WO2006073036A1 - 形状評価方法、形状評価装置、及び形状評価装置を備えた装置 - Google Patents

形状評価方法、形状評価装置、及び形状評価装置を備えた装置 Download PDF

Info

Publication number
WO2006073036A1
WO2006073036A1 PCT/JP2005/022356 JP2005022356W WO2006073036A1 WO 2006073036 A1 WO2006073036 A1 WO 2006073036A1 JP 2005022356 W JP2005022356 W JP 2005022356W WO 2006073036 A1 WO2006073036 A1 WO 2006073036A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
vector
curved surface
distance
shape
Prior art date
Application number
PCT/JP2005/022356
Other languages
English (en)
French (fr)
Inventor
Takashi Maekawa
Yoh Nishimura
Takayuki Sasaki
Yu Nishiyama
Original Assignee
National University Corporation Yokohama National University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Yokohama National University filed Critical National University Corporation Yokohama National University
Priority to JP2006550641A priority Critical patent/JP4876256B2/ja
Priority to US11/794,718 priority patent/US7733504B2/en
Publication of WO2006073036A1 publication Critical patent/WO2006073036A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Definitions

  • Shape evaluation method shape evaluation apparatus, and apparatus provided with shape evaluation apparatus
  • the present invention relates to a curved surface quality evaluation of a shape, a shape evaluation method, a shape evaluation device, and a shape evaluation device that perform shape evaluation by simulating on a computer a line of light that is projected by irradiating light onto the curved surface.
  • the present invention relates to an apparatus including a shape evaluation apparatus.
  • Free-form surfaces are used in the bodies of various industrial products such as ships, automobiles, airplanes, etc., and have both functionality and beauty.
  • the appearance of home appliances and many consumer products It is used for design design with a beautiful design.
  • These curved surfaces are called Class A surfaces.
  • Various evaluation methods have been proposed and used to estimate the beauty of Class A surfaces! /
  • Shape evaluation by Isophotes uses a curve of constant illuminance on a curved surface created by a point light source located at infinity in the direction specified by the user. These curves are used to detect curved surface distortions. If the curved surface is C M continuous, Isophotes lines are C M — 1 continuous (Non-Patent Documents 1 and 2). [0006] The shape evaluation by reflection lines is based on the simulation of the mirror image of the light emitted from the light source of the parallel straight line group seen from the fixed point, on the smooth curved surface. Deviations are detected by the distortion of the reflection line. The deviation of these curved surfaces can be corrected by correcting the distortion of the reflection line.
  • Non-Patent Document 3 proposes to calculate the reflection of a group of small circular light sources in a chain along a straight line.
  • FIG. 27 (a) is a schematic diagram for explaining the shape evaluation by reflection lines.
  • linear parallel light is irradiated from the line light source 101 to the evaluation surface 100, and the light reflected by the evaluation surface 100 is observed from the viewpoint E.
  • the viewpoint E and the line light source 101 are at an angular position (angle ⁇ ) that is symmetric with respect to the normal N on the evaluation plane 100, and at the viewpoint E, the line light source 101 is observed as a reflection line 102.
  • the reflection line 102 projected on the evaluation surface 100 with respect to the position of the line light source 101 and the viewpoint E is obtained by computer simulation.
  • FIG. 28 is a schematic diagram for explaining shape evaluation by an oval curve.
  • FIG. 28 (a) when the point Ps is set in the space, among the points S on the evaluation surface where the incident light V * is reflected in the r * direction, Find the point where the angle formed by the vector from S to the point Ps is a.
  • the set of points S on the evaluation surface where the angle formed by these two vectors is OC approximates the angle ⁇ (isoclinic fold) of the angle ⁇ obtained as a reflection line (Fig. 28 (b )).
  • the symbol “*” represents a vector.
  • the shape evaluation using the highlight line is a simplified version of the shape evaluation using the reflection line. Since no and illite lines do not depend on the viewpoint, it is not necessary to calculate the position of the viewpoint as in the shape evaluation using the reflection line (Non-patent Document 6).
  • FIGS. 29 (a) and 29 (b) are schematic diagrams for explaining the shape evaluation using the no and illite lines.
  • the distance between the normal line N of the evaluation surface 100 and the line light source 101 is within a predetermined range.
  • a curve on the evaluation surface 100 is observed as the highlight line 103.
  • the simulation of the highlight line eliminates the viewpoint and reduces the calculation time.
  • Non-patent document 7 a method for directly controlling the illite line using the NURBS boundary Gregory patch has been proposed.
  • Non-Patent Document 9 a method has been proposed for removing local distortion of a NURBS surface by correcting highlight lines in real-time interactive design.
  • Non-patent Document 1 a method for generating dynamic highlight lines on a NURBS curved surface locally deformed by a method using Talor expansion instead of a tracking method with a long processing time has been proposed (Non-patent Document 1). Reference 10).
  • Non-patent literature 1 N.M.Patrikalakis and T.Maekawa.Shape Interrogation for Computer Aided Design and Manufacturing Heidelberg, Germ any: Springer-Verlag, 2002.
  • Non-Patent Document 2 T.Poeschl. Detecting surface irregularities using isophotes. Computer Aided Geometric Design, 1 (2): 163—168, 1984.
  • Non-Patent Document 3 I. Choi and K. Lee. Efficient generation of reflection lines to evaluate car body surfaces.Mathematical Engineering in Industry, 7 (2): 233- 250, 1998.
  • Non-Patent Document 4 T. Kanai.Surface interrogation by reflection lines of a moving body Bac helor 's thesis The University of Tokyo, Department of Precision Machinery Enginee ring, Tokyo, Japan, 1992 Jnjapanese.http: //web.sfc. keio.ac.jp/kanai/rline/bth.pdf
  • Patent 5 Gershon Elber.Curve Evaluation and Interrogation on Surfaces, Grapni cal Models, Vol.63: 197-210,2001
  • Patent Document 6 K.— P. Beier and Y. Chen. Highlight—line algorithm for realtime surface- quality assessment. Computer- Aided Design, 26 (4): 268-277,1994
  • Non-Patent Document 7 Y. Chen, K.-P. Beier and D. Papageorgiou. Direct highlight line modification on NURBS surfaces.Computer- Aided Geometric Design, 14 (6): 583-601,1997
  • Non-Patent Document 8 J.Sone and H.Chiyokura.Surface highlight control using quadratic ble nding NURBES boundary Gregory patch. Journal of Information Processing Society of Japn, 37 (12): 2212-2222, 1996.In Japanese.
  • Non-Patent Document 9 C. Zhang and F. Cheng. Removing local irregularities of NURBS surfaces by modifying highlight lines. Computer- Aided Design, 30 (12): 923-930, 1998.
  • Non-Patent Document 10 J.-H .Yong, F.Cheng, Y.Chen, P.Stewart, and KTMiura Dynamic hig hlight line generation for locally deforming NURBS surfaces.Computer- Aided Desig n, 35 (10): 881— 892,2003.
  • Patent Document 11 J.E.Hacke.A simple solution of the general quartic.American Mathe matical Monthly, 48 (5): 327-328, 1941
  • a linear line light source is often used as the light source.
  • the line represents a shape characteristic in one direction on the evaluation surface.
  • FIG. 29 is a diagram for explaining the conventional shape evaluation based on feature lines.
  • Figures 29 (a) and 29 (b) show characteristic lines in two directions obtained when the linear line light sources are arranged in different directions. By changing the direction of the line light source, the characteristic line in the other direction is acquired for the shape characteristic that is not observed in the characteristic line in one direction, thereby enabling observation in two directions.
  • Non-Patent Document 5 described above proposes that shape evaluation is performed using an oval curve.
  • the angle with the fixed point is constant. Since the reflection line on the evaluation surface is obtained based on the reflected light, the shape on the light source side is not necessarily an annular shape.
  • the angle with the fixed point is determined as the calculation condition for obtaining the reflection line, but the physical relationship between this condition and the reflection line is unknown.
  • the shape on the light source side is an annular shape, and the basis of the condition for obtaining the reflection line is unknown, so does the obtained reflection line accurately represent the surface shape of the evaluation target? There is a problem that there is no guarantee. There is also a problem that the highlight line cannot be obtained.
  • the reflection line and the shape evaluation by the highlight line the light emitted from the light source is in a stationary state. For this reason, the reflection line or the illite line that the light emitted from the light source projects on the evaluation surface is observed as a static shape. There is a problem that the evaluator must imagine and evaluate the shape of the evaluation surface based on this static shape. Therefore, there is a problem that the accuracy of evaluation depends on the skill level of the evaluator.
  • the present invention solves the above-described conventional problems, and in the shape evaluation that simulates the light line projected by irradiating the light on the shape curved surface on the computer, the distortion in all directions.
  • the purpose of this is to detect a single calculation.
  • the purpose is to easily perform shape evaluation using the characteristic line of the reflection line or highlight line without depending on the evaluator, and the characteristic line of the reflection line or highlight line is changed with time.
  • the purpose is to enable evaluation by dynamic shape.
  • the present invention can be implemented as a form evaluation method, a shape evaluation apparatus, an apparatus provided with a shape evaluation apparatus, and a program medium.
  • the present invention calculates a characteristic line for performing shape evaluation by simulating using an annular light source or a concentric light source instead of a linear light source, so that all directions can be obtained by a single calculation. A feature line that can observe distortion is obtained.
  • An annular light source does not emit light even when the entire force inside the circle up to the outer edge of the center force of the circle is emitted.
  • the edge of the circle is circular and emits linear or annular light.
  • the shape evaluation of the present invention is a shape evaluation for evaluating a curved surface of a shape by a characteristic line, and is a circular highlight formed by irradiating a curved surface with an annular light source in an arbitrary direction in a three-dimensional space.
  • a line or a circular reflection that is reflected on a curved surface and incident on the viewpoint position is defined as a feature line.
  • the curved surface includes a flat surface.
  • This feature line is formed by extracting the point from which the light from the annular light source irradiates or reflects on the curved surface from the points on the curved surface by calculation.
  • the shape evaluation apparatus includes calculation means for extracting a point where light from an annular light source irradiates or reflects on a curved surface from points on the curved surface to form a characteristic line.
  • the calculation for extracting the points that form the characteristic line from the points on the curved surface is the same diameter and the same position and orientation as the annular light source in a vector in a predetermined direction passing through the points on the curved surface.
  • a vector whose distance from the circle on the three-dimensional space is within a predetermined range is obtained, and a point where the vector passes on the curved surface is obtained.
  • the circuit of the archilleno and illite lines is within a predetermined range with respect to a circle in a three-dimensional space having the same diameter and the same position and orientation as the annular light source among the vectors in the normal direction at the points on the curved surface. Can be obtained by obtaining the vector and the point where the vector passes on the curved surface.
  • the circular reflection line has the same diameter as the annular light source among the vectors in the symmetric direction with respect to the normal at the point on the curved surface through which the vector passes. This can be obtained by obtaining an outer circle whose distance from a circle in a three-dimensional space having the same position and orientation is within a predetermined range, and obtaining a point where the vector passes on the curved surface.
  • the feature line may be a band having a width in addition to a curve.
  • the curve is a single curve formed by points where the distance between the vector and the circle is zero, and the band is formed by points where the distance between the vector and the circle is the upper limit value and the lower limit value of the predetermined range. It is sandwiched between two curves.
  • the above calculation includes a step of obtaining a distance vector representing a distance between a circle and the vector, a step of obtaining a distance function from the distance vector, The process of calculating
  • the center of the circle and the Z or radius are changed with time in order to make the characteristic line a dynamic shape that changes with time. Also, this temporal change can be applied to multiple circles to form multiple feature lines.
  • the arithmetic unit provided in the shape evaluation apparatus includes a distance vector calculation unit for obtaining a distance vector representing a distance between a circle and the vector, a distance function unit for obtaining a distance function from the distance vector, and a value of the distance function.
  • a distance function calculation unit for obtaining a point on the curved surface where becomes a predetermined value
  • the distance vector calculation unit of the calculation means when calculating the circular one highlight line, for the point on the curved surface, the distance between the vector in the normal direction at that point and the circle is calculated, and the calculated distance is calculated. Based on Sakiyura one highlight line.
  • the reflection vector highlight line is obtained in the distance vector calculation unit of the calculation means
  • the vector direction from the point to the viewpoint with respect to the normal direction of the point on the curved surface Calculate the distance between the vector in the symmetric direction and the circle, and form a circular reflection line V based on the calculated distance.
  • the distance function calculation unit of the calculation means obtains a point where the distance between the vector and the circle is zero, forms a single curve, and sets the distance between the vector and the circle as an upper limit value and a lower limit of a predetermined range. Find the point to be the value, form two curves, and form a band between the curves.
  • the computing means forms a characteristic line that changes with time by changing the center and Z or radius of the circle with time. Multiple feature lines are formed by performing this calculation on multiple circles. Further, calculating means, temporally changing the central and Z or the radius of the circle for a plurality of circles, forming a connection line by connecting Ya deviation (c 2 discontinuous) folding the characteristic line in time order at each time point . Therefore, according to the present invention, a characteristic line for observing distortion in all directions can be acquired by a single calculation, and the calculation itself can be performed by substituting numerical values into the analytical solution. Therefore, the calculation time can be shortened when compared with the case of using numerical calculation.
  • the program medium is a program medium that records a program for causing a computer to perform an operation for forming a feature line of a shape curved surface, and the feature line is an annular shape in an arbitrary direction in the three-dimensional space. It is a circular highlight line or circular reflection line that the light source forms on the curved surface, and the calculation calculates the point at which the light of the annular light source illuminates or reflects on the curved surface from the points on the curved surface Extract.
  • the program has a vector whose distance from a circle in a three-dimensional space having the same diameter and position and orientation as the annular light source is within a predetermined range.
  • a computer causes a computer to execute an operation for obtaining a point passing on a curved surface. More specifically, the program obtains a distance vector representing the distance between the circle and the vector, obtains a distance function from the distance vector cover, and obtains a point on the curved surface where the distance function value is a predetermined value.
