SEQ ID NO: 3 is a polynucleotide (wild-type Lsil gene) that promotes absorption of kaen derived from wild-type rice having high ability to absorb kaen.
  • polynucleotide useful in the present invention is a polynucleotide that codes for a polypeptide involved in the absorption of silicon, and the polynucleotide of any one of the following (a) to (d) is encoded. Polynucleotide.
  • mutant polypeptide production method such as site-directed mutagenesis.
  • 20 or less, preferably 10 or less, more preferably 7 or less, even more preferably 5 or less, particularly preferably 3 or less amino acids are substituted, deleted, or It means to be added.
  • Such a mutant polypeptide is not limited to a polypeptide having a mutation artificially introduced by a known mutant polypeptide production method, but a similar naturally occurring mutant polypeptide is isolated and purified. It may be
  • the present inventor is that a polynucleotide involved in the absorption of rice, which is one of the polynucleotides that are useful in the present invention, exists in the second chromosome of rice. Was revealed.
  • the 3rd exon region of chromosome 2 is particularly involved in the absorption of key elements. In other words, the key absorption activity is greatly changed by the mutation in the third exon region.
  • a hydrophobic amino acid encoded by the third exon in the second chromosome of rice is substituted with a hydrophilic amino acid, for example, the amino acid sequence shown in SEQ ID NO: 4
  • the 132rd amino acid force alanin force is replaced with threonine, and the like.
  • the polypeptide shown in SEQ ID NO: 2 is a polypeptide that has been found by the inventor of the present application and that suppresses absorption of the enzyme encoded by the mutant Lsil gene.
  • the polypeptide shown in SEQ ID NO: 4 is a polypeptide that promotes the absorption of silicon encoded by the wild-type Lsil gene.
  • Such amino acid mutations include polynucleotide mutations (deletions, substitutions, Or by addition).
  • one of the polynucleotides that is useful in the present invention can be expressed as a polynucleotide that has been subjected to polynucleotide force monobasic substitution (SNP) encoding a polypeptide that is involved in the absorption of silicon in wild rice.
  • SNP polynucleotide force monobasic substitution
  • the polynucleotide shown in SEQ ID NO: 3 matches the nucleotide sequence of the Nipponbare (wild type) cDNA clone published on the database (DDBJ Accession No. AK069842).
  • the polynucleotide shown in SEQ ID NO: 1 is obtained by performing single base substitution from the 510th basic force G (guanine) to A (adenine) in the base sequence of the gene shown in SEQ ID NO: 3 ( (See also Figure 2).
  • the polypeptide shown in SEQ ID NO: 2 (translation product of the base sequence of SEQ ID NO: 1) has the 132nd amino acid as alanine of SEQ ID NO: 4 (translation product of the base sequence of SEQ ID NO: 3).
  • SEQ ID NO: 5 is a part of the genome sequence of the second chromosome of rice (wild type).
  • FIG. 2 is a schematic diagram showing the structure and base substitution site on the genome of the Lsil gene shown in SEQ ID NO: 5.
  • the sequence of SEQ ID NO: 5 corresponds to the 101780th to 105388th genome sequence of the rice genome sequence.
  • the third exon of rice chromosome 2 corresponds to the 104018th to 104212th bases of the rice genome sequence, that is, the 2240th to 2435th bases of SEQ ID NO: 5.
  • the first exon is the 117th to 268th base
  • the second exon is the 411st to 635th base
  • the fourth exon is the 2540th to 2555th base
  • the fifth exon is It corresponds to the 2950th to 3213th base, respectively. Note that the 1-base substitution in the third exon described below occurs at the 2257th base in SEQ ID NO: 3.
  • the polynucleotide useful in the present invention may be an oligonucleotide tide that is a fragment of the above-mentioned polynucleotide.
  • the polynucleotide or oligonucleotide useful for the present invention is not only a double-stranded DNA, but also a sense strand (coding strand) and an antisense strand (non-coding strand) t, each of which comprises single-stranded DNA.
  • RNA eg, mRNA
  • the DNA includes, for example, cDNA and genomic DNA that can be obtained by cloning, chemical synthesis techniques, or a combination thereof.
  • the base sequence shown in SEQ ID NO: 1, which is an example of a polynucleotide useful for the present invention is the base sequence of the cDNA sequence of the polypeptide shown in SEQ ID NO: 2.
  • the polynucleotide or oligonucleotide according to the present invention may contain a sequence such as a sequence of an untranslated region (UTR) and a vector sequence (including an expression vector sequence).
  • the polynucleotide or oligonucleotide useful in the present invention can be used as a tool for gene expression manipulation by an antisense RNA mechanism.
  • Antisense RNA technology is based on the introduction of chimeric genes that generate RNA transcripts complementary to the target gene.
  • the resulting phenotype is a reduction of the gene product resulting from the endogenous gene. That is, by introducing antisense RAN, which is an oligonucleotide useful for the present invention, it is possible to adjust the absorption of silicon.
  • feed rice having a low key content can be produced. Since feed rice is soft, it can be suitably used for livestock feed.
  • Examples of a method for obtaining a polynucleotide or oligonucleotide useful for the present invention include a method for isolating and cloning a DNA fragment containing a polynucleotide or oligonucleotide useful for the present invention by a known technique. .
  • a probe that specifically hybridizes with a part of the nucleotide sequence of the polynucleotide of the present invention and screen a genomic DNA library or cDNA library!
  • a misaligned sequence and Z or length can be used.
  • examples of a method for obtaining a polynucleotide according to the present invention include a method using an amplification means such as PCR.
  • an amplification means such as PCR.
  • primers are prepared from the 5 'side and 3, side sequences (or their complementary sequences), respectively, and genomic DNA (or cDNA) or the like is detected using these primers.
  • a large amount of DNA fragments containing the polynucleotide according to the present invention can be obtained by performing PCR or the like in a mold and amplifying the DNA region sandwiched between both primers.
  • a primer that can amplify the Lsil gene region is designed based on the publicly known Nipponbare sequence information.
  • a polynucleotide that is useful for the present invention can also be obtained by amplifying the Lsil gene region by converting the genomic DNA (or cDNA) or RT-PCR product into a saddle shape using the above primers.
  • the source for obtaining the polynucleotide useful for the present invention is not particularly limited, but it is preferably a gramineous plant.
  • the ability to obtain a mutant Lsil gene, which is one of the polynucleotides useful in the present invention, from a rice mutant (lsil mutant) is not limited thereto.
  • polynucleotide useful in the present invention can be used to elucidate the mechanism of absorption of cage by plants, which has been clarified so far.
  • the polypeptide according to the present invention is a translation product of the polynucleotide described in (1) above, and is at least involved in the absorption of silicon.
  • polypeptide can also be referred to as “peptide” or “protein”.
  • fragment of a polypeptide indicates a partial fragment of the polypeptide.
  • polypeptide of the present invention may be isolated from a natural source or chemically synthesized.
  • an “isolated” polypeptide or protein refers to the polypeptide or protein from which its natural environmental forces have been removed.
  • recombinantly produced polypeptides and proteins expressed in host cells have been isolated, as are natural or recombinant polypeptides and proteins that have been substantially purified by any suitable technique. Shall.
  • Polypeptides according to the present invention can be produced by natural purification products, products of chemical synthesis procedures, and prokaryotic or eukaryotic hosts (eg, bacterial cells, yeast cells, higher plant cells, insect cells, and mammals). (Including cells) Includes products produced by recombinant technology. Depending on the host used in the recombinant production procedure, the polypeptide of the present invention may be sugar chain-modified such as glycosyl potato. The polypeptide according to the present invention includes such a modified polypeptide.
  • polypeptide according to the present invention is, for example, a polypeptide that is involved in at least absorption of silicon, and is any of the following (a) to (d)! [0052] (a) the amino acid sequence represented by SEQ ID NO: 2;
  • this is a polypeptide that also has an amino acid sequence or force in which one or several amino acids are substituted, deleted, inserted, or added.
  • the polypeptide (a) or (b) is a polypeptide that suppresses absorption of silicon.
  • the polypeptide (c) or (d) is a polypeptide that promotes absorption of silicon.
  • the polypeptide is not limited to the polypeptide as long as it is a polypeptide in which amino acids are peptide-bonded, but may contain a structure other than the polypeptide.
  • the structure other than the polypeptide here is not particularly limited as long as it can include sugar chains and isoprenoid groups.
  • the polypeptide having the amino acid sequence ability shown in SEQ ID NO: 2 is a translation product of a polynucleotide consisting of the base sequence shown in SEQ ID NO: 1.
  • this polypeptide is a polypeptide (mutant LSI1 protein) in which the 132nd amino acid in the amino acid sequence shown in SEQ ID NO: 4 (wild type LSI1 protein) is replaced by alanine to threonine. It is.
  • the polynucleotide according to the present invention can be used as a marker gene for transformation. That is, the marker gene for selecting a transformant according to the present invention may be any gene as long as it is composed of the polynucleotide useful for the present invention described in (1) above.
  • the polynucleotide useful in the present invention suppresses or promotes absorption of silicon. For this reason, the cell accumulation amount of the cells into which the polynucleotide according to the present invention is introduced is decreased or increased. Therefore, by measuring the amount of accumulated Ca (absorbed amount), cells into which the polynucleotide has been introduced can be selected. That is, it is possible to select cells whose absorption is promoted and cells whose absorption is suppressed.
  • the cells that have promoted absorption of kaen contain a large amount of kaen.
  • germanium is a family element with key, plants absorb germanium and key without distinguishing them. .
  • germanium is a highly toxic element unlike key. For this reason, the cells whose absorption of potassium has been promoted cannot live on the germanium medium. In contrast, cells in which absorption of silicon is suppressed can survive in germanium medium. Therefore, by adding germanium to the medium, it is possible to select only the cells in which the absorption of silicon is suppressed.
  • an expression vector incorporating the polynucleotide is constructed, and the expression vector is introduced into a target cell.
  • the expression vector is introduced and a polypeptide that suppresses the absorption of the key is expressed, the amount of the key accumulated in the cell decreases.
  • the polypeptide that promotes the absorption of potassium is expressed, the amount of accumulated potassium in the cell increases. Therefore, by culturing in the presence of potassium and measuring the amount of accumulated potassium before and after the introduction of the expression vector, it is possible to select cells expressing the polynucleotide involved in the absorption of the key. .
  • cultivars with strong key absorption activity or varieties with low key absorption activity can be selected.
  • the polynucleotide according to the present invention is used for both the purpose of expressing a polynucleotide in a transformed cell and the marker gene.
  • the polynucleotide useful for the present invention is used only as a marker gene. It is also possible to use it.
  • a transcription promoter specific to plant callus cells it is possible to control the expression time as a selection marker of a polynucleotide that is useful in the present invention.
  • an expression vector inserted with a gene encoding a protein to be expressed in the target cell may be constructed and transformed using the expression vector. It is also possible to introduce the polynucleotide useful for the present invention alone into a target cell without constructing an expression vector incorporating the polynucleotide according to the present invention.
  • the polynucleotide represented by SEQ ID NO: 1 is identical to the 510th basic force G (guanine) to A (adenine) in the nucleotide sequence of the gene represented by SEQ ID NO: 3. It is a base-substituted one. For this reason, the polynucleotide containing the 510th base can be used as a marker gene for the present invention.
  • a polynucleotide having 20 to 100 consecutive bases including the 510th base is used to select a cell that suppresses absorption of potassium. be able to.
  • polynucleotide shown in SEQ ID NO: 3 a polynucleotide comprising 20 to: L00 consecutive basic forces including the 510th base is used for selecting cells that promote absorption of potassium. be able to.
  • these polynucleotides can be used as marker genes for selecting cells involved in absorption of silicon.
  • the recombinant expression vector according to the present invention is not particularly limited as long as it contains the polynucleotide according to the present invention described in (1) above.
  • a recombinant expression vector into which the cDNA shown in SEQ ID NO: 1 or 3 is inserted can be mentioned.
  • a plasmid, phage, cosmid or the like can be used, but it is not particularly limited.
  • a manufacturing method may be performed using a known method.
  • the specific type of vector is not particularly limited, and a vector that can be expressed in a host cell may be appropriately selected. That is, if a promoter sequence is appropriately selected according to the type of host cell in order to reliably express the gene, and this and a polynucleotide useful for the present invention are incorporated into various plasmids or the like, it can be used as an expression vector. ⁇
  • the present recombinant expression vector can be used to express the polypeptide of the present invention! Needless to say, the polynucleotide according to the present invention is used as a marker gene, and the like. And can be used as a recombinant expression vector for expressing a protein encoded by the other gene.
  • the polynucleotide useful for the present invention has been introduced into the host cell, and further the host cell Various markers may be used to confirm whether they are expressed reliably in the cell!
  • a drug resistance gene that gives resistance to antibiotics such as hygromycin is used as the best force, and a plasmid or the like containing this marker and a polynucleotide useful for the present invention is introduced into a host cell as an expression vector. Thereby, the expression power of the marker gene can be confirmed.
  • the host cell is not particularly limited as long as it is a cell or organism having a capacity of absorbing carbon, and various conventionally known cells can be preferably used. Specific examples include rice, cucumber, rape, and tomato, but are not particularly limited.
  • the host cell is preferably a plant cell.
  • a method for introducing the above expression vector into a host cell that is, a transformation method is not particularly limited. Conventionally known methods such as a method, a lithium acetate method, and a particle gun method can be preferably used.
  • the transformation kit according to the present invention only needs to contain at least one of the polynucleotide according to the present invention described in (1) above or the recombinant expression vector according to the present invention.
  • Other specific configurations are not particularly limited, and necessary kits may be selected by appropriately selecting necessary reagents and instruments. By using the transformation kit, transformed cells can be obtained simply and efficiently.
  • the transformant according to the present invention is introduced with the polynucleotide according to the present invention described in (1) above or the recombinant expression vector described in (4) above, and has a carrier absorption activity.
  • the transformant is capable of expressing a polypeptide having the above.
  • the “transformant” means not only a cell / tissue 'organ but also an individual organism.
  • the polynucleotide has been introduced means that it is introduced into a target cell (host cell) so that it can be expressed by a known genetic engineering technique (gene manipulation technique).
  • the present invention includes the case where the polynucleotide of the present invention contained in the genome is expressed in vivo.
  • the polynucleotide of the present invention contained in this genome Examples of the expression of leotide in vivo include the aforementioned lsil mutant.
  • a method for producing a transformant is not particularly limited, and examples thereof include a method of transforming by introducing the above-described recombinant expression vector into a host cell.
  • the organisms to be transformed are not particularly limited, and examples include plant cells exemplified as host cells in (4) above. .
  • the transformant that works for the present invention is preferably a plant cell or a plant.
  • Such a transformed plant can reduce or increase the content (accumulation amount) of potassium in cells or plants.
  • the polynucleotide or the recombinant expression vector is introduced together with a promoter that promotes the expression of the polypeptide, absorption of the key is suppressed or promoted, and the amount of accumulated key is reduced or increased. Can be made.
  • Transformants (especially transformed plants) in which the absorption of potassium is suppressed become soft due to a decrease in the amount of accumulated potassium. Therefore, the transformant in which key absorption is suppressed can be suitably used as livestock feed.
  • transformants especially transformed plants
  • transformants with enhanced absorption of kaen are resistant to diseases and insects, resistant to salt and drought, and resistant to mineral stress due to an increase in the accumulation of kaen. Will improve. For this reason, the growth of the transformed product can be promoted.
  • transformed plants with enhanced absorption of silicon have improved resistance to diseases and insects
  • transformed plants can be cultivated without using agricultural chemicals and chemical fertilizers as much as possible. . Therefore, organic cultivation and non-agricultural cultivation are possible, and a safer transformed product can be provided as food.
  • the recombinant expression vector used for transformation of the plant is not particularly limited as long as it can express the inserted gene in the plant cell.
  • the method of introducing a vector into a plant is a method using agrobacterium. It is preferable to use a binary vector such as pBI.
  • the noinary vector include pBIG, pBIN19, pBI101, pBI121, and pBI221.
  • a vector having a promoter capable of expressing a gene in a plant is preferable.
  • Known promoters can be preferably used as the promoter, and specific examples include cauliflower mosaic virus 35S promoter (CaMV35S) and ubiquitin promoter.
  • the plant cells include various types of plant cells such as suspension culture cells, protoplasts, leaf sections, and callus.
  • Introduction of recombinant expression vectors into plant cells includes agrobacterium infection method, electroporation method (elect mouth position method), calcium phosphate method, protoplast method, lithium acetate method, particle gun method, etc. Conventionally known methods can be used. In addition, regeneration of a plant body from transformed cells can be performed by a known method depending on the type of plant cell.
  • the present invention also includes seeds obtained from transformed plants.
  • the food of the present invention contains the transformant according to the present invention. That is, this food contains a transformant in which absorption of potassium is suppressed or promoted.
  • the transformant in which the absorption of silicon is suppressed is soft, the food containing the transformant can be particularly suitably used as a livestock feed.
  • a transformant with enhanced absorption of silicon can be cultivated without using agricultural chemicals and chemical fertilizers as much as possible. Therefore, the food containing the transformant can be provided as a safer food.
  • this food includes not only what humans ingest but also feed for livestock.
  • Rice is a high-consumption plant that is considered a staple food in many parts of the world, not by the power of Japan. Fruits and vegetables are also high in production and consumption. For this reason, safety is especially important for these crops.
  • the food containing the transformant in which absorption of potassium is promoted is preferably an agricultural product such as rice, vegetables, and fruits. This makes it possible to grow useful rice (rice), vegetables, and fruits that are highly safe.
  • the lsil mutant is a somatic mutant that is not a transformant, the lsi mutant is
  • the polynucleotide useful in the present invention is a polynucleotide involved in the absorption of silicon
  • a polypeptide involved in the absorption of silicon can be obtained as a translation product.
  • a polypeptide that suppresses absorption of the key can be obtained as a translation product.
  • a polypeptide that promotes absorption of silicon can be obtained as a translation product.
  • polypeptide according to the present invention is a polypeptide involved in the absorption of silicon, and is any of the following (a) to (d):
  • amino acid sequence shown in SEQ ID NO: 4 is characterized by comprising a polypeptide having an amino acid sequence ability in which one or several amino acids are substituted, deleted, inserted, or added.
  • Such a polypeptide involved in the absorption of silicon exists, for example, in a region containing the amino acid encoded by the third exon of the second chromosome in rice.
  • Rice has a high absorption capacity for key elements. That is, rice has a polypeptide (polynucleotide) that promotes absorption of silicon.
  • a polypeptide substituted with a hydrophobic amino acid force hydrophilic amino acid encoded in this region suppresses absorption of silicon.
  • a polypeptide substituted with the 132nd amino acid force alanin force threonine or the like suppresses absorption of the key.
  • the polypeptide shown in SEQ ID NO: 4 is an amino acid sequence of a polypeptide that is involved in rice absorption (promotes absorption).
  • the polynucleotide useful in the present invention may encode any of the above polypeptides.
  • the poly- gen that participates in the absorption of silicon. Peptides can be obtained as translation products. Examples of the polynucleotide include the polynucleotides (a) to (d) described above.
  • a marker gene for selection of transformants that is useful in the present invention is one having any of the above-mentioned polynucleotide strengths.
  • the polynucleotide according to the present invention can give a cell (in particular, a plant cell) in which it is expressed a function of suppressing or promoting absorption of potassium.
  • a marker gene composed of a polynucleotide encoding a polypeptide that suppresses absorption of key can be used as a marker gene for selecting transformed cells expressing the polypeptide that suppresses absorption of key.
  • a marker gene comprising a polynucleotide encoding a polypeptide that promotes absorption of key can be used as a marker gene for selecting transformed cells that express the polypeptide that promotes absorption of key. it can.
  • These marker genes can also be used to select varieties having a strong key absorption activity and varieties or a weak key absorption activity.
  • a recombinant expression vector useful in the present invention contains any of the above-mentioned polynucleotides.
  • the above-described recombinant expression vector can be used as a recombinant expression vector for introducing a polynucleotide useful for the present invention into a cell. It can also be used as a recombinant expression vector for introducing these genes into cells.
  • the transformant useful in the present invention has the above-described polynucleotide or the above-described thread-and-replaceable expression vector introduced therein and expresses a polypeptide involved in the absorption of silicon. is there.
  • the polynucleotide is a polynucleotide involved in absorption of silicon
  • the transformant is preferably a plant (transformed product).
  • This transformant has been introduced together with a promoter that promotes the expression of the above-mentioned polynucleotide or the polypeptide involved in the thread-reversible expression vector force absorption. For this reason, by expressing a polypeptide that suppresses or promotes absorption of potassium, the amount of accumulated Ca in this transformant can be reduced or increased.
  • the transformant in which absorption of potassium is promoted is improved in resistance to diseases and insects, salt resistance and drought resistance, and resistance to mineral stress due to an increase in the amount of accumulated potassium. For this reason, transformation and growth of a product can be promoted.
  • transformed plants with enhanced absorption of silicon have improved resistance to diseases and insects
  • transformed plants can be cultivated with minimal use of pesticides and chemical fertilizers. . Therefore, organic cultivation and non-agricultural cultivation are possible, and a safer transformed product can be provided as food.
  • the food according to the present invention contains the transformant. That is, this food
  • a transformant in which absorption of silicon is suppressed is soft, a food containing the transformant can be suitably used particularly as a livestock feed.
  • transformants with enhanced absorption of silicon can be cultivated without using agricultural chemicals and chemical fertilizers as much as possible. Therefore, the food containing the transformant can be provided as a safer food.
  • a transformation kit according to the present invention is characterized by containing at least one of the above-described polynucleotides or the above-described recombinant expression vector.
  • the polynucleotide according to the present invention it is possible to suppress or promote the absorption of the key by producing the polypeptide involved in the absorption of the key. And
  • the transformant of the present invention in which the polynucleotide of the present invention or a thread-replaceable expression vector containing the polynucleotide is introduced together with a promoter that promotes the expression of the polypeptide, the absorption of potassium is suppressed or promoted and the accumulation thereof The amount can be reduced or increased.
  • a population was created to map the Lsil gene of rice mutant (lsil mutant).
  • this F group individual was classified into an EST-PCR marker and an SSR marker (so-called my
  • the Lsil gene was mapped by analysis using a crostellite marker. As a result, as shown in Fig. 1, it became clear that the Lsil gene sits on chromosome 2.
  • the flanking markers for the Lsil gene were RM5303 and E60168.
  • the marker E60168 is open to RGP (Rice Genome Reasearch Program; http: / 1 rgp.dna.afflx.go.jp/publicdata/caps/index.html).
  • the marker RM5303 is disclosed on the GRAMENE website (http: ⁇ dev.gramene.org/micro sat / ssr.html).
  • the molecular marker map published by the Rice Genome Project uses a cross population of "Nippon Hare” and "Kasaras". Since these are crosses of different ecological rice, Japanese rice and Indian rice, polymorphism detection is detected rather than a population based on crosses between Japanese rices (differs in nucleotide sequences are detected. This makes it easy to determine the force from which parent a specific part of the genome is derived from.
  • a part of Kasara's genome sequence is published in the Rice Genome Project, and new molecular markers can be created easily. Based on the above, Kasalath was used as a pollen parent for map group creation in this example.
  • a novel PCR polymorphism marker and a CAPS marker were created using the nucleotide sequence between the marker RM5303 and the marker E60618 existing in the vicinity of the Lsil locus. Then, using these markers, the recombinant individuals selected in (b) were selected to narrow down candidate regions for the Lsil gene.
  • the Lsil gene was identified by the marker AP5297-8U (5′-CCCATTGATTAGTTCCCTGA-3 ′; SEQ ID NO: 26) / AP5297-8L (5′-CCGCAT ATGTCCTCCATGAC-3,; SEQ ID NO: 27) and marker AP4114- 3U (5,-ATCT GGGTCTATCATCCTGG-3,; SEQ ID NO: 28) / AP4114- 3L (5, -ACTGGTGCACTAT AATGCGC-3 '; SEQ ID NO: 29) It was revealed that it exists in the approximately 24.9 kb genomic region.
  • PCR polymorphism markers and CAPS markers were prepared, and the Lsil gene was further narrowed down. As a result, a recombinant individual containing only the Lsil gene was obtained.
  • nucleotide sequence analysis was performed by designing primers that can amplify the relevant part from the already obtained Nipponbare base sequence information, and cloning genomic PCR and RT-PCR products.
  • Table 1 and SEQ ID NOs: 6 to 25 show the positions of the designed primers and the corresponding base sequence of Nipponbare (PAC4114).
  • the rice PAC clone is obtained by inserting a genomic DNA fragment of the rice cultivar “Nippon Hare” into P1 phage.
  • PAC4114 is one of them, and the Lsil genome sequence shown in SEQ ID NO: 5 is inserted. That is, “PAC4114” in Table 1 is the one obtained by inserting the genomic sequence of the Nipponbare Lsil gene of SEQ ID NO: 5 into an artificial chromosome derived from P1 phage.
  • amino acid encoded by these genes is substituted from the wild type (SEQ ID NO: 4) alanine to the mutant type (SEQ ID NO: 2) threonine.
  • KOME Knowledge-based Oryza Molecular biology Encyclopedia: http://cdna01.dna.affix.go.jp/cDNA/
  • the rice genome sequence was obtained from RGP (Rice Genome Reasearch Program: http: ⁇ rgp.dna.alfrc.go.jp/) of the National Institute of Agricultural Resources and Bioresources. From the result of comparing these two sequences, the sequence shown in SEQ ID NO: 1 was determined to be the full-length cDNA sequence of the Lsil gene.
  • the polynucleotide of the present invention is a gene involved in absorption of silicon, which was first identified in plants. Decreasing the amount of accumulated silicon softens hard plants. An increase in the amount of accumulated potassium confers resistance (resistance) to various stresses such as disease and insect damage, and promotes growth. Therefore, the present invention can be suitably used particularly in agriculture and the food industry.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Botany (AREA)
  • Insects & Arthropods (AREA)
  • Pest Control & Pesticides (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Peptides Or Proteins (AREA)

