EP1901325A1 - Dispositif de commutation incluant des micro-interrupteurs magnétiques organisés en matrice - Google Patents

Dispositif de commutation incluant des micro-interrupteurs magnétiques organisés en matrice Download PDF

Info

Publication number
EP1901325A1
EP1901325A1 EP07115791A EP07115791A EP1901325A1 EP 1901325 A1 EP1901325 A1 EP 1901325A1 EP 07115791 A EP07115791 A EP 07115791A EP 07115791 A EP07115791 A EP 07115791A EP 1901325 A1 EP1901325 A1 EP 1901325A1
Authority
EP
European Patent Office
Prior art keywords
membrane
magnetic
microswitch
substrate
conductive lines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07115791A
Other languages
German (de)
English (en)
Other versions
EP1901325B1 (fr
Inventor
Laurent Chiesi
Benoît Grappe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schneider Electric Industries SAS
Original Assignee
Schneider Electric Industries SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schneider Electric Industries SAS filed Critical Schneider Electric Industries SAS
Publication of EP1901325A1 publication Critical patent/EP1901325A1/fr
Application granted granted Critical
Publication of EP1901325B1 publication Critical patent/EP1901325B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/005Details of electromagnetic relays using micromechanics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H67/00Electrically-operated selector switches
    • H01H67/22Switches without multi-position wipers
    • H01H67/24Co-ordinate-type relay switches having an individual electromagnet at each cross-point
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/005Details of electromagnetic relays using micromechanics
    • H01H2050/007Relays of the polarised type, e.g. the MEMS relay beam having a preferential magnetisation direction

