WO2006072461A1 - Procede de production de particules de polyurethane thermoplastiques - Google Patents

Procede de production de particules de polyurethane thermoplastiques Download PDF

Info

Publication number
WO2006072461A1
WO2006072461A1 PCT/EP2005/014156 EP2005014156W WO2006072461A1 WO 2006072461 A1 WO2006072461 A1 WO 2006072461A1 EP 2005014156 W EP2005014156 W EP 2005014156W WO 2006072461 A1 WO2006072461 A1 WO 2006072461A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic polyurethane
tpu
diisocyanate
molten
thermoplastic
Prior art date
Application number
PCT/EP2005/014156
Other languages
German (de)
English (en)
Inventor
Oliver Steffen Henze
Markus Steffen
Michael Senge
Stefan Arenz
Stephan Friederichs
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to DE112005003144T priority Critical patent/DE112005003144A5/de
Publication of WO2006072461A1 publication Critical patent/WO2006072461A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/122Pulverisation by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/26Nozzle-type reactors, i.e. the distribution of the initial reactants within the reactor is effected by their introduction or injection through nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • B01J4/002Nozzle-type elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00119Heat exchange inside a feeding nozzle or nozzle reactor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes

Definitions

  • the invention relates to processes for the preparation of preferably round thermoplastic polyurethane particles, preferably based on aliphatic isocyanates, more preferably hexamethylene diisocyanate, preferably having a melt index according to DIN ISO 1133 (180 ° C / 2.16 kg) between 5 g / 10min and 300 g / 10min , more preferably between 10 g / 10 min and 200 g / 10 min, in particular between 15 g / 10 min and 200 g / 10 min, preferably a flowability according to DIN EN ISO 6186: 1998 of less than 15 sec / 100 g, preferably less than 10 sec / 100 g and preferably a particle diameter of the powder preferably less than 2000 .mu.m, more preferably between 50 .mu.m and 1000 .mu.m, in particular between 100 .mu.m and 900 .mu.m.
  • particle diameter is meant the maximum diameter of a TPU particle in the powder, preferably the mean particle diameter in the powder.
  • the invention further relates to thermoplastic polyurethane particles obtainable in this way and to processes for producing articles based on thermoplastic polyurethanes by sintering powdered thermoplastic polyurethanes, the thermoplastic polyurethane particles obtainable according to the invention being used as pulverized thermoplastic polyurethanes.
  • round is meant in this document shapes that have no corners or edges, which may be droplet-shaped, spherical, or other shapes that a drop may take on falling.
  • Thermoplastics are plastics that remain thermoplastic when repeatedly heated and cooled in the temperature range typical of the material for processing and application.
  • thermoplastic is meant the property of a plastic to soften in a typical temperature range for him repeatedly in the heat and to harden on cooling and be repeatedly formed in the softened state by flowing as a molded part, extrudate or forming part to semifinished or articles.
  • Thermoplastics are widely used in the art and are in the form of fibers, sheets, films, moldings, bottles, jackets, packages, etc.
  • Thermoplastic polyurethane (hereinafter referred to as TPU) is an elastomer which finds use in many applications , eg Shoe applications, foils, fibers, ski boots, hoses.
  • the preparation of the TPU is usually carried out batchwise or continuously by the known processes, for example with reaction extruders or the strip process by one-shot or prepolymer process.
