WO2006072627A1 - Microsysteme a commande electromagnetique - Google Patents

Microsysteme a commande electromagnetique Download PDF

Info

Publication number
WO2006072627A1
WO2006072627A1 PCT/EP2006/050074 EP2006050074W WO2006072627A1 WO 2006072627 A1 WO2006072627 A1 WO 2006072627A1 EP 2006050074 W EP2006050074 W EP 2006050074W WO 2006072627 A1 WO2006072627 A1 WO 2006072627A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
magnetic
membrane
magnetic field
microsystem
Prior art date
Application number
PCT/EP2006/050074
Other languages
English (en)
Inventor
Sylvain Paineau
Caroline Coutier
Amalia Garnier
Benoit Grappe
Laurent Chiesi
Original Assignee
Schneider Electric Industries Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schneider Electric Industries Sas filed Critical Schneider Electric Industries Sas
Priority to EP06700703A priority Critical patent/EP1836714B1/fr
Priority to DE602006012620T priority patent/DE602006012620D1/de
Priority to US11/813,591 priority patent/US7724111B2/en
Priority to AT06700703T priority patent/ATE459974T1/de
Priority to CN2006800076856A priority patent/CN101138060B/zh
Priority to JP2007549897A priority patent/JP4519921B2/ja
Publication of WO2006072627A1 publication Critical patent/WO2006072627A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/005Details of electromagnetic relays using micromechanics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0036Switches making use of microelectromechanical systems [MEMS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H36/00Switches actuated by change of magnetic field or of electric field, e.g. by change of relative position of magnet and switch, by shielding
    • H01H2036/0093Micromechanical switches actuated by a change of the magnetic field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/005Details of electromagnetic relays using micromechanics
    • H01H2050/007Relays of the polarised type, e.g. the MEMS relay beam having a preferential magnetisation direction