Definitions

  • the present invention relates to a switching device composed of a matrix of magnetic microswitches.
  • the invention relates more particularly to a principle of addressing a microswitch within the matrix.
  • microswitches are often organized in matrix so as to form a switching device in which each microswitch can be controlled separately through the planar coil associated therewith.
  • the multiplication of the number of coils on the substrate of the matrix requires a large substrate surface which therefore limits the possibilities of miniaturization of the device.
  • EP 1 241 697 and EP 1 331 656 individually controlling each microswitch of a matrix of microswitches using a network of interwoven conductive lines.
  • a microswitch is placed at each intersection of a line and a column and can be controlled individually by sending a current in the two conductive lines corresponding to this line and this column.
  • the micro-switches used in the matrix are particularly bulky because they comprise a magnetic circuit provided with portions passing through the substrate and placed under the substrate.
  • the microswitches each require the use of a particular magnet disposed under the substrate to bias the magnetic circuit.
  • the object of the invention is to propose a switching device comprising magnetic micro-switches organized in matrix, which can be controlled separately without occupying a substantial space on the substrate, under the substrate and through the substrate.
  • the conductive lines are electrical tracks made in the substrate.
  • the network consists of a first series of rectilinear and parallel electrical tracks formed in a first plane and oriented in a first direction and a second series of parallel electrical tracks formed in a second plane parallel to the foreground and oriented in a second direction.
  • the second direction is for example orthogonal to the first direction.
  • the movable element of each microswitch consists of a ferromagnetic membrane having a longitudinal axis along which the magnetic field induces a magnetic component.
  • the longitudinal axis of the membrane of each microswitch is oriented along the bisector of the angle formed between the two conductive lines which intersect under the membrane. If the conductive lines are orthogonal to each other, the longitudinal axis of each microswitch will therefore be oriented at 45 ° with respect to the two conductive lines which intersect under their membrane.
  • the membrane of each microswitch has an axis of rotation perpendicular to its longitudinal axis, in which it is adapted to pivot between its two positions by reversing the magnetic torque.
  • the ferromagnetic membrane has two torsion arms anchored on the substrate and inscribed in the membrane. This characteristic contributes to make the matrix particularly compact since the torsion arms no longer project outwardly.
  • the device comprises an electronic control device associated with the matrix for controlling the injection of current into the appropriate conductive lines of the network as a function of the microswitch to be addressed.
  • a magnetic microswitch 2 as shown in FIG. 1 comprises a bistable mobile element mounted on a substrate 3 made of materials such as silicon, glass, ceramics or in the form of printed circuits.
  • the substrate 3 carries on its surface 30 at least two contacts or conductive tracks 31, 32 plane, identical and spaced, intended to be electrically connected by a movable electrical contact 21 to obtain the closure of an electrical circuit (not shown) .
  • the movable element is composed of a deformable membrane 20 having at least one layer of ferromagnetic material.
  • the membrane has a longitudinal axis (A) and is integral with the substrate 3 by means of two linking arms 22a, 22b connecting said membrane 20 to two anchoring studs 23a, 23b arranged symmetrically on both sides of its longitudinal axis (A).
  • the membrane 20 is able to pivot between an open position and a closed position along an axis of rotation (R) parallel to the axis described by the contact points of the membrane 20 with the electric tracks 31, 32 and perpendicular to its longitudinal axis (A).
  • the movable electrical contact 21 is disposed under the membrane 20, at the distal end thereof relative to its axis (R) of rotation.
  • the movable contact 21 When the membrane is in the closed position, the movable contact 21 electrically connects the two fixed conductive tracks 31, 32 disposed on the substrate, to close the electrical circuit. When the membrane is in the open position, the movable contact 21 is moved away from the two conductive tracks so as to open the electric circuit.
  • Such a microswitch 2 can be realized by a planar duplication technology of the MEMS type (for "Micro Electro-Mechanical System”).
  • the membrane 20 and the connecting arms 22a, 22b are for example derived from the same layer of ferromagnetic material.
  • the ferromagnetic material is for example of the soft magnetic type and can be for example an alloy of iron and nickel ("permalloy" Ni 80 Fe 20 ).
  • the torsion arms 22a, 22b and the anchoring studs 23a, 23b are inscribed in the perimeter of the membrane 20. Twist 22a, 22b therefore no longer extend outwardly of the membrane 20 but inwardly. They are inscribed in the membrane 20 and join the anchoring studs 23a, 23b located directly under the membrane 20.
  • the integration of the anchoring studs 23a, 23b and torsion arms 22a, 22b in the perimeter of the membrane 20 has the advantage of reducing the bulk of the component and therefore its manufacturing cost (by reducing the substrate surface necessary and increasing yields).
  • the magnetic actuation of a microswitch 2 as represented in FIG. 1 or 10 consists of subjecting the membrane 20 to a permanent magnetic field B 0 , preferably uniform and for example of direction perpendicular to the surface of the substrate 3 to maintain the membrane 20 in each of its positions, and to apply a temporary control magnetic field to control the passage of the membrane 20 from one position to another, by inverting the magnetic torque exerted on the membrane.
  • a permanent magnetic field B 0 preferably uniform and for example of direction perpendicular to the surface of the substrate 3 to maintain the membrane 20 in each of its positions, and to apply a temporary control magnetic field to control the passage of the membrane 20 from one position to another, by inverting the magnetic torque exerted on the membrane.
  • a permanent magnet (not shown) is used, for example fixed under the substrate 3.
  • the Temporary magnetic field is generated using a planar excitation coil 4 associated with microswitch 2 ( Figure 2).