Abstract

From a rice variant (lsi1 variant) having an activity of absorbing silicon, a gene participating in the silicon absorption is identified by the positional cloning and isolated as a novel gene. A transformant, which has the gene promoting the silicon absorption transferred thereinto, shows resistance against growth inhibitory stresses. Thus, it is possible to identify the gene participating in the silicon absorption, which has never been identified so far, and provide a method of using the gene.

Description

明 細 書  Specification
ケィ素吸収に関与する遺伝子、およびその利用  Genes involved in key absorption and use thereof
技術分野  Technical field
[0001] 本発明は、植物の生育および硬さを調節するケィ素の吸収に関与する遺伝子およ びその利用に関するものである。  [0001] The present invention relates to a gene involved in absorption of potassium that regulates the growth and hardness of plants, and the use thereof.
背景技術  Background art
[0002] イネやコムギなどの単子葉植物は、ケィ素(Si)を多量に吸収する代表的な植物で ある。ケィ素は、植物の必須元素ではないものの、ケィ素の蓄積量の違いによって、 植物の性質は、大きく異なる。  [0002] Monocotyledonous plants such as rice and wheat are typical plants that absorb a large amount of silicon (Si). Although key is not an essential element of plants, the properties of plants vary greatly depending on the amount of key accumulated.
[0003] 例えば、ケィ素は、植物の生育に関与しており、ケィ素の蓄積量が多くなると、  [0003] For example, key elements are involved in plant growth, and when the amount of key elements accumulated increases,
(a)病害および虫害に対する抵抗性 (例えば、イネのいもち病、紋枯病、および、ごま 葉枯病に対する抵抗性)  (a) Resistance to disease and insect damage (for example, resistance to rice blast, coat blight and sesame leaf blight)
(b)耐塩性および耐乾性の向上  (b) Improvement of salt resistance and drought resistance
(c)ミネラルストレスに対する耐性 (例えば、アルミニウム、および、マンガンなどの無 機物による毒性の軽減、または植物体内でのリン酸の有効利用度の向上など) 等の性質を、植物に与える。  (c) To impart properties to plants such as tolerance to mineral stress (for example, reduction of toxicity due to inorganic substances such as aluminum and manganese, or improvement of effective utilization of phosphoric acid in plants).
[0004] とりわけ、ケィ素の蓄積量の増加によって、病害や虫害に対する抵抗性が強化され ることは、植物の生育が促進される大きな原因となっている。  [0004] In particular, the enhancement of resistance to diseases and insects due to an increase in the amount of accumulated potassium is a major cause of promoting plant growth.
[0005] 従って、ケィ素の蓄積量を増加させることは、植物の健全的な生育、および、安定し た収量の確保のために、有効であるといえる。また、ケィ素蓄積量の増加は、生物的 ストレス、および、非生物的ストレスなどの種々のストレスの軽減にも、有効であるとい える。 [0005] Therefore, it can be said that increasing the amount of accumulated potassium is effective for the healthy growth of the plant and ensuring a stable yield. In addition, an increase in the amount of accumulated silicon is also effective in reducing various stresses such as biological stress and abiotic stress.
[0006] なお、このような複合的なストレスに対する耐性は、葉、茎、または果実の表面など の組織に、大量に蓄積したケィ素によって、発揮されるとされている。  [0006] It is said that such resistance to complex stress is exerted by a large amount of key accumulated in tissues such as leaves, stems or fruit surfaces.
[0007] また、ケィ素は、植物の硬さ (粘性)にも関与しており、ケィ素の蓄積量が少なくなる と、植物は、やわら力べなる。例えば、やわらかいイネは、ケィ素の蓄積量が低い。こ れは、細胞のケィ素蓄積量が増加するとポリマー (シリカ)が形成され、このポリマー 1S 細胞を硬くするためである。 [0007] In addition, the key element is also involved in the hardness (viscosity) of the plant, and when the amount of accumulated key element decreases, the plant becomes softer. For example, soft rice has a low amount of accumulated keyine. This is because polymer (silica) is formed when the amount of cell accumulation in cells increases. This is to harden 1S cells.
[0008] 従って、ケィ素の蓄積量を減少させることは、植物の硬さを変える(やわらかくする) ために、有効であるといえる。 [0008] Therefore, it can be said that reducing the amount of accumulated potassium is effective for changing (softening) the hardness of the plant.
[0009] このように、植物のケィ素吸収を促進してケィ素の含有量を高くすれば、複合的な ストレスに対する耐性を、植物に付与し、植物の生育を促進することができる。一方、 植物のケィ素吸収を抑制してケィ素の含有量を低くすれば、硬 、植物をやわらかく することができる。 [0009] As described above, by increasing the absorption of the plant by increasing the content of the key, it is possible to impart tolerance to the complex stress to the plant and promote the growth of the plant. On the other hand, if the absorption of the plant's absorption of silicon is suppressed to lower the content of the cage, the plant can be softened and softened.
[0010] し力しながら、ケィ素吸収に関与する遺伝子は、未だ同定されておらず、植物のケ ィ素吸収メカニズムは、解明されていない。  [0010] However, the genes involved in the absorption of silicon have not yet been identified, and the mechanism of the absorption of plants in the plant has not been elucidated.
発明の開示  Disclosure of the invention
[0011] 本発明の目的は、これまでに同定されていないケィ素吸収に関与する遺伝子を同 定し、その遺伝子の利用方法を提供することにある。  An object of the present invention is to identify a gene involved in absorption of silicon that has not been identified so far and to provide a method for using the gene.
[0012] 本発明者等は、これまでに取得されていな力つたケィ素吸収に関与する遺伝子に ついて鋭意に検討した。その結果、野生型に比べてケィ素吸収能が低い突然変異 体 (lsil変異体)と、カサラス(Kasalath)との交配によって得られた F2集団個体を用い たマップベースクローニングによって、当該遺伝子を同定し、その配列を特定すること に成功して、本発明を完成させるに至った。  [0012] The inventors of the present invention diligently studied a gene involved in strong absorption of key that has not been obtained so far. As a result, the gene was identified by map-based cloning using an F2 population obtained by crossing a mutant (lsil mutant) with a lower ability to absorb kaen compared to the wild type and Kasalath. As a result, the present inventors have succeeded in identifying the sequence and completed the present invention.
[0013] すなわち、本発明に力かるポリヌクレオチドは、ケィ素吸収に関与するポリヌクレオ チドであって、  [0013] That is, the polynucleotide according to the present invention is a polynucleotide involved in the absorption of silicon,
下記の(a)〜(d)の!、ずれかのポリヌクレオチド:  The following (a) to (d) !, any polynucleotide:
(a)配列番号 1に示される塩基配列からなるポリヌクレオチド;  (a) a polynucleotide comprising the base sequence represented by SEQ ID NO: 1;
(b)以下の(i)もしくは (ii)のいずれかとストリンジェントな条件下でノヽイブリダィズす るポリヌクレ才チド:  (b) Polynucleids that are hybridized under stringent conditions with either (i) or (ii) below:
(i)配列番号 1に示される塩基配列力 なるポリヌクレオチド;もしくは (i) a polynucleotide having the nucleotide sequence shown in SEQ ID NO: 1; or
(ii)配列番号 1に示される塩基配列と相補的な塩基配列力 なるポリヌクレオチ ド、; (ii) a polynucleotide having a nucleotide sequence complementary to the nucleotide sequence represented by SEQ ID NO: 1,
(c)配列番号 3に示される塩基配列からなるポリヌクレオチド;または  (c) a polynucleotide comprising the base sequence represented by SEQ ID NO: 3; or
(d)以下の(iii)もしくは (iv)の 、ずれかとストリンジェントな条件下でノヽイブリダィズ するポリヌクレ才チド: (d) The following (iii) or (iv) under no stringent conditions Polynu clead Chido:
(iii)配列番号 3に示される塩基配列力 なるポリヌクレオチド;もしくは (iii) a polynucleotide having the nucleotide sequence shown in SEQ ID NO: 3; or
(iv)配列番号 3に示される塩基配列と相補的な塩基配列力 なるポリヌクレオチ ド力 なることを特徴として!/、る。 (iv) It is characterized by having a polynucleotide power that is complementary to the base sequence shown in SEQ ID NO: 3! /
[0014] ここで、本発明において、「ケィ素吸収」とは、ケィ素およびケィ素を含む化合物 (ケ ィ酸など)を吸収することを示すものとする。例えば、植物は、通常、ケィ酸としてケィ 素を吸収する。また、「ケィ素吸収に関与」とは、このようなケィ素吸収の抑制または促 進に関与することを示すものとする。  [0014] Here, in the present invention, "catheter absorption" refers to the absorption of kaen and compounds containing kaen (such as caic acid). For example, plants usually absorb keen as caustic acid. In addition, “involved in absorption of key” indicates that it is involved in suppression or promotion of such absorption.
[0015] 従って、「ケィ素吸収に関与するポリヌクレオチド」は、ケィ素吸収を促進するポリべ プチド、または、ケィ素吸収を抑制ポリペプチドをコードするポリヌクレオチドを示すこ ととなる。  [0015] Therefore, the "polynucleotide involved in the absorption of silicon" refers to a polypeptide that promotes absorption of the key or a polynucleotide that encodes a polypeptide that suppresses absorption of the key.
[0016] 上記のポリヌクレオチドによれば、ケィ素吸収に関与するポリペプチドを翻訳産物と して得ることがでさる。  [0016] According to the above-described polynucleotide, a polypeptide involved in the absorption of silicon can be obtained as a translation product.
[0017] すなわち、上記 (a)または (b)のポリヌクレオチドによれば、ケィ素吸収を抑制する ポリペプチドを翻訳産物として得ることができる。一方、上記 (c)または (d)のポリヌク レオチドによれば、ケィ素吸収を促進するポリペプチドを翻訳産物として得ることがで きる。  [0017] That is, according to the polynucleotide (a) or (b) above, a polypeptide that suppresses the absorption of silicon can be obtained as a translation product. On the other hand, according to the polynucleotide (c) or (d) described above, a polypeptide that promotes absorption of silicon can be obtained as a translation product.
[0018] 本発明のさらに他の目的、特徴、および優れた点は、以下に示す記載によって十 分わ力るであろう。また、本発明の利益は、添付図面を参照した次の説明で明白にな るであろう。  [0018] Still other objects, features, and advantages of the present invention will be sufficiently enhanced by the following description. The benefits of the present invention will become apparent from the following description with reference to the accompanying drawings.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1]本発明に力かる Lsil遺伝子の遺伝地図である。 FIG. 1 is a genetic map of the Lsil gene that is useful in the present invention.
[図 2]Lsil遺伝子のゲノム上の構造および塩基置換部位を示す模式図である。  FIG. 2 is a schematic diagram showing the structure and base substitution site on the genome of Lsil gene.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 本発明の実施の形態について説明すれば、以下の通りである。なお、本発明は、こ れに限定されるものではない。なお、配列番号 1は、変異型イネの Lsil遺伝子(cDN A)の塩基配列である。配列番号 2は、配列番号 1の変異型イネの Lsil遺伝子にコー ドされるアミノ酸配列である。配列番号 3は、野生型イネ (ォォチカラ)の Lsil遺伝子( cDNA)の塩基配列である。配列番号 4は、配列番号 3の野生型イネ (ォォチカラ)の Lsil遺伝子にコードされるアミノ酸配列である。配列番号 5は、野生型イネ(日本晴) の Lsil遺伝子のゲノム配列である。 [0020] An embodiment of the present invention will be described as follows. Note that the present invention is not limited to this. SEQ ID NO: 1 is the nucleotide sequence of the Lsil gene (cDN A) of mutant rice. SEQ ID NO: 2 is an amino acid sequence encoded by the Lsil gene of the mutant rice of SEQ ID NO: 1. SEQ ID NO: 3 is the wild-type rice Lsil gene ( cDNA). SEQ ID NO: 4 is an amino acid sequence encoded by the Lsil gene of wild-type rice (vertical) of SEQ ID NO: 3. SEQ ID NO: 5 is the genome sequence of the Lsil gene of wild-type rice (Nipponbare).
[0021] (1)本発明に力かるポリヌクレオチド [0021] (1) Polynucleotide useful for the present invention
本発明に力かるポリヌクレオチドは、ケィ素吸収に関与するポリペプチドをコードす るものである。  The polynucleotide useful in the present invention encodes a polypeptide involved in the absorption of silicon.
[0022] ここで、上記「ポリヌクレオチド」は、「核酸」または「核酸分子」とも換言でき、ヌクレオ チドの重合体が意図されている。また、「塩基配列」は、「核酸配列」または「ヌクレオ チド配列」とも換言でき、デォキシリボヌクレオチド (A、 G、 Cおよび Tと省略される)の 配列として示される。また、「配列番号 1に示される塩基配列力 なるポリヌクレオチド 」とは、配列番号 1の各デォキシヌクレオチド A、 G、 Cおよび Zまたは Tによって示さ れる配列からなるポリヌクレオチドを示して 、る。  Here, the “polynucleotide” can also be referred to as “nucleic acid” or “nucleic acid molecule”, and is intended to be a polymer of nucleotides. The “base sequence” can also be referred to as a “nucleic acid sequence” or a “nucleotide sequence”, and is indicated as a sequence of deoxyribonucleotides (abbreviated as A, G, C and T). The “polynucleotide having the base sequence ability shown in SEQ ID NO: 1” refers to a polynucleotide comprising the sequence shown by each of the dioxynucleotides A, G, C and Z or T of SEQ ID NO: 1. .
[0023] 本発明に力かるポリヌクレオチドは、 RNA (例えば、 mRNA)の形態、または DNA の形態(例えば、 cDNAまたはゲノム DNA)で存在し得る。 DNAは、二本鎖であつ ても、一本鎖であってもよい。一本鎖 DNAまたは RNAは、コード鎖(センス鎖としても 知られる)であっても、非コード鎖(アンチセンス鎖としても知られる)であってもよ!/、。  [0023] The polynucleotides of the invention may exist in the form of RNA (eg, mRNA) or in the form of DNA (eg, cDNA or genomic DNA). The DNA may be double stranded or single stranded. Single-stranded DNA or RNA can be the coding strand (also known as the sense strand) or the non-coding strand (also known as the antisense strand)! /.
[0024] 本発明に力かるポリヌクレオチドは、ケィ素吸収に関与するポリヌクレオチドであって 、下記の(a)〜(d)の!、ずれかのポリヌクレオチドである。  [0024] The polynucleotide useful in the present invention is a polynucleotide involved in the absorption of silicon, and is any of the following (a) to (d)!
[0025] (a)配列番号 1に示される塩基配列からなるポリヌクレオチド;  [0025] (a) a polynucleotide comprising the base sequence represented by SEQ ID NO: 1;
(b)以下の(i)もしくは (ii)のいずれかとストリンジェントな条件下でノヽイブリダィズす るポリヌクレ才チド:  (b) Polynucleids that are hybridized under stringent conditions with either (i) or (ii) below:
(i)配列番号 1に示される塩基配列力 なるポリヌクレオチド;もしくは (i) a polynucleotide having the nucleotide sequence shown in SEQ ID NO: 1; or
(ii)配列番号 1に示される塩基配列と相補的な塩基配列力 なるポリヌクレオチ ド、; (ii) a polynucleotide having a nucleotide sequence complementary to the nucleotide sequence represented by SEQ ID NO: 1,
(c)配列番号 3に示される塩基配列からなるポリヌクレオチド;または  (c) a polynucleotide comprising the base sequence represented by SEQ ID NO: 3; or
(d)以下の(iii)もしくは (iv)の 、ずれかとストリンジェントな条件下でノヽイブリダィズ するポリヌクレ才チド:  (d) Polynucleids that are noisy under any of the following stringent conditions (iii) or (iv):
(iii)配列番号 3に示される塩基配列力 なるポリヌクレオチド;もしくは (iv)配列番号 3に示される塩基配列と相補的な塩基配列力 なるポリヌクレオチ ド、。 (iii) a polynucleotide having the nucleotide sequence shown in SEQ ID NO: 3; or (iv) a polynucleotide having a nucleotide sequence complementary to the nucleotide sequence represented by SEQ ID NO: 3;
[0026] 上記 (a)または (b)のポリヌクレオチドは、ケィ素吸収を抑制するポリヌクレオチドで ある。上記 (c)または (d)のポリヌクレオチドは、ケィ素吸収を促進するポリヌクレオチ ドである。  [0026] The polynucleotide (a) or (b) is a polynucleotide that suppresses absorption of silicon. The polynucleotide (c) or (d) is a polynucleotide that promotes absorption of silicon.
[0027] 上記「ストリンジェントな条件」とは、少なくとも 90%の同一性、好ましくは少なくとも 95 %の同一性、最も好ましくは少なくとも 97%の同一性が配列間に存在するときにのみ ハイブリダィゼーシヨンが起こることを意味し、例えば、 60°Cで 2 X SSC洗浄条件下で 結合することを意味する。上記ハイブリダィゼーシヨンは、「Molecular Cloning (Third Edition)」 (J. bambrook & D. W. Russell, し old Spring Harbor Laboratory Press, 2001 )に記載されている方法等、従来公知の方法で行うことができる。通常、温度が高い ほど、塩濃度が低いほどストリンジエンシーは高くなる。  [0027] The above "stringent conditions" refer to hybrids only when at least 90% identity, preferably at least 95% identity, most preferably at least 97% identity exists between sequences. This means that a sesion occurs, for example, binding at 60 ° C under 2 X SSC wash conditions. The above hybridization can be performed by a conventionally known method such as the method described in “Molecular Cloning (Third Edition)” (J. bambrook & DW Russell, old Spring Harbor Laboratory Press, 2001). . Generally, the higher the temperature and the lower the salt concentration, the higher the stringency.