Definitions

  • the present invention relates to a microsystem comprising at least one magnetic microactuator actuated by means of an external excitation coil.
  • Such a microsystem can be used as electrical switch device, in particular of the switch, contactor or relay type.
  • This type of microsystem is particularly adapted to be realized by MEMS technology.
  • US 6,320,145 discloses a magnetostatic relay. This relay operates using a monostable and magnetisable beam. Under the action of a magnetic field, this beam bends to tend to align in the direction of this magnetic field and closes an electrical circuit. The beam being made of an elastic material, it returns to its initial position simply by mechanical effect when the interaction of the magnetic field with the beam is zero. The restoring force of the beam towards its initial position is therefore of purely mechanical origin and is imposed solely by the nature of the material of manufacture of the beam and by the geometry of the elements involved.
  • US Pat. Nos. 6,469,602 and 6,750,745 describe magnetic micro-relays using the movement, between two positions, of a bistable magnetizable beam to control the opening or closing of an electrical circuit.
  • the movement of the beam is controlled by an electromagnet.
  • the electric circuit In a first position of the beam, the electric circuit is open and in a second position of the beam, the electric circuit is closed. Closing of the electrical circuit is ensured when the beam is in its second position by contacting contacts carried by the beam with fixed contacts arranged on a substrate.
  • the beam At rest, the beam is in its first position and the electric circuit is open. This rest position is maintained thanks to the magnetic field produced on the magnetizable beam by a permanent magnet.
  • planar coil integrated in the substrate increases the average surface area of the substrate required by microactuator, which entails an additional cost for each microactuator,
  • the integration of the coil into the substrate adds steps to the planar manufacturing process which reduces the production yield and entails an additional cost for each microactuator
  • the object of the invention is therefore to provide a microsystem for overcoming the aforementioned drawbacks, which is of a simple design, a moderate cost and which may include, if necessary, a large number of microactuators.
  • a magnetic microactuator comprising a mobile element supported by a substrate and controlled by a magnetic effect between a first position and a second position for switching at least one electrical circuit
  • an excitation coil external to the substrate, said excitation coil being able, when energized, to subjecting the movable member to a second magnetic field to move the movable member from the first position to the second position, characterized in that, the excitation coil is of the solenoid type and in that it surrounds the substrate supporting the mobile element.
  • the microactuator is thus placed in the center of the solenoid coil.
  • the coil is external to the substrate, that is to say not integrated therewith, which makes it possible to overcome some of the disadvantages listed above.
  • the manufacture of an external coil by printed circuit techniques, by winding copper wire or any other three-dimensional packaging solution does not have the disadvantages of an integrated coil and the yields for these techniques are very well controlled.
  • the movable element comprises a membrane mounted on the substrate, having a longitudinal axis and able to pivot between its different positions along an axis perpendicular to the longitudinal axis, said membrane having at least one layer made of a magnetic material .
  • the magnetic field is generated using a permanent magnet, for example glued on the substrate.
  • one step is to properly position the permanent magnet relative to the microactuator so that the magnetic field generated by the magnet has the desired influence on the movable member of the microactuator.
  • the use of an air gap in which the first magnetic field generated is uniform makes it possible to dispense with this step during assembly.
  • the first magnetic field created in the air gap is uniform and is oriented perpendicular to the surface of the substrate supporting the microactuator.
  • This first magnetic field generates in the membrane a magnetic component along its axis.
  • the magnetic torque resulting from this field and the magnetic component in the membrane forces the latter to remain in a position.
  • the second magnetic field created by the excitation coil is perpendicular to the direction of the first magnetic field.
  • This second field generates a magnetic component in the membrane along its axis which opposes the first component generated by the magnetic field. If this new magnetic component is of greater amplitude, the membrane pivots to its other position.
  • the solenoid-type excitation coil has a variable coil density along its length.
  • the excitation coil comprises a greater number of turns at each of its ends. This makes it possible to standardize the second axial magnetic field generated in the solenoid and thus to increase the useful volume of the solenoid.
  • the magnetic source of the magnetic circuit for generating the first magnetic field is a permanent magnet or an electromagnetic coil.
  • the substrate is subjected to a uniform magnetic field whose field lines follow a direction not perpendicular to the plane defined by the surface of the substrate supporting the magnetic microactuator.
  • a uniform magnetic field whose field lines follow a direction not perpendicular to the plane defined by the surface of the substrate supporting the magnetic microactuator.
  • MEMS Micro Electro-Mechanical System
  • the inclination of the microactuator membrane is guaranteed by the arrangement of the microsystem in the magnetic circuit generating the uniform field and not by the thickness of the sacrificial layer.
  • the sacrificial layer located between the membrane and the substrate can therefore be thin.
  • the microsystem can control the opening and closing of two electrical circuits.
  • the microsystem can be manufactured at least partly according to a MEMS type technology.
  • the substrate supports a plurality of identical magnetic microactuators able to be controlled simultaneously by said excitation coil.
  • a solenoid-type excitation coil surrounding the substrate therefore acts on a matrix of microactuators.
  • the matrix is placed in the center of the solenoid coil.
  • the microactuators are for example micro-relays connected by electrical tracks and arranged in series to increase the insulation voltage or in parallel to divide the intensity of the current.
  • FIG. 1 represents, in perspective, a microsystem according to a particular embodiment of the invention.
  • FIGS. 2A and 2B show, in perspective, a microactuator according to two alternative embodiments that can be used in a microsystem according to the invention.
  • FIG. 3A to 3C show, in side view, the various steps implemented for the pivoting of the movable member of a microactuator.
  • FIGS. 4A and 4B show a microsystem according to the invention placed between two gap pieces of a magnetic circuit.
  • Figures 5A and 5B show two embodiments for improving the contact force of the microactuator.
  • FIG. 6 schematically represents an example of winding of turns that can be used for the solenoid coil of a microsystem according to the invention.
  • FIG. 7 represents the implementation of a microsystem according to the invention for controlling two electric circuits.
  • a microsystem according to the invention controls the opening or closing of an electrical circuit by using a microactuator 2, 2 "magnetic.
  • a microsystem comprises a microactuator 2, 2 "supported by a substrate 3.
  • the substrate 3 is for example made of materials such as glass, plastic or, for power applications, in materials good thermal conductors based on silicon or ceramic
  • the substrate 3 has a flat surface 30 on which is fixed the microactuator 2, 2 ".
  • the substrate 3 carries for example at least two electrodes 31, 32 (2A and 2B) to be electrically connected to obtain the closure of the circuit electric.
  • the microactuator 2, 2 'magnetic carries at least one contact 21, 21 "movable adapted to come electrically connect the two electrodes 31, 32 when the microactuator 2, 2 'is activated.
  • the microactuator 2 is composed of a movable element consisting of a membrane 20, for example a parallelepipedal membrane, having a longitudinal axis (A) and connected by one of its ends to a stud 23 anchoring secured to the substrate 3, by means of two arms 22a, 22b of parallel connection.
  • the contact 21 is for example formed on the membrane 20 near the free end of the membrane 20 and faces the surface 30 of the substrate 3.
  • the membrane 20 is pivotable relative to the substrate 3 along an axis (P) parallel to the axis described by the contact points of the membrane 20 with the electrodes 31, 32, parallel to the surface 30 of the substrate and perpendicular to its longitudinal axis (AT).
  • the link arms 22a, 22b form an elastic connection between the membrane 20 and the anchor stud 23.
  • the pivoting of the membrane 20 is thus obtained by bending the connecting arms 22a, 22b.
  • FIG. 2A in a so-called equilibrium position in which the arms 22a, 22b are not stressed, the membrane 20 is parallel to the plane formed by the surface 30 of the substrate 3.
  • a micro-actuator 2 "that can be used in a microsystem according to the invention comprises a mobile element consisting of a rigid membrane, for example a parallelepipedal membrane, having a longitudinal axis (A ').
  • this membrane 20 ' is secured to the substrate 3 by means of two arms 22a',
  • the membrane 20 ' is pivotable relative to the substrate 3 along an axis (P') parallel to the axis described by the contact points of the membrane 20 ' with the electrodes 31, 32, parallel to the surface 30 of the substrate and perpendicular to the longitudinal axis (A ') of the diaphragm (20 ").
  • this pivot axis (P") of the membrane 20 ' is offset with respect to the median axis parallel which allows to define on the membrane 20 "on either side of its axis (P") of pivoting, two distinct parts, of different volumes.