  • the program obtains a distance vector representing the distance between the circle and the vector, obtains a distance function from the distance vector cover, and obtains a point on the curved surface where the distance function value is a predetermined value.
  • a CAD device that supports shape design by a computer includes a shape evaluation device that evaluates the curved surface of the above-described shape with a characteristic line, and the shape evaluation device is a circle in an arbitrary direction on a three-dimensional space on a display.
  • the circular light highlight line or circular reflection line formed on the curved surface by the annular light source is displayed as a feature line.
  • the CAM device that supports the formation of execution data to be used for the production of the setting target object based on the shape data of the target object by the computer is characterized by the shape data and the curved surface of the shape based on Z or the execution data.
  • the shape evaluation apparatus is characterized by a circular highlight line or a circular reflection line formed on the curved surface by an annular light source in an arbitrary direction on a display in a three-dimensional space. Display as a line.
  • the shape evaluation using the characteristic lines of the reflection line and the highlight line can be easily performed without depending on the evaluator.
  • the characteristic lines of the reflection line and the highlight line can have a dynamic shape that changes with time.
  • FIG. 1 is a diagram for explaining a schematic configuration of a shape evaluation method and a shape evaluation apparatus according to the present invention.
  • FIG. 2 is a schematic explanatory diagram for explaining an operation for forming a characteristic line for shape evaluation according to the present invention.
  • FIG. 3 is a flowchart for explaining calculation for forming a feature line for shape evaluation of the present invention.
  • FIG. 4 is a diagram for explaining the definition of the circuit-highlight line of the present invention.
  • FIG. 5 is a diagram for explaining the definition of a distance vector according to the present invention.
  • FIG. 6 is a diagram for explaining an analytical solution of a quartic equation.
  • FIG. 7 is a diagram for explaining an analytical solution of a quartic equation.
  • FIG. 8 is a diagram for explaining an analytical solution of a quartic equation.
  • FIG. 9 is a diagram showing a calculation example of a signed distance function ds (u, v).
  • FIG. 10 is a diagram for explaining calculation time.
  • FIG. 11 is a diagram for explaining a schematic configuration of a shape evaluation method and a shape evaluation apparatus according to the present invention.
  • FIG. 12 is a diagram for explaining the definition of a circular reflection line.
  • FIG. 13 is a diagram showing the relationship between viewpoint E, a curved surface, and an annular light source (showing a concentric annular light source).
  • FIG. 14 is a diagram showing an example of a circuit illumin line.
  • FIG. 15 is a diagram showing an example of a circuit, illite line.
  • FIG. 16 is a diagram for explaining shape evaluation by dynamic shape in the case of an annular light source power.
  • Annular light source power This is a flow chart for explaining the shape evaluation operation by dynamic shape in the case of Si.
  • FIG. 18 is a diagram showing an example of a characteristic line formed by two annular light sources.
  • FIG. 19 is a diagram showing an example of a characteristic line formed by one annular light source.
  • FIG. 20 is a diagram for explaining a case where there are a plurality of annular light sources.
  • ⁇ 22] is a flowchart for explaining a case where there are a plurality of annular light sources
  • Feature line force is also a diagram for explaining an example of extracting a characteristic part of the surface shape.
  • Feature line force is a flow chart for explaining an example of extracting a characteristic part of the surface shape. is there.
  • FIG. 27 is a schematic diagram for explaining shape evaluation by reflection lines and highlight lines.
  • ⁇ 28 It is a schematic diagram for explaining the shape evaluation by an oval curve.
  • FIG. 29 is a diagram for explaining shape evaluation based on a conventional feature line.
  • Calculation means 22a Vector operation unit
  • FIG. 1 is a diagram for explaining a schematic configuration of a shape evaluation method and a shape evaluation apparatus according to the present invention.
  • a circular light source in an arbitrary direction in a three-dimensional space has a characteristic line of a circular highlight line or a circular reflection line on a curved surface to be evaluated.
  • the shape is evaluated by observing this characteristic line.
  • the shape evaluation apparatus includes calculation means for forming a characteristic line by extracting points from which light of an annular light source power irradiates or reflects on a curved surface to be evaluated from points on the curved surface.
  • the circular line is a line formed by light emitted from an annular light source onto the surface of the shape to be evaluated.
  • the calculation means of the shape evaluation apparatus according to the present invention performs the calculation of the circular and illite lines by detecting the position where the light emitted from the annular light source reaches the curved surface, similarly to the physical phenomenon.
  • the normals at multiple points on the curved surface of the shape to be evaluated are taken into account, and the distance from the annular light source on the extension of these normals is the smallest (zero or zero).
  • the minimum normal line is detected, and the circular highlight line is calculated from a plurality of points on the curved surface through which the normal passes.
  • the points of circular and illite lines on the curved surface from the annular light source side for example, numerical calculation by a numerical integration method such as Runge-Kutta method is used. There is a problem in terms of.
  • a normal line that is in contact with the annular light source is detected on the extension of a plurality of normal lines, and the circular and illite lines are calculated from the points on the curved surface through which the normal line passes.
  • This calculation operation itself corresponds to the process of calculating the shortest distance between a straight line and a circle corresponding to an annular light source arbitrarily set in a three-dimensional space, and this calculation results in the solution of a quartic equation.
  • this computing means can simply be an operation that is calculated by substituting numerical values into this analytical solution. As a result, the calculation can be performed in a shorter time compared to the numerical calculation by the conventional numerical integration method.
  • the calculation means 2 is a three-dimensional space having the same diameter (R) and center and orientation (A *) as the annular light source in the normal vector E * passing through the points on the curved surface r *.
  • a vector E * with the distance d from the upper circle L * within the specified range is detected, and the point where the vector E * passes on the curved surface r * is determined as the point through which the circular highlight line passes.
  • a parametric surface is expressed by dividing a shape into a plurality of surface elements and connecting the surface elements smoothly.
  • One point on the parametric surface is a parameter u, v (0 ⁇ It is defined as a mapping from parameter space to 3D real space by u, v ⁇ 1).
  • the parametric surface for example, Coons surface, Bezier surface, NURBS (Non Uniform Rational B-Spline), etc. are known.
  • This computing means 2 includes a distance vector computing unit 2a for obtaining a distance vector d * representing the distance between the circle L * and the normal vector E *, and a distance function unit for obtaining a distance function from the distance vector d *. 2b, and a distance function calculation unit 2c for finding a point on the curved surface r * where the distance function value is a predetermined value.
  • the shape evaluation apparatus of the present invention includes an input unit 1 for inputting calculation conditions such as a curved surface r * ( U , v) to be evaluated and a circle L * corresponding to an annular light source to the calculation unit 2.
  • the CAD device or CAM device provided with this shape evaluation device is connected to the shape evaluation device of a normal CAD device or CAM device to exchange shape data. This can be realized by adding the above-described calculation function to the shape data processing means provided or by adding a program for performing the calculation.
  • the display means 4 displays a three-dimensional image by superimposing the circular one highlight line as a feature line on the surface of the shape to be evaluated. The user can observe and evaluate the state of the curved surface using the displayed 3D image.
  • FIG. 2 a schematic explanatory diagram of FIG. 2, a flowchart of FIG. 3, a diagram for explaining the definition of the circular highlight line of FIG. This will be explained using the diagram for explaining the definition of distance vector 5 and the diagram for explaining the analytical solution of the quaternary equation in Figs.
  • the reference numeral (S) in FIG. 2 corresponds to the reference numeral (S) in the flowchart of FIG.
  • FIG. 2 shows a circular one highlight line 11 which is an example of a characteristic line required for shape evaluation of the present invention.
  • Fig. 2 shows a circuit that is formed by irradiating the evaluation surface 10 in real space with light from an annular light source (corresponding to circle L in Fig. 2) in 3D real space. The outline of the procedure for obtaining line 11 by simulation is shown.
  • the evaluation surface 10 in the real space is represented by a parametric curved surface representation of the evaluation surface r (u, v).
  • This evaluation surface r (u, v) can be obtained by inputting from the input means 1, reading from a storage means (not shown), or converting the shape data expressed in another format into a parametric surface expression. I'll do it.
  • the distance d from the annular light source (circle L *) on the extension of the normal E * at a plurality of points on the curved surface (evaluation surface 10) of the shape to be evaluated The normal E * that minimizes is detected, and a circular highlight line is obtained from multiple points on the curved surface through which the detected normal E * passes (see the left part of Fig. 2).
  • a circuit can be defined as a collection of points on a curved surface where the distance d between the annular light source L * and the extension line E * of the normal line N * is zero.
  • Fig. 4 is a diagram for explaining the circuit and illite line.
  • a * and R are the center position and radius of a circle representing the annular light source, and unit vectors n * and b * that are orthogonal to each other exist on the plane including the annular light source.
  • the vector E * is obtained by extending the unit normal vector N * at the point Q * on the evaluation surface r * (u, v), and is expressed by the following equation (2).
  • is a parameter
  • ⁇ * is expressed by the following equation (3).
  • N * (u, v) (ru * (u, v) X rv * u, v)) /
  • the distance vector d * (u, v) is obtained by the following (S2) to (S4)
  • FIG. 5 is a diagram for explaining the definition of the distance vector.
  • the distance vector d * from the extended normal vector E * to the circle L * (0) is expressed by the following equation (4).
  • equation (11) can be rewritten into the following equation (13).
  • 3 c ( ⁇ 2 +
  • the parameters can be obtained by solving a quartic equation.
  • is obtained by solving Equation (15), and cos ⁇ and sin ⁇ are obtained from Equation (10).
  • FIGS. 6 and 7 are diagrams for explaining parameters based on typical solutions of the quartic equation.
  • Figure 6 shows the case where the quartic solution has four real roots ⁇ 1 to ⁇ 4, and Fig. 7 shows the case where the quartic solution has two real roots ⁇ 1, ⁇ 2 and two imaginary roots. .
  • the distance vector that is the minimum distance can be obtained by selecting the distance force and the selection method from the plurality of real roots.
  • the first case is a case where N * is parallel to t * (FIG. 8 (a)).
  • N * is parallel to t *
  • the distance between the straight line and the circle in 3D is rewritten to the distance in 2D, and the distance vector d * at this time is expressed by the following equation (21).
  • the third case is when N * is perpendicular to t * (Fig. 8 (c)). In this case, 2 + 2
  • the fourth case is a case where N * passes through A * (FIG. 8 (d)).
  • ⁇ ⁇
  • the distance vector d * (u, v) is expressed by the above equation (4).
  • the distance vector d * takes the minimum distance (S2).
  • Det of the equation (11) is obtained (S3), and cos ⁇ , sin 0 represented by the equation (10) is obtained (S4).
  • the distance vector d * (u, v) in FIG. 2 represents the distance vector obtained in the above steps (S5) and (S6) in a matrix in the uv parameter space.
  • the distance vector d * (u, v) is selected by setting the parameters (u, v) (S7), and the magnitude (distance) of the selected distance vector d * is obtained.
  • the magnitude of the distance vector d * is evaluated by the signed distance function ds (u, v) shown in the following equation (24).
  • ds (u, v) (A * + R (cos ⁇ n * + sin ⁇ b *))-(Q * (u, v) + ⁇ N * (u, v)))-(N (u, v) XdL * (0) / d0) / IN (u, v) XdL * (0) / d0
  • the signed distance function ds (u, v) is calculated (S8), and the parameters (u, V) are calculated so that the values are below the set values (S9, S10, S11). ),
  • the point Q on the evaluation surface is obtained in the real space using the obtained parameters (u, V), and obtained from the collection of these points Q (S12).
  • the matrix of the step (S8) schematically shows the size of the signed distance function ds (u, v) by the diameter of the points, and the step (S10)
  • the matrix schematically shows parameters (u, V) for which the signed distance function ds (u, v) is less than or equal to the set value.
  • the magnitude of the signed distance function ds (u, v) indicates the distance between the distance outside distance d * and the annular light source. On the evaluation surface, this distance is "0". The point is a point on the Sakiyura I highlight line.
  • the magnitude of the signed distance function ds (u, v) is not necessarily “0” depending on the setting accuracy of the parameter (u, v). Since it does not, select a setting value where the magnitude of the signed distance function ds (u, v) can be regarded as substantially “0”.
  • the circular highlight line can be obtained as a band having a width of about 2.
  • FIG. 9 shows a calculation example of the signed distance function ds (u, v).
  • the mesh shape shows the magnitude of the signed distance function ds (u, v) in the u, v parameter space as the displacement from the reference position.
  • a band of rays can be obtained.
  • the computation time T is the computation time Tl of the distance vector d * at each point of the u and v parameters, the computation time ⁇ ⁇ ⁇ 2 for obtaining the magnitude of the distance vector d *, and the circular one highlight line is mapped to the 3D real space In this case, all times depend on the number of grid points to be operated in u, v parameter space.
  • the calculation time T2 for obtaining the magnitude of the distance vector d * is an operation for obtaining a numerical value for the analytical solution of the quartic equation. Therefore, in FIG. 10, the solid line indicates the circuit of the present invention. The case of a line is shown, and the broken line shows the case of a highlight line by a conventional linear light source. In the case of no and illite lines, it is necessary to obtain the highlight lines in different directions, so it will take at least twice the calculation time in Fig. 10. Takes a long time.
  • a circular reflection line is a reflection line formed on a curved surface when light from an annular light source is reflected on the curved surface of the shape to be evaluated and observed at the viewpoint position.
  • a circular reflection line is calculated by calculating the distance between the vector in the direction of the point force and the direction of the symmetric point and the circle with respect to the normal direction at that point. Based on the distance! / And form.
  • the calculation means of the shape evaluation apparatus of the present invention calculates the circular reflection line when the light emitted from the annular light source force is reflected by a curved surface and reaches the viewpoint, as in the physical phenomenon.
  • the normals at a plurality of points on the curved surface of the shape to be evaluated are taken into account, and these normals are taken from that point.
  • the vector in the direction of symmetry with the vector direction to the viewpoint is made to correspond to the normal in the above-mentioned circular line, and the vector with the minimum distance (zero or minimum) between this vector and the circle is detected.
  • a circular reflection line is calculated from a plurality of points on the curved surface.
  • FIG. 11 is a diagram for explaining a schematic configuration of the shape evaluation method and shape evaluation apparatus of the present invention.