[0028] 上記のポリヌクレオチドのうち、配列番号 1および 3に示される塩基配列からなるポリ ヌクレオチドは、植物界において初めて同定された、ケィ素吸収に関与する遺伝子で ある。  [0028] Among the above-mentioned polynucleotides, the polynucleotide consisting of the nucleotide sequences shown in SEQ ID NOS: 1 and 3 is a gene involved in the absorption of silicon, which was first identified in the plant kingdom.
[0029] 配列番号 1のポリヌクレオチドは、イネの変異体 (lsil変異体)由来の変異型 Lsil遺 伝子の塩基配列(cDNA配列)である。 lsil変異体は、野生型のイネに比べてケィ素 吸収能が低い突然変異体である。また、 lsi変異体は、ケィ素蓄積量が少ないため、 野生型に比べて、やわらかい。このように、配列番号 1は、ケィ素吸収能が低い lsil 変異体由来のケィ素吸収を抑制するポリヌクレオチド (変異型 Lsil遺伝子)である。  [0029] The polynucleotide of SEQ ID NO: 1 is a base sequence (cDNA sequence) of a mutant Lsil gene derived from a rice mutant (lsil mutant). The lsil mutant is a mutant that has a lower ability to absorb keyine than wild-type rice. In addition, lsi mutants are softer than wild type because they have a small amount of accumulated potassium. Thus, SEQ ID NO: 1 is a polynucleotide (mutant Lsil gene) that suppresses the absorption of potassium derived from the lsil mutant having a low ability to absorb the key.
[0030] 配列番号 3のポリヌクレオチドは、野生型イネにぉ 、て発現して 、る、野生型イネ( ォォチカラ)由来の Lsil遺伝子の塩基配列(cDNA)である。イネは、ケィ素を多量 に吸収する代表的な植物である。イネは、ケィ素蓄積量が多いため、病害や虫害に 対する抵抗性、耐塩性および耐乾性、およびミネラルストレスに対する耐性を有して いる。このように、配列番号 3は、ケィ素吸収能が高い野生型イネ由来のケィ素吸収 を促進するポリヌクレオチド (野生型 Lsil遺伝子)である。  [0030] The polynucleotide of SEQ ID NO: 3 is the nucleotide sequence (cDNA) of the Lsil gene derived from wild type rice (vertical), which is expressed in the wild type rice. Rice is a typical plant that absorbs large amounts of potassium. Rice has a large amount of accumulated silicon, so it has resistance to diseases and insects, salt and drought resistance, and resistance to mineral stress. Thus, SEQ ID NO: 3 is a polynucleotide (wild-type Lsil gene) that promotes absorption of kaen derived from wild-type rice having high ability to absorb kaen.
[0031] また、本発明に力かるポリヌクレオチドは、ケィ素吸収に関与するポリペプチドをコ ードするポリヌクレオチドであって、以下の(a)〜(d)のいずれかのポリペプチドをコー ドするポリヌクレオチドである。 [0031] Further, the polynucleotide useful in the present invention is a polynucleotide that codes for a polypeptide involved in the absorption of silicon, and the polynucleotide of any one of the following (a) to (d) is encoded. Polynucleotide.
[0032] (a)配列番号 2に示されるアミノ酸配列;  [0032] (a) the amino acid sequence shown in SEQ ID NO: 2;
(b)配列番号 2に示されるアミノ酸配列において、 1個もしくは数個のアミノ酸が置換 、欠失、挿入、もしくは付加されたアミノ酸配列;  (b) an amino acid sequence in which one or several amino acids are substituted, deleted, inserted or added in the amino acid sequence shown in SEQ ID NO: 2;
(c)配列番号 4に示されるアミノ酸配列;または  (c) the amino acid sequence shown in SEQ ID NO: 4; or
(d)配列番号 4に示されるアミノ酸配列において、 1個もしくは数個のアミノ酸が置換 、欠失、挿入、もしくは付加されたアミノ酸配列。  (d) An amino acid sequence in which one or several amino acids are substituted, deleted, inserted or added in the amino acid sequence shown in SEQ ID NO: 4.
[0033] 上記「1もしくは数個のアミノ酸が欠失、置換、もしくは付加された」とは、部位特異 的突然変異誘発法等の公知の変異ポリペプチド作製法により欠失、置換、もしくは付 加ができる程度の数 (例えば 20個以下、好ましくは 10個以下、より好ましくは 7個以 下、さらに好ましくは 5個以下、特に好ましくは 3個以下)のアミノ酸が置換、欠失、もし くは付加されることを意味する。このような変異ポリペプチドは、公知の変異ポリぺプ チド作製法により人為的に導入された変異を有するポリペプチドに限定されるもので はなぐ天然に存在する同様の変異ポリペプチドを単離精製したものであってもよい  [0033] The above "one or several amino acids have been deleted, substituted, or added" means deletion, substitution, or addition by a known mutant polypeptide production method such as site-directed mutagenesis. (For example, 20 or less, preferably 10 or less, more preferably 7 or less, even more preferably 5 or less, particularly preferably 3 or less) of amino acids are substituted, deleted, or It means to be added. Such a mutant polypeptide is not limited to a polypeptide having a mutation artificially introduced by a known mutant polypeptide production method, but a similar naturally occurring mutant polypeptide is isolated and purified. It may be
[0034] 本発明者は、後述する実施例に示すように、本発明に力かるポリヌクレオチドの 1つ であるイネのケィ素吸収に関与するポリヌクレオチドが、イネの第 2染色体に存在する ことを明らかにした。さらに、第 2染色体のうち、特に、第 3ェクソン領域が、ケィ素吸 収に大きく関与することも明らかにした。すなわち、この第 3ェクソン領域の変異によ つて、ケィ素吸収活性が、大きく変化する。 [0034] As shown in the examples described later, the present inventor is that a polynucleotide involved in the absorption of rice, which is one of the polynucleotides that are useful in the present invention, exists in the second chromosome of rice. Was revealed. In addition, it was clarified that the 3rd exon region of chromosome 2 is particularly involved in the absorption of key elements. In other words, the key absorption activity is greatly changed by the mutation in the third exon region.
[0035] このような変異としては、例えば、イネの第 2染色体における第 3ェクソンにコードさ れる疎水性アミノ酸が、親水性アミノ酸に置換されていること、例えば、配列番号 4に 示されるアミノ酸配列において、 132番目のアミノ酸力 ァラニン力 スレオニンに置 換されていること、などが挙げられる。なお、配列番号 2に示すポリペプチドは、本願 発明者が見出した、変異型 Lsil遺伝子にコードされるケィ素吸収を抑制するポリべ プチドである。配列番号 4に示すポリペプチドは、野生型 Lsil遺伝子にコードされる ケィ素吸収を促進するポリペプチドである。  [0035] As such a mutation, for example, a hydrophobic amino acid encoded by the third exon in the second chromosome of rice is substituted with a hydrophilic amino acid, for example, the amino acid sequence shown in SEQ ID NO: 4 In the above, the 132rd amino acid force alanin force is replaced with threonine, and the like. The polypeptide shown in SEQ ID NO: 2 is a polypeptide that has been found by the inventor of the present application and that suppresses absorption of the enzyme encoded by the mutant Lsil gene. The polypeptide shown in SEQ ID NO: 4 is a polypeptide that promotes the absorption of silicon encoded by the wild-type Lsil gene.
[0036] このようなアミノ酸の変異は、本発明に力かるポリヌクレオチドの変異 (欠失、置換、 もしくは付加)によって生じる。例えば、本発明に力かるポリヌクレオチドの 1つは、野 生型イネのケィ素吸収に関与するポリペプチドをコードするポリヌクレオチド力 一塩 基置換 (SNP)されたものと表現することもできる。例えば、配列番号 3に示されるポリ ヌクレオチドは、データベース上に公開されている(DDBJ Accession No.AK069842) 日本晴(野生型)の cDNAクローンの塩基配列と一致している。そして、配列番号 1に 示されるポリヌクレオチドは、配列番号 3に示される遺伝子の塩基配列において、 51 0番目の塩基力 G (グァニン)から A (アデニン)へ、一塩基置換されたものである(図 2 も参照)。この一塩基置換により、配列番号 2に示されるポリペプチド (配列番号 1の 塩基配列の翻訳産物)は、 132番目のアミノ酸が、配列番号 4 (配列番号 3の塩基配 列の翻訳産物)のァラニンから、スレオニンに変異する。 [0036] Such amino acid mutations include polynucleotide mutations (deletions, substitutions, Or by addition). For example, one of the polynucleotides that is useful in the present invention can be expressed as a polynucleotide that has been subjected to polynucleotide force monobasic substitution (SNP) encoding a polypeptide that is involved in the absorption of silicon in wild rice. For example, the polynucleotide shown in SEQ ID NO: 3 matches the nucleotide sequence of the Nipponbare (wild type) cDNA clone published on the database (DDBJ Accession No. AK069842). The polynucleotide shown in SEQ ID NO: 1 is obtained by performing single base substitution from the 510th basic force G (guanine) to A (adenine) in the base sequence of the gene shown in SEQ ID NO: 3 ( (See also Figure 2). By this single base substitution, the polypeptide shown in SEQ ID NO: 2 (translation product of the base sequence of SEQ ID NO: 1) has the 132nd amino acid as alanine of SEQ ID NO: 4 (translation product of the base sequence of SEQ ID NO: 3). To threonine.
[0037] なお、配列番号 5は、イネ(野生型)の第 2染色体のゲノム配列の一部である。また、 図 2は、配列番号 5に示す Lsil遺伝子のゲノム上の構造および塩基置換部位を示す 模式図である。配列番号 5の配列は、イネゲノム配列の 101780番目〜 105388番 目のゲノム配列に対応する。イネの第 2染色体の第 3ェクソンは、イネゲノム配列の 1 04018番目〜104212番目の塩基、すなわち、配列番号 5の 2240番目〜2435番 目の塩基に相当する。なお、配列番号 5において、第 1ェクソンは 117番目〜 268番 目の塩基、第 2ェクソンは 411番目〜635番目の塩基、第 4ェクソンは 2540番目〜2 555番目の塩基、および第 5ェクソンは 2950番目〜3213番目の塩基に、それぞれ 相当する。なお、後述する第 3ェクソンにおける 1塩基置換は、配列番号 3における 2 257番目の塩基に生じて 、る。  [0037] SEQ ID NO: 5 is a part of the genome sequence of the second chromosome of rice (wild type). FIG. 2 is a schematic diagram showing the structure and base substitution site on the genome of the Lsil gene shown in SEQ ID NO: 5. The sequence of SEQ ID NO: 5 corresponds to the 101780th to 105388th genome sequence of the rice genome sequence. The third exon of rice chromosome 2 corresponds to the 104018th to 104212th bases of the rice genome sequence, that is, the 2240th to 2435th bases of SEQ ID NO: 5. In SEQ ID NO: 5, the first exon is the 117th to 268th base, the second exon is the 411st to 635th base, the fourth exon is the 2540th to 2555th base, and the fifth exon is It corresponds to the 2950th to 3213th base, respectively. Note that the 1-base substitution in the third exon described below occurs at the 2257th base in SEQ ID NO: 3.
[0038] 本発明に力かるポリヌクレオチドは、上記ポリヌクレオチドのフラグメントであるオリゴ ヌクレ才チドであってもよ ヽ。  [0038] The polynucleotide useful in the present invention may be an oligonucleotide tide that is a fragment of the above-mentioned polynucleotide.
[0039] 本発明に力かるポリヌクレオチドまたはオリゴヌクレオチドは、 2本鎖 DNAのみなら ず、それを構成するセンス鎖 (コード鎖)およびアンチセンス鎖 (非コード鎖) t 、つた 各 1本鎖 DNAや RNA (例えば、 mRNA)を包含する。また、 DNAには例えばクロー ユングやィ匕学合成技術またはそれらの組み合わせで得られるような cDNAやゲノム DNAなどが含まれる。本発明に力かるポリヌクレオチドの一例である、配列番号 1に 示す塩基配列は、配列番号 2に示すポリペプチドの cDNA配列の塩基配列である。 [0040] さらに、本発明にかかるポリヌクレオチドまたはオリゴヌクレオチドは、非翻訳領域( UTR)の配列やベクター配列(発現ベクター配列を含む)などの配列を含むものであ つてもよい。 [0039] The polynucleotide or oligonucleotide useful for the present invention is not only a double-stranded DNA, but also a sense strand (coding strand) and an antisense strand (non-coding strand) t, each of which comprises single-stranded DNA. And RNA (eg, mRNA). In addition, the DNA includes, for example, cDNA and genomic DNA that can be obtained by cloning, chemical synthesis techniques, or a combination thereof. The base sequence shown in SEQ ID NO: 1, which is an example of a polynucleotide useful for the present invention, is the base sequence of the cDNA sequence of the polypeptide shown in SEQ ID NO: 2. [0040] Further, the polynucleotide or oligonucleotide according to the present invention may contain a sequence such as a sequence of an untranslated region (UTR) and a vector sequence (including an expression vector sequence).
[0041] 本発明に力かるポリヌクレオチドまたはオリゴヌクレオチドは、アンチセンス RNAメカ -ズムによる遺伝子発現操作のためのツールとして使用することができる。アンチセ ンス RNA技術は、標的遺伝子に対して相補的な RNA転写体を生成するキメラ遺伝 子の導入を基本原理とする。その結果として得られる表現型は、内因性遺伝子に由 来する遺伝子産物の減少である。つまり、本発明に力かるオリゴヌクレオチドであるァ ンチセンス RANを導入することによって、ケィ素吸収を調節することができる。  [0041] The polynucleotide or oligonucleotide useful in the present invention can be used as a tool for gene expression manipulation by an antisense RNA mechanism. Antisense RNA technology is based on the introduction of chimeric genes that generate RNA transcripts complementary to the target gene. The resulting phenotype is a reduction of the gene product resulting from the endogenous gene. That is, by introducing antisense RAN, which is an oligonucleotide useful for the present invention, it is possible to adjust the absorption of silicon.
[0042] 例えば、ケィ素吸収を促進するポリヌクレオチドのアンチセンス RNA断片を導入す ることにより、ケィ素吸収の機能が低下し、植物中のケィ素の含量を低下させることが できる。これにより、例えば、ケィ素含量を低くした飼料イネを作製することができる。 飼料イネは、やわらかいため、家畜飼料に好適に利用できる。  [0042] For example, by introducing an antisense RNA fragment of a polynucleotide that promotes absorption of potassium, the function of absorption of potassium can be reduced and the content of potassium in the plant can be reduced. Thereby, for example, feed rice having a low key content can be produced. Since feed rice is soft, it can be suitably used for livestock feed.
[0043] 本発明に力かるポリヌクレオチドまたはオリゴヌクレオチドを取得する方法として、公 知の技術により、本発明に力かるポリヌクレオチドまたはオリゴヌクレオチドを含む DN A断片を単離し、クローユングする方法が挙げられる。例えば、本発明におけるポリヌ クレオチドの塩基配列の一部と特異的にノ、イブリダィズするプローブを調製し、ゲノム DNAライブラリーや cDNAライブラリーをスクリーニングすればよ!、。このようなプロ ーブとしては、本発明に力かるポリヌクレオチドの塩基配列またはその相補配列の少 なくとも一部に特異的にハイブリダィズするプローブであれば、 、ずれの配列および Zまたは長さのものを用いてもょ 、。  [0043] Examples of a method for obtaining a polynucleotide or oligonucleotide useful for the present invention include a method for isolating and cloning a DNA fragment containing a polynucleotide or oligonucleotide useful for the present invention by a known technique. . For example, prepare a probe that specifically hybridizes with a part of the nucleotide sequence of the polynucleotide of the present invention, and screen a genomic DNA library or cDNA library! As such a probe, if the probe specifically hybridizes to at least a part of the base sequence of the polynucleotide or the complementary sequence of the present invention, a misaligned sequence and Z or length can be used. Use things.
[0044] また、本発明に力かるポリヌクレオチドを取得する方法として、 PCR等の増幅手段を 用いる方法を挙げることができる。例えば、本発明におけるポリヌクレオチドの cDNA のうち、 5 '側および 3,側の配列(またはその相補配列)の中からそれぞれプライマー を調製し、これらプライマーを用いてゲノム DNA (または cDNA)等を铸型にして PC R等を行い、両プライマー間に挟まれる DNA領域を増幅することで、本発明にかかる ポリヌクレオチドを含む DNA断片を大量に取得できる。また、例えば、公知の日本晴 の配列情報に基づいて、 Lsil遺伝子領域を増幅できるようなプライマーを設計し、そ のプライマーを用いて、ゲノム DNA (または cDNA)または RT— PCR産物を铸型に して、 Lsil遺伝子領域を増幅することによつても、本発明に力かるポリヌクレオチドを 取得することができる。 [0044] Further, examples of a method for obtaining a polynucleotide according to the present invention include a method using an amplification means such as PCR. For example, among the cDNA cDNAs of the present invention, primers are prepared from the 5 'side and 3, side sequences (or their complementary sequences), respectively, and genomic DNA (or cDNA) or the like is detected using these primers. A large amount of DNA fragments containing the polynucleotide according to the present invention can be obtained by performing PCR or the like in a mold and amplifying the DNA region sandwiched between both primers. In addition, for example, a primer that can amplify the Lsil gene region is designed based on the publicly known Nipponbare sequence information. A polynucleotide that is useful for the present invention can also be obtained by amplifying the Lsil gene region by converting the genomic DNA (or cDNA) or RT-PCR product into a saddle shape using the above primers.