  • the free end of the larger portion of the membrane 20 carries the contact 21 'for closing an electrical circuit.
  • the linking arms 22a ", 22b 1 form an elastic connection between the membrane 20 and their respective anchor pads 23a ', 23b' In such a configuration, the pivoting of the membrane 20" is thus obtained by twisting the arms 22a ", 22b 1 binding.
  • other configurations may be tailored. as shown in Figure 2B, in a so-called equilibrium position in which the arms are not stressed, the membrane 20 'is parallel to the plane formed by the surface Of the substrate 3.
  • microactuator 2, 2 is perfectly usable in a microsystem according to the invention
  • the following description lends itself as well to the microactuator according to the first embodiment, as to that according to the second embodiment.
  • the microactuator 2, 2 'described in the invention can be realized by a planar duplication technology of MEMS (Micro Electro-Mechanical System) type. Indeed, the realization by deposition of successive layers in an iterative process lends itself well to the manufacture of such objects.
  • the membrane 20, 20 'and the arms 22a, 22b, 22a', 22b 'could be from the same layer of material.
  • the connecting arms 22a, 22b, 22a ", 22b" and a lower layer of the membrane 20, 20 ' may be derived from a metal layer. A layer of a material sensitive to magnetic fields is deposited on this metal layer to generate the upper part of the membrane 20, 20.
  • Such a configuration can make it possible to optimize the mechanical properties of the arms 22a, 22b, 22a ', 22b connecting, using, to allow the pivoting of the membrane 20, 20 ", a material mechanically more suitable than the material sensitive to magnetic fields.
  • the metal layer can act as a contact for closing an electrical circuit.
  • the material sensitive to magnetic fields is for example of the soft magnetic type and can be for example an alloy of iron and nickel ("permalloy" Ni 8 O Fe 2 O) -
  • FIGS. 3A to 3C it is therefore possible to pivot the membrane 20 about its pivot axis (P) by subjecting the membrane 20 to a magnetic field produced by a solenoid-type external excitation coil.
  • the membrane 20 is therefore able to take two distinct extreme positions.
  • FIGS. 3A to 3C in which only the first embodiment of the actuator is shown, in a first extreme position (FIGS. 3A and 3B), the end of the membrane 20 carrying the contact 21 is raised and is not in support against the electrodes 31, 32. The electric circuit is open.
  • FIG. 3C In its second extreme position (FIG. 3C), the end of the membrane 20 carrying the contact 21 bears against the electrodes 31, 32. In this second position, the electrical circuit is closed.
  • a first magnetic field B 0 preferably as uniform as possible, is applied to the substrate 3 carrying the microactuator 2.
  • This first magnetic field B 0 has field lines perpendicular to the surface 30 of the substrate. As shown in FIGS. 3A to 3C, the field lines of this first magnetic field B 0 are directed towards the surface 30 of the substrate 3.
  • This first magnetic field B 0 may be generated by a permanent magnet or by an electromagnet.
  • a magnetic circuit having as a magnetic source a permanent magnet or an electromagnetic coil 5 can be used to create this first magnetic field B 0. As shown in FIGS. 4A and 4B, this magnetic circuit consists of a permanent magnet (FIG. 4A) or an electromagnetic coil 5 "(FIG.
  • a solenoid type excitation coil 4 as shown in Figure 1 connected to a source current, surrounds the substrate 3 and the microactuator 2 supported by the substrate 3 to control the movement of the membrane 20 between its two positions.
  • the microactuator 2 is placed in the center of the excitati coil 4. one, in its central channel The passage of a current in the coil 4 excitation causes the pivoting of the membrane 20 from one of its positions to the other of its positions.
  • FIGS. 3A to 3C do not show the excitation coil 4. However, it must be considered that in these figures the excitation coil 4 surrounds the magnetic actuator 2 as shown in FIG.
  • the substrate 3 supporting the microactuator 2 and surrounded by the solenoid excitation coil is placed under the effect of the first magnetic field B 0 , for example in the gap of the magnetic circuit described above in connection with FIGS. 4A and 4B. .
  • the first magnetic field B 0 initially generates a magnetic component BP 0 in the membrane 20 along its longitudinal axis (A).
  • the magnetic torque resulting from the magnetic field B 0 and the component BP 0 generated in the membrane 20 holds the membrane 20 in one of its extreme positions, for example in the first position (FIG. 3A) or in the second position (FIG. 3C).
  • the contact portion of the membrane 20 is raised and the electrical circuit is open.
  • the contact 21 carried by the membrane 20 electrically connects the two electrodes 31, 32 and the circuit is closed.
  • the second magnetic field BS 1 created by the excitation coil 4 generates a magnetic component BP 1 in the magnetic layer of the membrane 20 along its longitudinal axis (A). If the current is delivered in a suitable direction, this new magnetic component BP 1 opposes the component BP 0 generated in the magnetic layer of the membrane 20 by the magnetic field B 0 .
  • the component BP 1 generated by the excitation coil 4 is of greater intensity than that generated by the magnetic field B 0 , the magnetic torque resulting from the magnetic field B 0 and this BP component 1 reverses and causes the pivoting of the membrane 20 from its first position to its second position.
  • the second magnetic field BSi created by the excitation coil 4 is only transient and is only useful for pivoting the membrane 20 from one position to the other. As represented in FIG. 3C, the membrane 20 is then maintained in its second position under the effect of the only first magnetic field B 0 , creating a new magnetic component BP 2 in the membrane 20. The new magnetic pair created between the first magnetic field B 0 and the BP component 2 generated in the membrane 20 requires the membrane 20 to remain in its second position.
  • the contact 21 carried by the membrane 20 is electrically connect the two electrodes 31, 32 present on the substrate 3.
  • the electrical circuit is then closed.
  • the membrane 20 must again be rotated to its first position.
  • a current is delivered in the excitation coil 4 in a direction opposite to that defined above.
  • the magnetic field created by the excitation coil 4 is therefore oriented in a direction opposite to the previous magnetic field BSi.
  • This magnetic field generates along the longitudinal axis (A) a magnetic component in the membrane 20, opposite the BP 2 component. If this new magnetic component is of greater intensity than the component BP 2 , the magnetic torque resulting from the first magnetic field B 0 and this new magnetic component causes the tilting of the membrane 20 to its first position.
  • the intensity of the current to be delivered in the excitation coil 4 for pivoting the membrane 20 depends on the number of turns constituting the excitation coil 4 as well as the density of the magnetic field along the excitation coil 4.
  • the solenoid-type excitation coil 4 has a turn density 40 that varies along its length.
  • the number of turns 40 is greater at the ends than at the center of the excitation coil 4.
  • the magnetic field generated in the solenoid is thus perfectly uniform over the entire length of the excitation coil 4.
  • the uniformity of the magnetic field (BSi for example in Figure 3B) generated by the coil 4 excitation is important because it allows to increase the useful volume inside the solenoid.
  • the solenoid type excitation coil 4 may be manufactured by printed circuit techniques or by winding a copper wire.
  • the magnetic torque existing between the first magnetic field B 0 and the component generated in the membrane 20 is increased.
  • the angle x existing between the direction of the first magnetic field B 0 and the surface 30 of the substrate 3 (see FIGS. 5A and 5B). This angle x must be different from 90 °.
  • the angle x formed between the direction of the field lines and the surface of the substrate supporting the microactuator can be fixed either by inclining the substrate 3 relative to the direction of the permanent field (FIG.
  • a microsystem according to the invention is used for the control of two separate electrical circuits.
  • a first substrate 3a carries the electrodes 31a of a first electrical circuit and a second substrate 3b, for example disposed above, parallel to the first substrate 3a, carries the electrodes 31b of a second electric circuit.
  • the electrodes 31a, 31b are arranged symmetrically with respect to the longitudinal axis (A) of the membrane 20 of a microactuator 2 according to the invention when the latter is at rest.
  • the two substrates are for example connected by connecting elements.
  • the microactuator 2 according to the invention is integral with at least one of the substrates 3a, 3b.
  • the pivoting diaphragm 20 can therefore pivot between its two extreme positions to close in each of its extreme positions one or the other of the electrical circuits.
  • an equilibrium position solid line in FIG. 7
  • the two electrical circuits are open and the membrane 20 is parallel to the two substrates 3a, 3b.
  • a first extreme position in dashed lines in FIG. 7
  • the membrane 20 comes into contact with the first electrode 31a to close the first electrical circuit while in its second opposite extreme position (in dotted lines in FIG. 7), the membrane 20 comes into contact with the second electrode 31b to close the second electrical circuit.
  • a microsystem according to the invention may comprise a plurality of identical microactuators 2, 2 'as described above forming a matrix placed in the center of the solenoid type excitation coil 4.
  • the microactuators 2, 2 ' are for example organized along several parallel lines.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Micromachines (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Magnetic Treatment Devices (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Electromagnets (AREA)
  • Linear Motors (AREA)