  • the shape evaluation apparatus of the present invention includes calculation means 22 that forms a characteristic line by extracting a point on the curved surface to be evaluated from which the light of the annular light source power is reflected from the point on the curved surface. .
  • the computing means 22 calculates the vector e * from the point Q * to the viewpoint E * on the evaluation surface, and the vector c that is symmetrical with respect to the normal vector N * from the point Q * and directed in the circle L * direction.
  • a vector computation unit 22a for obtaining * a distance vector computation unit 22b for obtaining a distance vector d * representing a distance between the circle L * and the vector c *, a distance function unit 22c for obtaining a distance vector d * force distance function,
  • a distance function calculation unit 22d for finding a point on the curved surface r * where the distance function value is a predetermined value is provided.
  • the shape evaluation apparatus for obtaining a circular reflection line corresponds to the curved surface r * (u, v) to be evaluated and the annular light source in the computing means 2, as in the configuration shown in FIG.
  • the display means 24 displays a three-dimensional image by superimposing the circular reflection line, which is a characteristic line, on the surface of the shape to be evaluated. The user can observe and evaluate the state of the curved surface using the displayed 3D image.
  • the CAD device and CAM device equipped with this shape evaluation device in addition to the configuration for sending and receiving shape data by connecting the shape evaluation device of a normal CAD device or CAM device, the CAD device or CAM It can be realized by adding the above-mentioned calculation function to the shape data processing means provided in the apparatus or by adding a program for performing the calculation.
  • FIG. 12 is a diagram for explaining the definition of a circular reflection line.
  • the relationship between the viewpoint vector e *, the normal vector N * of the curved surface, and the reflection vector c * is the angle between e * and N *, and N * and c If the angle between * is ⁇ , it can be expressed by the following equations (26) to (28).
  • reflection vector c * is (L * (0) -Q (u, v)) / IL * (0) -Q (u, v) I
  • the viewpoint vector e * is
  • cos a can also obtain the relational force between the viewpoint vector and the normal vector of the curved surface.
  • the reflection vector c * is obtained from the above equation, and the circular vector reflection line is calculated by replacing the normal vector N * of the circular curve highlight line with the reflection vector c *.
  • the circular line is formed by a set of points whose distance between the normal vector of the curved surface and the circular light source is "0", whereas the circular line is the circular vector and the circular vector. It is formed by a collection of points on the curved surface where the distance from the light source is "0".
  • FIG. 13 shows the relationship between viewpoint E, the curved surface, and an annular light source (showing a concentric annular light source).
  • calculation time for the circular reflection line is substantially the same as the calculation time for the reflection vector, compared to the calculation time for the reflection vector.
  • FIG. 14 and FIG. 15 show an example of the circuit highlight line.
  • FIG. 14 (a) is a display example of the elliptical shape using the Circulano and illite lines of the present invention
  • FIG. 14 (b) is a display example of the elliptical shape using the conventional highlight line. From the comparison of FIG. 14, according to the circular highlight line of the present invention, the state of the curved surface shape can be observed in more detail.
  • Fig. 15 (a) is a display example of the automobile hood using the circular highlight line of the present invention
  • Fig. 15 (b) is a conventional display example using the no-light and illite lines.
  • Equation (33) is
  • K 2 2y -p
  • L 2 y 2 —r
  • 2KL q (37).
  • FIGS. 16 to 19 the shape evaluation based on the dynamic shape will be described with reference to FIGS. 16 to 19 for the case where there is one annular light source, and the case where there are a plurality of annular light sources (here two).
  • Fig. 20 to Fig. 22 explain the example of extracting the characteristic part of the surface shape from the feature line using Fig. 23 and Fig. 24.
  • Fig. 25 shows the case where the center of the annular light source moves. This is explained using FIG.
  • Figure 16 (a) shows a circular highlight line formed on the evaluation surface by an annular light source in which the radius of the circle changes over time
  • Fig. 16 (b) shows the circle radius over time.
  • a circular reflection line formed on the evaluation surface by a changing annular light source is shown.
  • the circuit-highlight line in Fig. 16 (a) will be mainly described.
  • the circle L of the annular light source is represented by the center A and the diameter R.
  • the dynamic shape can be formed by changing the size of the diameter R with time t.
  • the circular one highlight line shown in Fig. 16 (a) shows an example in which the diameter R of the annular light source increases with time t.
  • the diameter R may be reduced with time t.
  • an example is shown in which a plurality of circular highlight lines are generated with time, and each circular highlight line changes with time t.
  • the evaluator can observe the state in which the circular line is dynamically changed, and the evaluation surface can be easily evaluated.
  • the evaluation surface can be easily evaluated by dynamically changing a plurality of circular lines.
  • the dynamic shape is formed by changing the diameter R of the annular light source with time t, as in the circular highlight line. Can be made.
  • Fig. 17 illustrates the shape evaluation operation based on the dynamic shape when there is one annular light source. It is a flowchart to clarify. In the flowchart of FIG. 17, since Sl and S2 to S12 are the same as the steps described in FIG. 3, only the shape evaluation step based on the dynamic shape will be described here, and description of S1 to S12 will be omitted.
  • the initial value R0 of the diameter R of the circle L of the annular light source is set.
  • the diameter R of the circle L increases or decreases with time t from this initial value R0.
  • the increase and decrease of the diameter R can be repeated as necessary, increasing or decreasing in one direction, and after reaching a predetermined size or after a predetermined time has elapsed, return to the initial value and repeat. Caro and decrease may be repeated. In addition to increasing or decreasing uniformly, it may be increased or decreased with a predetermined pattern (S100).
  • the circular highlight line is formed and displayed as a characteristic line of the circular reflection line.
  • the above characteristic line processing (S102, S103, S2 to S12) is performed until the diameter R reaches a predetermined size (here, Rmax) or until a predetermined time has elapsed (here, tmax). (S104). Also, as described above, the operation shown in FIG. 17 may be repeated multiple times! /.
  • the flowcharts of Figs. 17 and 17 show the operation when there is one feature line formed by the annular light source.
  • the formation of the feature lines performed in S101 is performed.
  • the operation according to the flowchart in Fig. 17 is performed in parallel while staggering the start time of. Thereby, a plurality of feature lines can be generated.
  • the multiple characteristic lines shown in the figure are selected over time based on the simulation results, but are extracted as appropriate to explain the state of the dynamic shape. The time interval is not necessarily constant.
  • the circle L of the annular light source is shown above, The characteristic line displayed on the evaluation surface is shown below.
  • FIG. 20 (a) shows an example in which the radius of the circles LI and L2 of the two annular light sources Al and A2 changes with time, and two circular lines are formed on the evaluation surface.
  • FIG. 20 (b) shows that the circular radii of the two annular light sources change with time, thereby forming two circular reflections on the evaluation surface.
  • An example is shown. In the following, the explanation will be made mainly with the circular highlight line in FIG.
  • the circles LI and L2 of the annular light sources Al and A2 are represented by the centers Al and A2 and the diameters Rl and R2.
  • the dynamic shape is formed by changing the diameters Rl and R2 with time t.
  • the circular highlight line shown in FIG. 20 (a) shows an example in which the diameters Rl and R2 of the annular light sources A1 and A2 are enlarged with time t.
  • the diameters Rl and R2 may be reduced with time t.
  • an example is shown in which a plurality of circuit lines and illite lines are generated with time, and each circuit line highlight line changes with time t.
  • the evaluator can observe the state in which the circular highlight line by the plurality of annular light sources dynamically changes, and it is easy to evaluate a wide range of the evaluation surface.
  • the dynamic shape is formed by changing the diameter R of the annular light source with time t, as in the circular highlight line. Can be made.
  • FIG. 21 is a diagram showing a display example of feature lines by a plurality of annular light sources.
  • Fig. 21 (a) to Fig. 21 (e) show an example in which one characteristic line is formed for each of the two annular light sources, and each characteristic line changes with time.
  • FIGS. 21 (f) to 21 (g) show examples in which two annular light source forces also form two characteristic lines, and each characteristic line changes with time.
  • FIG. 22 is a flowchart for explaining the shape evaluation operation based on the dynamic shape in the case of a plurality of annular light sources.
  • Sl and S2 to S12 are the same as the steps described in FIG. 3, only the shape evaluation step based on the dynamic shape will be described here, and the description of S1 to S12 will be omitted.
  • the center A (A1, A2, ...) of the circle L of the plurality of annular light sources is set (S200)
  • the initial value R0 (R10, R20,...) Of the diameter R of the circle L of the annular light source is set.
  • the diameter R of the circle L increases or decreases with time t from this initial value R0.
  • the increase or decrease of the diameter R can be repeated as necessary.It increases or decreases in one direction, and after reaching a predetermined size or after a predetermined time has elapsed, it returns to the initial value and repeats. Caro and decrease may be repeated. In addition to increasing or decreasing uniformly, it may be increased or decreased with a predetermined pattern (S201).
  • R (t) R0 +! ⁇ ! As! Change ⁇ as a unit.
  • the change in the magnitude of R in units of AR is an example, and it may be set to any change using a predetermined function or table (S204).
  • the above characteristic line processing (S203, S204, S2 to S12) is performed until the diameter R reaches a predetermined size (here, Rmax) or until a predetermined time has elapsed (here, tmax). (S205). Further, as described above, the operation shown in FIG. 22 may be repeated a plurality of times.
  • the flowchart of Fig. 22 shows the operation when there is one feature line formed by the annular light source.
  • the feature line formation performed in S203 is performed.
  • the operations shown in the flowchart of FIG. 22 are performed in parallel while staggering the start time. As a result, a plurality of feature lines can be generated.
  • the surface shape may include characteristic parts that have a small radius of curvature and can be considered as discontinuous parts. Such a characteristic part can be observed by displaying a static shape or a dynamic shape of the characteristic line, but can be displayed more clearly by extracting this characteristic part. .
  • FIG. 23 (a) to FIG. 23 (d) show the formation of the connecting line with time.
  • Fig. 23 (b) show the formation of the connecting line with time.
  • the points between the discontinuous points can be obtained by interpolation, and the outside of the discontinuous points can be obtained by extrapolation.
  • FIG. 24 is a flowchart for explaining the operation of extracting a characteristic part of the surface shape from the characteristic line.
  • Sl and S2 to S12 are the same as the steps described in FIG. 3, only the shape evaluation step based on the dynamic shape will be described here, and the description of S1 to S12 will be omitted. .
  • the center A (A1, A2, ⁇ ) of the circle L of multiple annular light sources is set (S300)
  • the initial value R0 (R10, R20,...) Of the diameter R of the circle L of the annular light source is set.
  • the diameter R of the circle L increases or decreases with time t from this initial value R0.
  • the increase or decrease of the diameter R can be repeated as necessary.It increases or decreases in one direction, and after reaching a predetermined size or after a predetermined time has elapsed, it returns to the initial value and repeats. Caro and decrease may be repeated. In addition to increasing or decreasing uniformly, it may be increased or decreased with a predetermined pattern (S301).
  • the circular highlight line is formed and displayed as a characteristic line of the circular reflection line.
  • a discontinuous point is obtained by using the obtained characteristic line.
  • the discontinuous point can be obtained, for example, by obtaining the position of the feature line break or deviation (S305).
  • the obtained discontinuous points are stored in the storage means (S306), and a connecting line connecting these discontinuous points is formed (S307).
  • the formed connecting line is displayed (S308).
  • the above characteristic line processing (S203, S204, S2 to S12) is performed until the diameter R reaches a predetermined size (here, Rmax) or until a predetermined time has elapsed (here, tmax). (S205). Also, as described above, the operation shown in FIG. 24 may be repeated a plurality of times! /.
  • the flowchart of FIG. 24 shows the operation in the case where there is one feature line formed by the annular light source.
  • the feature line formation performed in S303 is performed.
  • the operations shown in the flowchart in Fig. 24 are performed in parallel while shifting the start time. As a result, a plurality of feature lines can be generated.
  • FIG. 25 and 26 the case where the center of the annular light source moves will be described with reference to FIGS. 25 and 26.
  • FIG. In the example described above, the center of the annular light source is fixed, but the center of the annular light source may be moved. Note that the movement locus of the center of the annular light source is not limited to a straight line, and may be an arbitrary curve.
  • the formation of the characteristic line by the movement of the annular light source includes an aspect in which the same annular light source moves with time, and an aspect in which the generation positions of the plurality of annular light sources move with time.
  • FIG. 25 shows a state where the center of the annular light source moves with time.
  • the center position of the annular light source A1 itself is at the same position regardless of time change, and the characteristic line formed by this annular light source A1 changes with time.
  • the characteristic line formed by the annular light source A1 changes by the elapsed time.
  • FIG. 26 is a flowchart for explaining the operation of moving the center of the annular light source. In the flowchart of FIG. 26, since Sl and S2 to S12 are the same as the steps described in FIG. 3, only the shape evaluation step based on the dynamic shape is described here, and the description of S1 to S12 is omitted. To do.
  • the center A (A1, A2, ...) of the circle L of the plurality of annular light sources is set (S400)
  • the initial value R0 (R10, R20,...) Of the diameter R of the circle L of the annular light source is set.
  • the diameter R of the circle L increases or decreases with time t from this initial value R0.
  • the increase or decrease of the diameter R can be repeated as necessary.It increases or decreases in one direction, and after reaching a predetermined size or after a predetermined time has elapsed, it returns to the initial value and repeats. Caro and decrease may be repeated. In addition to increasing or decreasing uniformly, it may be increased or decreased with a predetermined pattern (S401).
  • the change in the magnitude of R in units of AR is an example, and may be set to any change using a predetermined function or table (S406).
  • the flowchart of FIG. 26 shows the operation when there is one feature line formed by the annular light source.
  • the feature line formation performed in S404 is performed.
  • the operations shown in the flowchart in Fig. 26 are performed in parallel while shifting the start time. With this, A plurality of feature lines can be generated.
  • the present invention can be applied to any field that uses shape evaluation such as shape setting and shape processing, and is particularly suitable for processing that requires real-time processing.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Generation (AREA)