[0045] 本発明に力かるポリヌクレオチドを取得するための供給源としては、特に限定されな いが、イネ科植物であることが好ましい。後述する実施例においては、イネの変異体( lsil変異体)から本発明に力かるポリヌクレオチドの一つである変異型の Lsil遺伝子 を取得している力 これに限定されるものではない。  [0045] The source for obtaining the polynucleotide useful for the present invention is not particularly limited, but it is preferably a gramineous plant. In the examples described later, the ability to obtain a mutant Lsil gene, which is one of the polynucleotides useful in the present invention, from a rice mutant (lsil mutant) is not limited thereto.
[0046] なお、本発明に力かるポリヌクレオチドは、これまでに明らかにされてこな力つた、植 物によるケィ素の吸収メカニズムの解明に利用することができる。  [0046] It should be noted that the polynucleotide useful in the present invention can be used to elucidate the mechanism of absorption of cage by plants, which has been clarified so far.
[0047] (2)本発明にかかるポリペプチド  [0047] (2) Polypeptide according to the present invention
本発明にかかるポリペプチドは、上記(1)に記載したポリヌクレオチドの翻訳産物で あり、少なくともケィ素吸収に関与するものである。  The polypeptide according to the present invention is a translation product of the polynucleotide described in (1) above, and is at least involved in the absorption of silicon.
[0048] ここで、上記「ポリペプチド」は、「ペプチド」または「タンパク質」とも換言できる。また 、ポリペプチドの「フラグメント」は、当該ポリペプチドの部分断片を示している。  Here, the “polypeptide” can also be referred to as “peptide” or “protein”. The “fragment” of a polypeptide indicates a partial fragment of the polypeptide.
[0049] 本発明にかかるポリペプチドは、天然供給源より単離されても、化学合成されてもよ い。ここで、「単離された」ポリペプチドまたはタンパク質は、その天然の環境力 取り 出されたポリペプチドまたはタンパク質を示す。例えば、宿主細胞中で発現された組 換え産生されたポリペプチドおよびタンパク質は、任意の適切な技術によって実質的 に精製されている天然または組換えのポリペプチドおよびタンパク質と同様に、単離 されたものとする。  [0049] The polypeptide of the present invention may be isolated from a natural source or chemically synthesized. Here, an “isolated” polypeptide or protein refers to the polypeptide or protein from which its natural environmental forces have been removed. For example, recombinantly produced polypeptides and proteins expressed in host cells have been isolated, as are natural or recombinant polypeptides and proteins that have been substantially purified by any suitable technique. Shall.
[0050] 本発明にかかるポリペプチドは、天然の精製産物、化学合成手順の産物、および 原核生物宿主または真核生物宿主 (例えば、細菌細胞、酵母細胞、高等植物細胞、 昆虫細胞、および哺乳動物細胞を含む)力 組換え技術によって産生された産物を 含む。組換え産生手順において用いられる宿主によっては、本発明にかかるポリべ プチドは、グリコシルイ匕など、糖鎖修飾される場合もある。本発明にかかるポリべプチ ドには、このような修飾されたポリペプチドも含まれる。  [0050] Polypeptides according to the present invention can be produced by natural purification products, products of chemical synthesis procedures, and prokaryotic or eukaryotic hosts (eg, bacterial cells, yeast cells, higher plant cells, insect cells, and mammals). (Including cells) Includes products produced by recombinant technology. Depending on the host used in the recombinant production procedure, the polypeptide of the present invention may be sugar chain-modified such as glycosyl potato. The polypeptide according to the present invention includes such a modified polypeptide.
[0051] 本発明にかかるポリペプチドとしては、例えば、少なくともケィ素吸収に関与するポリ ペプチドであって、以下の(a)〜(d)の!、ずれかのポリペプチドである。 [0052] (a)配列番号 2に示されるアミノ酸配列; [0051] The polypeptide according to the present invention is, for example, a polypeptide that is involved in at least absorption of silicon, and is any of the following (a) to (d)! [0052] (a) the amino acid sequence represented by SEQ ID NO: 2;
(b)配列番号 2に示されるアミノ酸配列において、 1個もしくは数個のアミノ酸が置換 、欠失、挿入、もしくは付加されたアミノ酸配列、力もなるポリペプチドである。  (b) In the amino acid sequence shown in SEQ ID NO: 2, this is a polypeptide that also has an amino acid sequence or force in which one or several amino acids are substituted, deleted, inserted, or added.
[0053] (c)配列番号 4に示されるアミノ酸配列;または  [0053] (c) the amino acid sequence shown in SEQ ID NO: 4; or
(d)配列番号 4に示されるアミノ酸配列において、 1個もしくは数個のアミノ酸が置換 、欠失、挿入、もしくは付加されたアミノ酸配列力もなるポリペプチド。  (d) A polypeptide having an amino acid sequence ability in which one or several amino acids are substituted, deleted, inserted, or added in the amino acid sequence shown in SEQ ID NO: 4.
[0054] 上記 (a)または (b)のポリペプチドは、ケィ素吸収を抑制するポリペプチドである。一 方、上記 (c)または (d)のポリペプチドは、ケィ素吸収を促進するポリペプチドである。  [0054] The polypeptide (a) or (b) is a polypeptide that suppresses absorption of silicon. On the other hand, the polypeptide (c) or (d) is a polypeptide that promotes absorption of silicon.
[0055] なお、上記ポリペプチドは、アミノ酸がペプチド結合してなるポリペプチドであればよ いが、これに限定されるものではなぐポリペプチド以外の構造を含むものであっても よい。ここでいうポリペプチド以外の構造としては、糖鎖やイソプレノイド基等を挙げる ことができる力 特に限定されるものではない。  [0055] The polypeptide is not limited to the polypeptide as long as it is a polypeptide in which amino acids are peptide-bonded, but may contain a structure other than the polypeptide. The structure other than the polypeptide here is not particularly limited as long as it can include sugar chains and isoprenoid groups.
[0056] 配列番号 2に示されるアミノ酸配列力 なるポリペプチドは、配列番号 1に示される 塩基配列からなるポリヌクレオチドの翻訳産物である。また、このポリペプチドは、配 列番号 4に示されるアミノ酸配列(野生型 LSI1タンパク質)において、 132番目のアミ ノ酸が、ァラニンからスレオニンに置換されて 、るポリペプチド(変異型 LSI1タンパク 質)である。  [0056] The polypeptide having the amino acid sequence ability shown in SEQ ID NO: 2 is a translation product of a polynucleotide consisting of the base sequence shown in SEQ ID NO: 1. In addition, this polypeptide is a polypeptide (mutant LSI1 protein) in which the 132nd amino acid in the amino acid sequence shown in SEQ ID NO: 4 (wild type LSI1 protein) is replaced by alanine to threonine. It is.
[0057] (3)形質転換用マーカー遺伝子  [0057] (3) Marker gene for transformation
本発明にかかるポリヌクレオチドは、形質転換用マーカー遺伝子として利用すること ができる。すなわち、本発明にかかる形質転換体選抜用マーカー遺伝子は、上記(1 )に記載した本発明に力かるポリヌクレオチドからなるものであればよい。本発明にか 力るポリヌクレオチドは、ケィ素吸収を抑制または促進する。このため、本発明にかか るポリヌクレオチドを導入された細胞は、ケィ素蓄積量が減少または増加する。従つ て、ケィ素の蓄積量 (ケィ素吸収量)を測定することにより、当該ポリヌクレオチドが導 入された細胞を選抜することができる。つまり、ケィ素吸収が促進された細胞と、ケィ 素吸収が抑制された細胞とを、それぞれ選抜することができる。  The polynucleotide according to the present invention can be used as a marker gene for transformation. That is, the marker gene for selecting a transformant according to the present invention may be any gene as long as it is composed of the polynucleotide useful for the present invention described in (1) above. The polynucleotide useful in the present invention suppresses or promotes absorption of silicon. For this reason, the cell accumulation amount of the cells into which the polynucleotide according to the present invention is introduced is decreased or increased. Therefore, by measuring the amount of accumulated Ca (absorbed amount), cells into which the polynucleotide has been introduced can be selected. That is, it is possible to select cells whose absorption is promoted and cells whose absorption is suppressed.
[0058] また、ケィ素吸収を促進させた細胞は、ケィ素を多く含む。ゲルマニウム (Ge)は、ケ ィ素と同族元素であるため、植物は、ゲルマニウムとケィ素とを区別せずに吸収する 。しかし、ゲルマニウムは、ケィ素とは異なり、毒性の強い元素である。このため、ケィ 素吸収が促進された細胞は、ゲルマニウム培地では生きられない。これに対して、ケ ィ素吸収が抑制された細胞は、ゲルマニウム培地でも生きられる。従って、ゲルマ- ゥムを培地に添加することにより、ケィ素吸収が抑制された細胞のみを選抜すること が可能となる。 [0058] In addition, the cells that have promoted absorption of kaen contain a large amount of kaen. Because germanium (Ge) is a family element with key, plants absorb germanium and key without distinguishing them. . However, germanium is a highly toxic element unlike key. For this reason, the cells whose absorption of potassium has been promoted cannot live on the germanium medium. In contrast, cells in which absorption of silicon is suppressed can survive in germanium medium. Therefore, by adding germanium to the medium, it is possible to select only the cells in which the absorption of silicon is suppressed.
[0059] 具体的には、本発明に力かるポリヌクレオチドを形質転換用マーカー遺伝子として 利用するには、例えば、当該ポリヌクレオチドを組み込んだ発現ベクターを構築し、 当該発現ベクターを目的の細胞に導入する。当該発現ベクターが導入され、ケィ素 吸収を抑制するポリペプチドが発現して 、る細胞のケィ素蓄積量は減少する。これに 対し、ケィ素吸収を促進するポリペプチドが発現して 、る細胞のケィ素蓄積量は増加 する。従って、ケィ素存在下で培養して、発現ベクターの導入前後のケィ素蓄積量を 測定することによって、ケィ素吸収に関与しているポリヌクレオチドが発現している細 胞を選抜することができる。また、例えば、ケィ素吸収活性が強い品種、または、ケィ 素吸収活性が弱い品種を選抜することもできる。  [0059] Specifically, in order to use the polynucleotide according to the present invention as a marker gene for transformation, for example, an expression vector incorporating the polynucleotide is constructed, and the expression vector is introduced into a target cell. To do. When the expression vector is introduced and a polypeptide that suppresses the absorption of the key is expressed, the amount of the key accumulated in the cell decreases. On the other hand, when the polypeptide that promotes the absorption of potassium is expressed, the amount of accumulated potassium in the cell increases. Therefore, by culturing in the presence of potassium and measuring the amount of accumulated potassium before and after the introduction of the expression vector, it is possible to select cells expressing the polynucleotide involved in the absorption of the key. . In addition, for example, cultivars with strong key absorption activity or varieties with low key absorption activity can be selected.
[0060] 上述の例では、本発明にかかるポリヌクレオチドを形質転換細胞に発現させる遺伝 子とマーカー遺伝子との両方の目的で用いているが、本発明に力かるポリヌクレオチ ドをマーカー遺伝子としてのみ用いることも可能である。また、例えば、植物のカルス 細胞に特異的な転写プロモーターを使用することにより、本発明に力かるポリヌクレオ チドの選択マーカーとしての発現時期の制御も可能である。この場合は、さらに目的 の細胞内で発現させたいタンパク質をコードする遺伝子を挿入した発現ベクターを構 築し、当該発現ベクターを用いて形質転換すればよい。また、本発明にかかるポリヌ クレオチドを組み込んだ発現ベクターを構築せずに、本発明に力かるポリヌクレオチ ドを単独で目的の細胞に導入することも可能である。  [0060] In the above-described example, the polynucleotide according to the present invention is used for both the purpose of expressing a polynucleotide in a transformed cell and the marker gene. However, the polynucleotide useful for the present invention is used only as a marker gene. It is also possible to use it. In addition, for example, by using a transcription promoter specific to plant callus cells, it is possible to control the expression time as a selection marker of a polynucleotide that is useful in the present invention. In this case, an expression vector inserted with a gene encoding a protein to be expressed in the target cell may be constructed and transformed using the expression vector. It is also possible to introduce the polynucleotide useful for the present invention alone into a target cell without constructing an expression vector incorporating the polynucleotide according to the present invention.
[0061] なお、本発明には、上記本発明にかかるマーカー遺伝子または以下に説明する組 換え発現ベクターを細胞に導入することにより、生育を阻害するストレス (例えば、病 害および虫害、耐塩性および耐乾性、および、ミネラルストレスなど)に対する耐性を 細胞に付与し、生育が促進された細胞を選抜する形質転換細胞の選抜方法も含ま れる。 [0062] また、前述のように、配列番号 1に示されるポリヌクレオチドは、配列番号 3に示され る遺伝子の塩基配列において、 510番目の塩基力 G (グァニン)から A (アデニン)へ 、一塩基置換さされたものである。このため、 510番目の塩基を含むポリヌクレオチド は、本発明に力かるマーカー遺伝子として利用することができる。 [0061] It should be noted that in the present invention, stress that inhibits growth (for example, disease and insect damage, salt tolerance, and salt resistance and the like) by introducing the marker gene according to the present invention or the recombinant expression vector described below into cells. Also included is a method for selecting transformed cells, which provides cells with resistance to drought resistance and mineral stress, and promotes growth. [0062] Further, as described above, the polynucleotide represented by SEQ ID NO: 1 is identical to the 510th basic force G (guanine) to A (adenine) in the nucleotide sequence of the gene represented by SEQ ID NO: 3. It is a base-substituted one. For this reason, the polynucleotide containing the 510th base can be used as a marker gene for the present invention.
[0063] 例えば、配列番号 1に示されるポリヌクレオチドにおいて、 510番目の塩基を含む 2 0〜100個の連続した塩基力もなるポリヌクレオチドは、ケィ素吸収を抑制する細胞を 選抜するために利用することができる。  [0063] For example, in the polynucleotide shown in SEQ ID NO: 1, a polynucleotide having 20 to 100 consecutive bases including the 510th base is used to select a cell that suppresses absorption of potassium. be able to.
[0064] 一方、配列番号 3に示されるポリヌクレオチドにおいて、 510番目の塩基を含む 20 〜: L00個の連続した塩基力もなるポリヌクレオチドは、ケィ素吸収を促進する細胞を 選抜するために利用することができる。  [0064] On the other hand, in the polynucleotide shown in SEQ ID NO: 3, a polynucleotide comprising 20 to: L00 consecutive basic forces including the 510th base is used for selecting cells that promote absorption of potassium. be able to.
[0065] すなわち、これらのポリヌクレオチドは、ケィ素吸収に関与する細胞を選抜するため のマーカー遺伝子として利用することができる。  [0065] That is, these polynucleotides can be used as marker genes for selecting cells involved in absorption of silicon.
[0066] (4)本発明に力かる組換え発現ベクターおよび形質転換キット  [0066] (4) Recombinant expression vector and transformation kit for the present invention
本発明にかかる組換え発現ベクターは、上記(1)に記載した本発明にかかるポリヌ クレオチドを含むものであれば、特に限定されるものではない。例えば、配列番号 1ま たは 3に示す cDNAが挿入された組換え発現ベクターが挙げられる。組換え発現べ クタ一の作製には、プラスミド、ファージ、またはコスミドなどを用いることができるが特 に限定されるものではない。また、作製方法も公知の方法を用いて行えばよい。  The recombinant expression vector according to the present invention is not particularly limited as long as it contains the polynucleotide according to the present invention described in (1) above. For example, a recombinant expression vector into which the cDNA shown in SEQ ID NO: 1 or 3 is inserted can be mentioned. For the production of the recombinant expression vector, a plasmid, phage, cosmid or the like can be used, but it is not particularly limited. In addition, a manufacturing method may be performed using a known method.