  • the components to be reacted in particular diisocyanate and diol, are mixed successively or simultaneously with one another, the reaction beginning immediately.
  • the starting components are introduced individually or as a mixture in the extruder, for example at temperatures of 100 to 28O 0 C, preferably 140 to 25O 0 C reacted, the resulting TPU is extruded, cooled and granulated.
  • the products obtainable by these known processes usually have to be comminuted after granulation, in particular for use in powder slush, e.g. be ground to achieve an acceptable particle size.
  • the granules are ground (cryogenically) at low temperatures.
  • the powders then obtained contain irregular and angular particles, which adversely affect the flowability.
  • TPU powdered TPU is usually distributed in a mold on a surface which, when heated, causes fusion of the TPU powder to produce a TPU "skin."
  • a mold it is as fast and complete as possible Distribution of the TPU powder on the surface is desirable, but this can only be achieved if the flowability of the TPU powder is sufficiently high.
  • thermoplastic polyurethane particles and thermoplastic polyurethane particles obtainable in this way, which have a high flowability, a shape which is as round as possible and, especially in the powder-slush process, rapid and complete coverage of the Enable surface.
  • the expression “dripping” also means “spraying”.
  • the round TPU according to the invention are very suitable for powder-slush processing, since they are very easy pourable due to their round shape and therefore can be easily and quickly applied in the mold and fill them well. So far, ground TPUs have been used in powder slush, but due to the milling process they have a non-optimal flowability and therefore have an improvement potential in the powder-slush application.
  • the dripping invention can be carried out by well-known methods and apparatuses for spraying or dropping liquids. Corresponding processes are described inter alia for molten polyesters in WO 02/18113. Information on process parameters, which should also be content of this document, are also given in WO 01/64326, page 12 to page 14 and in DE-A 101 37 925, page 7, lines 13 to 39, in particular lines 24 to 39.
  • the generation of the spray or the droplets by the spraying and / or dripping of the molten TPU can be carried out by means of conventional devices for spraying or dripping liquids, for example by means of spray nozzles, Vibra- tionsvertropfem and vibrating diaphragm aerosol generators.
  • the process according to the invention can preferably be carried out by dropwise dripping the molten thermoplastic polyurethane by means of a dropletizing nozzle, particularly preferably by particularly preferring the molten thermoplastic polyurethane by means of a vibrated perforated disk, which preferably has a frequency between 50 and 20,000 Hz between 70 and 5000 Hz, dripped.
  • the temperature of the molten TPU during spraying and / or dripping is preferably 140 to 260 0 C, particularly preferably 160-220 0 C.
  • the droplet diameter which is obtained during spraying is preferably less than 2000 .mu.m, more preferably less than 1200 .mu.m, in particular between 50 .mu.m and 1200 .mu.m, according to the invention.
  • the dripping and / or spraying is preferably carried out in apparatus which are also suitable for spray drying.
  • apparatus which are also suitable for spray drying.
  • Such reactors are described, for example, in K. Masters, Spray Drying Handbook, 5th Edition, Longman, 1991, pages 23-66.
  • the process according to the invention is preferably carried out in apparatuses in which the spray droplets can fall freely. Suitable for this purpose are apparatuses as described, for example, in US Pat. No. 5,269,980.
  • the molten thermoplastic polyurethane is dripped into a spray tower.