Abstract

本発明の形状評価装置は、直線状の光源に代えて円環状光源あるいは同心円状の光源を用いてシミュレートして形状評価を行う特徴線を算出する。形状評価装置が備える演算装置2は、円と前記ベクトルとの距離を表す距離ベクトルを求める距離ベクトル演算部2aと、距離ベクトルから距離関数を求める距離関数部2bと、距離関数の値が所定値となる曲面上の点を求める距離関数演算部2cとを備える。円環状光源あるいは同心円状の光源を用いてシミュレートすることにより、一回の演算によって全ての方向のゆがみを観察することができる特徴線を求めることができる。本発明は、形状評価を行う特徴線の算出に要する演算回数を減らし、演算時間を短縮し、動的形状による評価を可能とする。

Description

明 細 書
形状評価方法、形状評価装置、及び形状評価装置を備えた装置 技術分野
[0001] 本発明は、形状の曲面品質評価に関し、形状曲面上に光を照射して映し出される 光のラインをコンピュータ上でシミュレートすることによって形状評価を行う形状評価 方法、形状評価装置、及び形状評価装置を備えた装置に関する。
背景技術
[0002] 自由曲面は、船、自動車、飛行機等、様々な工業製品のボディに用いられており、 機能性と美しさの両方を兼ね備えるものであり、家庭電気製品や多くの消費材の外 観など意匠的の美しい形状のデザイン設計に用いられる。これらの曲面は、 Class A surface (—級曲面)と呼ばれる。 Class A surface (—級曲面)の美しさを見積もるため に種々の評価方法が提案され用いられて!/、る。
[0003] 意匠形状の曲面の品質評価は、三次元 CAD、 CAMシステムの普及と共に、工業 用設計や製造分野等での利用性が高まっている。例えば、自動車の外板ボディの設 計では、デザイナは平行な蛍光灯をクレイモデルに照射し、クレイモデルの表面に映 し出される反射光を目視し、反射光が形成曲面上に形成する反射線によって形状の 外観を観察し、反射線の歪みカゝら修正箇所を検出する。
[0004] 蛍光灯力 の平行光を実際のモデルに照射することによる品質評価に代えて、コン ピュータ上でシミュレートを行う形状評価が提案されている。コンピュータ上において 、評価対象の形状曲面に光のラインを形成する手法として、 Isophotes、 Reflection lin e (反射線)、 Highlight line (ハイライト線)を用いた評価方法が知られている。これら評 価方法は、評価する曲面の一回微分を用いた検査方法である。これら形状評価を行 う反射線ゃノヽイライト線は特徴線 (characteristic line)と総称される。
[0005] Isophotesによる形状評価は、ユーザーにより指定された方向の無限遠方にある点 光源によって作り出される曲面上の一定照度の曲線を用いる。これらの曲線は曲面 のゆがみを検出するのに用いられている。曲面が CM連続であれば Isophotes linesは CM1連続である (非特許文献 1, 2)。 [0006] 反射線による形状評価は、固定点カゝら見た平行な直線群の光源カゝら放射される光 のなめらかな曲面上での鏡像のシミュレーションによるもので、曲面の滑らかな形状 力ものズレを反射線のゆがみにより検出する。これらの曲面のズレは、反射線のゆが みを修正することにより修正することができる。
[0007] 単純で物理的に受け入れることができる Blinn-Newellタイプの反射の写像関数を用 いてトリムされた NURBS曲面における反射線を生成するものが提案されている(非特 許文献 3)。また、非特許文献 4には直線に沿った連鎖状の小さな円形光源群の反 射線の計算を行うことが提案されて 、る。
[0008] 図 27 (a)は反射線による形状評価を説明するための概略図である。図 27 (a)にお いて、評価面 100に対して線光源 101から直線状の平行光を照射し、評価面 100で 反射した光を視点 Eで観察する。視点 Eと線光源 101とは、評価面 100上の法線 Nに 対して対称の角度位置 (角度 Θ )にあり、視点 Eでは線光源 101は反射線 102として 観察される。反射線による形状評価では、線光源 101及び視点 Eの位置に対して評 価面 100上に映し出される反射線 102をコンピュータによってシミュレートして求める
[0009] また、直線状の反射線に代えてオーバール状の曲線を用いて形状評価することも 提案されている(非特許文献 5)。図 28はオーバール状曲線による形状評価を説明 するための概略図である。この非特許文献では、図 28 (a)において、空間上に点 Ps を設定したとき、入射光 V*が r*方向に反射する評価面上の点 Sの中で、 r*のベクトル と点 Sから点 Psへのベクトルとが成す角度が aとなる点を求める。この 2つのベクトル が成す角度が OCとなる評価面上の点 Sの集まりは、これを反射線として求めている角 度 αのァイソクライン (等斜褶曲)に近似しており、(図 28 (b) )。なお、ここで" *"の記 号はベクトルを表している。
[0010] 上記した反射線に対して、ハイライト線による形状評価は反射線による形状評価を 単純ィ匕したものである。ノ、イライト線は視点によらないため、反射線による形状評価の ように視点の位置の計算が不要である (非特許文献 6)。
[0011] 図 29 (a) , (b)はノ、イライト線による形状評価を説明するための概略図である。図 2 9 (b)において、評価面 100の法線 Nの延長と線光源 101との距離が所定範囲内と なる評価面 100上の曲線が、ハイライト線 103として観察される。
[0012] このハイライト線のシミュレートは、視点を不要とするため演算時間が短縮される。
[0013] このハイライト線による形状評価において、 NURBS曲面に映るハイライト線の形状を 特定することによって自動的に NURBS曲面の制御点を更新し、要求される形状を求 める方法が提案され (非特許文献 7)、 NURBS boundary Gregory patchを用いて直接 ノ、イライト線をコントロールする方法が提案されて 、る(非特許文献 8)。
[0014] また、リアルタイムでのインタラクティブ ·デザインにおいてハイライト線を修正するこ とにより NURBS曲面の局所的なゆがみを取り除く方法が提案されている(非特許文献 9)。
[0015] また、処理時間が長い追跡法に代えて Talor展開を用いた方法によって局所的に 変形した NURBS曲面上での動的なハイライト線を生成する方法が提案されて 、る(非 特許文献 10)。
[0016] 非特千文献 1 : N.M.Patrikalakis and T.Maekawa. Shape Interrogation for Computer Aided Design and Manufacturing Heidelberg, Germ any:Springer-Verlag,2002.
非特許文献 2 : T.Poeschl. Detecting surface irregularities using isophotes. Computer Aided Geometric Design, 1(2): 163— 168,1984.
非特許文献 3 : I.Choi and K.Lee. Efficient generation of reflection lines to evaluate ca r body surfaces. Mathematical Engineering in Industry, 7(2):233- 250, 1998.
非特許文献 4 : T.Kanai.Surface interrogation by reflection lines of a moving body Bac helor' s thesis The University of Tokyo, Department of Precision Machinery Enginee ring, Tokyo, Japan, 1992 Jnjapanese. http://web.sfc. keio.ac.jp/kanai/rline/bth.pdf 特許文献 5 : Gershon Elber. Curve Evaluation and Interrogation on Surfaces, Grapni cal Models,Vol.63 :197-210,2001
特許文献 6 : K.— P.Beier and Y.Chen. Highlight—line algorithm for realtime surface- quality assessment. Computer- Aided Design, 26(4):268- 277,1994
非特許文献 7 : Y.Chen, K.-P.Beier and D . Papageorgiou. Direct highlight line modifica tion on NURBS surfaces. Computer- Aided Geometric Design, 14(6):583- 601,1997 非特許文献 8 :J.Sone and H.Chiyokura. Surface highlight control using quadratic ble nding NURBES boundary Gregory patch. Journal of Information Processing Society o f Japn,37(12):2212-2222,1996.In Japanese.
非特許文献 9 : C.Zhang and F.Cheng. Removing local irregularities of NURBS surfac es by modifying highlight lines. Computer- Aided Design, 30(12):923-930, 1998. 非特許文献 10 :J.- H.Yong, F.Cheng, Y.Chen,P.Stewart,and K.T.Miura Dynamic hig hlight line generation for locally deforming NURBS surfaces. Computer- Aided Desig n,35(10):881— 892,2003.
特許文献 11 :J.E.Hacke.A simple solution of the general quartic.American Mathe matical Monthly,48(5):327-328, 1941
発明の開示
発明が解決しょうとする課題
[0017] 従来提案されている反射線による形状評価、及びハイライト線による形状評価では 、光源として多くは直線状の線光源を用いているため、形成される反射線やハイライ ト線等の特徴線は評価面上で一方向の形状特性を表すことになる。評価面の曲面の 全ての方向のゆがみを観察するには、一方向の特徴線だけでは十分に評価すること ができないため、光源の向きを変えて少なくとも二方向の特徴線が必要となる。
[0018] 図 29は従来の特徴線による形状評価を説明するための図である。図 29 (a)、 (b) は、直線状の線光源をそれぞれ異なる配置方向とした場合に得られる二つの方向の 特徴線を示している。線光源の向きを異ならせることで、一方向による特徴線で観察 されない形状特性を他方向による特徴線を取得し、これにより二方向の観察を可能と している。
[0019] したがって、従来の形状評価では、曲面の全ての方向のゆがみを観察するには、 複数少なくとも二回の演算が必要となり、演算時間が長時間化するという問題、ある いはより高速の演算装置が必要となるという問題がある。
[0020] また、通常、パラメータを変更しながら最適値を求める繰り返し計算を要するため、 一回の演算自体においても演算に長時間を要するという問題がある。
[0021] 前記した非特許文献 5には、オーバール状の曲線を用いて形状評価することが提 案されている。し力しながら、この形状評価では、固定点との角度が一定となるような 反射光に基づ 、て評価面上の反射線を求めるものであるため、光源側の形状は必 ずしも円環状の形状と成らない。また、反射線を求める際の演算の条件として、固定 点との角度を定めているが、この条件と反射線との物理的な関係が不明である。上記 したように、光源側の形状が円環形状となる保証がなぐまた反射線を求める条件の 基礎が不明であるため、求めた反射線が、評価対象の表面形状を正確に表している かの保証がないという問題がある。また、ハイライト線を求めることができないという問 題がある。
[0022] また、提案されて!、る反射線による形状評価、及びハイライト線による形状評価では 、光源力 発せられる光は静止した状態にある。そのため、光源力 発せられた光が 評価面上に映し出す反射線あるいはノ、イライト線は、静的形状として観察される。評 価者は、この静的形状に基づいて評価面の形状状態を想像し、評価しなければなら ないという問題がある。そのため、評価の確度は、評価者の熟練度に依存するという 問題がある。
[0023] そこで、本発明は前記した従来の問題点を解決し、形状曲面上に光を照射して映 し出される光のラインをコンピュータ上でシミュレートする形状評価において、全ての 方向のゆがみを一回の演算で検出することを目的とする。
[0024] また、形状評価を行う特徴線の算出に要する演算回数を減らし、演算時間を短縮 することを目的とする。
[0025] また、反射線やハイライト線の特徴線による形状評価を評価者に依存することなく 容易に行うことを目的とし、また、反射線やハイライト線の特徴線を時間的に変化させ 、動的形状による評価を可能とすることを目的とする。
課題を解決するための手段
[0026] 本発明は、形状評価方法、形状評価装置、形状評価装置を備えた装置、及びプロ グラム媒体の各態様とすることができる。
[0027] 本発明は、直線状の光源に代えて円環状光源乃至同心円状の光源を用いてシミュ レートして形状評価を行う特徴線を算出することによって、一回の演算によって全て の方向のゆがみを観察することができる特徴線を求める。
[0028] 円環状光源は、円中心力 外縁部までの円内部の全面力も光を発するものではな く、円の縁部を円形形状とし、線状又は環状の光を発するものである。
[0029] 本発明の形状評価は、形状の曲面を特徴線によって評価する形状評価であり、三 次元空間上で任意の向きにある円環状光源が曲面上を照射して形成するサーキュ ラーハイライト線、あるいは曲面上で反射して視点位置に入射するサーキユラ一反射 線を特徴線とする。なお、ここでは、曲面は平面を含むものとする。
[0030] この特徴線は、円環状光源からの光が曲面上を照射又は反射する点を、曲面上の 点の中から演算により抽出することで形成する。形状評価装置は、円環状光源から の光が曲面上を照射又は反射する点を曲面上の点の中から抽出して特徴線を形成 する演算手段を備える。
[0031] 曲面上の点の中から特徴線を形成する点を抽出する演算は、曲面上の点を通る所 定方向のベクトルの中で、円環状光源と同径で位置及び向きを同じくする三次元空 間上の円との距離を所定範囲内とするベクトルを求め、そのベクトルが曲面上を通る 点を求める。
[0032] サーキユラーノ、イライト線は、曲面上の点において法線方向のベクトルの中で円環 状光源と同径で位置及び向きを同じくする三次元空間上の円との距離が所定範囲 内となるベクトルを求め、そのベクトルが曲面上を通る点を求めることで得ることができ る。
[0033] また、サーキユラ一反射線は、ベクトルが通る曲面上の点における法線に対して、そ の点力 視点へのベクトル方向と対称の方向のベクトルの中で円環状光源と同径で 位置及び向きを同じくする三次元空間上の円との距離が所定範囲内となるべ外ル を求め、そのベクトルが曲面上を通る点を求めることで得ることができる。
[0034] また、特徴線は曲線の他、幅を有するバンドとしてもよい。曲線は、ベクトルと円との 距離を零とする点により形成される 1本の曲線であり、バンドは、ベクトルと円との距離 を所定範囲の上限値及び下限値とする点により形成される 2本の曲線によって挟ま れる。
[0035] 上記演算は、より詳細には、円と前記ベクトルとの距離を表す距離ベクトルを求める 工程と、距離ベクトルから距離関数を求める工程と、距離関数の値が所定値となる曲 面上の点を求める工程を備える。 [0036] 本発明は、特徴線を時間的に変化する動的形状とするために、円の中心及び Z又 は半径を時間的に変化させる。また、この時間的変化を複数の円に適用して、複数 の特徴線を形成することができる。
[0037] また、複数の円の中心及び Z又は半径を時間的に変化させ、各時点における特徴 線の不連続点を時間順に繋ぐ連結線を形成することによって、評価面の折れ部分等 の特徴的な箇所を抽出することができる。
[0038] また、形状評価装置が備える演算装置は、円と前記ベクトルとの距離を表す距離べ タトルを求める距離ベクトル演算部と、距離ベクトルから距離関数を求める距離関数 部と、距離関数の値が所定値となる曲面上の点を求める距離関数演算部とを備える
[0039] 演算手段の距離ベクトル演算部において、サーキユラ一ハイライト線を求める場合 には、曲面上の点について、その点における法線方向のベクトルと円との距離を算 出し、算出した距離に基づいてサーキユラ一ハイライト線を形成する。