Abstract

L'invention concerne un microsystème comprenant : un microactionneur (2, 2') magnétique comprenant un élément mobile supporté par un substrat (3) et piloté par effet magnétique entre une première position et une deuxième position pour commuter au moins un circuit électrique, un aimant permanent ou un électroaimant soumettant l'élément mobile à un premier champ magnétique (B0) uniforme pour le maintenir dans la première position, une bobine (4, 6) d'excitation externe au substrat (3), ladite bobine (4, 6) d'excitation étant apte, lorsqu'elle est alimentée, à soumettre l'élément mobile à un second champ magnétique (BSi) pour faire passer l'élément mobile de la première position à la seconde position, la bobine d'excitation étant de type solénoïde et entourant le substrat supportant l'élément mobile.

Description

Microsystème à commande électromagnétique
La présente invention se rapporte à un microsystème comportant au moins un microactionneur magnétique actionné à l'aide d'une bobine d'excitation externe.
Un tel microsystème peut être utilisé comme appareil électrique interrupteur, en particulier du type commutateur, contacteur ou relais. Ce type de microsystème est particulièrement adapté pour être réalisé par technologie MEMS.
Le document US 6,320,145 décrit un relais magnétostatique. Ce relais fonctionne à l'aide d'une poutre monostable et magnétisable. Sous l'action d'un champ magnétique, cette poutre fléchit pour tendre à s'aligner dans la direction de ce champ magnétique et vient fermer un circuit électrique. La poutre étant fabriquée dans un matériau élastique, elle revient dans sa position initiale simplement par effet mécanique lorsque l'interaction du champ magnétique avec la poutre est nulle. La force de rappel de la poutre vers sa position initiale est donc d'origine purement mécanique et est imposée uniquement par la nature du matériau de fabrication de la poutre et par la géométrie des éléments impliqués.
Les brevets US 6,469,602 et US 6,750,745 décrivent des micro-relais magnétiques utilisant le mouvement, entre deux positions, d'une poutre magnétisable bistable pour commander l'ouverture ou la fermeture d'un circuit électrique. Le mouvement de la poutre est commandé à l'aide d'un électro-aimant. Dans une première position de la poutre, le circuit électrique est ouvert et dans une seconde position de la poutre, le circuit électrique est fermé. La fermeture du circuit électrique est assurée lorsque la poutre est dans sa seconde position par la mise en contact de contacts portés par la poutre avec des contacts fixes disposés sur un substrat. Au repos, la poutre est dans sa première position et le circuit électrique est donc ouvert. Cette position de repos est maintenue grâce au champ magnétique produit sur la poutre magnétisable par un aimant permanent. Lors de la mise sous tension de l'électro-aimant, celui-ci produit un second champ magnétique orienté de manière à provoquer le basculement de la poutre de sa première position à sa seconde position. Une fois la poutre dans sa seconde position, l'électro-aimant est désactivé et la poutre est maintenue dans cette seconde position sous l'effet du champ magnétique permanent. Dans le brevet US 6,750,745, plusieurs microactionneurs identiques peuvent être disposés sur un même substrat et être ainsi commandés simultanément par l'électro-aimant. Dans ce brevet, la bobine est plane et est intégrée au substrat. Les microactionneurs sont disposés sur les différentes faces de la bobine plane. Même si un tel dispositif permet de pouvoir commander simultanément plusieurs microactionneurs à partir d'une seule bobine, il présente plusieurs inconvénients. Ces inconvénients sont les suivants :
- l'utilisation d'une bobine planaire intégrée au substrat augmente la surface moyenne de substrat nécessaire par microactionneur ce qui entraîne un surcoût pour chaque microactionneur,
- l'intégration de la bobine dans le substrat ajoute des étapes au processus de fabrication planaire ce qui réduit le rendement de production et entraîne un surcoût pour chaque microactionneur,
- la résistance électrique de la bobine intégrée au substrat transforme par effet Joule une partie de l'énergie d'activation des microactionneurs en chaleur dissipée dans le substrat et dans les électrodes. Ce dégagement de chaleur a pour conséquence de dégrader les performances électriques des microactionneurs utilisés comme commutateur, contacteur ou relais. Le but de l'invention est donc de proposer un microsystème permettant de palier les inconvénients précités, qui soit d'une conception simple, d'un coût modéré et qui puisse comporter, si nécessaire, un grand nombre de microactionneurs.
Ce but est atteint par un microsystème comprenant :
- un microactionneur magnétique comprenant un élément mobile supporté par un substrat et piloté par effet magnétique entre une première position et une deuxième position pour commuter au moins un circuit électrique,
- un aimant permanent ou un électroaimant soumettant l'élément mobile à un premier champ magnétique pour le maintenir dans la première position, - une bobine d'excitation externe au substrat, ladite bobine d'excitation étant apte, lorsqu'elle est alimentée, à soumettre l'élément mobile à un second champ magnétique pour faire passer l'élément mobile de la première position à la seconde position, caractérisé en ce que, - la bobine d'excitation est de type solénoïde et en ce qu'elle entoure le substrat supportant l'élément mobile.
Selon l'invention, le microactionneur est donc placé au centre de la bobine solénoïde. Contrairement à l'enseignement des brevets cités précédemment, la bobine est externe au substrat, c'est-à-dire non intégrée à celui-ci, ce qui permet de palier certains des inconvénients listés ci-dessus. La fabrication d'une bobine externe par des techniques de circuits imprimés, par bobinage de fil de cuivre ou toute autre solution de packaging en trois dimensions ne présente pas les inconvénients d'une bobine intégrée et les rendements pour ces techniques sont très bien maîtrisés.
Selon une particularité, l'élément mobile comporte une membrane montée sur le substrat, présentant un axe longitudinal et apte à pivoter entre ses différentes positions selon un axe perpendiculaire à l'axe longitudinal, ladite membrane présentant au moins une couche faite dans un matériau magnétique. Dans l'art antérieur, le champ magnétique est généré à l'aide d'un aimant permanent, par exemple collé sur le substrat. Lors de l'assemblage des microsystèmes de l'art antérieur, une étape consiste à positionner correctement l'aimant permanent par rapport au microactionneur pour que le champ magnétique généré par l'aimant ait l'influence voulue sur l'élément mobile du microactionneur. Selon l'invention, l'utilisation d'un entrefer dans lequel le premier champ magnétique généré est uniforme permet de s'affranchir de cette étape lors de l'assemblage.
De manière connue, le premier champ magnétique créé dans l'entrefer est uniforme et est orienté perpendiculairement à la surface du substrat supportant le microactionneur. Ce premier champ magnétique génère dans la membrane une composante magnétique le long de son axe. Le couple magnétique résultant de ce champ et de la composante magnétique dans la membrane impose à celle-ci de se maintenir dans une position. Le second champ magnétique créé par la bobine d'excitation est perpendiculaire à la direction du premier champ magnétique. Ce second champ génère une composante magnétique dans la membrane suivant son axe qui s'oppose à la première composante générée par le champ magnétique. Si cette nouvelle composante magnétique est d'amplitude supérieure, la membrane pivote vers son autre position.
Selon une autre particularité, la bobine d'excitation de type solénoïde présente sur sa longueur une densité de spires variable. Selon une autre particularité, la bobine d'excitation comporte un plus grand nombre de spires à chacune de ses extrémités. Ceci permet d'uniformiser le second champ magnétique axial généré dans le solénoïde et donc d'augmenter le volume utile du solénoïde. Selon une autre particularité, la source magnétique du circuit magnétique permettant de générer le premier champ magnétique est un aimant permanent ou une bobine électromagnétique.
Selon une autre particularité, le substrat est soumis à un champ magnétique uniforme dont les lignes de champ suivent une direction non perpendiculaire au plan défini par la surface du substrat supportant le microactionneur magnétique. Une telle configuration permet d'augmenter le couple magnétique de la membrane et donc d'augmenter la force de contact du microactionneur. En outre, un autre avantage lié à cette inclinaison se manifeste lors du procédé de fabrication du microsystème selon une technologie de type MEMS (Micro Electro-Mechanical System). En effet, dans ce cas, l'inclinaison de la membrane du microactionneur est garantie par la disposition du microsystème dans le circuit magnétique générant le champ uniforme et non par l'épaisseur de la couche sacrificielle. La couche sacrificielle située entre la membrane et le substrat peut donc être mince.
Selon l'invention, le microsystème peut commander l'ouverture et la fermeture de deux circuits électriques.
Selon l'invention, le microsystème peut être fabriqué au moins en partie selon une technologie de type MEMS.