  • the spray tower preferably has a height between 2 m and 30 m.
  • the device for spraying and / or dripping the TPU is particularly preferably at least at a height of between 2.6 m and 12 m from the bottom of the drop tower. After spraying the mixture at this height into the reaction space, the spray or droplets, driven by gravity, can fall towards the bottom of the drop tower.
  • the TPU is dripped or sprayed on the head of the drop tower.
  • a temperature profile more preferably a downward falling temperature.
  • a fluidized bed may be present at the bottom of the drop tower.
  • Fluidized bed reactors are well known in particular for reactions with solids.
  • This fluidized bed offers the advantage that the addition of liquid and / or solid additives (e.g., flame retardants, color pigments, etc.) is possible. It is therefore preferred to add additives (e) to the liquid and / or solid droplets above and / or in the fluidized bed.
  • the falling tower is preferably powered by an inert gas, i. in particular a substance which is present in the gaseous state at the selected temperature and the pressure in the reactor and is inert toward isocyanates, particularly preferably nitrogen, flows through.
  • an inert gas i. in particular a substance which is present in the gaseous state at the selected temperature and the pressure in the reactor and is inert toward isocyanates, particularly preferably nitrogen, flows through.
  • the inert gas velocity is preferably adjusted so that the flow in the reactor is preferably laminar and is preferably 0.02 to 1.5 m / s, preferably 0.05 to 0.4 m / s.
  • the TPU particles obtainable by the process according to the invention are usually present in powdered form and can be collected in this form, for example, at the bottom of the reactor and purified by generally known methods, e.g. be removed by means of screw conveyor, optionally tempered and further processed, e.g. by extrusion or injection molding.
  • thermoplastic polyurethane is dripped or sprayed in a molten state according to the invention.
  • the TPU e.g. may be in granulated form, are melted in the Vertropfungsapparatur.
  • the TPU is preferably introduced in molten state from an extruder into a dropping device.
  • the extruder may be both a reaction extruder in which the TPU is synthesized and an extruder fed with granulated TPU, which may optionally come directly from a belt mill.
  • TPUs are prepared by reacting (a) isocyanates with (b) isocyanate-reactive compounds, usually having a molecular weight (M w ) of 500 to 10,000, preferably 500 to 5000, more preferably 800 to 3000 and (c) chain extenders having a Molecular weight of 50 to 499 optionally prepared in the presence of (d) catalysts and / or (e) conventional additives.
  • M w molecular weight
  • chain extenders having a Molecular weight of 50 to 499 optionally prepared in the presence of (d) catalysts and / or (e) conventional additives.
  • organic isocyanates it is possible to use generally known aliphatic, cycloaliphatic, araliphatic and / or aromatic isocyanates, for example tri-, tetra-, penta-, hexa-, hepta- and / or octamethylene diisocyanate, Methyl-pentamethylene-diisocyanate-1, 5, 2-ethyl-butylene-diisocyanate-1, 4, pentamethylene-diisocyanate-1, 5, butylene-diisocyanate-1, 4, 1-iso-cyanato-3,3, 5-trimethyl-5-isocyanato-methylcyclohexane (isophorone diisocyanate, IPDI), 1, 4- and / or 1,3-bis (isocyanatomethyl) cyclohexane (HXDI), 1,4-cyclohexane diisocyanate, 1 Methyl 2,4- and / or
  • NDI 1, 2,4- and / or 2,6-toluene diisocyanate
  • TDI 2,6-toluene diisocyanate
  • diphenylmethane diisocyanate 3,3'-dimethyl-diphenyl-diisocyanate, 1, 2-diphenylethane diisocyanate and / or phenylene diisocyanate.
  • 4,4'-MDI is used.