[0040] また、演算手段の距離ベクトル演算部において、反射線ハイライト線を求める場合 には、曲面上の点について、その点における法線方向に対して、その点から視点へ のベクトル方向と対称の方向のベクトルと円との距離を算出し、算出した距離に基づ V、てサーキユラ一反射線を形成する。
[0041] また、演算手段の距離関数演算部は、ベクトルと円との距離を零とする点を求めて 1本の曲線を形成し、ベクトルと円との距離を所定範囲の上限値及び下限値とする点 を求めて 2本の曲線を形成し、この曲線間で挟まれる部分でバンドを形成する。
[0042] また、距離関数による演算は、距離関数の微分式力 得られる 4次方程式の解析 解により行うことができるため、パラメータを変更しながら数値計算を繰り返して最適 値を得ると 、つた計算処理が不要であるため、リアルタイムでの演算が可能となる。
[0043] また、演算手段は、円の中心及び Z又は半径を時間的に変化させて、時間的に変 化する特徴線を形成する。この演算を複数の円につ ヽて行うことで複数の特徴線を 形成する。また、演算手段は、複数の円について円の中心及び Z又は半径を時間 的に変化させ、各時点における特徴線の折れゃズレ (c2不連続)を時間順に繋ぐこと によって連結線を形成する。 [0044] したがって、本発明によれば、一回の演算によって全ての方向のゆがみを観察する 特徴線を取得することができ、また、その演算自体においても解析解に数値を代入 する計算で済むため、数値計算を用いた場合と比較した際、演算時間を短縮するこ とがでさる。
[0045] また、プログラム媒体は、コンピュータに形状曲面の特徴線を形成させる演算を実 行させるプログラムを記録したプログラム媒体であって、特徴線は、三次元空間上で 任意の向きにある円環状光源が当該曲面上に形成するサーキユラ一ハイライト線又 はサーキユラ一反射線であり、演算は、円環状光源力 の光が当該曲面上を照射又 は反射する点を曲面上の点の中から抽出する。
[0046] プログラムは、曲面上の点を通る所定方向のベクトルの中で、円環状光源と同径で 位置及び向きを同じくする三次元空間上の円との距離を所定範囲内とするベクトル が曲面上を通る点を求める演算をコンピュータに実行させる。より詳細には、プロダラ ムは円とベクトルとの距離を表す距離ベクトルを求める工程と、距離ベクトルカゝら距離 関数を求める工程と、距離関数の値が所定値となる曲面上の点を求める工程をコン ピュータに実行させる。
[0047] コンピュータにより形状設計を支援する CAD装置は、前記した形状の曲面を特徴 線によって評価する形状評価装置を備え、形状評価装置は、ディスプレイ上に三次 元空間上で任意の向きにある円環状光源が曲面上に形成するサーキユラ一ハイライ ト線又はサーキユラ一反射線を特徴線として表示する。
[0048] また、コンピュータにより対象物の形状データを元に当該設定対象物の生産に供す る実行データの形成を支援する CAM装置は、形状データ及び Z又は実行データに よる形状の曲面を特徴線によって評価する形状評価装置を備え、形状評価装置は、 ディスプレイ上に三次元空間上で任意の向きにある円環状光源が当該曲面上に形 成するサーキユラ一ハイライト線又はサーキユラ一反射線を特徴線として表示する。 発明の効果
[0049] 以上説明したように、本発明によれば、全ての方向のゆがみを一回の演算で検出 することができる。
[0050] また、形状評価を行う特徴線の算出に要する演算回数を減らし、演算時間を短縮 することができる。
[0051] また、反射線やハイライト線の特徴線による形状評価を評価者に依存することなく 容易に行うことができる。
[0052] また、反射線やハイライト線の特徴線を時間的に変化する動的形状とすることがで きる。
図面の簡単な説明
[0053] [図 1]本発明の形状評価方法及び形状評価装置の概略構成を説明するための図で ある。
[図 2]本発明の形状評価の特徴線を形成する演算を説明するための概略説明図で ある。
[図 3]本発明の形状評価の特徴線を形成する演算を説明するためのフローチャート である。
[図 4]本発明のサーキユラ一ハイライト線の定義を説明するための図である。
[図 5]本発明の距離ベクトルの定義を説明するための図である。
[図 6]4次式の解析解を説明するための図である。
[図 7]4次式の解析解を説明するための図である。
[図 8]4次式の解析解を説明するための図である。
[図 9]符号付き距離関数 ds (u,v)の演算例を示す図である。
[図 10]演算時間を説明するための図である。
[図 11]本発明の形状評価方法及び形状評価装置の概略構成を説明するための図で ある。
[図 12]サーキユラ一反射線の定義を説明するための図である。
[図 13]視点 Eと曲面と円環状光源(同心円状の円環状光源を示す)との関係を示す 図である。
[図 14]サーキユラーノ、イライト線の一例を示す図である。
[図 15]サーキユラーノ、イライト線の一例を示す図である。
[図 16]円環状光源力 つの場合における動的形状による形状評価を説明する図であ る。 圆 17]円環状光源力 Siつの場合における動的形状による形状評価の動作を説明する フローチャートである。
[図 18]—つの円環状光源により形成される特徴線の一例を示す図である。
[図 19]一つの円環状光源により形成される特徴線の一例を示す図である。
圆 20]円環状光源が複数の場合を説明するための図である。
圆 21]円環状光源が複数の場合を説明するための図である。
圆 22]円環状光源が複数の場合を説明するためのフローチャートである
圆 23]特徴線力も表面形状の特徴的な部分を抽出する例を説明するための図である 圆 24]特徴線力も表面形状の特徴的な部分を抽出する例を説明するためのフローチ ヤートである。
圆 25]円環状光源の中心が移動する場合を説明するための図である。
圆 26]円環状光源の中心が移動する場合を説明するためのフローチャートである。 圆 27]反射線及びハイライト線による形状評価を説明するための概略図である。 圆 28]オーバール状曲線よる形状評価を説明するための概略図である。
圆 29]従来の特徴線による形状評価を説明するための図である。
符号の説明
1…入力手段
2…演算手段
2a…距離ベクトル演算部
2b…距離関数部
2c…距離関数演算部
3· ··マッピング手段
4· ··表示手段
10…評価面
11…サーキユラ一ハイライト線
21…入力手段
22…演算手段 22a…ベクトル演算部
22b…距離ベクトル演算部
22c…距離関数部
22d…距離関数演算部
23…マッピング手段
24· · ·表示手段
100…評価面
101 · · ·線光源
102· · ·反射線
103· · ·ハイライト線
発明を実施するための最良の形態
[0055] 以下、本発明の実施の形態について、図を参照しながら詳細に説明する。
[0056] 図 1は本発明の形状評価方法及び形状評価装置の概略構成を説明するための図 である。
[0057] 本発明の形状評価装置は、三次元空間上で任意の向きにある円環状光源が、評 価対象である曲面の面上にサーキユラ一ハイライト線又はサーキユラ一反射線の特 徴線を形成し、この特徴線を観察することによって形状の評価を行う。形状評価装置 は、円環状光源力 の光が評価対象の曲面上を照射又は曲面上で反射する点を、 曲面上の点の中から抽出することで特徴線を形成する演算手段を備える。
[0058] はじめに、図 1〜図 10を用いて、特徴線としてサーキユラ一ハイライト線を求める構 成について説明する。サーキユラ一ハイライト線は、円環状光源から光が評価対象で ある形状の表面上に照射される光によって形成されるラインである。本発明の形状評 価装置の演算手段は、このサーキユラーノ、イライト線の算出を、物理現象と同様に、 円環状光源カゝら放射される光が曲面に到達する位置を検出することで行うのではな ぐ逆に、評価対象である形状の曲面上にある複数の点における法線を考慮し、これ ら複数の法線の内でその延長上において円環状光源との距離が最小 (零あるいは 極小)となる法線を検出し、この法線が通る曲面上の複数の点によりサーキユラーハ イライト線を算出するものである。 [0059] 円環状光源側から曲面上のサーキユラーノ、イライト線の点を検出するには、例えば Runge— Kutta法のような数値積分法による数値計算を利用するため、計算速度や計 算の安定性の点で問題がある。本発明では、複数の法線の内でその延長上におい て円環状光源と接する法線を検出し、この法線が通る曲面上の点によりサーキユラ一 ノ、イライト線を算出する。この算出の演算自体は、直線と 3次元空間上で任意に設定 した円環状光源に対応する円との最短距離を算出する処理に相当し、この演算は結 局は 4次方程式を解くことに帰着する。 4次方程式は、解析解が存在することが知ら れているため、この演算手段は、単にこの解析解に数値を代入して計算する演算で すむ。そのため、従来の数値積分法による数値計算と比較して短い時間で演算を行 うことができる。
[0060] 以下では、自由曲面(free-form surface)である曲面 rをパラメトリック曲面を用いて 表現するものとし、ノラメトリック曲面表現及びベクトルについては符号の後に" * "の 記号を付して示す。
[0061] 演算手段 2は、曲面 r*上の点を通る法線方向のベクトル E*の中で、円環状光源と 同径 (R)で中心及び向き (A*)を同じくする三次元空間上の円 L*との距離 dを所定 範囲内とするベクトル E*を検出し、そのベクトル E*が曲面 r*上を通る点をサーキユラ 一ハイライト線が通る点として求める。
[0062] パラメトリック曲面(parametric surface)は、形状を複数の曲面要素に分割し、曲面 要素どうしを滑らかに接続することで表現するもので、パラメトリック曲面上の一点は ノ ラメータ u,v(0≤u,v≤ 1)によるパラメータ空間から 3次元実空間への写像として定 義される。パラメトリック曲面としては、例えば Coons曲面、 Bezier曲面、 NURBS (Non Uniform Rational B- Spline)等が知られている。
[0063] この演算手段 2は、円 L*と法線ベクトル E*との距離を表す距離ベクトル d *を求める 距離ベクトル演算部 2aと、距離ベクトル d*カゝら距離関数を求める距離関数部 2bと、 距離関数の値が所定値となる曲面 r*上の点を求める距離関数演算部 2cを備える。
[0064] 本発明の形状評価装置は、演算手段 2に評価対象である曲面 r* (U,v)と円環状光 源に相当する円 L*等の演算条件を入力する入力手段 1と、演算手段 2で得られた特 徴線であるサーキユラ一ハイライト線のイメージを 3次元空間に表示するためのマツピ ング処理手段 3と、表示手段 4とを備える。
[0065] なお、この形状評価装置を備えた CAD装置や CAM装置は、通常の CAD装置や CAM装置の形状評価装置を接続して形状データの授受を行う構成のほか、 CAD 装置や CAM装置が備える形状データの処理手段に前記した演算の機能を付加さ せたり、前記演算を行わせるプログラムを付加することで実現することができる。
[0066] 表示手段 4は、評価対象である形状の表面に、特徴線であるサーキユラ一ハイライ ト線を重ねて 3次元画像で表示する。ユーザーは、表示された 3次元画像によって、 曲面の状態を観察し評価することができる。
[0067] 次に、本発明の形状評価の特徴線を形成する演算について、図 2の概略説明図、 図 3のフローチャート、図 4のサーキユラ一ハイライト線の定義を説明するための図、 図 5の距離ベクトルの定義を説明するための図、図 6〜8の 4次式の解析解を説明す るための図を用いて説明する。なお、図 2中の(S)の符号は、図 3のフローチャート中 の(S)の符号と対応して示して 、る。
[0068] 図 2は、本発明の形状評価が求める特徴線の一例であるサーキユラ一ハイライト線 11を示している。図 2は、 3次元の実空間にある円環状光源(図 2中の円 Lが相当し ている)から、同じく実空間にある評価面 10に光が照射されて形成されるサーキユラ 一ハイライト線 11を、演算によってシミュレートして求める手順の概略を示している。
[0069] 実空間にある評価面 10は、評価面 r (u,v)のパラメトリック曲面表現で表される。この 評価面 r (u,v)は、入力手段 1から入力する他、図示しない記憶手段から読み込んだ り、あるいは、別形式で表現された形状データをパラメトリック曲面表現にデータ変換 して得ることがでさる。
[0070] 本発明の形状評価では、評価対象である形状の曲面 (評価面 10)上にある複数の 点における法線 E*の延長上において、円環状光源(円 L*)との距離 dが最小となる 法線 E*を検出し、検出された複数の法線 E*が通る曲面上の複数の点によりサーキ ユラ一ハイライト線を求める(図 2の左方部分参照)。
[0071] サーキユラーノ、イライト線をシミュレートにより演算で求めるために、 uvパラメータ空 間(図 2中の一点鎖線で示す)において、評価面 r上の各点 Qについて円環状光源と の距離ベクトル d* (u,v)を求め、この距離ベクトル d* (u,v)から距離 ds (u,v)を求め、距 離 ds (u,v)が最小となる点 Qを求める演算を行う(図 2の右方部分参照)。
[0072] このパラメトリック曲面(NURBS曲面)で表された評価面 r*(u,v)においてパラメータ u , v(0≤u,v≤l)を設定することで、評価面 r*(u,v)上の点 Q*(u,v)を選択する。この点 Q*の選択は、実空間の評価面 10の表面上における点を選択することに対応する(S Do
[0073] サーキユラーノ、イライト線は、円環状光源 L*と法線 N*の延長線 E*との間の距離 d が零となるような曲面上の点の集まりとして定義することができる。図 4はサーキユラ一 ノ、イライト線を説明するための図である。
[0074] ここで、円環状光源に対応する円 L*をパラメトリック曲面表現で表すと式(1)で示す ことができる。
L*( Θ ) =A*+R(cos Θ n*+sin Θ b*)
[0075] なお、 A*, Rは円環状光源を表す円の中心位置及び半径であり、互いに直交する 単位ベクトル n*と b*は円環状光源を含む面上に存在する。ベクトル n*と b*は単位べ タトル t*(=n*Xb*)を形成する。この単位ベクトル t*は円環状光源を含む面に対して 垂直である。
[0076] ベクトル E*は、評価面 r* (u,v)上の点 Q*における単位法線ベクトル N*を延長したも のであり、以下の式(2)で表される。
E*(T)=Q*+ τΝ* ---(2)
[0077] ここで、 τはパラメータであり、単位法線ベクトル Ν*は以下の式(3)で表される。
N* (u,v) = (ru* (u,v) X rv* u,v) )/ | ru* {u,v) X rv* (u,v) | ··· (3)
[0078] 選択した点 Q*につ 、て、以下の (S2)〜(S4)によって距離ベクトル d* (u,v)を求める
[0079] 図 5は距離ベクトルの定義を説明するための図である。図 5において、延長した法 線ベクトル E*から円 L*( 0 )への距離ベクトル d*は以下の式 (4)で表される。
d*=A*+R(cos Θ n* + sin Θ b*) (Q*+ τ N*) …(4)
[0080] ここで自乗距離関数 Dを以下の式 (5)
D( τ , θ ) =d*-d*
= I (A*+R(cos Θ n* + sin Θ b*)) - (Q*+ τ N*) | 2 "-(5) で表し、最小距離について考慮すると、以下式 (6)の偏微分式 Dで表される極値条 件を満たす必要がある。
ϋ τ ( τ , Θ ) =Ό Θ ( τ , θ ) =0 ·'·(6)
[0081] この条件は、式(5)を用いて以下の式(7) , (8)で書き表すことができる。
(A*-Q*) -N*+R(cos Θ n*-N* + sin Θ b*-N*) = τ …(7)
(A*-Q*- τ Ν*) · (cos θ b*— sin θ η*) =0 …(8)
[0082] マトリックス形式では以下の式(9)で表される。
[数 1]
Rn*-N* Rb*-N* て— (A*— Q*)-N*
(A*—Q*— r N*) ( N*— A*+Q*)-n*
Figure imgf000017_0001
… )
[0083] 上記式をクラメルの法則を用いて解くと、
cos Θ = ( ( τ - (A*-Q*) ·Ν*) ( τ N*-A* + Q*) ·η*) /Det
sin 0 = (( τ - (A*-Q*) ·Ν*) ( τ N*-A* + Q*) -b*)/Det "-(10) が得られる。
[0084] なお、 Detはマトリックスの式(9)から以下の式(11)で与えられる。
Det=R(n*-N*) (Q*+ τ Ν*— Α*) ·η*
+R(b*-N*) (Q*+ τ N*-A*) -b* ー(11)
[0085] ここで、
B*=A*— Q*, =η*·Ν*, β =b*-N*, y =Β*·η*, δ =B*-b*, ε =
-(12)
とすると、式(11)は以下の式(13)に書き直すことができる。
Det=Ra (α τ - γ) +Κβ (β τ - δ ) ·'·(13)
[0086] 式(12)を用いて、式(10)を以下の式(14)の拘束条件を適用させると、