  • the passage of a current in the planar excitation coil 4 generates a temporary magnetic field direction parallel to the substrate 3 and parallel to the longitudinal axis (A) of the membrane 20 to control, in the direction of the current in the coil , the tilting of the membrane 20 from one of its positions to the other of its positions.
  • planar excitation coils for separately controlling a plurality of microswitches distributed on a matrix as shown in FIG. 3 considerably increases the surface area of the substrate accommodating the microswitches.
  • the planar coil 4 associated with a microswitch 2 is thus replaced by two superposed rectilinear conductive lines electrically insulated from one another and forming an intersection between them (FIG. 4).
  • the two conductive lines are for example electric tracks Ci, Lj formed in the substrate 3 and for example orthogonal to each other.
  • the membrane 20 of the microswitch is positioned on the substrate 3 at the intersection of the two tracks Ci, Lj.
  • the longitudinal axis (A) of the membrane 20 is oriented along the bisector of the angle formed between the two tracks Ci, Lj.
  • the longitudinal axis (A) of the membrane 20 is oriented at 45 ° with respect to each of the two tracks Ci, Lj ( Figure 5).
  • the axis of rotation (R) of the microswitch 2 is located in a parallel plane greater than the planes of the electrical tracks.
  • a control current I 1 , I 2 for example of identical amplitude is injected into each of the two tracks Ci, Lj.
  • the direction of passage of the control current I 1 , I 2 in the tracks fixes the direction of rotation of the diaphragm 20.
  • the control current I 1 , I 2 injected into each track Ci, Lj generates respectively a magnetic field B 1 and B 2 running perpendicularly around the track ( Figure 4).
  • the superposition of the two magnetic fields B 1 , B 2 generates a resulting magnetic field Br oriented at 45 ° with respect to the tracks as represented in FIG. 5.
  • This resulting magnetic field Br induces a component Magnetic BP 3 in the membrane 20 of sufficient intensity to control the tilting of the membrane 20 to its other position ( Figure 7).
  • the principle of actuation of a magnetic microswitch is detailed below:
  • the substrate 3 supporting the membrane 20 is placed under the effect of the permanent magnetic field B 0 already defined above.
  • the first magnetic field B 0 initially generates a magnetic component BP 2 in the membrane 20 along its longitudinal axis (A).
  • the magnetic torque resulting from the first magnetic field B 0 and the BP component 2 generated in the membrane 20 holds the membrane 20 in one of its positions, for example the closed position in FIG. 6.
  • the passage of a control current I 1 , I 2 in a defined direction in each of the two electrical tracks Ci, Lj crossing under the membrane 20 makes it possible to generate the resulting magnetic field Br defined ci above whose direction is parallel to the substrate 3 and oriented at 45 ° with respect to the two tracks Ci, Lj, its direction depending on the direction of the current I 1 , I 2 delivered in each of the tracks Ci, Lj.
  • the resulting magnetic field Br generates the magnetic component BP 3 in the magnetic layer of the membrane 20.
  • this new magnetic component BP 3 s is opposed to the component BP 2 generated in the magnetic layer of the membrane 20 by the first magnetic field B 0 . If the BP component 3 is of greater intensity than that generated by the first magnetic field B 0 , the magnetic torque resulting from the first magnetic field B 0 and this BP 3 component is reversed and causes the membrane 20 to tilt. closing position to its open position ( Figure 7).
  • the resulting magnetic field Br is generated only transiently to tilt the membrane 20 from one position to another.
  • the membrane 20 is then kept in its open position under the effect of the only first magnetic field B 0 creating a new magnetic component BP 4 in the membrane 20 and a new magnetic torque imposing on the membrane 20 to stay in its open position ( Figure 6).
  • the passage of an electric current I 1 , I 2 in two conductive lines Ci, Lj thus controls, by inversion of the magnetic torque applying to the membrane 20, the change of position of the membrane 20 of the microphone magnetic switch located at the intersection of the two conductive lines Ci, Lj.
  • this control and actuation principle can be used to individually address each magnetic microswitch within the matrix.
  • the permanent magnetic field B 0 is for example common to all microswitches 2 of the matrix.
  • a network of electrically insulated electrical tracks is constructed between them under the matrix of microswitches 2.
  • the network consists of a first series of electrical tracks (C1, C2, C3, C4 , C5, C6) rectilinear and parallel formed in a first plane and oriented in a first direction and a second series of parallel electrical tracks (L1, L2, L3, L4, L5, L6) formed in a second plane parallel to the first plane and oriented in a direction orthogonal to the first direction.
  • the first series of electrical tracks (C1-C6) is for example organized in columns and the second series of electric tracks (L1-L6) is organized in lines ( Figure 9).
  • Magnetic microswitches 2 as defined above and shown in Figure 1 or 10 are positioned near each intersection of two electrical tracks from the first series and the second series.
  • the membranes 20 of each microswitch 2 are all oriented at 45 ° as defined above.
  • the axis of rotation (R) of each microswitch 2 is located in a parallel plane greater than the two planes containing the electrical tracks C1-C6, L1-L6 of the network.
  • a control current of equal amplitude for example, is injected into the two tracks which intersect under the membrane 20 to be tilted.
  • the membrane will switch in one or the other of its positions according to the principle described above.
  • the use of such a network therefore makes it easy to address each microswitch 2 identified for example by coordinates within the network. These coordinates are the references of the electrical tracks intersecting under the membrane of the microswitch 2 controlled.
  • the amplitude of the resulting field Br makes it possible to switch the membrane of the addressed microswitch.
  • the magnetic fields B1, B2 generated around the tracks by the injection of the control current I1, I2 are insufficient to control the tilting of the membranes of the other microswitches located on the network.
  • An electronic control device (not shown) will for example be associated with the matrix for controlling the injection of a control current into the appropriate electrical tracks of the network according to the microswitch or 2 to be addressed.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Micromachines (AREA)
  • Push-Button Switches (AREA)