[0067] ベクターの具体的な種類は特に限定されるものではなぐホスト細胞中で発現可能 なベクターを適宜選択すればよい。すなわち、ホスト細胞の種類に応じて、確実に遺 伝子を発現させるために適宜プロモーター配列を選択し、これと本発明に力かるポリ ヌクレオチドを各種プラスミド等に組み込んだものを発現ベクターとして用いればょ ヽ  [0067] The specific type of vector is not particularly limited, and a vector that can be expressed in a host cell may be appropriately selected. That is, if a promoter sequence is appropriately selected according to the type of host cell in order to reliably express the gene, and this and a polynucleotide useful for the present invention are incorporated into various plasmids or the like, it can be used as an expression vector.ヽ
[0068] 本組換え発現ベクターは、本発明に力かるポリペプチドを発現させるために用いる ことができることは!ヽうまでもな ヽが、本発明にかかるポリヌクレオチドをマーカー遺伝 子として利用し、他の遺伝子を組み込んで当該他の遺伝子がコードするタンパク質を 発現させるための組換え発現ベクターとしても利用できる。 [0068] The present recombinant expression vector can be used to express the polypeptide of the present invention! Needless to say, the polynucleotide according to the present invention is used as a marker gene, and the like. And can be used as a recombinant expression vector for expressing a protein encoded by the other gene.
[0069] 本発明に力かるポリヌクレオチドがホスト細胞に導入されたか否力、さらにはホスト細 胞中で確実に発現して 、るか否かを確認するために、各種マーカーを用いてもよ!ヽ 。例えば、ハイグロマイシンのような抗生物質に抵抗性を与える薬剤耐性遺伝子をマ 一力一として用い、このマーカーと本発明に力かるポリヌクレオチドとを含むプラスミド 等を発現ベクターとしてホスト細胞に導入する。これによつてマーカー遺伝子の発現 力 本発明の遺伝子の導入を確認することができる。 [0069] Whether or not the polynucleotide useful for the present invention has been introduced into the host cell, and further the host cell Various markers may be used to confirm whether they are expressed reliably in the cell! For example, a drug resistance gene that gives resistance to antibiotics such as hygromycin is used as the best force, and a plasmid or the like containing this marker and a polynucleotide useful for the present invention is introduced into a host cell as an expression vector. Thereby, the expression power of the marker gene can be confirmed.
[0070] 上記ホスト細胞は、ケィ素吸収能を有する細胞、生物であれば、特に限定されるも のではなぐ従来公知の各種細胞を好適に用いることができる。具体的には、例えば 、イネ,きゅうり,アブラナ,またはトマト等を挙げることができるが、特に限定されるも のではない。ホスト細胞は、植物細胞であることが好ましい。  [0070] The host cell is not particularly limited as long as it is a cell or organism having a capacity of absorbing carbon, and various conventionally known cells can be preferably used. Specific examples include rice, cucumber, rape, and tomato, but are not particularly limited. The host cell is preferably a plant cell.
[0071] 上記発現ベクターをホスト細胞に導入する方法、すなわち形質転換方法も特に限 定されるものではなぐァグロバタテリゥム感染法、電気穿孔法 (エレクト口ポレーショ ン法)、リン酸カルシウム法、プロトプラスト法、酢酸リチウム法、およびパーテイクルガ ン法等の従来公知の方法を好適に用いることができる。  [0071] A method for introducing the above expression vector into a host cell, that is, a transformation method is not particularly limited. Conventionally known methods such as a method, a lithium acetate method, and a particle gun method can be preferably used.
[0072] 本発明にかかる形質転換キットは、上記(1)に記載した本発明にかかるポリヌクレオ チド、または、本発明にかかる組換え発現ベクターの少なくともいずれかを含むもの であればよい。その他の具体的な構成については特に限定されるものではなぐ必 要な試薬や器具等を適宜選択してキットの構成とすればょ ヽ。当該形質転換キットを 用いることにより、簡便かつ効率的に形質転換細胞を得ることができる。  [0072] The transformation kit according to the present invention only needs to contain at least one of the polynucleotide according to the present invention described in (1) above or the recombinant expression vector according to the present invention. Other specific configurations are not particularly limited, and necessary kits may be selected by appropriately selecting necessary reagents and instruments. By using the transformation kit, transformed cells can be obtained simply and efficiently.
[0073] (5)本発明に力かる形質転換体  [0073] (5) Transformant that is effective in the present invention
本発明にかかる形質転換体は、上記(1)に記載した本発明にかかるポリヌクレオチ ド、または、上記 (4)に記載の組換え発現ベクターが導入されており、かつ、ケィ素吸 収活性を有するポリペプチドが発現して 、る形質転換体であれば、特に限定されるも のではない。ここで「形質転換体」とは、細胞 ·組織 '器官のみならず、生物個体を含 む意味である。  The transformant according to the present invention is introduced with the polynucleotide according to the present invention described in (1) above or the recombinant expression vector described in (4) above, and has a carrier absorption activity. There is no particular limitation as long as the transformant is capable of expressing a polypeptide having the above. Here, the “transformant” means not only a cell / tissue 'organ but also an individual organism.
[0074] また、ここで、「ポリヌクレオチドが導入された」とは、公知の遺伝子工学的手法 (遺 伝子操作技術)により、対象細胞 (宿主細胞)内に発現可能に導入されることを意味 するが、本発明では、これに加えてゲノム中に含まれる本発明のポリヌクレオチドが生 体内で発現している場合も含むものとする。このゲノム中に含まれる本発明のポリヌク レオチドが生体内で発現して 、る例としては、上述の lsil変異体が挙げられる。 [0074] Here, "the polynucleotide has been introduced" means that it is introduced into a target cell (host cell) so that it can be expressed by a known genetic engineering technique (gene manipulation technique). However, in addition to this, the present invention includes the case where the polynucleotide of the present invention contained in the genome is expressed in vivo. The polynucleotide of the present invention contained in this genome Examples of the expression of leotide in vivo include the aforementioned lsil mutant.
[0075] 形質転換体の作製方法 (生産方法)は特に限定されるものではないが、例えば、上 述した組換え発現ベクターをホスト細胞に導入して形質転換する方法を挙げることが できる。また、ケィ素吸収能を有する細胞、生物であれば、形質転換の対象となる生 物も特に限定されるものではなぐ上記 (4)においてホスト細胞として例示した植物細 胞等を挙げることができる。  [0075] A method for producing a transformant (production method) is not particularly limited, and examples thereof include a method of transforming by introducing the above-described recombinant expression vector into a host cell. In addition, as long as the cells and organisms have the ability to absorb silicon, the organisms to be transformed are not particularly limited, and examples include plant cells exemplified as host cells in (4) above. .
[0076] 本発明に力かる形質転換体は、植物細胞または植物体であることが好ま 、。この ような形質転換植物は、細胞内または植物体内において、ケィ素の含有量 (蓄積量) を減少または増加することができる。そして、上記ポリヌクレオチドまたは組み換え発 現ベクターが、ポリペプチドの発現を促進させるプロモーターとともに導入された上記 形質転換体では、ケィ素の吸収が抑制または促進され、ケィ素の蓄積量を減少また は増加させることができる。  [0076] The transformant that works for the present invention is preferably a plant cell or a plant. Such a transformed plant can reduce or increase the content (accumulation amount) of potassium in cells or plants. In the transformant in which the polynucleotide or the recombinant expression vector is introduced together with a promoter that promotes the expression of the polypeptide, absorption of the key is suppressed or promoted, and the amount of accumulated key is reduced or increased. Can be made.
[0077] 本発明の形質転鎌物は、本発明にかかるポリヌクレオチドを導入されているため 、ケィ素吸収が、抑制または促進されている。  [0077] Since the transformed sickle of the present invention is introduced with the polynucleotide according to the present invention, the absorption of potassium is suppressed or promoted.
[0078] ケィ素吸収が抑制された形質転換体 (特に形質転換植物)は、ケィ素蓄積量の減 少により、やわらかくなる。従って、ケィ素吸が抑制された形質転換体は、家畜飼料と して好適に利用することができる。  [0078] Transformants (especially transformed plants) in which the absorption of potassium is suppressed become soft due to a decrease in the amount of accumulated potassium. Therefore, the transformant in which key absorption is suppressed can be suitably used as livestock feed.
[0079] 一方、ケィ素吸収が促進された形質転換体 (特に形質転換植物)は、ケィ素蓄積量 の増加により、病害や虫害に対する抵抗性、耐塩性および耐乾性、およびミネラルス トレスに対する耐性が向上する。このため、形質転 ^¾物の生育を、促進させること ができる。  [0079] On the other hand, transformants (especially transformed plants) with enhanced absorption of kaen are resistant to diseases and insects, resistant to salt and drought, and resistant to mineral stress due to an increase in the accumulation of kaen. Will improve. For this reason, the growth of the transformed product can be promoted.
[0080] さらに、ケィ素吸収が促進された形質転換植物は、病害や虫害に対する抵抗性が 向上しているため、農薬および化学肥料を極力使用せずに、形質転換植物を栽培 することができる。従って、有機栽培および無農薬栽培などが可能となり、より安全性 の高い形質転 ^¾物を、食料として提供することができる。  [0080] Furthermore, since transformed plants with enhanced absorption of silicon have improved resistance to diseases and insects, transformed plants can be cultivated without using agricultural chemicals and chemical fertilizers as much as possible. . Therefore, organic cultivation and non-agricultural cultivation are possible, and a safer transformed product can be provided as food.
[0081] なお、植物体の形質転換に用いられる組換え発現ベクターは、当該植物細胞内で 挿入遺伝子を発現させることが可能なものであれば、特に限定されるものではな 、。 特に、植物体へのベクターの導入法がァグロバタテリゥムを用いる方法である場合に は、 pBI系等のバイナリーベクターを用いることが好ましい。ノイナリーベクターとして は、具体的には、例えば、 pBIG、 pBIN19、 pBI101、 pBI121、 pBI221等を挙げる ことができる。また、植物体内で遺伝子を発現させることが可能なプロモーターを有す るベクターであることが好ましい。プロモーターとしては公知のプロモーターを好適に 用いることができ、具体的には、例えば、カリフラワーモザイクウィルス 35Sプロモータ 一 (CaMV35S)、ュビキチンプロモーターゃァクチンプロモーターを挙げることがで きる。なお、植物細胞には、種々の形態の植物細胞、例えば、懸濁培養細胞、プロト プラスト、葉の切片、カルスなどが含まれる。 [0081] The recombinant expression vector used for transformation of the plant is not particularly limited as long as it can express the inserted gene in the plant cell. Especially when the method of introducing a vector into a plant is a method using agrobacterium. It is preferable to use a binary vector such as pBI. Specific examples of the noinary vector include pBIG, pBIN19, pBI101, pBI121, and pBI221. Moreover, a vector having a promoter capable of expressing a gene in a plant is preferable. Known promoters can be preferably used as the promoter, and specific examples include cauliflower mosaic virus 35S promoter (CaMV35S) and ubiquitin promoter. The plant cells include various types of plant cells such as suspension culture cells, protoplasts, leaf sections, and callus.
[0082] 植物細胞への組み換え発現ベクターの導入には、ァグロバタテリゥム感染法、電気 穿孔法 (エレクト口ポレーシヨン法)、リン酸カルシウム法、プロトプラスト法、酢酸リチウ ム法、およびパーティクルガン法等、従来公知の方法を用いることができる。また、形 質転換細胞から植物体の再生は、植物細胞の種類に応じて公知の方法で行うことが 可能である。 [0082] Introduction of recombinant expression vectors into plant cells includes agrobacterium infection method, electroporation method (elect mouth position method), calcium phosphate method, protoplast method, lithium acetate method, particle gun method, etc. Conventionally known methods can be used. In addition, regeneration of a plant body from transformed cells can be performed by a known method depending on the type of plant cell.
[0083] ゲノム内に本発明にかかるポリヌクレオチドが導入された形質転鎌物体力 ^、つた ん得られれば、当該植物体力 得られる種子にも当該ポリヌクレオチドが導入されて いる。本発明には、形質転換植物から得られる種子も含まれる。  [0083] Transformation sickle body power into which the polynucleotide according to the present invention has been introduced into the genome, and once it has been obtained, the polynucleotide has also been introduced into the seed obtained from the plant body power. The present invention also includes seeds obtained from transformed plants.
[0084] (6)本発明にかかる食品  [0084] (6) Food according to the present invention
本発明の食品は、本発明にかかる形質転換体を含むものである。すなわち、この食 品は、ケィ素吸収が抑制または促進された形質転換体を含むものである。  The food of the present invention contains the transformant according to the present invention. That is, this food contains a transformant in which absorption of potassium is suppressed or promoted.
[0085] 家畜は、硬!、飼料を食べずに残す傾向にあるため、硬 、植物を飼料に適用するこ とは好ましくない。ケィ素吸収が抑制された形質転換体は、やわらかいため、その形 質転換体を含む食品は、特に、家畜飼料として好適に利用することができる。  [0085] Since livestock tends to be hard and leave without eating the feed, it is not preferable to apply the hard to the feed. Since the transformant in which the absorption of silicon is suppressed is soft, the food containing the transformant can be particularly suitably used as a livestock feed.
[0086] 一方、ケィ素吸収が促進された形質転換体は、農薬および化学肥料を極力使用せ ずに栽培できる。このため、その形質転換体を含む食品は、より安全性の高い食料と して提供することができる。  [0086] On the other hand, a transformant with enhanced absorption of silicon can be cultivated without using agricultural chemicals and chemical fertilizers as much as possible. Therefore, the food containing the transformant can be provided as a safer food.
[0087] このように、この食品には、ヒトが摂取するものはもちろん、家畜に与える飼料なども 含まれる。  [0087] Thus, this food includes not only what humans ingest but also feed for livestock.
[0088] 近年、食の安全性に関心が寄せられており、より安全性の高い食品力 望まれてい る。このため、農薬を全くまたは極力使用せずに栽培する有機栽培および無農薬 (減 農薬)栽培によって生産された農産物が、注目されて ヽる。 [0088] In recent years, there has been an interest in food safety, and food safety with higher safety is desired. The For this reason, attention is paid to agricultural products produced by organic and non-pesticide (reduced pesticide) cultivation that uses little or as much pesticides as possible.
[0089] コメは、 日本ば力りではなぐ世界各地で主食とされている消費量の多い植物であ る。また、果物や野菜も、生産量および消費量が多い。このため、これらの農作物は、 特に安全性が重要視される。  [0089] Rice is a high-consumption plant that is considered a staple food in many parts of the world, not by the power of Japan. Fruits and vegetables are also high in production and consumption. For this reason, safety is especially important for these crops.
[0090] 従って、ケィ素吸収が促進された形質転換体を含む食品は、コメ、野菜、および果 物のような農産物であることが好ましい。これにより、安全性が高ぐ有用な米 (イネ)、 野菜、および果物の栽培を実現できる。 [0090] Therefore, the food containing the transformant in which absorption of potassium is promoted is preferably an agricultural product such as rice, vegetables, and fruits. This makes it possible to grow useful rice (rice), vegetables, and fruits that are highly safe.
[0091] なお、 lsil変異体は、形質転換体ではなぐ体細胞変異体であるため、 lsi変異体を[0091] Since the lsil mutant is a somatic mutant that is not a transformant, the lsi mutant is
、そのまま栽培に利用することができる。また、 lsi変異体は、直接従来の交雑育種に 禾 IJ用することちでさる。 It can be used for cultivation as it is. In addition, lsi mutants can be directly used for conventional hybrid breeding.
以上のように、本発明に力かるポリヌクレオチドは、ケィ素吸収に関与するポリヌクレ ォチドであって、  As described above, the polynucleotide useful in the present invention is a polynucleotide involved in the absorption of silicon,
下記の(a)〜(d)の!、ずれかのポリヌクレオチド:  The following (a) to (d) !, any polynucleotide:
(a)配列番号 1に示される塩基配列からなるポリヌクレオチド;  (a) a polynucleotide comprising the base sequence represented by SEQ ID NO: 1;
(b)以下の(i)もしくは (ii)のいずれかとストリンジェントな条件下でノヽイブリダィズす るポリヌクレ才チド:  (b) Polynucleids that are hybridized under stringent conditions with either (i) or (ii) below:
(i)配列番号 1に示される塩基配列力 なるポリヌクレオチド;もしくは (i) a polynucleotide having the nucleotide sequence shown in SEQ ID NO: 1; or
(ii)配列番号 1に示される塩基配列と相補的な塩基配列力 なるポリヌクレオチ ド、; (ii) a polynucleotide having a nucleotide sequence complementary to the nucleotide sequence represented by SEQ ID NO: 1,
(c)配列番号 3に示される塩基配列からなるポリヌクレオチド;または  (c) a polynucleotide comprising the base sequence represented by SEQ ID NO: 3; or
(d)以下の(iii)もしくは (iv)の 、ずれかとストリンジェントな条件下でノヽイブリダィズ するポリヌクレ才チド:  (d) Polynucleids that are noisy under any of the following stringent conditions (iii) or (iv):
(iii)配列番号 3に示される塩基配列力 なるポリヌクレオチド;もしくは  (iii) a polynucleotide having the nucleotide sequence shown in SEQ ID NO: 3; or
(iv)配列番号 3に示される塩基配列と相補的な塩基配列力 なるポリヌクレオチ ド力 なることを特徴として!/、る。  (iv) It is characterized by having a polynucleotide power that is complementary to the base sequence shown in SEQ ID NO: 3! /
[0092] 上記のポリヌクレオチドによれば、ケィ素吸収に関与するポリペプチドを翻訳産物と して得ることがでさる。 [0093] すなわち、上記 (a)または (b)のポリヌクレオチドによれば、ケィ素吸収を抑制する ポリペプチドを翻訳産物として得ることができる。一方、上記 (c)または (d)のポリヌク レオチドによれば、ケィ素吸収を促進するポリペプチドを翻訳産物として得ることがで きる。 [0092] According to the above-described polynucleotide, a polypeptide involved in the absorption of silicon can be obtained as a translation product. [0093] That is, according to the polynucleotide (a) or (b) above, a polypeptide that suppresses absorption of the key can be obtained as a translation product. On the other hand, according to the polynucleotide (c) or (d) described above, a polypeptide that promotes absorption of silicon can be obtained as a translation product.
[0094] 本発明にかかるポリペプチドは、ケィ素吸収に関与するポリペプチドであって、 下記の(a)〜(d)の!、ずれかのポリペプチド:  [0094] The polypeptide according to the present invention is a polypeptide involved in the absorption of silicon, and is any of the following (a) to (d):
(a)配列番号 2に示されるアミノ酸配列;  (a) the amino acid sequence shown in SEQ ID NO: 2;
(b)配列番号 2に示されるアミノ酸配列において、 1個もしくは数個のアミノ酸が置換 、欠失、挿入、もしくは付加されたアミノ酸配列;  (b) an amino acid sequence in which one or several amino acids are substituted, deleted, inserted or added in the amino acid sequence shown in SEQ ID NO: 2;
(c)配列番号 4に示されるアミノ酸配列;または  (c) the amino acid sequence shown in SEQ ID NO: 4; or
(d)配列番号 4に示されるアミノ酸配列において、 1個もしくは数個のアミノ酸が置換 、欠失、挿入、もしくは付加されたアミノ酸配列力もなるポリペプチドからなることを特 徴としている。  (d) The amino acid sequence shown in SEQ ID NO: 4 is characterized by comprising a polypeptide having an amino acid sequence ability in which one or several amino acids are substituted, deleted, inserted, or added.
[0095] 上記のポリペプチドによれば、ケィ素吸収を抑制または促進することができる。  [0095] According to the above-mentioned polypeptide, absorption of silicon can be suppressed or promoted.
[0096] すなわち、上記 (a)または (b)のポリペプチドによれば、ケィ素吸収を抑制すること ができる。一方、上記 (c)または (d)のポリペプチドによれば、ケィ素吸収を促進する ことができる。 [0096] That is, according to the polypeptide (a) or (b) above, it is possible to suppress absorption of silicon. On the other hand, according to the above-mentioned polypeptide (c) or (d), absorption of silicon can be promoted.
[0097] このような、ケィ素吸収に関与するポリペプチドは、例えば、イネでは、第 2染色体の 第 3ェクソンにコードされるアミノ酸を含む領域に存在する。イネは、ケィ素吸収能が 高い。すなわち、イネは、ケィ素吸収を促進するポリペプチド (ポリヌクレオチド)を有 している。しかし、この領域にコードされる疎水性アミノ酸力 親水性アミノ酸に置換さ れているポリペプチドは、ケィ素吸収を抑制する。例えば、配列番号 4に示されるアミ ノ酸配列において、 132番目のアミノ酸力 ァラニン力 スレオニンへ置換されている ポリペプチド等は、ケィ素吸収を抑制する。なお、配列番号 4に示されるポリペプチド は、イネのケィ素吸収に関与する(ケィ素吸収を促進する)ポリペプチドのアミノ酸配 列である。  [0097] Such a polypeptide involved in the absorption of silicon exists, for example, in a region containing the amino acid encoded by the third exon of the second chromosome in rice. Rice has a high absorption capacity for key elements. That is, rice has a polypeptide (polynucleotide) that promotes absorption of silicon. However, a polypeptide substituted with a hydrophobic amino acid force hydrophilic amino acid encoded in this region suppresses absorption of silicon. For example, in the amino acid sequence shown in SEQ ID NO: 4, a polypeptide substituted with the 132nd amino acid force alanin force threonine or the like suppresses absorption of the key. The polypeptide shown in SEQ ID NO: 4 is an amino acid sequence of a polypeptide that is involved in rice absorption (promotes absorption).
[0098] また、本発明に力かるポリヌクレオチドは、上記 、ずれかのポリペプチドをコードす るものであってもよい。上記のポリヌクレオチドによれば、ケィ素吸収に関与するポリ ペプチドを、翻訳産物として得ることができる。なお、このポリヌクレオチドとしては、例 えば、前述した、上記 (a)〜(d)のポリヌクレオチド等が挙げられる。 [0098] Further, the polynucleotide useful in the present invention may encode any of the above polypeptides. According to the above polynucleotide, the poly- gen that participates in the absorption of silicon. Peptides can be obtained as translation products. Examples of the polynucleotide include the polynucleotides (a) to (d) described above.
[0099] 本発明に力かる形質転換体選抜用マーカー遺伝子は、上記の何れかのポリヌクレ ォチド力もなるものである。  [0099] A marker gene for selection of transformants that is useful in the present invention is one having any of the above-mentioned polynucleotide strengths.
[0100] 本発明に力かるポリヌクレオチドは、それが発現して 、る細胞 (特に植物細胞)に、 ケィ素吸収を抑制または促進する機能を付与することができる。  [0100] The polynucleotide according to the present invention can give a cell (in particular, a plant cell) in which it is expressed a function of suppressing or promoting absorption of potassium.
[0101] すなわち、ケィ素吸収を抑制することによって、その細胞のケィ素蓄積量を、減少さ せることができる。これにより、ケィ素吸収を抑制するポリペプチドが発現している細 胞は、やわら力べなる。そのため、ケィ素吸収を抑制するポリペプチドをコードするポリ ヌクレオチドからなるマーカー遺伝子は、ケィ素吸収を抑制するポリペプチドを発現し ている形質転換細胞を選抜するためのマーカー遺伝子として利用することができる。  [0101] That is, by suppressing the absorption of the key, the amount of the key accumulated in the cell can be reduced. As a result, cells expressing a polypeptide that suppresses absorption of silicon are softened. Therefore, a marker gene composed of a polynucleotide encoding a polypeptide that suppresses absorption of key can be used as a marker gene for selecting transformed cells expressing the polypeptide that suppresses absorption of key. .
[0102] また、ケィ素吸収を促進することによって、その細胞のケィ素蓄積量を、増加させる ことができる。これにより、ケィ素吸収を促進するポリペプチドが発現している細胞は、 病害および虫害などの種々のストレスに対する耐性が向上する。そのため、ケィ素吸 収を促進するポリペプチドをコードするポリヌクレオチドからなるマーカー遺伝子は、 ケィ素吸収を促進するポリペプチドを発現している形質転換細胞を選抜するための マーカー遺伝子として利用することができる。  [0102] In addition, by promoting absorption of potassium, it is possible to increase the amount of accumulated potassium in the cell. As a result, cells expressing a polypeptide that promotes the absorption of silicon have improved resistance to various stresses such as disease and insect damage. For this reason, a marker gene comprising a polynucleotide encoding a polypeptide that promotes absorption of key can be used as a marker gene for selecting transformed cells that express the polypeptide that promotes absorption of key. it can.
[0103] また、これらのマーカー遺伝子は、ケィ素吸収活性が強 、品種、または、ケィ素吸 収活性が弱い品種を選抜するためにも、利用することができる。  [0103] These marker genes can also be used to select varieties having a strong key absorption activity and varieties or a weak key absorption activity.
[0104] 本発明に力かる組換え発現ベクターは、上記の何れかのポリヌクレオチドを含むも のである。上記の組換え発現ベクターは、本発明に力かるポリヌクレオチドを細胞に 導入するための組換え発現ベクターとして利用できるだけでなぐ本発明にかかるポ リヌクレオチドを選抜用マーカーとして用いた場合には、他の遺伝子を細胞に導入す るための組換え発現ベクターとしても利用できる。  [0104] A recombinant expression vector useful in the present invention contains any of the above-mentioned polynucleotides. The above-described recombinant expression vector can be used as a recombinant expression vector for introducing a polynucleotide useful for the present invention into a cell. It can also be used as a recombinant expression vector for introducing these genes into cells.
[0105] 本発明に力かる形質転換体は、上記のポリヌクレオチドまたは上記の糸且換え発現べ クタ一が導入されており、かつ、ケィ素吸収に関与するポリペプチドを発現しているも のである。ここで、上記ポリヌクレオチドは、ケィ素吸収に関与するポリヌクレオチドで あるため、上記形質転換体は、植物(形質転 ^¾物)であることが好ましい。 [0106] この形質転換体は、上記ポリヌクレオチドまたは糸且換え発現ベクター力 ケィ素吸収 に関与するポリペプチドの発現を促進させるプロモーターとともに導入されている。こ のため、ケィ素吸収を抑制または促進するポリペプチドを発現させることによって、こ の形質転換体のケィ素の蓄積量を、減少または増カロさせることができる。 [0105] The transformant useful in the present invention has the above-described polynucleotide or the above-described thread-and-replaceable expression vector introduced therein and expresses a polypeptide involved in the absorption of silicon. is there. Here, since the polynucleotide is a polynucleotide involved in absorption of silicon, the transformant is preferably a plant (transformed product). [0106] This transformant has been introduced together with a promoter that promotes the expression of the above-mentioned polynucleotide or the polypeptide involved in the thread-reversible expression vector force absorption. For this reason, by expressing a polypeptide that suppresses or promotes absorption of potassium, the amount of accumulated Ca in this transformant can be reduced or increased.
[0107] 家畜は、硬い飼料を食べずに残す傾向にあるため、硬い植物を飼料に適用するこ とは好ましくない。ケィ素吸収が抑制された形質転換体は、ケィ素蓄積量の減少によ り、やわらかくなる。従って、ケィ素吸が抑制された形質転換体は、家畜飼料として好 適に利用することができる。  [0107] Since livestock tends to leave a hard feed without eating, it is not preferable to apply a hard plant to the feed. Transformants in which the absorption of key is suppressed are softened due to a decrease in the amount of stored key. Therefore, the transformant in which key absorption is suppressed can be suitably used as livestock feed.
[0108] また、ケィ素吸収が促進された形質転換体は、ケィ素の蓄積量の増加により、病害 や虫害に対する抵抗性、耐塩性および耐乾性、およびミネラルストレスに対する耐性 が向上する。このため、形質転,物の生育を、促進させることができる。  [0108] In addition, the transformant in which absorption of potassium is promoted is improved in resistance to diseases and insects, salt resistance and drought resistance, and resistance to mineral stress due to an increase in the amount of accumulated potassium. For this reason, transformation and growth of a product can be promoted.
[0109] さらに、ケィ素吸収が促進された形質転換植物は、病害や虫害に対する抵抗性が 向上しているため、農薬および化学肥料を極力使用せずに、形質転換植物を栽培 することができる。従って、有機栽培および無農薬栽培などが可能となり、より安全性 の高い形質転 ^¾物を、食料として提供することができる。  [0109] Furthermore, since transformed plants with enhanced absorption of silicon have improved resistance to diseases and insects, transformed plants can be cultivated with minimal use of pesticides and chemical fertilizers. . Therefore, organic cultivation and non-agricultural cultivation are possible, and a safer transformed product can be provided as food.
[0110] 本発明にかかる食品は、上記形質転換体を含むものである。すなわち、この食品は [0110] The food according to the present invention contains the transformant. That is, this food
、ケィ素吸収が抑制または促進された形質転換体を含むものである。 In addition, a transformant in which absorption of potassium is suppressed or promoted is included.
[0111] ケィ素吸収が抑制された形質転換体は、やわらかいため、その形質転換体を含む 食品は、特に、家畜飼料として好適に利用することができる。  [0111] Since a transformant in which absorption of silicon is suppressed is soft, a food containing the transformant can be suitably used particularly as a livestock feed.
[0112] 一方、ケィ素吸収が促進された形質転換体は、農薬および化学肥料を極力使用せ ずに栽培できる。このため、その形質転換体を含む食品は、より安全性の高い食料と して提供することができる。  [0112] On the other hand, transformants with enhanced absorption of silicon can be cultivated without using agricultural chemicals and chemical fertilizers as much as possible. Therefore, the food containing the transformant can be provided as a safer food.
[0113] 本発明に力かる形質転換キットは、少なくとも上記のポリヌクレオチド、あるいは、上 記の組換え発現ベクターの 、ずれかを含むことを特徴とするものである。上記の形質 転換キットを用いれば、本発明にかかるポリペプチドを発現する形質転換体を簡便か つ効率的に得ることができる。  [0113] A transformation kit according to the present invention is characterized by containing at least one of the above-described polynucleotides or the above-described recombinant expression vector. By using the above transformation kit, a transformant expressing the polypeptide of the present invention can be obtained simply and efficiently.
このように、本発明に力かるポリヌクレオチドによれば、ケィ素吸収に関与するポリべ プチドを産生することによって、ケィ素吸収を抑制または促進させることができる。そし て、本発明のポリヌクレオチドまたは当該ポリヌクレオチドを含む糸且換え発現ベクター がポリペプチドの発現を促進させるプロモーターとともに導入された本発明の形質転 換体では、ケィ素吸収が抑制または促進され、その蓄積量を減少または増加させる ことができる。 As described above, according to the polynucleotide according to the present invention, it is possible to suppress or promote the absorption of the key by producing the polypeptide involved in the absorption of the key. And In the transformant of the present invention in which the polynucleotide of the present invention or a thread-replaceable expression vector containing the polynucleotide is introduced together with a promoter that promotes the expression of the polypeptide, the absorption of potassium is suppressed or promoted and the accumulation thereof The amount can be reduced or increased.
[0114] ケィ素蓄積量の減少は、硬い植物をやわら力べする。このため、ケィ素吸収を抑制 した形質転 ^¾物は、家畜飼料に利用することができる。これに対し、ケィ素蓄積量 の増加は、病害および虫害などの種々のストレスに対する耐性 (抵抗性)を付与し、 生育を促進させる。このため、ケィ素吸収を促進した形質転換植物を利用すれば、 農薬および化学肥料を極力使用せずに、より安全性の高い形質転換植物を栽培す ることがでさる。  [0114] Decrease in the amount of accumulated potassium softens hard plants. For this reason, the transformed product with suppressed absorption of silicon can be used for livestock feed. On the other hand, an increase in the amount of accumulated potassium confers resistance (resistance) to various stresses such as disease and insect damage, and promotes growth. For this reason, if a transformed plant that promotes absorption of silicon is used, it is possible to cultivate a safer transformed plant without using agricultural chemicals and chemical fertilizer as much as possible.
本発明は上述した実施形態に限定されるものではなぐ請求項に示した範囲で種 々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段 を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。  The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope shown in the claims. That is, embodiments obtained by combining technical means appropriately modified within the scope of the claims are also included in the technical scope of the present invention.