  • aliphatic isocyanates are also preferred, as is indicated at the outset, particularly preferably i-isocyanato-SS ⁇ -trimethyl- ⁇ -isocyanato-methylcyclohexane (isophorone diisocyanate, IPDI) and / or hexamethylene diisocyanate (HDI), in particular hexamethylene diisocyanate.
  • IPDI isophorone diisocyanate
  • HDI hexamethylene diisocyanate
  • isocyanate (a) prepolymers which have free isocyanate groups.
  • the NCO content of these prepolymers is preferably between 10 and 25%.
  • the prepolymers can offer the advantage that, due to the pre-reaction in the preparation of the prepolymers, a shorter reaction time is required in the production of the TPU.
  • isocyanate-reactive compounds for example polyesterols, polyetherols and / or polycarbonatediols, which are usually also grouped under the term "polyols", with molecular weights between 500 and 8000 , preferably 600 to 6000, in particular 800 to less than 3000, and preferably an average functionality to isocyanates of 1, 8 to 2.3, preferably 1, 9 to 2.2, in particular 2.
  • Polyether polyols are preferably used, for example those the basis of generally known starter substances and customary alkylene oxides, for example ethylene oxide, propylene oxide and / or butylene oxide, preferably polyetherols based on propylene oxide-1, 2 and ethylene oxide and in particular polyoxytetramethylene glycols.
  • the polyetherols have the advantage that they have a higher hydrolysis stability than polyesterols.
  • low-unsaturated polyols are understood as meaning, in particular, polyether alcohols having an unsaturated compound content of less than 0.02 meg / g, preferably less than 0.01 meg / g.
  • Such polyether alcohols are usually prepared by addition of alkylene oxides, in particular ethylene oxide, propylene oxide and mixtures thereof, to the diols or triols described above in the presence of highly active catalysts.
  • highly active catalysts are, for example, cesium hydroxide and multimetal cyanide catalysts, also referred to as DMC catalysts.
  • DMC catalysts A frequently used DMC catalyst is zinc hexacyanocobaltate.
  • the DMC catalyst can be left in the polyether alcohol after the reaction, usually it is removed, for example by sedimentation or filtration.
  • polybutadiene diols having a molecular weight of 500-10,000 g / mol, preferably 1,000-5,000 g / mol, in particular 2,000-3,000 g / mol, can be used.
  • TPUs made using these polyols can be radiation crosslinked after thermoplastic processing. This leads e.g. to a better burning behavior.
  • chain extenders (c) it is possible to use generally known aliphatic, araliphatic, aromatic and / or cycloaliphatic compounds having a molecular weight of 50 to 499, preferably 2-functional compounds, for example diamines and / or alkanediols having 2 to 10C -Atomen in the alkylene radical, in particular 1, 3-propanediol, butanediol-1, 4, hexanediol-1, 6 and / or di-, tri-, tetra-, penta-, hexa-, hepta-, octa-, nona- and or Dekaalkylen- glycols having 3 to 8 carbon atoms, preferably corresponding oligo- and / or
  • Polypropylene glycols although mixtures of chain extenders can be used.
  • components a) to c) are difunctional compounds, i. Diisocyanates (a), difunctional polyols, preferably polyetherols (b) and difunctional chain extenders, preferably diols.
  • Suitable catalysts which in particular accelerate the reaction between the NCO groups of the diisocyanates (a) and the hydroxyl groups of the constituent components (b) and (c) are the tertiary amines known and customary in the prior art, such as Triethylamine, dimethylcyclohexylamine, N-methylmorpholine, N, N'-dimethylpiperazine, 2- (dimethylamino) ethoxy) ethanol, diazabicyclo- (2,2,2) octane and the like and in particular organic metal compounds such as titanic acid esters, iron compounds such as iron (III) - acetylacetonate, tin compounds, eg Zinndiacetat, Zinndi- octoate, tin dilaurate or Zinndialkylsalze aliphatic Carboxylic acids such as di-butyltin diacetate, dibutyltin dilaurate or the like.