cos2 Θ + sin2 Θ = 1 ---(14)
てに関する式(15)が得られる。
c τ +c τ +c τ +c τ +c =0 (15)
4 3 2 1 0 [0087] なお、係数 c , c , c , c , cは以下の式(16)〜(20)で表される。
4 3 2 1 0
c = α2+ β2 ---(16)
4
c =-2((α y + β δ)+(α2+ β2) ε ) ·'·(17)
3 c =(α2+ |82) ε 2 + 4 ε (a y + β δ ) + ( γ 2+ δ 2) -R2( α 2+ j82) 2
2
•••(18)
c =-2((α y + β δ) ε 2+(γ2+ δ2) ε
-R2(a2+ j82) (α γ + β δ)) 〜(19)
ο =(γ2+ δ2) £ 2-R2(a y + j8 δ )2 ·'·(20)
0
[0088] したがって、パラメータては 4次式を解くことで求めることができる。パラメトリック曲面 r* (u,v)上の点 Q* (u,v)に対して、式( 15)を解くことで τを求め、式( 10)から cos θ , sin Θを求め、式 (4)から距離ベクトル d*を求める。 Detが零でない場合には、パラメ一 タてを解く 4次式は解析解を有しているため、この解析解によって距離ベクトル d*を 求めることができる。
[0089] ここで、図 6, 7は 4次式の典型的な解によるパラメータてを説明するための図である
。図 6は 4次式の解が 4つの実根 τ 1〜 τ 4を有する場合であり、図 7は 4次式の解が 2 つの実根 τ 1, τ 2と 2つの虚根を有する場合である。
[0090] 最小距離となる距離ベクトルは、これらの複数の実根の内で距離力 、さい方を選択 することで求めることができる。
[0091] なお、 Detが零となるのは、図 8に示すように 4つの場合がある。
[0092] 第 1の場合は、 N*が t*と平行となる場合である(図 8(a))。この場合には、 3次元で の直線と円の距離は 2次元での距離に書き替えられ、このときの距離ベクトル d*は以 下の式(21)で表される。
d*=A*- (Q*+ τ Ν*) (A*- (Q*+ τ N*))R/ | A*- (Q*+ τ N*) |
= (A*- (Q*+ τΝ*)) (1 RZ I A*- (Q*+ τ N*) | )
ー(21)
なお、 τ = ε = (A*-Q*) ·Ν*である。
[0093] 第 2の場合は、 Ν*が t*と交差し、 Q*+ τ Ν*=Α*+ ξ t*で表される場合である(図 8(b))。この場合には、 4次式は以下の式(22)で表される。
( τ - τ )2( τ - ε ~R^~ (α2+ β2)) ( τ - ε +R^~ (α2+ β2)) =0
D
-(22)
ここで、 τ = γ/α = δ/ βである。
D
[0094] したがって、この場合には根は τ 1= ε +R 2+ j82), τ 2= ε R 2 + β2)
であり、図 8(b)において重根 τ 3= τ 4= τ である。
D
[0095] 第 3の場合は、 N*が t*と垂直となる場合である(図 8 (c) )。この場合には、 ひ 2+ |82
=1, α γ + β δ = εであり、 Det=R( r— ε )となり、 4次式は以下の式(23)で表 される。
( τ - ε )2((α τ - Ύ)2+(β τ δ)2— R2)=0 …(23)
τ = εの場合には、 Det = 0となるが重根は前記式 (6)を満足する。
[0096] 第 4の場合は、 N*が A*を通過する場合である(図 8 (d) )。この場合には、 γ = ε α
、 δ = ε j8であるので、 Det=R 2+ j82) ( T ε )となり、 4次式は以下の式(22) で表され、前記した第 2の場合と同様となる。
[0097] したがって、距離ベクトル d* (u,v)は前記式 (4)によって表される。距離ベクトル d*が 最小距離をとる極値条件 (式 (6))を満足するパラメータてを求める (S2)。また、前記 式(11)の Detを求めて (S3)、前記式(10)で表される cos θ , sin 0を求める(S4)。
[0098] 前記 (S2)〜(S4)の工程で求めたパラメータ τ , Det, cos θ , sin Θを用いて、式(4)の 距離ベクトル d* (u,v)を求める(S5)。この距離ベクトル d* (u,v)を、評価面 r* (u,v)上 の全点 Q*(u,v)について求める (S6)。
[0099] 図 2中の距離ベクトル d* (u,v)は、上記工程(S5) , (S6)で求めた距離ベクトルを uvパ ラメータ空間にお 、てマトリックスで表して 、る。
[0100] 次に、(S7)〜(S11)の工程により距離ベクトル d*(u,v)力も最小距離となる評価面上 の点を求める。
[0101] (u,v)のパラメータを設定することで距離ベクトル d* (u,v)を選択し (S7)、選択した距 離ベクトル d*の大きさ(距離)を求める。距離ベクトル d*の大きさは以下の式(24)に 示す符号付き距離関数 ds (u,v)によって評価する。 ds (u,v) = (A*+R(cos Θ n* + sin Θ b*) ) - (Q*(u,v) + τ N* (u,v) ) ) - (N(u,v) XdL*(0)/d0)/ I N(u,v) XdL*(0)/d0 | "-(24)
[0102] 式 (24)にお!/、て、 (N (u,v) XdL*(0)/d0)/ | N (u,v) X dL* ( Θ ) /d θ |は、距 離ベクトル d*と同方向単位ベクトルであり、 dL*(0)/d0は以下の式(25)で示される ように円 L*の微分である。
dL( θ )/άθ =R(-sin0n*+cos0b*) ·'·(25)
[0103] なお、上記式は、 d*'N*=0、 d*-dL*( θ)/άθ =0であり、スカラー積の定義から 得られる(N*XdL*( θ)/άθ) ·Ν* = 0、 (N*XdL*( θ)/άθ) -dL*( θ )/άθ =0の 関係から、距離ベクトル d*は(N (u,v) XdL*(0)/d0)と平行である。
[0104] サーキユラーノ、イライト線は、符号付き距離関数 ds (u,v)を演算し (S8)、その値が設 定値以下となるようなパラメータ (u, V)を求め (S9,S10,S11)、求めたパラメータ (u, V) を用いて実空間で評価面上の点 Qを求め、これら点 Qの集まりから求める (S12)。
[0105] なお、図 2において、(S8)の工程のマトリックスは、点の径によって符号付き距離関 数 ds(u,v)の大きさを概略的に示し、また、(S10)の工程のマトリックスは、符号付き距 離関数 ds (u,v)が設定値以下であるパラメータ (u, V)を概略的に示して 、る。
[0106] 符号付き距離関数 ds (u,v)の大きさは距離べ外ル d*と円環状光源との距離を示す ものであり、この距離が" 0"となるような評価面上の点はサーキユラ一ハイライト線上の 点となる。
[0107] (S9)の工程において、設定値を" 0"に設定した場合には、パラメータ (u,v)の設定 精度によって符号付き距離関数 ds (u,v)の大きさが必ずしも" 0"とならないため、符号 付き距離関数 ds (u,v)の大きさが実質的に" 0"と見なせる設定値を選択する。
[0108] また、設定値について上限値 ds= と下限値 ds=— を設定することによって、サ ーキユラ一ハイライト線を約 2 の幅を持つバンドとして求めることもできる。
[0109] 図 9は符号付き距離関数 ds (u,v)の演算例を示している。図 9において、メッシュ形 状は符号付き距離関数 ds (u,v)の u,vパラメータ空間における大きさを基準位置から の変位として示す。
[0110] このメッシュ形状において、設定値 =0の面を求めることでサーキユラ一ハイライト 線を求めることができ、設定値 p =0.1, -0. 1の 2面を求めることでサーキユラ一反 射線のバンドを求めることができる。
[0111] 演算時間 Tは、 u,vパラメータの各点における距離ベクトル d*の演算時間 Tl、距離 ベクトル d*の大きさを求める演算時間 Τ2、サーキユラ一ハイライト線を 3次元実空間 にマッピングする時間 Τ3を含み、いずれの時間も u,vパラメータ空間において演算を 行う格子点数に依存する。
[0112] 上記演算時間において、距離ベクトル d*の大きさを求める演算時間 T2は 4次式の 解析解についての数値を求める演算であるため、図 10において、実線は本発明の サーキユラ一ハイライト線の場合を示し、破線は従来の直線状光源によるハイライト線 の場合を示している。ノ、イライト線の場合には、異なる方向のハイライト線についても 求める必要があるため、図 10中の演算時間の少なくとも 2倍を要することになり、トー タルの所要時間ではサーキユラーノ、イライト線よりも長時間を要する。
[0113] 次に、図 11〜図 13を用いて、特徴線としてサーキユラ一反射線を求める構成につ いて説明する。サーキユラ一反射線は、円環状光源から光が評価対象である形状の 曲面上で反射し、視点位置で観察される際に、曲面上に形成される反射ラインであ る。
[0114] サーキユラ一反射線は、曲面上の点について、その点における法線方向に対して、 その点力 視点へのベクトル方向と対称の方向のベクトルと円との距離を算出し、算 出した距離に基づ!/、て形成する。
[0115] 本発明の形状評価装置の演算手段は、このサーキユラ一反射線の算出を、物理現 象と同様に、円環状光源力も放射される光が曲面で反射して視点に到達する際に曲 面上の点を検出することで行うのではなぐ逆に、評価対象である形状の曲面上にあ る複数の点における法線を考慮し、これら複数の法線に対して、その点から視点へ のベクトル方向と対称の方向のベクトルを前記したサーキユラ一ハイライト線における 法線に対応させ、このベクトルと円との距離が最小 (零あるいは極小)となるベクトルを 検出し、このベクトルが通る曲面上の複数の点によりサーキユラ一反射線を算出する ものである。
[0116] 図 11は、本発明の形状評価方法及び形状評価装置の概略構成を説明するための 図である。 [0117] 本発明の形状評価装置は、円環状光源力 の光が評価対象の曲面上で反射する 点を、曲面上の点の中から抽出することで特徴線を形成する演算手段 22を備える。
[0118] 演算手段 22は、評価面上の点 Q*から視点 E*へのベクトル e*、及び点 Q*から法線 ベクトル N*に対して対称で円 L*方向に向力うベクトル c*を求めるベクトル演算部 22a と、円 L*とベクトル c*との距離を表す距離ベクトル d*を求める距離ベクトル演算部 22 bと、距離ベクトル d*力 距離関数を求める距離関数部 22cと、距離関数の値が所定 値となる曲面 r*上の点を求める距離関数演算部 22dを備える。
[0119] また、サーキユラ一反射線を求める形状評価装置は、前記図 1で示した構成と同様 に、演算手段 2に評価対象である曲面 r* (u,v)と円環状光源に相当する円 L*等の演 算条件を入力する入力手段 21と、演算手段 22で得られた特徴線であるサーキユラ 一反射線のイメージを 3次元空間に表示するためのマッピング処理手段 23と、表示 手段 24とを備える。
[0120] 表示手段 24は、評価対象である形状の表面に特徴線であるサーキユラ一反射線を 重ねて 3次元画像で表示する。ユーザーは、表示された 3次元画像によって、曲面の 状態を観察し評価することができる。
[0121] なお、この形状評価装置を備えた CAD装置や CAM装置についても、通常の CA D装置や CAM装置の形状評価装置を接続して形状データの授受を行う構成のほか 、CAD装置や CAM装置が備える形状データの処理手段に前記した演算の機能を 付加させたり、前記演算を行わせるプログラムを付加することで実現することができる
[0122] 図 12は、サーキユラ一反射線の定義を説明するための図である。図 12において、 入射角と反射角の関係により、視点ベクトル e*と曲面の法線ベクトル N*と反射べタト ル c*の関係は、 e*と N*間の角度、また N*と c*間の角度を αとすると、次式(26)〜(2 8)で表すことができる。
c*-N* (u,v) =cos
c*' e*、u,v) =cos2
I c* I = 1 ー(26)
[0123] ここで、反射ベクトル c*は (L*(0)-Q(u,v))/ I L*(0)-Q(u,v) I
で表される単位ベクトルであり、
視点ベクトル e*は
(E*(0)-Q(u,v))/ | E*(0)-Q(u,v) I
で表される単位ベクトルである。
[0124] また、 cos aは視点ベクトルと曲面の法線ベクトルとの関係力も求めることができる。
[0125] 上記式から反射ベクトル c*を求め、サーキユラ一ハイライト線の法線ベクトル N*を反 射ベクトル c*に置き換えることにより、サーキユラ一反射線を計算する。
[0126] つまり、サーキユラ一ハイライト線は曲面の法線ベクトルと円環状光源との距離が" 0 "である点の集まりにより形成するのに対して、サーキユラ一反射線は反射ベクトルと 円環状光源との距離が" 0"になる曲面上の点の集まりにより形成する。図 13は、視点 Eと曲面と円環状光源(同心円状の円環状光源を示す)との関係を示している。
[0127] なお、サーキユラ一反射線の演算時間は、サーキユラ一ハイライト線の演算時間と 比較して、反射ベクトルの演算に要する時間の差だけでありほぼ同様となる。
[0128] 図 14、図 15にサーキユラ一ハイライト線の一例を示す。図 14 (a)は楕円形状につ いて本発明のサーキユラーノ、イライト線による表示例であり、図 14(b)は楕円形状に ついて従来のハイライト線による表示例である。図 14の比較から、本発明のサーキュ ラーハイライト線によれば、曲面形状の状態をより詳細に観察することができる。
[0129] また、図 15 (a)は自動車のフードについて本発明のサーキユラ一ハイライト線による 表示例であり、図 15(b)は従来のノ、イライト線による表示例である。
[0130] この例では、 u=0.25, u=0.75, v=0.25, v= 0.75とする cubic B- Splineの iso- para metric line上に C2不連続面があり、サーキユラ一ハイライト線によれば、 u及び vの両 方向において、その C2不連続性を観察することができる。一方、図 15(b)のハイライ ト線では V方向についてのみ 2次の不連続性を観察することができる。なお、曲面が C 1連続であれば、サーキユラ一ハイライト線は C°連続となる。
[0131] なお、以下に 4次式の解析解は以下により求めることができる。(非特許文献 11)
[0132] 前記式(15)は以下の式(27)で表すことができる。
x4 + px2 + qx+r = 0 ·'·(27) [0133] なお、
x= τ +c /4c ---(28)
3 4
p=(-3c 2+8c c)/8c 2 ·' (29)
3 4 2 4
q= (c —4c c c +8c 2c )/8c 3 (30)
3 4 3 2 4 1 4
r= (一 3c 4 + 16c c 2c 64c 2c c +256c 3c )/256c (31)
3 4 3 2 4 3 1 4 0 4
である。
[0134] ここで、任意の yに対して
(x +y)2=x +2x2y+y2 ·' (32)
であり、式 (27)を用いて x4を除くと、
+y)' =— px2— qx— r+2x2y+y2
= (2y— p)x qx+、y— r) (33) となる。
[0135] 式(33)の右辺は xの判別式が零である場合には、
q2-4(2y-p) (y2-r) =0 ·· (34)
8y 3— 4py2 8ry + 4pr— q2 = 0 (35) となる。
[0136] ここで、 yを実根としたとき式(33)は
(x2+y )2=K2x2-2KLx+L2 (36) となる。
[0137] なお、ここで
K2 = 2y -p, L2=y 2—r, 2KL = q (37) である。
[0138] したがって、以下の 2式が得られ、
X2 Kx+y +L = 0, x2+Kx+y L = 0 (38) この根は
x=(K±^(K2— 4(y +L))/2
x=(—K±^(K2— 4(y -L))/2 (39) で表される。 [0139] 上記では、特徴線が時間的に変化しない静的形状によって形状評価を行う例を説 明したが、本発明は、特徴線が時間的に変化する動的形状によって形状評価を行う ことちでさる。
[0140] 次に、特徴線を時間的に変化させて動的形状によって形状評価を行う例について 、図 16〜図 26を用いて説明する。
[0141] なお、以下では、動的形状による形状評価として、円環状光源が 1つの場合を図 1 6〜図 19を用いて説明し、円環状光源が複数 (ここでは 2つ)の場合を図 20〜図 22 を用いて説明し、特徴線から表面形状の特徴的な部分を抽出する例を図 23、図 24 を用いて説明し、円環状光源の中心が移動する場合を図 25、図 26を用いて説明す る。