Abstract

La présente invention concerne un dispositif de commutation électrique comportant une pluralité de micro-interrupteurs (2) magnétiques organisés en matrice sur un substrat (3) et comprenant chacun un élément mobile (20) piloté entre deux positions stables maintenues sous l'effet d'un champ magnétique (B 0 ), le dispositif étant caractérisé en ce qu'il comprend : - un réseau de lignes conductrices (C1-C6, L1-L6) entrecroisées, et en ce que - des micro-interrupteurs (2) magnétiques sont positionnés à proximité d'intersections formées par les lignes conductrices (C1-C6, L1-L6), - le passage d'un courant électrique (I 1 , 1 2 ) dans deux lignes conductrices (Ci, Lj) commande un changement de position de l'élément mobile (20) du micro-interrupteur magnétique situé à l'intersection des deux lignes conductrices (Ci, Lj).

Description

  • La présente invention se rapporte à un dispositif de commutation composé d'une matrice de micro-interrupteurs magnétiques. L'invention porte plus particulièrement sur un principe d'adressage d'un micro-interrupteur au sein de la matrice.
  • II est connu par le brevet US 6,469,602 des micro-interrupteurs magnétiques comportant une poutre en matériau ferromagnétique commandée entre une position d'ouverture et une position de fermeture pour commuter un circuit électrique. La poutre ferromagnétique est sensible aux champs magnétiques. Un premier champ magnétique généré par exemple par un aimant permanent induit une aimantation suivant l'axe longitudinal de la poutre, maintenant la poutre dans une première position. Sous l'effet d'un champ magnétique transitoire généré par le passage d'un courant temporaire à travers un conducteur, la poutre bascule vers une seconde position par inversion du couple magnétique. La poutre est ensuite maintenue dans cette seconde position sous le seul effet du champ magnétique permanent généré par l'aimant. Dans cet art antérieur, le conducteur est une bobine planaire intégrée au substrat.
  • Ces micro-interrupteurs sont souvent organisés en matrice afin de pouvoir former un dispositif de commutation dans lequel chaque micro-interrupteur peut être commandé séparément grâce à la bobine planaire qui lui est associée. Cependant, la multiplication du nombre de bobines sur le substrat de la matrice nécessite une surface de substrat importante ce qui restreint donc les possibilités de miniaturisation du dispositif.
  • Il a été proposé par les documents EP 1 241 697 et EP 1 331 656 de commander individuellement chaque micro-interrupteur d'une matrice de micro-interrupteurs en employant un réseau de lignes conductrices entrecroisées. Un micro-interrupteur est placé à chaque intersection d'une ligne et d'une colonne et peut être commandé individuellement en envoyant un courant dans les deux lignes conductrices correspondant à cette ligne et à cette colonne. Cependant, Les micro-interrupteurs employés dans la matrice sont particulièrement encombrants car ils comportent un circuit magnétique muni de portions traversant le substrat et placées sous le substrat. Par ailleurs, pour fonctionner, les micro-interrupteurs nécessitent chacun l'emploi d'un aimant particulier disposé sous le substrat pour polariser le circuit magnétique.
  • Le but de l'invention est de proposer un dispositif de commutation comportant des micro-interrupteurs magnétiques organisés en matrice, pouvant être commandés séparément sans occuper un espace conséquent sur le substrat, sous le substrat et à travers le substrat.
  • Ce but est atteint par un dispositif de commutation électrique comportant une pluralité de micro-interrupteurs magnétiques organisés en matrice sur un substrat et comprenant chacun un élément mobile piloté entre deux positions et monté sur une surface du substrat, le dispositif comprenant un réseau de lignes conductrices entrecroisées, les micro-interrupteurs magnétiques étant positionnés à proximité d'intersections formées par les lignes conductrices, le dispositif étant caractérisé en ce que :
    • l'élément mobile de tous les micro-interrupteurs est apte à être maintenu de manière stable dans chacune de ses deux positions sous le seul effet d'un champ magnétique permanent généré de manière commune à tous les micro-interrupteurs,
    • le passage d'un courant électrique de commande selon un sens déterminé, dans deux lignes conductrices commande le changement de position de l'élément mobile du micro-interrupteur magnétique situé à l'intersection des deux lignes conductrices.
  • Selon une particularité, les lignes conductrices sont des pistes électriques réalisées dans le substrat.
  • Selon une autre particularité, le réseau est constitué d'une première série de pistes électriques rectilignes et parallèles formées dans un premier plan et orientées suivant une première direction et d'une seconde série de pistes électriques parallèles formées dans un second plan parallèle au premier plan et orientées suivant une seconde direction.
  • Selon une autre particularité, la seconde direction est par exemple orthogonale à la première direction.
  • Selon une autre particularité, l'élément mobile de chaque micro-interrupteur est constitué d'une membrane ferromagnétique présentant un axe longitudinal suivant lequel le champ magnétique induit une composante magnétique. L'axe longitudinal de la membrane de chaque micro-interrupteur est orienté suivant la bissectrice de l'angle formé entre les deux lignes conductrices qui se croisent sous la membrane. Si les lignes conductrices sont orthogonales entre elles, l'axe longitudinal de chaque micro-interrupteur sera donc orienté à 45° par rapport aux deux lignes conductrices qui se croisent sous leur membrane.
  • Selon une autre particularité, la membrane de chaque micro-interrupteur présente un axe de rotation perpendiculaire à son axe longitudinal, suivant lequel elle est apte à pivoter entre ses deux positions par inversion du couple magnétique.
  • Selon une autre particularité, la membrane ferromagnétique présente deux bras de torsion ancrés sur le substrat et inscrits dans la membrane. Cette caractéristique concourt à rendre la matrice particulièrement compact puisque les bras de torsion ne débordent plus vers l'extérieur.
  • Selon une autre particularité, le dispositif comprend un dispositif électronique de commande associé à la matrice pour commander l'injection de courant dans les lignes conductrices appropriés du réseau en fonction du micro-interrupteur à adresser.