  • the catalysts are usually
  • component (e) in addition to catalysts (d) can the constitutional components (a) to (c) and conventional auxiliaries and / or additives (e) are added.
  • auxiliaries and / or additives e.g. blowing agents, surface-active substances, fillers, nucleating agents, lubricants and mold release agents, dyes and pigments, antioxidants, e.g. against hydrolysis, light, heat or discoloration, inorganic and / or organic fillers, flame retardants, reinforcing agents and plasticizers, metal deactivators.
  • component (e) also includes hydrolysis protectants such as, for example, polymeric and low molecular weight carbodiimides.
  • thermoplastic polyurethane in the materials according to the invention particularly preferably contains melamine cyanurate, which acts as a flame retardant.
  • Melamine cyanurate is preferred in an amount between 0.1 and 60 wt .-%, particularly preferably between 5 and
  • the thermoplastic polyurethane contains triazole and / or triazole derivative and antioxidants in an amount of 0.1 to 5 wt .-% based on the total weight of the thermoplastic polyurethane.
  • antioxidants are generally suitable substances which inhibit or prevent unwanted oxidative processes in the plastic to be protected. In general, antioxidants are commercially available. Examples of antioxidants are hindered phenols, aromatic amines, thiosynergists, trivalent phosphorus organophosphorus compounds, and hindered amine light stabilizers.
  • Stabilizers are given in [1], p.123-136.
  • Phenolic antioxidants are preferred for use in the antioxidant mixture according to the invention.
  • the antioxidants in particular the phenolic antioxidants, have a molecular weight of greater than 350 g / mol, more preferably greater than 700 g / mol and a maximum molecular weight of ⁇ 10,000 g / mol, preferably ⁇ 3,000 g / mol.
  • they are preferred a melting point of less than 18O 0 C.
  • antioxidants are preferably used, which are amorphous or liquid.
  • chain regulators usually having a molecular weight of from 31 to 3000.
  • Such chain regulators are compounds which have only one isocyanate-reactive functional group, such as.
  • monofunctional alcohols monofunctional amines and / or monofunctional polyols.
  • Chain regulators can generally be used in an amount of 0 to 5, preferably 0.1 to 1, parts by weight, based on 100 parts by weight of component b), and fall by definition under component (c).
  • the structural components (b) and (c) can be varied in relatively wide molar ratios.
  • thermoplastic polyurethane particles according to the invention for extrusion, injection molding, calendar articles and in particular for powder-slush process.
  • TPUs according to the invention which are present preferably in powder form according to the invention, in the powder-slush process or in injection molding, caulking and extrusion articles, e.g. to the desired films, moldings, rolls, fibers, linings in automobiles, hoses, cable connectors, bellows, trailing cables, cable sheathing, seals, belts or damping elements, can be carried out by conventional methods.
  • Such injection molding and extrusion articles can also be made of compounds containing the TPU according to the invention and at least one further thermoplastic, especially a polyethylene, polypropylene, polyester, polyether, polystyrene, PVC, ABS, ASA, SAN, polyacrylonitrile, EVA, PBT, PET, polyoxymethylene, consist. Particularly preferred are the inventive
  • TPU used for the production of articles which are produced by powder-slush method, in particular instrument panels in automobiles, for example, foils for instrument panels.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