Selon un mode de réalisation très avantageux, le substrat supporte une pluralité de microactionneurs magnétiques identiques apte à être commandée simultanément par ladite bobine d'excitation. Une même bobine d'excitation de type solénoïde entourant le substrat agit donc sur une matrice de microactionneurs. La matrice est placée au centre de la bobine solénoïde. Les microactionneurs sont par exemple des micro-relais reliés par des pistes électriques et arrangés en série pour augmenter la tension d'isolation ou en parallèle pour diviser l'intensité du courant.
D'autres caractéristiques et avantages vont apparaître dans la description détaillée qui suit en se référant à un mode de réalisation donné à titre d'exemple et représenté par les dessins annexés sur lesquels : La figure 1 représente, en perspective, un microsystème selon un mode de réalisation particulier de l'invention.
Les figures 2A et 2B représentent, en perspective, un microactionneur selon deux variantes de réalisation utilisable dans un microsystème selon l'invention.
- Les figures 3A à 3C représentent, en vue de côté, les différentes étapes mises en œuvre pour le pivotement de l'élément mobile d'un microactionneur.
Les figures 4A et 4B représentent un microsystème selon l'invention placé entre deux pièces d'entrefer d'un circuit magnétique.
Les figures 5A et 5B représentent deux modes de réalisation permettant d'améliorer la force de contact du microactionneur.
La figure 6 représente de manière simplifiée un exemple d'enroulement de spires pouvant être utilisé pour la bobine solénoïde d'un microsystème selon l'invention.
- La figure 7 représente la mise en œuvre d'un microsystème selon l'invention pour commander deux circuits électriques.
L'invention va à présent être décrite en liaison avec les figures 1 à 7. Comme dans l'art antérieur exposé ci-dessus, un microsystème selon l'invention commande l'ouverture ou la fermeture d'un circuit électrique en utilisant un microactionneur 2, 2" magnétique.
En référence aux figures 2A et 2B, un microsystème comporte un microactionneur 2, 2" supporté par un substrat 3. Le substrat 3 est par exemple fabriqué dans des matériaux comme le verre, le plastique ou, pour des applications de puissance, dans des matériaux bons conducteurs thermiques à base de silicium ou de céramique. Le substrat 3 présente une surface 30 plane sur laquelle est fixé le microactionneur 2, 2". De manière connue (voir la demande de brevet n°US 2002/0140533), le substrat 3 porte par exemple au moins deux électrodes 31 , 32 (figures 2A, et 2B) destinées à être reliées électriquement afin d'obtenir la fermeture du circuit électrique. Pour cela, le microactionneur 2, 2' magnétique porte au moins un contact 21 , 21" mobile apte à venir relier électriquement les deux électrodes 31 , 32 lorsque le microactionneur 2, 2' est activé.
Selon une première variante de réalisation représentée en figure 2A, le microactionneur 2 est composé d'un élément mobile constitué d'une membrane 20, par exemple parallélépipédique, présentant un axe longitudinal (A) et reliée par une de ses extrémités à un plot 23 d'ancrage solidaire du substrat 3, par l'intermédiaire de deux bras 22a, 22b de liaison parallèles. Le contact 21 est par exemple formé sur la membrane 20 à proximité de l'extrémité libre de la membrane 20 et fait face à la surface 30 du substrat 3. Par l'intermédiaire de ces deux bras 22a, 22b de liaison, la membrane 20 est apte à pivoter par rapport au substrat 3 suivant un axe (P) parallèle à l'axe décrit par les points de contact de la membrane 20 avec les électrodes 31 , 32, parallèle à la surface 30 du substrat et perpendiculaire à son axe longitudinal (A). Les bras 22a, 22b de liaison forment une liaison élastique entre la membrane 20 et le plot 23 d'ancrage. Dans une telle configuration, le pivotement de la membrane 20 est donc obtenu par flexion des bras 22a, 22b de liaison. Comme représenté en figure 2A, dans une position dite d'équilibre dans laquelle les bras 22a, 22b ne sont pas sollicités, la membrane 20 est parallèle au plan formé par la surface 30 du substrat 3.
Selon une seconde variante de réalisation représentée en figure 2B, un microactionneur 2" pouvant être utilisé dans un microsystème selon l'invention comporte un élément mobile constitué d'une membrane rigide par exemple parallélépipédique, présentant un axe longitudinal (A'). En référence à la figure 2B, cette membrane 20' est solidaire du substrat 3 par l'intermédiaire de deux bras 22a',
22b' de liaison reliant ladite membrane 20' à deux plots d'ancrage 23a', 23b' disposés symétriquement de part et d'autre de la membrane 20" et de son axe (A"). Le contact
21" mobile est par exemple formé sur la membrane 20" à proximité de l'extrémité de la membrane 20' et fait face à la surface 30 du substrat 3.
Par l'intermédiaire de ces deux bras 22a', 22b', la membrane 20' est apte à pivoter par rapport au substrat 3 suivant un axe (P') parallèle à l'axe décrit par les points de contact de la membrane 20' avec les électrodes 31 , 32, parallèle à la surface 30 du substrat et perpendiculaire à l'axe longitudinal (A') de la membrane (20"). Préférentiellement, selon cette variante de réalisation, cet axe (P") de pivotement de la membrane 20' est décalé par rapport à l'axe médian parallèle ce qui permet de définir sur la membrane 20" de part et d'autre de son axe (P") de pivotement, deux parties distinctes, de volumes différents. L'extrémité libre de la partie de plus grande taille de la membrane 20 porte le contact 21' permettant la fermeture d'un circuit électrique.
Les bras 22a", 22b1 de liaison forment une liaison élastique entre la membrane 20 et leur plot 23a', 23b' d'ancrage respectif. Dans une telle configuration, le pivotement de la membrane 20" est donc obtenu par torsion des bras 22a", 22b1 de liaison. D'autres configurations peuvent être parfaitement adaptées. Comme représenté en figure 2B, dans une position dite d'équilibre dans laquelle les bras ne sont pas sollicités, la membrane 20' est parallèle au plan formé par la surface 30 du substrat 3.
Les deux variantes de réalisation de microactionneur 2, 2" sont parfaitement utilisables dans un microsystème selon l'invention. La description qui suit se prête aussi bien au microactionneur selon la première variante de réalisation, qu'à celui selon la seconde variante de réalisation.
Le microactionneur 2, 2' décrit dans l'invention peut être réalisé par une technologie de duplication planaire de type MEMS (Micro Electro-Mechanical System). En effet, la réalisation par dépôt de couches successives dans un processus itératif se prête bien à la fabrication de tels objets. Dans ce cas, la membrane 20, 20' ainsi que les bras 22a, 22b, 22a', 22b' pourraient être issus d'une même couche de matériau. Cependant, dans une autre configuration, les bras 22a, 22b, 22a", 22b" de liaison et une couche inférieure de la membrane 20, 20' peuvent être issus d'une couche métallique. Une couche d'un matériau sensible aux champs magnétiques est déposée sur cette couche métallique pour générer la partie supérieure de la membrane 20, 20". Une telle configuration peut permettre d'optimiser les propriétés mécaniques des bras 22a, 22b, 22a', 22b' de liaison en utilisant, pour permettre le pivotement de la membrane 20, 20", un matériau mécaniquement plus adapté que le matériau sensible aux champs magnétiques. De plus, la couche métallique peut faire office de contact pour la fermeture d'un circuit électrique. Le matériau sensible aux champs magnétiques est par exemple du type magnétique doux et peut être par exemple un alliage de fer et de nickel (« permalloy » Ni8OFe2o)-
Le principe de l'invention est décrit ci-dessous en liaison avec le premier mode de réalisation du microactionneur représenté en figure 2A mais il doit être compris comme pouvant être appliqué au microactionneur selon le deuxième mode de réalisation représenté en figure 2B.
En référence aux figures 1 et 3A à 3C, il est donc possible de faire pivoter la membrane 20 autour de son axe (P) de pivotement en soumettant la membrane 20 à un champ magnétique produit par une bobine d'excitation externe de type solénoïde. La membrane 20 est donc apte à prendre deux positions extrêmes distinctes. En référence aux figures 3A à 3C, dans lesquelles seul le premier mode de réalisation de l'actionneur est représenté, dans une première position extrême (figures 3A et 3B), l'extrémité de la membrane 20 portant le contact 21 est relevée et n'est pas en appui contre les électrodes 31 , 32. Le circuit électrique est donc ouvert. Dans sa seconde position extrême (figures 3C), l'extrémité de la membrane 20 portant le contact 21 est en appui contre les électrodes 31 , 32. Dans cette seconde position, le circuit électrique est fermé. Selon l'invention, un premier champ magnétique B0 préférentiellement le plus uniforme possible, est appliqué au substrat 3 portant le microactionneur 2. Ce premier champ magnétique B0 présente des lignes de champ perpendiculaires à la surface 30 du substrat. Comme représenté sur les figures 3A à 3C, les lignes de champ de ce premier champ magnétique B0 sont dirigées vers la surface 30 du substrat 3. Ce premier champ magnétique B0 peut être généré par un aimant permanent ou par un électroaimant. Un circuit magnétique ayant comme source magnétique un aimant 5 permanent ou une bobine 5" électromagnétique peut être utilisé pour créer ce premier champ magnétique B0. Comme représenté aux figures 4A et 4B, ce circuit magnétique se compose d'un aimant 5 permanent (figure 4A) ou d'une bobine 5" électromagnétique (figure 4B) et de deux pièces 50, 51 d'entrefer disposées parallèlement, de part et d'autre de l'aimant 5 permanent ou de la bobine 5" et entre lesquelles le premier champ magnétique B0 est généré. L'utilisation d'un tel circuit magnétique permet de générer un premier champ magnétique B0 uniforme dans l'entrefer. Une bobine 4 d'excitation de type solénoïde comme représentée en figure 1 , connectée à une source de courant, entoure le substrat 3 ainsi que le microactionneur 2 supporté par le substrat 3 pour commander le mouvement de la membrane 20 entre ses deux positions. Le microactionneur 2 est donc placé au centre de la bobine 4 d'excitation, dans son canal central. Le passage d'un courant dans la bobine 4 d'excitation provoque le pivotement de la membrane 20 de l'une de ses positions vers l'autre de ses positions. Le sens du courant traversant la bobine 4 d'excitation décide du pivotement de la membrane 20 vers l'une ou l'autre de ses positions extrêmes. Pour des raisons de simplicité et de facilité de lecture, les figures 3A à 3C ne font pas apparaître la bobine 4 d'excitation. Il faut cependant considérer que sur ces figures la bobine 4 d'excitation entoure le mciroactionneur 2 comme représenté en figure 1.