[0142] はじめに、円環状光源が 1つの場合における動的形状による形状評価を説明する 。図 16 (a)は、円の半径が時間と共に変化する円環状光源によって評価表面上に形 成されるサーキユラ一ハイライト線を示し、また、図 16 (b)は、円の半径が時間と共に 変化する円環状光源によって評価表面上に形成されるサーキユラ一反射線を示して いる。以下では、主に図 16 (a)のサーキユラ一ハイライト線について説明する。
[0143] ここで、前記したように、円環状光源の円 Lは中心 Aと径 Rで表される。動的形状は 、この径 Rの大きさを時間 tと共に変化させることで形成することができる。図 16 (a)に 示すサーキユラ一ハイライト線は、円環状光源の径 Rが時間 tと共に拡大した例を示し ている。なお、径 Rは、時間 tと共に縮小させる態様としてもよい。また、ここでは、時間 と共に複数のサーキユラ一ハイライト線を発生させ、各サーキユラ一ハイライト線がそ れぞれ時間 tと共に変化する例を示して 、る。
[0144] これによつて、評価者は、サーキユラ一ハイライト線が動的に変化する状態を観察 することができ、評価表面の評価が容易となる。また、複数のサーキユラ一ハイライト 線を動的に変化させることによって、評価表面の評価を容易とすることができる。
[0145] 図 16 (b)に示すサーキユラ一反射線の場合にも、サーキユラ一ハイライト線と同様 に、円環状光源の径 Rの大きさを時間 tと共に変化させることによって動的形状を形 成することができる。
[0146] 図 17は、円環状光源が 1つの場合における動的形状による形状評価の動作を説 明するフローチャートである。図 17のフローチャートにおいて、 Sl、 S2〜S12は前記図 3で説明した工程と同様であるため、ここでは、動的形状による形状評価の工程のみ について説明し、 S1〜S12の説明は省略する。
[0147] S1の工程によって実空間の評価面の表面上の点 Qを選択した後、円環状光源の円 Lの径 Rの初期値 R0を設定する。円 Lの径 Rは、この初期値 R0から時間 tと共に増加 あるいは減少する。また、径 Rの増減は必要に応じて繰り返すことができ、一方向に 増加あるいは減少し、所定の大きさに達した後あるいは所定時間が経過した後、初 期値に戻って繰り返す他、増カロと減少を繰り返しても良い。また、一様に増加あるい は減少する他に、予め定めたパターンで増減を行うようにしてもょ 、 (S100)。
[0148] S 100の工程で初期値 R0を定めた後、時間 t=0とした後(S101)、開始時に t=t+ 1 とし (S102)、径 Rを順に変化させる。ここでは、 R(t)=R0+ !^!;として !^を単位とし て変化させる。なお、 ARを単位とする Rの大きさの変化は一例であって、所定の関 数やテーブルを用いて任意の変化に設定してもよ 、 (S103)。
[0149] S103で径 Rの大きさを定めた後、前記した S2〜S12の工程によって、サーキユラーハ イライト線ある ヽはサーキユラ一反射線の特徴線を形成し、表示する。
[0150] 上記した特徴線の処理(S102,S103, S2〜S12)は、径 Rが所定の大きさ(ここでは Rm ax)になるまで、あるいは所定時間が経過するまで(ここでは tmax)行う (S104)。また、 前記したように、図 17に示す動作を複数回繰り返してもよ!/、。
[0151] また、図 17、図のフローチャートは、円環状光源で形成する特徴線が一つの場合 の動作を示しているが、複数の特徴線を形成するには、 S101で行う特徴線の形成の 開始時をずらしながら、図 17のフローチャートによる動作を並行して行う。これによつ て、複数の特徴線を発生させることができる。
[0152] 図 18、図 19は、一つの円環状光源により形成される特徴線の一例であり、 t=tl〜 t=t6における特徴線を示している。なお、図に示す複数の特徴線はシミュレーショ 結果に基づいて時間経過に沿って選択しているが、動的形状の状態を説明するた めに適宜抽出したものであるため、 tl〜t6の時間間隔は必ずしも一定ではない。図 18 (a)〜(c)は t=tl〜t=t3の特徴線を示し、図 19 (a)〜(c)は t=t4〜t=t6の特 徴線を示している。なお、図 18, 19において、上方には円環状光源の円 Lを示し、 下方には評価面上に表示した特徴線を示して 、る。
[0153] 次に、円環状光源が複数の場合を図 20〜図 22を用いて説明する。ここでは、複数 の円環状光源として 2つの円環状光源を例としている。図 20 (a)は、 2つの円環状光 源 Al, A2の円 LI, L2の半径が時間と共に変化し、これによつて評価表面上に 2つ のサーキユラ一ハイライト線が形成される例を示し、また、図 20 (b)は、同様に、 2つ の円環状光源の円の半径が時間と共に変化し、これによつて評価表面上に 2つのサ ーキユラ一反射線が形成される例を示している。以下では、主に図 20 (a)のサーキュ ラーハイライト線にっ 、て説明する。
[0154] 前記した図 16で説明したように、円環状光源 Al、 A2の円 LI, L2は中心 Al, A2 と径 Rl, R2で表される。動的形状は、この径 Rl, R2の大きさを時間 tと共に変化さ せることで形成する。図 20 (a)に示すサーキユラ一ハイライト線は、円環状光源 A1, A2の径 Rl, R2が時間 tと共に拡大した例を示している。
[0155] なお、前記した同様に、径 Rl, R2は時間 tと共に縮小させる態様としてもよい。また 、時間と共に複数のサーキユラーノ、イライト線を発生させ、各サーキユラ一ハイライト 線が時間 tと共にそれぞれ変化する例を示している。
[0156] これによつて、評価者は、複数の円環状光源によるサーキユラ一ハイライト線が動的 に変化する状態を観察することができ、評価表面の広い範囲の評価が容易となる。
[0157] 図 20 (b)に示すサーキユラ一反射線の場合にも、サーキユラ一ハイライト線と同様 に、円環状光源の径 Rの大きさを時間 tと共に変化させることによって動的形状を形 成することができる。
[0158] 図 21は複数の円環状光源による特徴線の表示例を示す図である。図 21 (a)〜図 2 1 (e)は 2つの円環状光源カゝらそれぞれ 1つの特徴線を形成し、各特徴線が時間変 化する例を示している。また、図 21 (f)〜図 21 (g)は 2つの円環状光源力もそれぞれ 2つの特徴線を形成し、各特徴線が時間変化する例を示して 、る。
[0159] 図 22は、複数の円環状光源の場合における動的形状による形状評価の動作を説 明するフローチャートである。図 22のフローチャートにおいて、 Sl、 S2〜S12は前記図 3で説明した工程と同様であるため、ここでは、動的形状による形状評価の工程のみ について説明し、 S1〜S12の説明は省略する。 [0160] SIの工程によって実空間の評価面の表面上の点 Qを選択した後、複数の円環状光 源の円 Lの中心 A(A1, A2, ···)を設定し (S200)、円環状光源の円 Lの径 Rの初期値 R0 (R10, R20、 ···)を設定する。円 Lの径 Rは、この初期値 R0から時間 tと共に増加 あるいは減少する。また、径 Rの増減は必要に応じて繰り返すことができ、一方向に 増加あるいは減少し、所定の大きさに達した後あるいは所定時間が経過した後、初 期値に戻って繰り返す他、増カロと減少を繰り返しても良い。また、一様に増加あるい は減少する他に、予め定めたパターンで増減を行うようにしてもょ 、 (S201)。
[0161] S201の工程で初期値 R0を定めた後、時間 t=0とした後(S202)、開始時に t=t+ 1 とし (S203)、径 Rを順に変化させる。ここでは、 R(t)=R0+ !^!;として !^を単位とし て変化させる。なお、 ARを単位とする Rの大きさの変化は一例であって、所定の関 数やテーブルを用いて任意の変化に設定してもよ ヽ(S204)。
[0162] S204で径 Rの大きさを定めた後、前記した S2〜S12の工程によって、サーキユラーハ イライト線ある ヽはサーキユラ一反射線の特徴線を形成し、表示する。
[0163] 上記した特徴線の処理(S203,S204, S2〜S12)は、径 Rが所定の大きさ(ここでは Rm ax)になるまで、あるいは所定時間が経過するまで(ここでは tmax)行う (S205)。また、 前記したように、図 22に示す動作を複数回繰り返してもよ 、。
[0164] また、図 22のフローチャートは、円環状光源で形成する特徴線が一つの場合の動 作を示しているが、複数の特徴線を形成するには、 S203で行う特徴線の形成の開始 時をずらしながら、図 22のフローチャートによる動作を並行して行う。これによつて、 複数の特徴線を発生させることができる。
[0165] 次に、特徴線から表面形状の特徴的な部分を抽出する例を図 23、図 24を用いて 説明する。表面形状には、湾曲半径が小さく不連続部分と見なせるような特徴的な 部分が含まれることがある。このような特徴的な部分は、特徴線の静的形状や動的形 状を表示することで観察することができるが、この特徴的な部分を抽出することでより 明確に表示することができる。
[0166] ここでは、特徴線が動的に変化する間において、各時点での不連続点を検出し、こ の不連続点を連結することで特徴的な部分を抽出して、連結線を形成する。図 23 (a )〜図 23 (d)は、連結線の形成を時間的変化で示している。図 23 (b)において、時 間 t = t2の特徴線から不連続点 M 1 ,Ν 1を抽出し、この不連続点 Μ 1 ,Ν 1を結ぶ連結 線 K1を形成する。図 23 (c)において、時間 t=t3の特徴線力も不連続点 Μ2,Ν2を 抽出し、この不連続点 ΜΙ,ΝΙ, Μ2,Ν2を結ぶ連結線 Κ2を形成する。図 23 (d)にお いて、時間 t=t4の特徴線力 不連続点 Μ3,Ν3を抽出し、この不連続点 ΜΙ,ΝΙ, Μ2,Ν2, Μ3,Ν3を結ぶ連結線 Κ3を形成する。
[0167] なお、各不連続点間の点は内挿によって求め、また不連続点の外側については外 挿によって求めることができる。
[0168] 図 24は、特徴線から表面形状の特徴的な部分を抽出する動作を説明するフロー チャートである。図 24のフローチャートにおいて、 Sl、 S2〜S12は前記図 3で説明した 工程と同様であるため、ここでは、動的形状による形状評価の工程のみについて説 明し、 S1〜S12の説明は省略する。
[0169] S1の工程によって実空間の評価面の表面上の点 Qを選択した後、複数の円環状光 源の円 Lの中心 A(A1, A2, · · · )を設定し (S300)、円環状光源の円 Lの径 Rの初期値 R0 (R10, R20、 ···)を設定する。円 Lの径 Rは、この初期値 R0から時間 tと共に増加 あるいは減少する。また、径 Rの増減は必要に応じて繰り返すことができ、一方向に 増加あるいは減少し、所定の大きさに達した後あるいは所定時間が経過した後、初 期値に戻って繰り返す他、増カロと減少を繰り返しても良い。また、一様に増加あるい は減少する他に、予め定めたパターンで増減を行うようにしてもょ 、 (S301)。
[0170] S301の工程で初期値 R0を定めた後、時間 t=0とした後(S302)、開始時に t=t+ 1 とし (S303)、径 Rを順に変化させる。ここでは、 R(t)=R0+ !^!;として !^を単位とし て変化させる。なお、 ARを単位とする Rの大きさの変化は一例であって、所定の関 数やテーブルを用いて任意の変化に設定してもよ ヽ(S304)。
[0171] S304で径 Rの大きさを定めた後、前記した S2〜S12の工程によって、サーキユラーハ イライト線ある ヽはサーキユラ一反射線の特徴線を形成し、表示する。
[0172] 求めた特徴線にっ 、て不連続点を求める。不連続点は、例えば、特徴線の折れや ズレの位置を求めることで求めることができる (S305)。求めた不連続点を記憶手段に 記憶し (S306)、これら不連続点を繋ぐ連結線を形成する (S307)。形成した連結線を表 示する (S308)。 [0173] 上記した特徴線の処理(S203,S204, S2〜S12)は、径 Rが所定の大きさ(ここでは Rm ax)になるまで、あるいは所定時間が経過するまで(ここでは tmax)行う (S205)。また、 前記したように、図 24に示す動作を複数回繰り返してもよ!/、。
[0174] また、図 24のフローチャートは、円環状光源で形成する特徴線が一つの場合の動 作を示しているが、複数の特徴線を形成するには、 S303で行う特徴線の形成の開始 時をずらしながら、図 24のフローチャートによる動作を並行して行う。これによつて、 複数の特徴線を発生させることができる。
[0175] 次に、円環状光源の中心が移動する場合を図 25、図 26を用いて説明する。前記し た例は円環状光源の中心を固定して行つているが、円環状光源の中心を移動させる 態様としてもよい。なお、この円環状光源の中心の移動軌跡は、直線に限らず任意 の曲線としても良い。
[0176] なお、円環状光源の移動による特徴線の形成は、同じ円環状光源が時間と共に移 動する態様や、複数の円環状光源の発生位置が時間と共に移動する態様がある。
[0177] 以下では、複数の円環状光源の発生位置が時間と共に移動する態様について説 明する。図 25は、円環状光源の中心が時間と共に移動する状態を示している。図 25 (a)は t=tlにおいて円環状光源 A1による特徴線の形成が開始される状態を示して いる。円環状光源 A1の中心位置自体は、時間変化にかかわらず同一位置にあり、こ の円環状光源 A1によって形成される特徴線は時間と共に変化する。
[0178] 図 25 (b)は t=t2において円環状光源 A2による特徴線の形成が開始される状態を 示している。円環状光源 A2で形成される特徴線の他に、 t=tlで形成が開始された 円環状光源 A1の特徴線も表示される。このとき、円環状光源 A1で形成される特徴 線は経過時間分だけ変化して 、る。
[0179] 図 25 (c)は t=t3において円環状光源 A3による特徴線の形成が開始される状態を 示している。円環状光源 A3で形成される特徴線の他に、 t=tlで形成が開始された 円環状光源 A1の特徴線、及び t = t2で形成が開始された円環状光源 A2の特徴線 も同時に表示される。このとき、円環状光源 Al, A2で形成される各特徴線は、それ ぞれ経過時間分だけ変化している。この態様によれば、広範囲の評価面についての 評価が可能となる。 [0180] 図 26は、円環状光源の中心を移動する動作を説明するフローチャートである。図 2 6のフローチャートにおいて、 Sl、 S2〜S12は前記図 3で説明した工程と同様であるた め、ここでは、動的形状による形状評価の工程のみについて説明し、 S1〜S12の説明 は省略する。
[0181] S1の工程によって実空間の評価面の表面上の点 Qを選択した後、複数の円環状光 源の円 Lの中心 A(A1, A2, · ··)を設定し (S400)、円環状光源の円 Lの径 Rの初期値 R0 (R10, R20、 ···)を設定する。円 Lの径 Rは、この初期値 R0から時間 tと共に増加 あるいは減少する。また、径 Rの増減は必要に応じて繰り返すことができ、一方向に 増加あるいは減少し、所定の大きさに達した後あるいは所定時間が経過した後、初 期値に戻って繰り返す他、増カロと減少を繰り返しても良い。また、一様に増加あるい は減少する他に、予め定めたパターンで増減を行うようにしてもょ ヽ(S401)。
[0182] S401の工程で初期値 R0を定めた後、時間 T=0として、円環状光源の第 1の中心 A 1を読み出し (S402)、T=T+ 1として円環状光源の中心移動の動作を開始する (S403 )。
[0183] 次に、時間 t=0とした後(S404)、 t=t+ 1として特徴線の変化を開始して(S405)、 径 Rを順に変化させる。ここでは、 R(t)=R0+ AR'tとして ARを単位として変化させ る。なお、 ARを単位とする Rの大きさの変化は一例であって、所定の関数やテープ ルを用いて任意の変化に設定してもよ 、 (S406)。
[0184] S406で径 Rの大きさを定めた後、前記した S2〜S12の工程によって、サーキユラーハ イライト線ある 、はサーキユラ一反射線の特徴線を形成し、表示する (S407)。
[0185] 円環状光源の中心移動を定める時間 Tが所定時間 ΔΤを経過したとき (S408)、 S40 2に戻って、第 2の中心位置 A2を読み出し、次の円環状光源による特徴線の形成を 行う。 S408において、時間 Tが所定時間 ΔΤを経過していない間は、径 Rが所定の大 きさ(ここでは Rmax)になるまで、あるいは所定時間が経過するまで(ここでは tmax)、 上記した特徴線の処理(S203,S204, S2〜S12)を行う (S409)。
[0186] また、図 26のフローチャートは、円環状光源で形成する特徴線が一つの場合の動 作を示しているが、複数の特徴線を形成するには、 S404で行う特徴線の形成の開始 時をずらしながら、図 26のフローチャートによる動作を並行して行う。これによつて、 複数の特徴線を発生させることができる。
産業上の利用可能性
本発明は、形状設定、形状加工等の形状評価を利用する任意の分野に適用する ことができ、特にリアルタイム処理が求められる処理に好適である。