  • D'autres caractéristiques et avantages vont apparaître dans la description détaillée qui suit en se référant à un mode de réalisation donné à titre d'exemple et représenté par les dessins annexés sur lesquels :
    • La figure 1 représente en perspective un micro-interrupteur magnétique.
    • La figure 2 représente en vue de dessus le micro-interrupteur magnétique de la figure 1, auquel est adjoint une bobine de commande du micro-interrupteur.
    • La figure 3 représente un dispositif de commutation composé d'une matrice de micro-interrupteurs magnétiques du type de celui représenté en figure 2.
    • Les figures 4 et 5 illustrent schématiquement, selon l'invention, le principe d'adressage d'un micro-interrupteur magnétique.
    • Les figures 6, 7 et 8 illustrent le principe de fonctionnement d'un micro-interrupteur magnétique.
    • La figure 9 représente un dispositif de commutation composé d'une matrice de micro-interrupteurs adressés chacun selon le principe détaillé en figures 4 et 5.
    • La figure 10 représente en vue de dessus une variante de réalisation avantageuse d'un micro-interrupteur magnétique.
  • Un micro-interrupteur 2 magnétique tel que représenté en figure 1 comporte un élément mobile bistable monté sur un substrat 3 fabriqué dans des matériaux comme le silicium, le verre, des céramiques ou sous forme de circuits imprimés. Le substrat 3 porte sur sa surface 30 au moins deux contacts ou pistes conductrices 31, 32 planes, identiques et espacées, destinées à être reliées électriquement par un contact électrique mobile 21 afin d'obtenir la fermeture d'un circuit électrique (non représenté).
  • L'élément mobile est composé d'une membrane 20 déformable présentant au moins une couche en matériau ferromagnétique. La membrane présente un axe longitudinal (A) et est solidaire du substrat 3 par l'intermédiaire de deux bras 22a, 22b de liaison reliant ladite membrane 20 à deux plots d'ancrage 23a, 23b disposés symétriquement de part et d'autre de son axe longitudinal (A). Par torsion des deux bras de liaison 22a, 22b, la membrane 20 est apte à pivoter entre une position d'ouverture et une position de fermeture suivant un axe de rotation (R) parallèle à l'axe décrit par les points de contact de la membrane 20 avec les pistes électriques 31, 32 et perpendiculaire à son axe longitudinal (A). Le contact électrique mobile 21 est disposé sous la membrane 20, à l'extrémité distale de celle-ci par rapport à son axe (R) de rotation.
  • Lorsque la membrane est dans la position de fermeture, le contact mobile 21 relie électriquement les deux pistes 31, 32 conductrices fixes disposées sur le substrat, pour fermer le circuit électrique. Lorsque la membrane est en position d'ouverture, le contact mobile 21 est éloigné des deux pistes conductrices de manière à ouvrir le circuit électrique.
  • Un tel micro-interrupteur 2 peut être réalisé par une technologie de duplication planaire de type MEMS (pour "Micro Electro-Mechanical System"). La membrane 20 ainsi que les bras de liaison 22a, 22b sont par exemple issus d'une même couche de matériau ferromagnétique. Le matériau ferromagnétique est par exemple du type magnétique doux et peut être par exemple un alliage de fer et de nickel (« permalloy » Ni80Fe20).
  • En référence à la figure 10, afin de gagner de l'espace sur la surface du substrat, les bras de torsion 22a, 22b ainsi que les plots d'ancrage 23a, 23b sont inscrits dans le périmètre de la membrane 20. Les bras de torsion 22a, 22b ne s'étendent donc plus vers l'extérieur de la membrane 20 mais vers l'intérieur. Ils sont inscrits dans la membrane 20 et rejoignent les plots d'ancrage 23a, 23b situés directement sous la membrane 20.
  • L'intégration des plots d'ancrage 23a, 23b et des bras de torsion 22a, 22b dans le périmètre de la membrane 20 présente l'avantage de réduire l'encombrement du composant et donc son coût de fabrication (en réduisant la surface de substrat nécessaire et en augmentant les rendements).
  • L'actionnement magnétique d'un micro-interrupteur 2 tel que représenté en figure 1 ou 10 consiste à soumettre la membrane 20 à un champ magnétique permanent B0, préférentiellement uniforme et par exemple de direction perpendiculaire à la surface du substrat 3 pour maintenir la membrane 20 dans chacune de ses positions, et à appliquer un champ magnétique temporaire de commande pour piloter le passage de la membrane 20 d'une position à l'autre, par inversion du couple magnétique s'exerçant sur la membrane.
  • Pour générer le champ magnétique permanent B0, on utilise un aimant permanent (non représenté) par exemple fixé sous le substrat 3. Dans l'art antérieur, le champ magnétique temporaire est généré en utilisant une bobine d'excitation 4 planaire associée au micro-interrupteur 2 (figure 2). Le passage d'un courant dans la bobine d'excitation 4 planaire génère un champ magnétique temporaire de direction parallèle au substrat 3 et parallèle à l'axe longitudinal (A) de la membrane 20 pour commander, selon le sens du courant dans la bobine, le basculement de la membrane 20 de l'une de ses positions vers l'autre de ses positions.
  • Selon l'invention, l'emploi de bobines d'excitation planaires pour piloter séparément plusieurs micro-interrupteurs répartis sur une matrice comme représenté en figure 3 augmente considérablement la surface du substrat accueillant les micro-interrupteurs.
  • Selon l'invention, la bobine planaire 4 associée à un micro-interrupteur 2 est donc remplacée par deux lignes conductrices rectilignes superposées isolées électriquement entre elles et formant entre elles une intersection (figure 4). Les deux lignes conductrices sont par exemple des pistes électriques Ci, Lj formées dans le substrat 3 et par exemple orthogonales entre elles.
  • Selon l'invention, en référence aux figures 4 et 5, la membrane 20 du micro-interrupteur est positionnée sur le substrat 3 à l'intersection des deux pistes Ci, Lj. L'axe longitudinal (A) de la membrane 20 est orienté suivant la bissectrice de l'angle formé entre les deux pistes Ci, Lj. Sur les figures 4 et 5, les deux pistes Ci, Lj étant orthogonales entre elles, l'axe longitudinal (A) de la membrane 20 est donc orienté à 45° par rapport à chacune des deux pistes Ci, Lj (figure 5). En outre, l'axe de rotation (R) du micro-interrupteur 2 est situé dans un plan parallèle supérieur aux plans des pistes électriques.