Le substrat 3 supportant le microactionneur 2 et entouré de la bobine d'excitation solénoïde est placé sous l'effet du premier champ magnétique B0, par exemple dans l'entrefer du circuit magnétique décrit ci-dessus en liaison avec les figures 4A et 4B. Comme représenté en figures 3A, le premier champ magnétique B0 génère initialement une composante magnétique BP0 dans la membrane 20 suivant son axe longitudinal (A). Le couple magnétique résultant du champ magnétique B0 et de la composante BP0 générée dans la membrane 20 maintient la membrane 20 dans l'une de ses positions extrêmes, par exemple dans la première position (figure 3A) ou dans la seconde position (figure 3C). Dans la première position, la partie à contact de la membrane 20 est donc relevée et le circuit électrique est ouvert. Dans la seconde position, le contact 21 porté par la membrane 20 relie électriquement les deux électrodes 31, 32 et le circuit est fermé.
En considérant que la membrane 20 est initialement dans sa première position (figure 3A), le basculement vers la seconde position se produit de la manière suivante :
En référence à la figure 3B, le passage d'un courant, dans un sens défini, dans la bobine 4 d'excitation de type solénoïde entourant le substrat 3, génère un second champ magnétique BSi dont la direction est parallèle au substrat 3 et perpendiculaire à l'axe (P) de pivotement de la membrane 20, son sens dépendant du sens du courant délivré dans la bobine 4 d'excitation. Le second champ magnétique BS1 créé par la bobine 4 d'excitation génère une composante magnétique BP1 dans la couche magnétique de la membrane 20, suivant son axe longitudinal (A). Si le courant est délivré dans un sens approprié, cette nouvelle composante magnétique BP1 s'oppose à la composante BP0 générée dans la couche magnétique de la membrane 20 par le champ magnétique B0. Si la composante BP1 générée par la bobine 4 d'excitation est d'intensité supérieure à celle générée par le champ magnétique B0, le couple magnétique résultant du champ magnétique B0 et de cette composante BP1 s'inverse et provoque le pivotement de la membrane 20 de sa première position vers sa seconde position.
Une fois le pivotement de la membrane 20 effectué, l'alimentation de la bobine
4 d'excitation n'est plus nécessaire. Selon l'invention, le second champ magnétique BSi créé par la bobine 4 d'excitation n'est que transitoire et n'est utile que pour faire pivoter la membrane 20 d'une position à l'autre. Comme représenté en figure 3C, la membrane 20 est ensuite maintenue dans sa seconde position sous l'effet du seul premier champ magnétique B0, créant une nouvelle composante magnétique BP2 dans la membrane 20. Le nouveau couple magnétique créé entre le premier champ magnétique B0 et la composante BP2 générée dans la membrane 20 impose à la membrane 20 de se maintenir dans sa seconde position.
Une fois que la membrane 20 a pivoté dans sa seconde position, le contact 21 porté par la membrane 20 vient relier électriquement les deux électrodes 31 , 32 présentes sur le substrat 3. Le circuit électrique est alors fermé. Pour ouvrir le circuit électrique, la membrane 20 doit de nouveau être pivotée vers sa première position. Un courant est délivré dans la bobine 4 d'excitation dans un sens opposé à celui défini ci-dessus. Le champ magnétique créé par la bobine 4 d'excitation est donc orienté dans un sens opposé au champ magnétique précédent BSi. Ce champ magnétique génère selon l'axe longitudinal (A) une composante magnétique dans la membrane 20, opposée à la composante BP2. Si cette nouvelle composante magnétique est d'intensité supérieure à la composante BP2, le couple magnétique résultant du premier champ magnétique B0 et de cette nouvelle composante magnétique provoque le basculement de la membrane 20 vers sa première position. L'intensité du courant à délivrer dans la bobine 4 d'excitation pour faire pivoter la membrane 20 dépend du nombre de spires constituant la bobine 4 d'excitation ainsi que de la densité du champ magnétique le long de la bobine 4 d'excitation.
Selon l'invention, en référence à la figure 6, la bobine 4 d'excitation de type solénoïde présente une densité de spires 40 variable sur sa longueur. Le nombre de spires 40 est plus important aux extrémités qu'au centre de la bobine 4 d'excitation.
Le champ magnétique généré dans le solénoïde est ainsi parfaitement uniforme sur toute la longueur de la bobine 4 d'excitation. L'uniformité du champ magnétique (BSi par exemple sur la figure 3B) généré par la bobine 4 d'excitation est importante car elle permet d'augmenter le volume utile à l'intérieur du solénoïde.
Selon l'invention, la bobine 4 d'excitation de type solénoïde pourra être fabriquée par des techniques de circuit imprimée ou de bobinage d'un fil de cuivre. Selon l'invention, afin d'améliorer la force de contact entre la membrane 20 et le substrat 3, on augmente le couple magnétique existant entre le premier champ magnétique B0 et la composante générée dans la membrane 20. Pour cela, on joue sur l'angle x existant entre la direction du premier champ magnétique B0 et la surface 30 du substrat 3 (voir figures 5A et 5B). Cet angle x doit être différent de 90°. L'angle x formé entre la direction des lignes de champ et la surface 30 du substrat supportant le microactionneur peut être fixé soit en inclinant le substrat 3 par rapport à la direction du champ permanent (figure 5A) soit en conférant une forme particulière aux deux pièces 50, 51 d'entrefer pour générer un champ magnétique dans l'entrefer dont la direction aurait une inclinaison de l'angle x par rapport à la surface 30 du substrat 3 (figure 5B). En référence à la figure 5B, il pourra s'agir de biseauter chaque pièce d'entrefer ou, dans une autre variante non représentée, de plier chacune de ces pièces 50, 51.
Selon une variante de réalisation représentée en figure 7, un microsystème selon l'invention est utilisé pour la commande de deux circuits électriques distincts. Selon cette variante, un premier substrat 3a porte les électrodes 31a d'un premier circuit électrique et un second substrat 3b, par exemple disposé au-dessus, parallèlement au premier substrat 3a, porte les électrodes 31 b d'un second circuit électrique. Les électrodes 31a, 31 b sont disposées symétriquement par rapport à l'axe longitudinal (A) de la membrane 20 d'un microactionneur 2 selon l'invention lorsque celle-ci est au repos. Les deux substrats sont par exemples reliés par des éléments 5 de liaison. Le microactionneur 2 selon l'invention est solidaire d'au moins l'un des substrats 3a, 3b. La membrane 20 pivotante peut donc pivoter entre ses deux positions extrêmes pour venir fermer dans chacune de ses positions extrêmes l'un ou l'autre des circuits électriques. Dans une position d'équilibre (en trait plein sur la figure 7), les deux circuits électriques sont ouverts et la membrane 20 est parallèle aux deux substrats 3a, 3b. Dans une première position extrême (en pointillés sur la figure 7), la membrane 20 vient en contact avec la première électrode 31a pour fermer le premier circuit électrique tandis que dans sa seconde position extrême opposée (en pointillés sur la figure 7), la membrane 20 vient en contact avec la seconde électrode 31b pour fermer le second circuit électrique.
Selon l'invention, un microsystème selon l'invention peut comporter une pluralité de microactionneurs 2, 2' identiques tels que décrits ci-dessus formant une matrice placée au centre de la bobine 4 d'excitation de type solénoïde. Avec une même énergie de commande provenant de l'activation de la bobine 4 d'excitation de type solénoïde, il est possible d'actionner simultanément un grand nombre de microactionneurs 2, 2' magnétiques arrangés en série ou en parallèle. Les microactionneurs 2, 2' sont par exemple organisés suivant plusieurs lignes parallèles. Ainsi, par l'alimentation de la bobine 4, 6 d'excitation, tous les microactionneurs 2, 2" d'une ligne ou de plusieurs lignes peuvent être actionnés simultanément.
Il est bien entendu que l'on peut, sans sortir du cadre de l'invention, imaginer d'autres variantes et perfectionnements de détail et de même envisager l'emploi de moyens équivalents.