[0115] 尚、発明を実施するための最良の形態の項においてなした具体的な実施態様また は実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような 具体例にのみ限定して狭義に解釈されるべきものではなぐ本発明の精神と次に記 載する特許請求の範囲内で、いろいろと変更して実施することができるものである。  [0115] The specific embodiments or examples made in the section of the best mode for carrying out the invention are merely to clarify the technical contents of the present invention. Various modifications can be made within the spirit of the present invention and the following claims, which should not be construed as narrowly limited to only examples.
[0116] 〔実施例 1〕  [Example 1]
本実施例では、大規模分離集団を用いたマップベースクローユングにより、ケィ素 吸収に関与する遺伝子 (Lsil遺伝子)領域の詳細な連鎖解析を行った。  In this example, a detailed linkage analysis of the gene (Lsil gene) region involved in the absorption of key elements was performed by map-based cloning using a large-scale segregated population.
[0117] (a)連鎖解析用の集団の作製  [0117] (a) Creating a population for linkage analysis
イネ変異体 (lsil変異体)の Lsil遺伝子をマッピングするための集団を作製した。  A population was created to map the Lsil gene of rice mutant (lsil mutant).
[0118] すなわち、まず、 lsil突然変異系統と、インド型品種カサラス (Kasalath)との交配か ら F1個体を得た。そして、この F集団を、自殖させ F2集団(105個体)を得た。  [0118] That is, first, an F1 individual was obtained by crossing an lsil mutant line with an Indian type cultivar Kasalath. And this F group was selfed and F2 group (105 individuals) was obtained.
[0119] 次に、この F集団個体を、 EST- PCRマーカー、および、 SSRマーカー(いわゆるマイ  [0119] Next, this F group individual was classified into an EST-PCR marker and an SSR marker (so-called my
2  2
クロサテライトマーカー)により解析し、 Lsil遺伝子をマッピングした。その結果、図 1 に示すように、 Lsil遺伝子は、第 2染色体に座乗していることが明ら力となった。また 、 Lsil遺伝子のフランキング(flanking)マーカーは、 RM5303と E60168であった。 [0120] なお、マーカー E60168は、農業資源生物資源研究所 RGP(Rice Genome Reasearch Program; http:/ 1 rgp.dna.afflx.go.jp/ publicdata/ caps/ index.htmlに開 されて 、る。 また、マーカー RM5303は、 GRAMENEホームページ(http:〃 dev.gramene.org/micro sat/ssr.html)に開示されている。 The Lsil gene was mapped by analysis using a crostellite marker. As a result, as shown in Fig. 1, it became clear that the Lsil gene sits on chromosome 2. The flanking markers for the Lsil gene were RM5303 and E60168. [0120] The marker E60168 is open to RGP (Rice Genome Reasearch Program; http: / 1 rgp.dna.afflx.go.jp/publicdata/caps/index.html). The marker RM5303 is disclosed on the GRAMENE website (http: 〃 dev.gramene.org/micro sat / ssr.html).
[0121] なお、イネゲノムプロジェクトで公開されている分子マーカーのマップは、「日本晴」 と「カサラス」の交雑集団が用いられている。これらは、日本型イネとインド型イネという 異なる生態型イネの交雑であるため、 日本型イネ同士の交雑による集団よりも多型検 出(塩基配列の違いを反映しているので、これを検出することでゲノムの特定部分が どちらの親から由来する力判定できる)が容易である。また、カサラスのゲノムシーケ ンスの一部はイネゲノムプロジェクトで公開されており、新たな分子マーカーを容易に 作成することができる。以上のことから、カサラスを本実施例におけるマップ集団作成 の花粉親に用いた。  [0121] The molecular marker map published by the Rice Genome Project uses a cross population of "Nippon Hare" and "Kasaras". Since these are crosses of different ecological rice, Japanese rice and Indian rice, polymorphism detection is detected rather than a population based on crosses between Japanese rices (differs in nucleotide sequences are detected. This makes it easy to determine the force from which parent a specific part of the genome is derived from. A part of Kasara's genome sequence is published in the Rice Genome Project, and new molecular markers can be created easily. Based on the above, Kasalath was used as a pollen parent for map group creation in this example.
[0122] (b) Lsil遺伝子のマップベースクロー-ング  [0122] (b) Map-based cloning of Lsil gene
精度の高い Lsil遺伝子領域の遺伝地図を作成するために、さらに、 F2集団個体( 5000個体)を用いて、連鎖解析を行った。この解析では、 SSRマーカーおよび CAPS (Cleaved Amplified Polymorphic Sequence)マーカーを用いた。そして、 F2集団の各 個体について、ケィ素の吸収量を測定し、ケィ素を吸収しない劣勢ホモ個体 (計 807 個体)を選択した。その後、 Lsil遺伝子の両側に存在する、 SSRマーカー(RM5303) 、および、 PCR— basedマーカー(E60168)を利用して、 Lsil遺伝子近傍の染色体組 み換え個体を選抜した。その結果、 170個体の組み換え個体が選抜できた。  In order to create a highly accurate genetic map of the Lsil gene region, linkage analysis was further performed using F2 population individuals (5000 individuals). In this analysis, SSR marker and CAPS (Cleaved Amplified Polymorphic Sequence) marker were used. Then, for each individual in the F2 population, the amount of absorption of key was measured, and inferior homozygous individuals (total of 807 individuals) that did not absorb key were selected. Thereafter, using the SSR marker (RM5303) and the PCR-based marker (E60168) present on both sides of the Lsil gene, chromosome recombination individuals in the vicinity of the Lsil gene were selected. As a result, 170 recombinant individuals were selected.
[0123] (c) Lsil遺伝子の絞込み  [0123] (c) Selection of Lsil gene
次に、(b)で選抜した組み換え個体を用いて、以下のマーカーによる詳細な連鎖地 図を作成した。  Next, a detailed linkage map with the following markers was created using the recombinant individuals selected in (b).
[0124] すなわち、 Lsil遺伝子座近傍に存在するマーカー RM5303およびマーカー E60618 間の塩基配列を利用して、新規の PCR多型マーカーおよび CAPSマーカーを作成し た。そして、これらのマーカーを用いて、(b)で選抜した組み換え個体を選抜して、 Ls il遺伝子の候補領域を絞り込んだ。その結果、 Lsil遺伝子は、マーカー AP5297-8U (5 ' - CCCATTGATTAGTTCCCTGA- 3 ';配列番号 26) /AP5297-8L (5 ' - CCGCAT ATGTCCTCCATGAC- 3,;配列番号 27)、および、マーカー AP4114- 3U (5,- ATCT GGGTCTATCATCCTGG- 3,;配列番号 28) /AP4114- 3L (5, -ACTGGTGCACTAT AATGCGC-3';配列番号 29)に挟まれる約 24.9kbゲノム領域に存在することが明ら カゝとなった。 [0124] That is, a novel PCR polymorphism marker and a CAPS marker were created using the nucleotide sequence between the marker RM5303 and the marker E60618 existing in the vicinity of the Lsil locus. Then, using these markers, the recombinant individuals selected in (b) were selected to narrow down candidate regions for the Lsil gene. As a result, the Lsil gene was identified by the marker AP5297-8U (5′-CCCATTGATTAGTTCCCTGA-3 ′; SEQ ID NO: 26) / AP5297-8L (5′-CCGCAT ATGTCCTCCATGAC-3,; SEQ ID NO: 27) and marker AP4114- 3U (5,-ATCT GGGTCTATCATCCTGG-3,; SEQ ID NO: 28) / AP4114- 3L (5, -ACTGGTGCACTAT AATGCGC-3 '; SEQ ID NO: 29) It was revealed that it exists in the approximately 24.9 kb genomic region.
[0125] また、二つの PACクローン (AP5297と AP4114)力 Lsil遺伝子座を含むことが明ら カゝとなった。  [0125] It also became apparent that the two PAC clones (AP5297 and AP4114) contain the Lsil locus.
[0126] このようにして、 Lsil遺伝子の座上位置を、特定した。  [0126] In this way, the locus position of the Lsil gene was identified.
[0127] (d)塩基配列解析による Lsil遺伝子の特定  [0127] (d) Identification of Lsil gene by nucleotide sequence analysis
マーカー AP5297- 86962/87135Lと、マーカー AP4114- 3U/3Lとの間の塩基配列情 報に基づいて、 PCR多型マーカーおよび CAPSマーカーを作製し、 Lsil遺伝子を、さ らに絞り込んだ。これにより、 Lsil遺伝子のみを含む組み換え個体を得た。  Based on the nucleotide sequence information between the marker AP5297-86962 / 87135L and the marker AP4114- 3U / 3L, PCR polymorphism markers and CAPS markers were prepared, and the Lsil gene was further narrowed down. As a result, a recombinant individual containing only the Lsil gene was obtained.
[0128] 次に、 Lsil遺伝子のみを含む組み換え個体にっ 、て、ゲノム候補領域の塩基配列 解析を行なった。塩基配列解析は、既に得られている日本晴の塩基配列情報から、 該当部分を増幅できるプライマーを設計し、ゲノム PCRおよび RT— PCR産物をクロ ーン化することによって行った。表 1および配列番号 6〜25に、設計したプライマーと 、対応する日本晴(PAC4114)の塩基配列の位置を示す。なお、イネ PACクローン とは、イネ品種「日本晴」のゲノム DNA断片を P1ファージに揷入したものである。 PA C4114も、その 1種であり、配列番号 5に示す Lsilゲノム配列力 挿入されている。 すなわち、表 1の「PAC4114」とは、配列番号 5の日本晴の Lsil遺伝子のゲノム配 列を、 P1ファージ由来人工染色体に挿入したものである。  [0128] Next, the base sequence analysis of the candidate genome region was performed for a recombinant individual containing only the Lsil gene. Nucleotide sequence analysis was performed by designing primers that can amplify the relevant part from the already obtained Nipponbare base sequence information, and cloning genomic PCR and RT-PCR products. Table 1 and SEQ ID NOs: 6 to 25 show the positions of the designed primers and the corresponding base sequence of Nipponbare (PAC4114). The rice PAC clone is obtained by inserting a genomic DNA fragment of the rice cultivar “Nippon Hare” into P1 phage. PAC4114 is one of them, and the Lsil genome sequence shown in SEQ ID NO: 5 is inserted. That is, “PAC4114” in Table 1 is the one obtained by inserting the genomic sequence of the Nipponbare Lsil gene of SEQ ID NO: 5 into an artificial chromosome derived from P1 phage.
[0129] [表 1] [0129] [Table 1]
日本晴の塩基配列 Nipponbare base sequence
Ho. プライマ一名 配列  Ho. Primer Name Array
PAC4114の位置  Location of PAC4114
1. GR48U 5' CGGCATGGAAAACGTACGTA 3' 54098-54117  1.GR48U 5 'CGGCATGGAAAACGTACGTA 3' 54098-54117
2. GR48L 5' CCGTAGTACATGGTAGGCAT 3' 54888-54907  2.GR48L 5 'CCGTAGTACATGGTAGGCAT 3' 54888-54907
3. G 1-8U 5' A6AAGGTGAGGAGTCTGGAG 3' 54949-54968  3. G 1-8U 5 'A6AAGGTGAGGAGTCTGGAG 3' 54949-54968
4. 11U 5' TTCAGGTATGCAGATGCAGC 3' 55316〜55335  4.11U 5 'TTCAGGTATGCAGATGCAGC 3' 55316 ~ 55335
5. G 1-6L 5' GCCGAAGTAGTGCATGGCTT 3' 55429— 55448  5. G 1-6L 5 'GCCGAAGTAGTGCATGGCTT 3' 55429- 55448
6. 20U 5' TTCAGTCTAGCTTATGTCGC 3'  6. 20U 5 'TTCAGTCTAGCTTATGTCGC 3'
7. 11L 5' GGCTCCAGCTAGCTAGACAA 3' 56098〜56117  7.11L 5 'GGCTCCAGCTAGCTAGACAA 3' 56098 ~ 56117
8. 22U 5' CAAGTGTCCGTAGCGATACA 3' 56516-56535  8.22U 5 'CAAGTGTCCGTAGCGATACA 3' 56516-56535
9. 20L 5' ATAGCGGCAACTAGCTTAGC 3' 56688一 56707  9.20L 5 'ATAGCGGCAACTAGCTTAGC 3' 56688 One 56707
10. GR1-9U 5' GGCTTCAACAGAGACATCTC 3' 56789-56808  10.GR1-9U 5 'GGCTTCAACAGAGACATCTC 3' 56789-56808
11. CU 5' GTCGAGGTCATCGTGACGTT 3' 57055— 57074  11. CU 5 'GTCGAGGTCATCGTGACGTT 3' 57055— 57074
12. GR1-1L 5' AACGTCACGATGACCTCGAC 3' 57055-57074  12.GR1-1L 5 'AACGTCACGATGACCTCGAC 3' 57055-57074
13. GR1-2L 5' GCGTGACGAACATCATGTTG 3' 57075〜57094  13.GR1-2L 5 'GCGTGACGAACATCATGTTG 3' 57075-57094
14. DL 5' ATCGACGACAAGGAGGTGAA 3' 57140— 57159  14. DL 5 'ATCGACGACAAGGAGGTGAA 3' 57140— 57159
15. GR1-7L 5' TGGTCTTGCTACTAGCTCCA 3' 57395-57414  15.GR1-7L 5 'TGGTCTTGCTACTAGCTCCA 3' 57395-57414
16. GR1-10U 5' AAAAGTCAAACTAACCTGGC 3' 57467— 57486  16. GR1-10U 5 'AAAAGTCAAACTAACCTGGC 3' 57467- 57486
17. BL 5' TTCTCCATCTCGTCGACGTC 3' 57868-57887  17.BL 5 'TTCTCCATCTCGTCGACGTC 3' 57868-57887
18. AL 5' TCACACTTGGATGTTCTCCA 3'  18. AL 5 'TCACACTTGGATGTTCTCCA 3'
19. CL 5' AGTGATGACGAGACCGAGAT 3' n 5 i7955— 57974  19. CL 5 'AGTGATGACGAGACCGAGAT 3' n 5 i7955—57974
20. GR1-8L 5' TCAGGTCAACCAAGCTCTAT 3' 5839 o9— 58418  20. GR1-8L 5 'TCAGGTCAACCAAGCTCTAT 3' 5839 o9— 58418
s  s
[0130] 得られたクローン (突然変異体)の遺伝子と、 日本晴 (野生型)の遺伝子との塩基配 o 列を比較した結果、 1塩基置換が見出された。この置換は、図 2に示す、 Lsil遺伝子 のゲノム上の構造における第三ェクソン(図 2の符号 3)に存在した。すなわち、図 2に 示すように、ゲノム上の第 3ェクソンが存在する 104036番目の塩基力 突然変異体 では、野生型のグァニンから、アデニンに置換されていた。この置換は、 Lsil遺伝子 の cDNA配列の 512番目の塩基力 野生型(配列番号 3)の G (グァニン)から、変異 型(配列番号 1)の A (アデニン)へ置換されたものである。  [0130] As a result of comparing the nucleotide sequences of the obtained clone (mutant) gene and the Nipponbare (wild type) gene, one base substitution was found. This substitution was present in the third exon (symbol 3 in FIG. 2) in the genomic structure of the Lsil gene shown in FIG. That is, as shown in FIG. 2, in the 104036th basic mutant in which the third exon on the genome is present, wild type guanine was replaced with adenine. This substitution was made by replacing the wild-type (SEQ ID NO: 3) G (guanine) at the 512th base of the Lsil gene cDNA sequence with a mutant (SEQ ID NO: 1) A (adenine).
[0131] この塩基置換により、これらの遺伝子にコードされるアミノ酸が、野生型 (配列番号 4 )のァラニンから、変異型 (配列番号 2)のスレオニンへ置換される。  [0131] By this base substitution, the amino acid encoded by these genes is substituted from the wild type (SEQ ID NO: 4) alanine to the mutant type (SEQ ID NO: 2) threonine.
[0132] なお、 cDNA配列の絞込みは、まず、 F2集団を用いて、 Lsil遺伝子を含む領域を 絞り込み、次に、 RiceGAAS (Rice Genome Automated Annotation system: http://ri cegaas.dna.affr go.jp/)を用いて遺伝子予測を行った。その結果、その領域に、二つ の遺伝子が予測された。これら二つの遺伝子について、 日本晴の塩基配列および 93 11 (インディ力の品種の一種)の塩基配列のデータに基づき作製したマーカーを用い て、最終的に一つの遺伝子になるまでマーカーを使用することによって、絞り込んだ [0132] In order to narrow down the cDNA sequence, first, the region containing the Lsil gene was narrowed down using the F2 population, and then the RiceGAAS (Rice Genome Automated Annotation system: http: // ri cegaas.dna.affrgo. Gene prediction was performed using jp /). As a result, two genes were predicted in that region. For these two genes, Nipponbare base sequence and 93 Using the markers created based on the base sequence data of 11 (a kind of indy varieties), it was narrowed down by using the markers until it finally became one gene
[0133] そして、農業資源生物資源研究所の KOME(Knowledge- based Oryza Molecular b iological Encyclopedia: http://cdna01.dna. affix. go.jp/cDNA/)力ら、イネの全長 cDN A配列を取得し、同じぐ農業資源生物資源研究所の RGP(Rice Genome Reasearch Program: http:〃 rgp.dna.alfrc.go.jp/)よりイネのゲノム配列を取得した。そして、これ ら二つの配列を照らし合わせた結果から、配列番号 1に示す配列を、 Lsil遺伝子の 全長 cDNA配列と判断した。 [0133] And KOME (Knowledge-based Oryza Molecular biology Encyclopedia: http://cdna01.dna.affix.go.jp/cDNA/) The rice genome sequence was obtained from RGP (Rice Genome Reasearch Program: http: 〃 rgp.dna.alfrc.go.jp/) of the National Institute of Agricultural Resources and Bioresources. From the result of comparing these two sequences, the sequence shown in SEQ ID NO: 1 was determined to be the full-length cDNA sequence of the Lsil gene.
[0134] なお、この塩基配列をデータベースにより検索したところ、トウモロコシの水チャネル と相同性があることが明ら力となった。  [0134] When this nucleotide sequence was searched from a database, it became clear that it had homology with the water channel of corn.
産業上の利用可能性  Industrial applicability
[0135] 本発明のポリヌクレオチドは、植物において初めて同定された、ケィ素吸収に関与 する遺伝子である。ケィ素蓄積量の減少は、硬い植物をやわらかくする。ケィ素蓄積 量の増加は、病害および虫害などの種々のストレスに対する耐性 (抵抗性)を付与し 、生育を促進させる。それゆえ、本発明は、特に農業、および食品産業に、好適に利 用することができる。 [0135] The polynucleotide of the present invention is a gene involved in absorption of silicon, which was first identified in plants. Decreasing the amount of accumulated silicon softens hard plants. An increase in the amount of accumulated potassium confers resistance (resistance) to various stresses such as disease and insect damage, and promotes growth. Therefore, the present invention can be suitably used particularly in agriculture and the food industry.