  • Pour commander la membrane 20 du micro-interrupteur 2, on injecte un courant de commande I1, I2 par exemple d'amplitude identique dans chacune des deux pistes Ci, Lj. Le sens de passage du courant de commande I1, I2 dans les pistes fixe le sens de rotation de la membrane 20. Le courant de commande I1, I2 injecté dans chaque piste Ci, Lj génère respectivement un champ magnétique B1 et B2 circulant perpendiculairement autour de la piste (figure 4). A l'intersection des deux pistes Ci, Lj, la superposition des deux champs magnétiques B1, B2 génère un champ magnétique résultant Br orienté à 45° par rapport aux pistes comme représenté en figure 5. Ce champ magnétique résultant Br induit une composante magnétique BP3 dans la membrane 20 d'intensité suffisante pour commander le basculement de la membrane 20 vers son autre position (figure 7). Le principe d'actionnement d'un micro-interrupteur magnétique est détaillé ci-dessous :
  • Le substrat 3 supportant la membrane 20 est placé sous l'effet du champ magnétique permanent B0 déjà défini ci-dessus. Comme représenté en figure 6, le premier champ magnétique B0 génère initialement une composante magnétique BP2 dans la membrane 20 suivant son axe longitudinal (A). Le couple magnétique résultant du premier champ magnétique B0 et de la composante BP2 générée dans la membrane 20 maintient la membrane 20 dans l'une de ses positions, par exemple la position de fermeture sur la figure 6.
  • En référence à la figure 7, le passage d'un courant de commande I1, I2 dans un sens défini dans chacune des deux pistes électriques Ci, Lj se croisant sous la membrane 20, permet de générer le champ magnétique résultant Br défini ci-dessus dont la direction est parallèle au substrat 3 et orientée à 45° par rapport aux deux pistes Ci, Lj, son sens dépendant du sens du courant I1, I2 délivré dans chacune des pistes Ci, Lj. Le champ magnétique résultant Br génère la composante magnétique BP3 dans la couche magnétique de la membrane 20. Si le courant de commande I1, I2 est délivré dans chaque piste Ci, Lj dans un sens approprié, cette nouvelle composante magnétique BP3 s'oppose à la composante BP2 générée dans la couche magnétique de la membrane 20 par le premier champ magnétique B0. Si la composante BP3 est d'intensité supérieure à celle générée par le premier champ magnétique B0, le couple magnétique résultant du premier champ magnétique B0 et de cette composante BP3 s'inverse et provoque le basculement de la membrane 20 de sa position de fermeture vers sa position d'ouverture (figure 7).
  • Une fois le basculement de la membrane 20 effectué, l'alimentation en courant des deux pistes Ci, Lj n'est plus nécessaire. Selon l'invention, le champ magnétique résultant Br n'est généré que de manière transitoire pour faire basculer la membrane 20 d'une position à l'autre. Comme représenté en figure 8, la membrane 20 est ensuite maintenue dans sa position d'ouverture sous l'effet du seul premier champ magnétique B0 créant une nouvelle composante magnétique BP4 dans la membrane 20 et un nouveau couple magnétique imposant à la membrane 20 de se maintenir dans sa position d'ouverture (figure 6).
  • Selon l'invention, le passage d'un courant électrique I1, I2 dans deux lignes conductrices Ci, Lj commande donc, par inversion du couple magnétique s'appliquant sur la membrane 20, le changement de position de la membrane 20 du micro-interrupteur magnétique situé à l'intersection des deux lignes conductrices Ci, Lj.
  • Dans une matrice de micro-interrupteurs magnétiques, ce principe de commande et d'actionnement peut être employé pour adresser individuellement chaque micro-interrupteur magnétique au sein de la matrice. Le champ magnétique permanent B0 est par exemple commun à tous les micro-interrupteurs 2 de la matrice.
  • Pour cela, en référence à la figure 9, on construit un réseau de pistes électriques isolées électriquement entre elles sous la matrice de micro-interrupteurs 2. Le réseau est constitué d'une première série de pistes électriques (C1, C2, C3, C4, C5, C6) rectilignes et parallèles formées dans un premier plan et orientées suivant une première direction et d'une seconde série de pistes électriques (L1, L2, L3, L4, L5, L6) parallèles formées dans un second plan parallèle au premier plan et orientées suivant une direction orthogonale à la première direction. La première série de pistes électriques (C1-C6) est par exemple organisée en colonnes et la seconde série de pistes électriques (L1-L6) est organisée en lignes (figure 9).
  • Des micro-interrupteurs magnétiques 2 tels que définis ci-dessus et représentés en figure 1 ou 10 sont positionnés à proximité de chaque intersection de deux pistes électriques issues de la première série et de la seconde série. Les membranes 20 de chaque micro-interrupteur 2 sont toutes orientées à 45° comme défini ci-dessus. L'axe de rotation (R) de chaque micro-interrupteur 2 est situé dans un plan parallèle supérieur aux deux plans contenant les pistes électriques C1-C6, L1-L6 du réseau.
  • Pour adresser un micro-interrupteur 2 dans la matrice ainsi formée, un courant de commande par exemple d'amplitude identique est injecté dans les deux pistes qui se croisent sous la membrane 20 à basculer. Selon le sens de passage du courant dans chacune des deux pistes, la membrane va basculer dans l'une ou l'autre de ses positions selon le principe décrit ci-dessus. L'emploi d'un tel réseau permet donc d'adresser facilement chaque micro-interrupteur 2 identifié par exemple par des coordonnées au sein du réseau. Ces coordonnées sont les références des pistes électriques se croisant sous la membrane du micro-interrupteur 2 commandé. En injectant un courant de commande I1, I2 à la fois dans les pistes C3 et L2 de la figure 9, la membrane 20 du micro-interrupteur 2 située à l'intersection de ces deux pistes est commandée en basculement selon le principe d'actionnement décrit ci-dessus en liaison avec les figures 4 à 8.
  • Selon l'invention, l'amplitude du champ résultant Br permet de basculer la membrane du micro-interrupteur adressée. En revanche, les champs magnétiques B1, B2 générés autours des pistes par l'injection du courant de commande I1, I2 est insuffisant pour commander le basculement des membranes des autres micro-interrupteurs situés sur le réseau.
  • Un dispositif électronique de commande (non représenté) sera par exemple associé à la matrice pour commander l'injection d'un courant de commande dans les pistes électriques appropriées du réseau selon le ou les micro-interrupteurs 2 à adresser.