Claims

REVENDICATIONS
1. Microsystème comprenant :
- un microactionneur (2, 2") magnétique comprenant un élément mobile supporté par un substrat (3) et piloté par effet magnétique entre une première position et une deuxième position pour commuter au moins un circuit électrique,
- un aimant permanent ou un électroaimant soumettant l'élément mobile à un premier champ magnétique (B0) pour le maintenir dans la première position,
- une bobine (4, 6) d'excitation externe au substrat (3), ladite bobine (4, 6) d'excitation étant apte, lorsqu'elle est alimentée, à soumettre l'élément mobile à un second champ magnétique (BSi) pour faire passer l'élément mobile de la première position à la seconde position, caractérisé en ce que,
- la bobine d'excitation est de type solénoïde et en ce qu'elle entoure le substrat supportant l'élément mobile.
2. Microsystème selon la revendication 1, caractérisé en ce que l'élément mobile comporte une membrane (20, 20") montée sur le substrat (3), présentant un axe longitudinal (A, A") et apte à pivoter entre ses différentes positions selon un axe (P, P") perpendiculaire à l'axe longitudinal (A, A), ladite membrane (20, 20') présentant au moins une couche faite dans un matériau magnétique.
3. Microsystème selon la revendication 1 ou 2, caractérisé en ce que le premier champ magnétique (B0) est uniforme et orienté perpendiculairement à une surface (30) plane du substrat (3) sur laquelle est monté l'élément mobile.
4. Microsystème selon l'une des revendications 1 à 3, caractérisé en ce que le substrat (3) supportant le microactionneur (2, 2') est placé dans un circuit magnétique comportant un entrefer (50, 51) et une source magnétique apte à générer le premier champ magnétique (B0).
5. Microsystème selon la revendication 4, caractérisé en ce que la source magnétique est un aimant (5) permanent.
6. Microsystème selon la revendication 4, caractérisé en ce que la source magnétique est une bobine (51) électromagnétique.
7. Microsystème selon l'une des revendications 1 à 6, caractérisé en ce que la bobine (4) d'excitation présente sur sa longueur une densité de spires (40) variable.
8. Microsystème selon la revendication 7, caractérisé en ce que la bobine (4) d'excitation comporte un plus grand nombre de spires (40) à chacune de ses extrémités.
9. Microsystème selon l'une des revendications 1 à 8, caractérisé en ce que le premier champ magnétique (B0) uniforme présente des lignes de champ suivant une direction non perpendiculaire au plan défini par une surface (30) du substrat (3) supportant le microactionneur (2, 2") magnétique.
10. Microsystème selon l'une des revendications 1 à 9, caractérisé en ce qu'il commande l'ouverture et la fermeture de deux circuits électriques.
11. Microsystème selon l'une des revendications 1 à 10, caractérisé en ce qu'il est fabriqué selon une technologie de type MEMS.
12. Microsystème selon l'une des revendications 1 à 11 , caractérisé en en ce que le substrat (3) supporte une pluralité de microactionneurs (2, 2') magnétiques identiques apte à être commandée simultanément par ladite bobine (4) d'excitation.
PCT/EP2006/050074 2005-01-10 2006-01-06 Microsysteme a commande electromagnetique WO2006072627A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP06700703A EP1836714B1 (fr) 2005-01-10 2006-01-06 Microsysteme a commande electromagnetique
DE602006012620T DE602006012620D1 (fr) 2005-01-10 2006-01-06
US11/813,591 US7724111B2 (en) 2005-01-10 2006-01-06 Microsystem with electromagnetic control
AT06700703T ATE459974T1 (de) 2005-01-10 2006-01-06 Mikrosystem mit elektromagnetischer steuerung
CN2006800076856A CN101138060B (zh) 2005-01-10 2006-01-06 具有电磁控制的微系统
JP2007549897A JP4519921B2 (ja) 2005-01-10 2006-01-06 電磁制御マイクロシステム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0550085 2005-01-10
FR0550085A FR2880729B1 (fr) 2005-01-10 2005-01-10 Microsysteme a commande electromagnetique

Publications (1)

Publication Number Publication Date
WO2006072627A1 true WO2006072627A1 (fr) 2006-07-13

Family

ID=34952790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/050074 WO2006072627A1 (fr) 2005-01-10 2006-01-06 Microsysteme a commande electromagnetique

Country Status (9)