Claims

請求の範囲 The scope of the claims
[1] ケィ素吸収に関与するポリヌクレオチドであって、  [1] A polynucleotide involved in the absorption of silicon,
下記の(a)〜(d)の!、ずれかのポリヌクレオチド:  The following (a) to (d) !, any polynucleotide:
(a)配列番号 1に示される塩基配列からなるポリヌクレオチド;  (a) a polynucleotide comprising the base sequence represented by SEQ ID NO: 1;
(b)以下の(i)もしくは (ii)のいずれかとストリンジェントな条件下でノヽイブリダィズす るポリヌクレ才チド:  (b) Polynucleids that are hybridized under stringent conditions with either (i) or (ii) below:
(i)配列番号 1に示される塩基配列力 なるポリヌクレオチド;もしくは (i) a polynucleotide having the nucleotide sequence shown in SEQ ID NO: 1; or
(ii)配列番号 1に示される塩基配列と相補的な塩基配列力 なるポリヌクレオチ ド、; (ii) a polynucleotide having a nucleotide sequence complementary to the nucleotide sequence represented by SEQ ID NO: 1,
(c)配列番号 3に示される塩基配列からなるポリヌクレオチド;  (c) a polynucleotide comprising the base sequence represented by SEQ ID NO: 3;
(d)以下の(iii)もしくは (iv)の 、ずれかとストリンジェントな条件下でノヽイブリダィズ するポリヌクレ才チド:  (d) Polynucleids that are noisy under any of the following stringent conditions (iii) or (iv):
(iii)配列番号 3に示される塩基配列力 なるポリヌクレオチド;もしくは  (iii) a polynucleotide having the nucleotide sequence shown in SEQ ID NO: 3; or
(iv)配列番号 3に示される塩基配列と相補的な塩基配列力 なるポリヌクレオチ ド、。  (iv) a polynucleotide having a nucleotide sequence complementary to the nucleotide sequence represented by SEQ ID NO: 3;
[2] ケィ素吸収に関与するポリペプチドであって、  [2] A polypeptide involved in the absorption of silicon,
下記の(a)〜(d)の!、ずれかのポリペプチド:  The following (a) to (d) !, any polypeptide:
(a)配列番号 2に示されるアミノ酸配列;  (a) the amino acid sequence shown in SEQ ID NO: 2;
(b)配列番号 2に示されるアミノ酸配列において、 1個もしくは数個のアミノ酸が置換 、欠失、挿入、もしくは付加されたアミノ酸配列力もなるポリペプチド;  (b) a polypeptide having an amino acid sequence ability in which one or several amino acids are substituted, deleted, inserted, or added in the amino acid sequence shown in SEQ ID NO: 2;
(c)配列番号 4に示されるアミノ酸配列;または  (c) the amino acid sequence shown in SEQ ID NO: 4; or
(d)配列番号 4に示されるアミノ酸配列において、 1個もしくは数個のアミノ酸が置換 、欠失、挿入、もしくは付加されたアミノ酸配列力もなるポリペプチド。  (d) A polypeptide having an amino acid sequence ability in which one or several amino acids are substituted, deleted, inserted, or added in the amino acid sequence shown in SEQ ID NO: 4.
[3] イネの第 2染色体における第 3ェクソンにコードされる疎水性アミノ酸が、親水性アミ ノ酸に置換されていることを特徴とする請求項 2に記載のポリペプチド。  [3] The polypeptide according to claim 2, wherein the hydrophobic amino acid encoded by the third exon in the second chromosome of rice is substituted with a hydrophilic amino acid.
[4] 配列番号 4に示されるアミノ酸配列において、 132番目のアミノ酸が、ァラニンから スレオニンに置換されていることを特徴とする請求項 3に記載のポリペプチド。  [4] The polypeptide according to claim 3, wherein in the amino acid sequence shown in SEQ ID NO: 4, the 132rd amino acid is substituted from alanine to threonine.
[5] 請求項 2〜4の!、ずれ力 1項に記載のポリペプチドをコードするポリヌクレオチド。 [5] A polynucleotide that encodes the polypeptide according to claim 2!
[6] 請求項 1または 5に記載のポリヌクレオチドからなる形質転換体選抜用マーカー遺 伝子。 [6] A marker gene for selecting a transformant comprising the polynucleotide according to claim 1 or 5.
[7] 請求項 1または 5に記載のポリヌクレオチドを含む組換え発現ベクター。  [7] A recombinant expression vector comprising the polynucleotide according to claim 1 or 5.
[8] 請求項 1または 5に記載のポリヌクレオチド、または、請求項 7に記載の組換え発現 ベクターが導入されており、かつ、ケィ素吸収に関与するポリペプチドを発現してなる 形質転換体。  [8] A transformant into which the polynucleotide according to claim 1 or 5 or the recombinant expression vector according to claim 7 has been introduced, and which expresses a polypeptide involved in the absorption of silicon. .
[9] 請求項 8に記載の形質転換体を含む食品。  [9] A food comprising the transformant according to claim 8.
[10] 少なくとも請求項 1または 5に記載のポリヌクレオチド、あるいは、請求項 7に記載の 組換え発現ベクターのいずれかを含むことを特徴とする形質転換キット。  [10] A transformation kit comprising at least the polynucleotide according to claim 1 or 5 or the recombinant expression vector according to claim 7.
PCT/JP2005/024048 2004-12-28 2005-12-28 Gene participating in silicon absorption and utilization of the same WO2006077736A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004381899A JP2006187209A (en) 2004-12-28 2004-12-28 Silicon absorption-related gene and application of the same
JP2004-381899 2004-12-28

Publications (1)

Publication Number Publication Date
WO2006077736A1 true WO2006077736A1 (en) 2006-07-27

Family

ID=36692126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/024048 WO2006077736A1 (en) 2004-12-28 2005-12-28 Gene participating in silicon absorption and utilization of the same

Country Status (2)

Country Link
JP (1) JP2006187209A (en)
WO (1) WO2006077736A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103820499A (en) * 2014-02-17 2014-05-28 宁夏农林科学院 Breeding method utilizing wild rice resource to create japonica-type novel paddy rice species

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5092125B2 (en) * 2005-08-18 2012-12-05 国立大学法人 岡山大学 Genes involved in silicon absorption and use thereof
JP2008054532A (en) * 2006-08-29 2008-03-13 Okayama Univ Gene participating in aluminum tolerance and use thereof
JP4613318B2 (en) * 2007-03-14 2011-01-19 国立大学法人 岡山大学 Utilization of genes involved in silicon absorption

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040034888A1 (en) * 1999-05-06 2004-02-19 Jingdong Liu Nucleic acid molecules and other molecules associated with plants and uses thereof for plant improvement

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040034888A1 (en) * 1999-05-06 2004-02-19 Jingdong Liu Nucleic acid molecules and other molecules associated with plants and uses thereof for plant improvement

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE GENBANK [online] KIKUCH S. ET AL: "Coolection , Mapping, and Annotation of Over 28000 cDNA Clones from japonica Rice.", Database accession no. (AK069842) *
SCIENCE, vol. 301, 2003, pages 376 - 379 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103820499A (en) * 2014-02-17 2014-05-28 宁夏农林科学院 Breeding method utilizing wild rice resource to create japonica-type novel paddy rice species
CN103820499B (en) * 2014-02-17 2016-06-01 宁夏农林科学院 A kind of breeding method utilizing wild-rice resource initiative Japonica rice new germ plasm

Also Published As

Publication number Publication date
JP2006187209A (en) 2006-07-20

Similar Documents

Publication Publication Date Title
CN107164347B (en) Ideal plant type gene NPT1 for controlling rice stem thickness, tillering number, spike grain number, thousand grain weight and yield and its application
CN107326032B (en) Gene for repairing cadmium-polluted soil and improving cadmium resistance of plants and application
CN108603197B (en) Method for improving nitrogen utilization efficiency of plants
US11725214B2 (en) Methods for increasing grain productivity
WO2019038417A1 (en) Methods for increasing grain yield
CN108291234A (en) Multiple sporinite forms gene
CN113215127A (en) Method for cultivating broad-spectrum disease-resistant TaWRK2A gene-transferred wheat and related biological material thereof
AU2020366566A1 (en) Enhanced disease resistance of crops by downregulation of repressor genes
CN114276429A (en) Method for cultivating TaLRK-R gene-transferred wheat with resistance to sheath blight and stem base rot and related biological material thereof
WO2015007241A1 (en) Molecular marker
WO2006077736A1 (en) Gene participating in silicon absorption and utilization of the same
CN115216554A (en) Plant pathogen effector and disease resistance gene identification, compositions, and methods of use
US9127290B2 (en) Rice gene capable of imparting wide-spectrum disease resistance
CN109207485A (en) Application of the OsAPS1 gene in improvement Rice Resistance characteristic of disease
JP5092125B2 (en) Genes involved in silicon absorption and use thereof
CN104411157A (en) Transcription factors in plants related to levels of nitrate and methods of using the same
JP5545793B2 (en) Rice blast field resistance gene Pi35 (t) and its utilization
JP2008054532A (en) Gene participating in aluminum tolerance and use thereof
CN1290860C (en) DREB transcription factor and its coding gene and use
CN105713910B (en) Temperature-regulated rice leaf color gene and detection method and application thereof
CN114516906B (en) Corn and mycorrhizal fungi symbiotic related protein, and coding gene and application thereof
CN110959043A (en) Method for improving agronomic traits of plants by using BCS1L gene and guide RNA/CAS endonuclease system
JP5594818B2 (en) Genes that increase the grain of plants and their use
JP5046001B2 (en) Genes related to the number of primary infarcts in rice and use thereof
WO2006101854A2 (en) Compositions and methods for controlling fungal diseases

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05844821

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5844821

Country of ref document: EP