Claims (9)

  1. Dispositif de commutation électrique comportant une pluralité de micro-interrupteurs (2) magnétiques organisés en matrice sur un substrat (3) et comprenant chacun un élément mobile (20) piloté entre deux positions et monté sur une surface du substrat, le dispositif comprenant un réseau de lignes conductrices (C1-C6, L1-L6) entrecroisées, les micro-interrupteurs (2) magnétiques étant positionnés à proximité d'intersections formées par les lignes conductrices (C1-C6, L1-L6), le dispositif étant caractérisé en ce que :
    - l'élément mobile est apte à être maintenu de manière stable dans chacune de ses deux positions sous le seul effet d'un champ magnétique permanent (B0) généré de manière commune à tous les micro-interrupteurs (2),
    - le passage d'un courant électrique de commande (I1, I2), selon un sens déterminé, dans deux lignes conductrices (Ci, Lj) commande le changement de position de l'élément mobile (20) du micro-interrupteur magnétique situé à l'intersection des deux lignes conductrices (Ci, Lj).
  2. Dispositif selon la revendication 1, caractérisé en ce que les lignes conductrices sont des pistes électriques réalisées dans le substrat (3).
  3. Dispositif selon la revendication 2, caractérisé en ce que le réseau est constitué d'une première série de pistes électriques (C1-C6) rectilignes et parallèles formées dans un premier plan et orientées suivant une première direction et d'une seconde série de pistes électriques (L1, L6) parallèles formées dans un second plan parallèle au premier plan et orientées suivant une seconde direction.
  4. Dispositif selon la revendication 3, caractérisé en ce que la seconde direction est orthogonale à la première direction.
  5. Dispositif selon l'une des revendications 1 à 4, caractérisé en ce que l'élément mobile de chaque micro-interrupteur (2) est constitué d'une membrane (20) ferromagnétique présentant un axe longitudinal (A) suivant lequel le champ magnétique (B0) induit une composante magnétique (BP2, BP4).
  6. Dispositif selon la revendication 5, caractérisé en ce que l'axe longitudinal (A) de la membrane (20) de chaque micro-interrupteur (2) est orienté suivant la bissectrice de l'angle formé entre les deux lignes conductrices (Ci, Lj) qui se croisent sous la membrane (20).
  7. Dispositif selon la revendication 5 ou 6, caractérisé en ce que la membrane (20) de chaque micro-interrupteur (2) présente un axe de rotation (R) perpendiculaire à son axe longitudinal (A), suivant lequel elle est apte à pivoter entre ses deux positions par inversion du couple magnétique.
  8. Dispositif selon l'une des revendications 5 à 7, caractérisé en ce que la membrane (20) ferromagnétique présente deux bras de torsion (22a, 22b) ancrés sur le substrat (3) et inscrits dans la membrane (20).
  9. Dispositif selon l'une des revendications 1 à 8, caractérisé en ce qu'il comprend un dispositif électronique de commande associé à la matrice pour commander l'injection de courant dans les lignes conductrices appropriés du réseau en fonction du micro-interrupteur (2) à adresser.
EP07115791A 2006-09-15 2007-09-06 Dispositif de commutation incluant des micro-interrupteurs magnétiques organisés en matrice Not-in-force EP1901325B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US84466706P 2006-09-15 2006-09-15
FR0654230A FR2907258A1 (fr) 2006-10-12 2006-10-12 Dispositif de commutation incluant des micro-interrupteurs magnetiques organises en matrice

Publications (2)

Publication Number Publication Date
EP1901325A1 true EP1901325A1 (fr) 2008-03-19
EP1901325B1 EP1901325B1 (fr) 2011-10-19

Family

ID=38051368

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07115791A Not-in-force EP1901325B1 (fr) 2006-09-15 2007-09-06 Dispositif de commutation incluant des micro-interrupteurs magnétiques organisés en matrice

Country Status (4)

Country Link
US (1) US7750768B2 (fr)
EP (1) EP1901325B1 (fr)
AT (1) ATE529876T1 (fr)
FR (1) FR2907258A1 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1241697A1 (fr) * 2001-03-15 2002-09-18 Alcatel Micro-relais
EP1331656A1 (fr) * 2002-01-23 2003-07-30 Alcatel Méthode pour la fabrication d'une matrice de relais ADSL