L'invention concerne un procédé de production de particules de polyuréthane thermoplastiques caractérisé en ce qu'il consiste à atomiser du polyuréthane thermoplastique fondu sous forme de gouttelettes.
PCT/EP2005/014156 2005-01-10 2005-12-31 Procede de production de particules de polyurethane thermoplastiques WO2006072461A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112005003144T DE112005003144A5 (de) 2005-01-10 2005-12-31 Verfahren zur Herstellung von thermoplastischen Polyurethanpartikeln

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005001200.0 2005-01-10
DE200510001200 DE102005001200A1 (de) 2005-01-10 2005-01-10 Verfahren zur Herstellung von thermoplastischen Polyurethanpartikeln

Publications (1)

Publication Number Publication Date
WO2006072461A1 true WO2006072461A1 (fr) 2006-07-13

Family

ID=36035732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/014156 WO2006072461A1 (fr) 2005-01-10 2005-12-31 Procede de production de particules de polyurethane thermoplastiques

Country Status (2)

Country Link
DE (2) DE102005001200A1 (fr)
WO (1) WO2006072461A1 (fr)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013135680A1 (fr) 2012-03-13 2013-09-19 Basf Se Polyuréthane thermoplastique ignifugé contenant des hydroxydes métalliques enrobés, des agents ignifuges contenant du phosphore, et/ou de l'hydrotalcite ou du phyllosilicate
WO2013190118A1 (fr) 2012-06-22 2013-12-27 Basf Se Polyuréthane thermoplastique ignifugé à base de polycarbonate-diols
WO2014016406A1 (fr) 2012-07-27 2014-01-30 Basf Se Polyuréthane thermoplastique ignifuge à base d'hydroxydes métalliques et de polyestérols
WO2014060342A1 (fr) 2012-10-16 2014-04-24 Basf Se Mélanges transparents transformables thermoplastiquement constitués de polyuréthanes thermoplastiques et de poly(méth)acrylates
WO2015090953A1 (fr) 2013-12-20 2015-06-25 Basf Se Polyuréthane thermoplastique ignifugé
WO2015090952A1 (fr) 2013-12-20 2015-06-25 Basf Se Polyuréthane thermoplastique ignifugé
WO2017032658A1 (fr) 2015-08-21 2017-03-02 Basf Se Polyuréthane thermoplastique ignifugé
US9670337B2 (en) 2012-03-13 2017-06-06 Basf Se Flame-retardant thermoplastic polyurethane comprising coated metal hydroxides based on aluminum
WO2019086607A1 (fr) 2017-11-03 2019-05-09 Basf Se Composition ignifuge, son procédé de préparation et article constitué de celle-ci
US10501603B2 (en) 2014-02-26 2019-12-10 Basf Se Flame-retardant thermoplastic polyurethane
WO2019234117A1 (fr) 2018-06-06 2019-12-12 Basf Se Chaussures de ski comprenant un module électronique indépendant de la température
WO2020002200A1 (fr) 2018-06-25 2020-01-02 Basf Se Polyuréthane thermoplastique ignifugé
WO2020011919A1 (fr) 2018-07-12 2020-01-16 Basf Se Polyuréthane thermoplastique renforcé par fibres de verre
WO2020221786A1 (fr) 2019-04-30 2020-11-05 Basf Se Mélanges de tpu et de polyamide
US11015053B2 (en) 2015-08-21 2021-05-25 Basf Se Flame-retardant thermoplastic polyurethane
WO2021110922A1 (fr) 2019-12-05 2021-06-10 Basf Se Chaussures de ski ultralégères
EP3910025A1 (fr) 2020-05-12 2021-11-17 Covestro Deutschland AG Procédé de fabrication de polyuréthanes thermoplastiques
WO2021249819A1 (fr) 2020-06-10 2021-12-16 Basf Se Procédé de moussage microcellulaire pour la production de mousse de polyuréthane thermoplastique de faible densité
WO2022058514A1 (fr) 2020-09-18 2022-03-24 Basf Se Polyuréthane thermoplastique ignifugé
WO2022069164A1 (fr) 2020-09-30 2022-04-07 Basf Se Adhésifs de polyuréthane décollables à base de microsphères thermo-expansibles
WO2022136413A1 (fr) 2020-12-21 2022-06-30 Basf Se Polyuréthane thermoplastique ignifugé

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2053705A1 (en) * 1970-11-02 1972-05-10 Continental Gummi Werke Ag Fine polyurethane powder prodn - by dispersing a polyurethane melt in an inert, incompatible liquid
US5269980A (en) * 1991-08-05 1993-12-14 Northeastern University Production of polymer particles in powder form using an atomization technique
DE10302979A1 (de) * 2003-01-25 2004-08-05 Zapf Creation Ag Verfahren und Vorrichtung zur Herstellung eines PVC-freien im wesentlichen aus Kunststoff bestehenden Pulvers
WO2004067245A1 (fr) * 2003-01-25 2004-08-12 Zapf Creation Ag Procede et dispositif pour produire une poudre essentiellement a base de matiere plastique, exempte de pvc

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2053705A1 (en) * 1970-11-02 1972-05-10 Continental Gummi Werke Ag Fine polyurethane powder prodn - by dispersing a polyurethane melt in an inert, incompatible liquid
US5269980A (en) * 1991-08-05 1993-12-14 Northeastern University Production of polymer particles in powder form using an atomization technique
DE10302979A1 (de) * 2003-01-25 2004-08-05 Zapf Creation Ag Verfahren und Vorrichtung zur Herstellung eines PVC-freien im wesentlichen aus Kunststoff bestehenden Pulvers
WO2004067245A1 (fr) * 2003-01-25 2004-08-12 Zapf Creation Ag Procede et dispositif pour produire une poudre essentiellement a base de matiere plastique, exempte de pvc