Claims

請求の範囲
[1] 形状の曲面を特徴線によって評価する形状評価方法であって、
前記特徴線は、三次元空間上で任意の向きにある円環状光源が当該曲面上に形 成するサーキユラ一ハイライト線又はサーキユラ一反射線であることを特徴とする形状 評価方法。
[2] 前記特徴線は、前記円環状光源からの光が当該曲面上を照射又は反射する点を 、当該曲面上の点の中から演算により抽出して形成することを特徴とする、請求項 1 に記載の形状評価方法。
[3] 前記演算は、前記曲面上の点を通る所定方向のベクトルの中で、前記円環状光源 と同径で位置及び向きを同じくする三次元空間上の円との距離を所定範囲内とする ベクトルが曲面上を通る点を求めることを特徴とする、請求項 1に記載の形状評価方 法。
[4] 前記演算は、
前記円と前記ベクトルとの距離を表す距離ベクトルを求め、
前記距離ベクトルカゝら距離関数を求め、
前記距離関数の値が所定値となる前記曲面上の点を求めることを特徴とする、請 求項 3に記載の形状評価方法。
[5] 前記特徴線がサーキユラ一ハイライト線であるときには、
前記ベクトルの所定方向は当該べクトルが通る曲面上の点における法線方向であ ることを特徴とする、請求項 3又は 4に記載の形状評価方法。
[6] 前記特徴線がサーキユラ一反射線であるときには、
前記ベクトルの所定方向は、当該ベクトルが通る曲面上の点における法線に対して 、当該点力も視点へのベクトル方向と対称の方向であることを特徴とする、請求項 3 又は 4に記載の形状評価方法。
[7] 前記特徴線は曲線又はバンドであり、
前記曲線は、前記ベクトルと前記円環との距離を零とする点により形成される 1本の 曲線であり、
前記バンドは、前記ベクトルと前記円との距離を所定範囲の上限値及び下限値と する点により形成される 2本の曲線によって挟まれることを特徴とする、請求項 3乃至
6の何れかひとつに記載の形状評価方法。
[8] 前記円の中心及び Z又は半径を時間的に変化させることを特徴とする請求項 3乃 至 7の何れか一つに記載の形状評価方法。
[9] 前記円を複数有し、前記特徴線を複数形成することを特徴とする請求項 3乃至 8の 何れか一つに記載の形状評価方法。
[10] 前記円を複数有し、当該円の中心及び Z又は半径を時間的に変化させ、
各時点における特徴線の不連続点を時間順に繋ぐ連結線を形成することを特徴と する請求項 3乃至 7の何れか一つに記載の形状評価方法。
[11] 前記演算は、前記距離関数の微分式力 得られる四次方程式の解析解であること を特徴とする請求項 3乃至 10の何れか一つに記載の形状評価方法。
[12] 形状の曲面を特徴線によって評価する形状評価装置であって、
前記特徴線は、三次元空間上で任意の向きにある円環状光源が当該曲面上に形 成するサーキユラ一ハイライト線又はサーキユラ一反射線であることを特徴とする形状 評価装置。
[13] 前記円環状光源力 の光が当該曲面上を照射又は反射する点を当該曲面上の点 の中から抽出して特徴線を形成する演算手段を備えることを特徴とする請求項 12〖こ 記載の形状評価装置。
[14] 前記演算手段は、前記曲面上の点を通る所定方向のベクトルの中で、前記円環状 光源と同径で位置及び向きを同じくする三次元空間上の円との距離を所定範囲内と するベクトルが曲面上を通る点を求めることを特徴とする、請求項 12に記載の形状評 価装置。
[15] 前記演算手段は、
前記円と前記べ外ルとの距離を表す距離べ外ルを求める距離べ外ル演算部と、 前記距離ベクトルから距離関数を求める距離関数部と、
前記距離関数の値が所定値となる前記曲面上の点を求める距離関数演算部と、 を備えることを特徴とする、請求項 14に記載の形状評価装置。
[16] 前記演算手段の距離ベクトル演算部は、 前記ベクトルの所定方向を当該ベクトルが通る曲面上の点における法線方向として
、サーキユラーノ、イライト線を形成する点を求めることを特徴とする、請求項 14又は 1 5に記載の形状評価装置。
[17] 前記演算手段の距離ベクトル演算部は、
前記ベクトルの所定方向を当該ベクトルが通る曲面上の点における法線に対して、 当該点から視点へのベクトル方向と対称の方向として、サーキユラ一反射線を形成す る点を求めることを特徴とする、請求項 14又は 15に記載の形状評価装置。
[18] 前記演算手段の距離関数演算部は、
前記ベクトルと前記円との距離を零とする点を求めて 1本の曲線を形成し、又は 前記ベクトルと前記円との距離を所定範囲の上限値及び下限値とする点を求めて 2本の曲線を形成し、当該曲線間で挟むバンドを形成することを特徴とする、請求項 14乃至 17の何れか一つに記載の形状評価装置。
[19] 前記演算手段は、前記円の中心及び Z又は半径を時間的に変化させ、時間的に 変化する特徴線を形成することを特徴とする、請求項 14乃至 18の何れか一つに記 載の形状評価装置。
[20] 前記演算手段は、前記円を複数有し、前記特徴線を複数形成することを特徴とす る請求項 14乃至 19の何れか一つに記載の形状評価装置。
[21] 前記演算手段は、前記円を複数有し、当該円の中心及び Z又は半径を時間的に 変化させ、
各時点における特徴線の不連続点を時間順に繋ぐ連結線を形成することを特徴と する請求項 14乃至 18の何れか一つに記載の形状評価装置。
[22] 前記演算手段の距離関数演算部は、前記距離関数の微分式から得られる四次方 程式の解析解を演算することを特徴とする請求項 15乃至 21の何れか一つに記載の 形状評価装置。
[23] コンピュータに形状曲面の特徴線を形成させる演算を実行させるプログラムを記録 したプログラム媒体であって、
前記特徴線は、三次元空間上で任意の向きにある円環状光源が当該曲面上に形 成するサーキユラ一ハイライト線又はサーキユラ一反射線であり、 前記演算は、前記円環状光源からの光が当該曲面上を照射又は反射する点を、 当該曲面上の点の中から抽出することを特徴とするプログラム媒体。
[24] 前記演算は、前記曲面上の点を通る所定方向のベクトルの中で、前記円環状光源 と同径で位置及び向きを同じくする三次元空間上の円との距離を所定範囲内とする ベクトルが曲面上を通る点を求めることを特徴とする、請求項 23に記載のプログラム 媒体。
[25] 前記演算は、
前記円と前記ベクトルとの距離を表す距離ベクトルを求め、
前記距離ベクトルカゝら距離関数を求め、
前記距離関数の値が所定値となる前記曲面上の点を求めることを特徴とする、請 求項 24に記載のプログラム媒体。
[26] コンピュータにより形状設計を支援する CAD装置において、
前記形状の曲面を特徴線によって評価する請求項 12乃至 21の何れかに記載の 形状評価装置を備え、
前記形状評価装置は、ディスプレイ上に三次元空間上で任意の向きにある円環状 光源が当該曲面上に形成するサーキユラ一ハイライト線又はサーキユラ一反射線を 特徴線として表示することを特徴とする、 CAD装置。
[27] コンピュータにより対象物の形状データを元に当該設定対象物の生産に供する実 行データの形成を支援する CAM装置にお 、て、
前記形状データ及び Z又は実行データによる形状の曲面を特徴線によって評価 する請求項 12乃至 21の何れかに記載の形状評価装置を備え、
前記形状評価装置は、ディスプレイ上に三次元空間上で任意の向きにある円環状 光源が当該曲面上に形成するサーキユラ一ハイライト線又はサーキユラ一反射線を 特徴線として表示することを特徴とする、 CAM装置。
PCT/JP2005/022356 2005-01-07 2005-12-06 形状評価方法、形状評価装置、及び形状評価装置を備えた装置 WO2006073036A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006550641A JP4876256B2 (ja) 2005-01-07 2005-12-06 形状評価方法、形状評価装置、及び形状評価装置を備えた装置
US11/794,718 US7733504B2 (en) 2005-01-07 2005-12-06 Shape evaluation method, shape evaluation device, and device having the shape evaluation device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005003242 2005-01-07
JP2005-003242 2005-01-07
JP2005-254169 2005-09-01
JP2005254169 2005-09-01

Publications (1)

Publication Number Publication Date
WO2006073036A1 true WO2006073036A1 (ja) 2006-07-13

Family

ID=36647521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022356 WO2006073036A1 (ja) 2005-01-07 2005-12-06 形状評価方法、形状評価装置、及び形状評価装置を備えた装置

Country Status (3)

Country Link
US (1) US7733504B2 (ja)
JP (1) JP4876256B2 (ja)
WO (1) WO2006073036A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292365A (ja) * 2007-05-25 2008-12-04 Toyota Motor Corp 形状評価方法、形状評価装置および三次元検査装置
JP2019075103A (ja) * 2017-09-26 2019-05-16 ダッソー システムズDassault Systemes 機械部品を表す2d図面の生成
CN113790671A (zh) * 2021-09-03 2021-12-14 苏州天准科技股份有限公司 一种口径可调的落射光源及影像测量仪

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104376179A (zh) * 2014-11-24 2015-02-25 大连理工大学 一种基于数据库的车身造型快速渲染
JP6880825B2 (ja) * 2016-04-27 2021-06-02 日本製鉄株式会社 板パネルの外観の定量評価方法、装置およびプログラム
JP2020183900A (ja) * 2019-05-08 2020-11-12 オムロン株式会社 光学計測装置及び光学計測方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
& LOOS J. ET AL.: 'Modeling of surfaces with fair reflection line pattern' PROCEEDINGS SHAPE MODELING INTERNATIONAL '99, IEEE, [Online] 1999, pages 256 - 263, XP010323414 Retrieved from the Internet: <URL:<Url:http//ieeexplore.ieee.org/xpl/toc result.jsp?isnumber=1685&isYear=1999&count= 35&page=1&ResultStart=25>> *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292365A (ja) * 2007-05-25 2008-12-04 Toyota Motor Corp 形状評価方法、形状評価装置および三次元検査装置
WO2008146764A1 (ja) * 2007-05-25 2008-12-04 Toyota Jidosha Kabushiki Kaisha 形状評価方法、形状評価装置および三次元検査装置
KR101088952B1 (ko) 2007-05-25 2011-12-01 도요타지도샤가부시키가이샤 형상 평가 방법, 형상 평가 장치 및 3차원 검사 장치
US8107737B2 (en) 2007-05-25 2012-01-31 Toyota Jidosha Kabushiki Kaisha Shape evaluation method, shape evaluation device, and 3D inspection device
JP2019075103A (ja) * 2017-09-26 2019-05-16 ダッソー システムズDassault Systemes 機械部品を表す2d図面の生成
JP7235462B2 (ja) 2017-09-26 2023-03-08 ダッソー システムズ 機械部品を表す2d図面の生成
CN113790671A (zh) * 2021-09-03 2021-12-14 苏州天准科技股份有限公司 一种口径可调的落射光源及影像测量仪
CN113790671B (zh) * 2021-09-03 2022-05-17 苏州天准科技股份有限公司 一种口径可调的落射光源及影像测量仪

Also Published As

Publication number Publication date
JPWO2006073036A1 (ja) 2008-06-12
US20080088855A1 (en) 2008-04-17
US7733504B2 (en) 2010-06-08
JP4876256B2 (ja) 2012-02-15

Similar Documents

Publication Publication Date Title
WO2006073036A1 (ja) 形状評価方法、形状評価装置、及び形状評価装置を備えた装置
WO2011111680A1 (ja) 表面加工データの作成方法および装置
US20120206457A1 (en) Methods and Systems for Generating Continuous Surfaces from Polygonal Data
US9158297B2 (en) Computing device and method for generating measurement program of product
US8269771B2 (en) Remeshing method and apparatus for restoring sharp features of mesh made smooth enough
JP7235462B2 (ja) 機械部品を表す2d図面の生成
US20100114350A1 (en) Method of determining mesh data and method of correcting model data
Sieger et al. On shape deformation techniques for simulation-based design optimization
KR20060061754A (ko) 스펙트럼 분석을 이용하여 스트레치-구동형 메쉬를파라미터로 표현하는 방법
US20150292979A1 (en) Analysing and machining an optical profile
US8606549B2 (en) Method of simulating illuminated environment for off-line programming
Michoski et al. Foundations of the blended isogeometric discontinuous Galerkin (BIDG) method
US9030473B2 (en) Computing device and method for determining distance between two curved surfaces
JP6337619B2 (ja) 面形状評価方法及び面形状評価システム
US9188435B2 (en) Method for generating error image and program for generating error image
Shi et al. Gn blending multiple surfaces in polar coordinates
US8994724B2 (en) Methods and systems for generating continuous surfaces from polygonal data
JP2010211680A (ja) モデルデータの修正方法
Biermann et al. Direct free-form deformation of NC programs for surface reconstruction and form-error compensation
WO2022185864A1 (ja) 外観検査装置、外観検査方法、画像生成装置および画像生成方法
Son et al. Entrance and run angle variations of hull form preserving the prismatic coefficient
Ventura et al. Surface intersection in geometric modeling of ship hulls
US20210407064A1 (en) Method and device for geometric analysis of a part surface
Zhang et al. Fast evaluation of minimum zone form errors of freeform NURBS surfaces
KR100512761B1 (ko) 전개가능곡면의 전개도 설계방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006550641

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11794718

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05814478

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5814478

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11794718

Country of ref document: US