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3365701A (en) * 1965-01-27 1968-01-23 Navigation Computer Corp Reed relay matrix having printed circuit relay control
US3845430A (en) * 1973-08-23 1974-10-29 Gte Automatic Electric Lab Inc Pulse latched matrix switches
US6496612B1 (en) * 1999-09-23 2002-12-17 Arizona State University Electronically latching micro-magnetic switches and method of operating same
ATE357733T1 (de) * 2001-01-18 2007-04-15 Univ Arizona Mikromagnetischer verriegelbarer schalter mit weniger beschränktem ausrichtungsbedarf
US6639493B2 (en) * 2001-03-30 2003-10-28 Arizona State University Micro machined RF switches and methods of operating the same
US20020196110A1 (en) * 2001-05-29 2002-12-26 Microlab, Inc. Reconfigurable power transistor using latching micromagnetic switches
US6750745B1 (en) * 2001-08-29 2004-06-15 Magfusion Inc. Micro magnetic switching apparatus and method
US20030169135A1 (en) * 2001-12-21 2003-09-11 Jun Shen Latching micro-magnetic switch array
US20030222740A1 (en) * 2002-03-18 2003-12-04 Microlab, Inc. Latching micro-magnetic switch with improved thermal reliability
US7142743B2 (en) * 2002-05-30 2006-11-28 Corning Incorporated Latching mechanism for magnetically actuated micro-electro-mechanical devices
KR100631204B1 (ko) * 2005-07-25 2006-10-04 삼성전자주식회사 Mems 스위치 및 그 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1241697A1 (fr) * 2001-03-15 2002-09-18 Alcatel Micro-relais
EP1331656A1 (fr) * 2002-01-23 2003-07-30 Alcatel Méthode pour la fabrication d'une matrice de relais ADSL

Also Published As

Publication number Publication date
FR2907258A1 (fr) 2008-04-18
EP1901325B1 (fr) 2011-10-19
ATE529876T1 (de) 2011-11-15
US7750768B2 (en) 2010-07-06
US20080068115A1 (en) 2008-03-20

Similar Documents

Publication Publication Date Title
EP0869519B1 (fr) Moteur planaire magnétique et micro-actionneur magnétique comportant un tel moteur
US6633212B1 (en) Electronically latching micro-magnetic switches and method of operating same
EP2633525B1 (fr) Element magnetique inscriptible.
EP2072959B1 (fr) Appareil à moyens de réglage sans contact
WO2004055754A1 (fr) Dispositif d’affichage tactile multi-couches a base d’actionneurs electromagnetiques
FR2865724A1 (fr) Microsysteme electromecanique pouvant basculer entre deux positions stables
FR2607315A1 (fr) Organe electromagnetique de commande
FR2828000A1 (fr) Actionneur magnetique a aimant mobile
US7964443B2 (en) Method of forming a crossed wire molecular device including a self-assembled molecular layer
EP1925008A1 (fr) Dispositif de commutation d'un circuit electrique utilisant au moins deux aimants permanents
FR2880729A1 (fr) Microsysteme a commande electromagnetique
EP2085987B1 (fr) Dispositif de commande à double mode d'actionnement
FR2871270A1 (fr) Dispositif d'affichage tactile
EP1901325B1 (fr) Dispositif de commutation incluant des micro-interrupteurs magnétiques organisés en matrice
FR2929443A1 (fr) Nano-commutateur magnetique bistable
FR2524698A1 (fr) Clavier a touches
EP1692527A1 (fr) Capteur de courant a sensibilite reduite aux champs magnetiques parasites
FR2880730A1 (fr) Microsysteme utilisant un microactionneur magnetique a aimant permanent.
EP1836713B1 (fr) Microsysteme integrant un circuit magnetique reluctant
EP1818958A1 (fr) Microsystème incluant un dispositif d'arrêt
FR2899720A1 (fr) Microsysteme pour commuter un circuit electrique de puissance
FR2838421A1 (fr) Composant comportant une matrice de cellules de structures microelectromecaniques
FR2701122A1 (fr) Dispositif à bulles magnétiques pour détecter et mémoriser le déplacement d'une pièce.
FR2886758A1 (fr) Dispositif de commutation d'un circuit electrique utilisant deux aimants en opposition
FR2909218A1 (fr) Module de commutation electrique avec composants electroniques de type cms

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080422

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHNEIDER ELECTRIC INDUSTRIES SAS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007017976

Country of ref document: DE

Effective date: 20111222

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20111019

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20111019

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 529876

Country of ref document: AT

Kind code of ref document: T

Effective date: 20111019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120219

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120220

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120120

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120119

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

26N No opposition filed

Effective date: 20120720

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007017976

Country of ref document: DE

Effective date: 20120720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

BERE Be: lapsed

Owner name: SCHNEIDER ELECTRIC INDUSTRIES SAS

Effective date: 20120930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120130

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070906

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140711

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140709

Year of fee payment: 8

Ref country code: GB

Payment date: 20140917

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140916

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007017976

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150906

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150906

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160401

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930