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9688841B2 (en) 2012-03-13 2017-06-27 Basf Se Flame-retardant thermoplastic polyurethane comprising coated metal hydroxides, phosphorus-containing flame retardants and/or hydrotalcite or phyllosilicate
WO2013135547A1 (fr) 2012-03-13 2013-09-19 Basf Se Polyuréthane thermoplastique ignifugé contenant des hydroxydes métalliques enrobés à base d'aluminium
WO2013135680A1 (fr) 2012-03-13 2013-09-19 Basf Se Polyuréthane thermoplastique ignifugé contenant des hydroxydes métalliques enrobés, des agents ignifuges contenant du phosphore, et/ou de l'hydrotalcite ou du phyllosilicate
US9670337B2 (en) 2012-03-13 2017-06-06 Basf Se Flame-retardant thermoplastic polyurethane comprising coated metal hydroxides based on aluminum
WO2013190118A1 (fr) 2012-06-22 2013-12-27 Basf Se Polyuréthane thermoplastique ignifugé à base de polycarbonate-diols
US10377880B2 (en) 2012-06-22 2019-08-13 Basf Se Flame-retardant thermoplastic polyurethane based on polycarbonate diols
WO2014016406A1 (fr) 2012-07-27 2014-01-30 Basf Se Polyuréthane thermoplastique ignifuge à base d'hydroxydes métalliques et de polyestérols
US9365697B2 (en) 2012-07-27 2016-06-14 Basf Se Flame-retardant thermoplastic polyurethane based on metal hydroxides and polyesterols
WO2014060342A1 (fr) 2012-10-16 2014-04-24 Basf Se Mélanges transparents transformables thermoplastiquement constitués de polyuréthanes thermoplastiques et de poly(méth)acrylates
US9896578B2 (en) 2012-10-16 2018-02-20 Basf Se Thermoplastically processable transparent blends of thermoplastic polyurethane and poly(meth)acrylates
US10047214B2 (en) 2013-12-20 2018-08-14 Basf Se Flame-retardant thermoplastic polyurethane
WO2015090952A1 (fr) 2013-12-20 2015-06-25 Basf Se Polyuréthane thermoplastique ignifugé
WO2015090953A1 (fr) 2013-12-20 2015-06-25 Basf Se Polyuréthane thermoplastique ignifugé
US10501603B2 (en) 2014-02-26 2019-12-10 Basf Se Flame-retardant thermoplastic polyurethane
WO2017032658A1 (fr) 2015-08-21 2017-03-02 Basf Se Polyuréthane thermoplastique ignifugé
US10815376B2 (en) 2015-08-21 2020-10-27 Basf Se Flame-retardant thermoplastic polyurethane
US11015053B2 (en) 2015-08-21 2021-05-25 Basf Se Flame-retardant thermoplastic polyurethane
WO2019086607A1 (fr) 2017-11-03 2019-05-09 Basf Se Composition ignifuge, son procédé de préparation et article constitué de celle-ci
US11492462B2 (en) 2017-11-03 2022-11-08 Basf Se Flame-retardant composition, a method for preparing the same and an article therefrom
WO2019234117A1 (fr) 2018-06-06 2019-12-12 Basf Se Chaussures de ski comprenant un module électronique indépendant de la température
US11970568B2 (en) 2018-06-06 2024-04-30 Basf Se Ski boots with temperature-independent modulus of elasticity
WO2020002200A1 (fr) 2018-06-25 2020-01-02 Basf Se Polyuréthane thermoplastique ignifugé
WO2020011919A1 (fr) 2018-07-12 2020-01-16 Basf Se Polyuréthane thermoplastique renforcé par fibres de verre
WO2020221786A1 (fr) 2019-04-30 2020-11-05 Basf Se Mélanges de tpu et de polyamide
WO2021110922A1 (fr) 2019-12-05 2021-06-10 Basf Se Chaussures de ski ultralégères
US11766089B2 (en) 2019-12-05 2023-09-26 Basf Se Ultra-light skiing boots
EP3910025A1 (fr) 2020-05-12 2021-11-17 Covestro Deutschland AG Procédé de fabrication de polyuréthanes thermoplastiques
WO2021228715A1 (fr) 2020-05-12 2021-11-18 Covestro Deutschland Ag Procédé de production de polyuréthanes thermoplastiques
WO2021249819A1 (fr) 2020-06-10 2021-12-16 Basf Se Procédé de moussage microcellulaire pour la production de mousse de polyuréthane thermoplastique de faible densité
WO2022058514A1 (fr) 2020-09-18 2022-03-24 Basf Se Polyuréthane thermoplastique ignifugé
WO2022069164A1 (fr) 2020-09-30 2022-04-07 Basf Se Adhésifs de polyuréthane décollables à base de microsphères thermo-expansibles
WO2022136413A1 (fr) 2020-12-21 2022-06-30 Basf Se Polyuréthane thermoplastique ignifugé