Country Link
US (1) US7724111B2 (fr)
EP (1) EP1836714B1 (fr)
JP (1) JP4519921B2 (fr)
KR (1) KR101023581B1 (fr)
CN (1) CN101138060B (fr)
AT (1) ATE459974T1 (fr)
DE (1) DE602006012620D1 (fr)
FR (1) FR2880729B1 (fr)
WO (1) WO2006072627A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010517212A (ja) * 2007-01-19 2010-05-20 シュネーデル、エレクトリック、インダストリーズ、エスアーエス 電気回路の投入/遮断装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2911675B1 (fr) * 2007-01-19 2009-08-21 Schneider Electric Ind Sas Initiateur electro-pyrotechnique a commande magnetique
US8624137B2 (en) * 2008-09-23 2014-01-07 Nxp, B.V. Device with a micro electromechanical structure
DE102008042346A1 (de) * 2008-09-25 2010-04-01 Robert Bosch Gmbh Magnetjoch, mikromechanisches Bauteil und Herstellungsverfahren für ein Magnetjoch und ein mikromechanisches Bauteil
US8581679B2 (en) * 2010-02-26 2013-11-12 Stmicroelectronics Asia Pacific Pte. Ltd. Switch with increased magnetic sensitivity
IT201700088417A1 (it) * 2017-08-01 2019-02-01 Hike S R L Dispositivo elettromeccanico integrato.
CN110739808B (zh) * 2019-10-23 2021-07-20 西安工程大学 一种便于集成的微型电磁致动器及其驱动方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5070317A (en) * 1989-01-17 1991-12-03 Bhagat Jayant K Miniature inductor for integrated circuits and devices
US5644177A (en) * 1995-02-23 1997-07-01 Wisconsin Alumni Research Foundation Micromechanical magnetically actuated devices
US6320145B1 (en) * 1998-03-31 2001-11-20 California Institute Of Technology Fabricating and using a micromachined magnetostatic relay or switch
US20020050880A1 (en) * 1999-09-23 2002-05-02 Meichun Ruan Electronically switching latching micro-magnetic relay and method of operating same
US6410360B1 (en) * 1999-01-26 2002-06-25 Teledyne Industries, Inc. Laminate-based apparatus and method of fabrication
US20020140533A1 (en) * 1999-07-01 2002-10-03 Masaru Miyazaki Method of producing an integrated type microswitch
WO2002095784A1 (fr) * 2001-05-18 2002-11-28 Microlab, Inc. Boitier pour commutateur de verrouillage micromagnetique
US6750745B1 (en) * 2001-08-29 2004-06-15 Magfusion Inc. Micro magnetic switching apparatus and method
US20040183633A1 (en) * 2002-09-18 2004-09-23 Magfusion, Inc. Laminated electro-mechanical systems

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55137427U (fr) * 1979-03-23 1980-09-30
CA2211830C (fr) * 1997-08-22 2002-08-13 Cindy Xing Qiu Commutateurs hyperfrequence electromagnetiques miniatures et plaquettes de commutateurs
US6310526B1 (en) * 1999-09-21 2001-10-30 Lap-Sum Yip Double-throw miniature electromagnetic microwave (MEM) switches
CN1320576C (zh) * 2001-01-18 2007-06-06 亚利桑那州立大学 具有永久磁铁松弛对准要求的微磁闩锁开关
US6593834B2 (en) * 2001-07-30 2003-07-15 Cindy Xing Qiu Double-throw miniature electromagnetic microwave switches with latching mechanism

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5070317A (en) * 1989-01-17 1991-12-03 Bhagat Jayant K Miniature inductor for integrated circuits and devices
US5644177A (en) * 1995-02-23 1997-07-01 Wisconsin Alumni Research Foundation Micromechanical magnetically actuated devices
US6320145B1 (en) * 1998-03-31 2001-11-20 California Institute Of Technology Fabricating and using a micromachined magnetostatic relay or switch
US6410360B1 (en) * 1999-01-26 2002-06-25 Teledyne Industries, Inc. Laminate-based apparatus and method of fabrication
US20020140533A1 (en) * 1999-07-01 2002-10-03 Masaru Miyazaki Method of producing an integrated type microswitch
US20020050880A1 (en) * 1999-09-23 2002-05-02 Meichun Ruan Electronically switching latching micro-magnetic relay and method of operating same
WO2002095784A1 (fr) * 2001-05-18 2002-11-28 Microlab, Inc. Boitier pour commutateur de verrouillage micromagnetique
US6750745B1 (en) * 2001-08-29 2004-06-15 Magfusion Inc. Micro magnetic switching apparatus and method
US20040183633A1 (en) * 2002-09-18 2004-09-23 Magfusion, Inc. Laminated electro-mechanical systems

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010517212A (ja) * 2007-01-19 2010-05-20 シュネーデル、エレクトリック、インダストリーズ、エスアーエス 電気回路の投入/遮断装置

Also Published As

Publication number Publication date
JP2008527642A (ja) 2008-07-24
US20080106360A1 (en) 2008-05-08
CN101138060B (zh) 2010-12-15
KR20070117546A (ko) 2007-12-12
CN101138060A (zh) 2008-03-05
DE602006012620D1 (fr) 2010-04-15
US7724111B2 (en) 2010-05-25
ATE459974T1 (de) 2010-03-15
KR101023581B1 (ko) 2011-03-21
FR2880729A1 (fr) 2006-07-14
EP1836714B1 (fr) 2010-03-03
FR2880729B1 (fr) 2009-02-27
JP4519921B2 (ja) 2010-08-04
EP1836714A1 (fr) 2007-09-26

Similar Documents

Publication Publication Date Title
EP1836714B1 (fr) Microsysteme a commande electromagnetique
EP0869519B1 (fr) Moteur planaire magnétique et micro-actionneur magnétique comportant un tel moteur
EP0780858B1 (fr) Dispositif miniature pour exécuter une fonction prédeterminée,notamment microrelais
EP1562207B1 (fr) Microsystème électromécanique pouvant basculer entre deux positions stables
EP1220256B1 (fr) Micro-dispositif à actionneur thermique
WO2005006364A1 (fr) Micro-commutateur bistable a faible consommation
WO2006016077A1 (fr) Dispositif d'affichage tactile
EP1428232B1 (fr) Actionneur magnetique a aimant mobile
EP1525595B1 (fr) Actionneur magnetique a levitation
EP1652205B1 (fr) Commutateur micro-mecanique bistable, methode d' actionnement et procede de realisation correspondant
EP2105940B1 (fr) Nano-commutateur magnetique bistable
EP2085987B1 (fr) Dispositif de commande à double mode d'actionnement
FR2880730A1 (fr) Microsysteme utilisant un microactionneur magnetique a aimant permanent.
EP3688866B1 (fr) Convertisseur d'énergie électromagnétique
EP1836713B1 (fr) Microsysteme integrant un circuit magnetique reluctant
WO2007115945A1 (fr) Microsysteme pour commuter un circuit electrique de puissance
FR2950194A1 (fr) Actionneur electromecanique a electrodes interdigitees
FR2927466A1 (fr) Actionneur bistable a commande electrostatique et consommation electrique faible
FR2883274A1 (fr) Microsysteme integrant un circuit magnetique reluctant
EP1901325A1 (fr) Dispositif de commutation incluant des micro-interrupteurs magnétiques organisés en matrice
WO2006106060A1 (fr) Microsysteme a partie mobile bistable

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006700703

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007549897

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 3041/CHENP/2007

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077017940

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200680007685.6

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2006700703

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11813591

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11813591

Country of ref document: US