Also Published As

Publication number Publication date
DE112005003144A5 (de) 2007-11-22
DE102005001200A1 (de) 2006-07-20

Similar Documents

Publication Publication Date Title
WO2006072461A1 (fr) Procede de production de particules de polyurethane thermoplastiques
EP3157737B1 (fr) Utilisation de polyuréthane en poudre thermoplastique
EP2435231B1 (fr) Utilisation d'eau comme agent d'expansion pour polyuréthanes
EP2013257B1 (fr) Polyuréthanes thermoplastiques
EP2582757B1 (fr) Procédé pour la production de mélanges de polylactides (pla) et de polyuréthanes thermoplastiques (tpu)
WO2006089892A1 (fr) Article contenant du polystyrene et du polyurethanne thermoplastique
EP1651694B1 (fr) Polyurethane thermoplastique contenant des groupes silane
DE10254600B4 (de) Verfahren zur Herstellung von thermoplastischen, nicht klebenden Polyurethanen
EP1855866A1 (fr) Article contenant un polypropylene et un polyurethanne thermoplastique
WO2006021310A1 (fr) Polyuréthanne thermoplastique contenant des groupes silane
WO2006072462A1 (fr) Poudres de polyurethane thermoplastiques produites par condensation par pulverisation
EP4188972B1 (fr) Poudre de frittage contenant un polyuréthane thermoplastique, un solvant et un additif organique
WO2005033205A1 (fr) Polyurethanne thermoplastique contenant de l'hydroxyde metallique
EP1945697A1 (fr) Article contenant du caoutchouc, un polyurethanne thermoplastique et une matiere plastique technique
WO2018015504A1 (fr) Soudage par micro-onde d'une poudre d'élastomère
EP2906609B1 (fr) Dispositif antichute à base de polyuréthane thermoplastique
WO2009101133A1 (fr) Revêtements de surfaces de polyuréthane
EP2539384A1 (fr) Thermorégulation catalysée de granulés pour polyuréthanne thermoplastique
EP2092208B1 (fr) Palier circulaire
DE19706452C2 (de) Verwendung von Fettsäuren zur Herstellung von thermoplastischen Polyisocyanat-Polyadditionsprodukten
DE19858906A1 (de) Antibackmittel enthaltendes Kunststoffelastomeres und Verfahren zu dessen Herstellung
DE102005000869A1 (de) Kapseln enthaltend Isocyanat und Umsetzung von thermoplastischem Polyurethan mit diesen Kapseln
DE102007008938A1 (de) Artikel enthaltend thermoplastisches Polyurethan und thermoplastische Mischung enthaltend Polybutylenterephthalat sowie mindestens einen weiteren thermoplastischen Kunststoff
WO2005019296A1 (fr) Polyurethanne thermoplastique contenant des groupes silane
DE10334264A1 (de) Thermoplastisches Polyurethan enthaltend Silangruppen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1120050031446

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05850381

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5850381

Country of ref document: EP