WO2006070503A1 - Polyester polyol, and polyurethane and polyurethane foam using the same - Google Patents

Polyester polyol, and polyurethane and polyurethane foam using the same Download PDF

Info

Publication number
WO2006070503A1
WO2006070503A1 PCT/JP2005/012951 JP2005012951W WO2006070503A1 WO 2006070503 A1 WO2006070503 A1 WO 2006070503A1 JP 2005012951 W JP2005012951 W JP 2005012951W WO 2006070503 A1 WO2006070503 A1 WO 2006070503A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester polyol
component
polyol
weight
polyurethane
Prior art date
Application number
PCT/JP2005/012951
Other languages
French (fr)
Japanese (ja)
Inventor
Yuujirou Ikejiri
Yuuichi Tsuchimochi
Tooru Numakura
Original Assignee
Kawasaki Kasei Chemicals Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Kasei Chemicals Ltd. filed Critical Kawasaki Kasei Chemicals Ltd.
Priority to JP2006550598A priority Critical patent/JP5007567B2/en
Publication of WO2006070503A1 publication Critical patent/WO2006070503A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4244Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups
    • C08G18/4247Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups derived from polyols containing at least one ether group and polycarboxylic acids
    • C08G18/425Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups derived from polyols containing at least one ether group and polycarboxylic acids the polyols containing one or two ether groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0008Foam properties flexible

Definitions

  • the present invention relates to a polyester polyol. Specifically, low viscosity and easy handling
  • Polyurethane in particular, a polyester polyol that exhibits excellent compatibility with a foaming agent when used as a raw material for polyurethane foam and can improve the adhesive strength between the obtained polyurethane foam and an adherend.
  • Polyurethane foam has excellent heat insulation properties, and is therefore widely used in refrigerators, refrigerators, freezer rooms, freezers, heat insulating materials for general buildings, and the like.
  • Polyurethane foam is generally a mixture of a polyisocyanate component liquid (hereinafter abbreviated as A liquid), polyether polyol and Z or polyester polyol, foaming agent, and if necessary, a catalyst or foam stabilizer.
  • a liquid hereinafter abbreviated as B liquid
  • a liquid and B liquid are mixed, and foamed and hardened in a short time. For this reason, polyester polyols are required to have low viscosity and easy handling in addition to high compatibility with foaming agents.
  • a low-boiling nonpolar organic solvent is generally used.
  • HC-based foaming agents such as pentane and cyclopentane are used.
  • HC foaming agents having a low flash point and explosive properties, and HCFC foaming agents are frequently used.
  • the foaming formulation using a foaming agent such as an HFC-based foaming agent, HC-based foaming agent, water, etc. is more effective than the conventional foaming formulation using an HCFC-based foaming agent.
  • Compatibility Due to low dispersibility, reactivity and foaming efficiency decrease (densification), surface finish of molded product, poor foam strength, reduced foam strength, dimensional stability, especially adhesion It tends to cause a decrease in adhesion strength with the member.
  • thermal conductivity deteriorates due to cell roughening, and in low-temperature spraying construction, adhesion strength decreases, delamination, and dripping easily occur due to poor compatibility. . This tendency is particularly noticeable when only water is used as the blowing agent.
  • Patent Document 1 Various studies have been made so far in order to solve these problems, particularly the poor compatibility with the foaming agent and the decrease in the adhesive strength with the adherend.
  • Patent Document 1 various compatibilizers (Patent Document 1) having a certain surface active effect for improving compatibility have recently been proposed.
  • Patent Document 1 since most of these compatibilizers are usually compounds that do not have a hydroxyl group, even if they contribute to improving the compatibility with the foaming agent as an auxiliary component of the liquid B, the urethanization reaction Therefore, it may be present in the polyurethane foam as it is, and its physical properties, particularly strength, heat resistance, adhesive strength, etc. may be significantly deteriorated.
  • Patent Document 2 A method using polyether polyol in which ethylenediamine / propylene oxide is added to tolylenediamine, triethanolamine, glycerin, ethylenediamine as an initiator (Patent Document 2), or dialkylene of oxyethylene and Z or oxypropylene glycol There is a method (Patent Document 3) using an auxiliary agent having no hydroxyl group such as ether.
  • Patent Document 1 JP 2004-107439
  • Patent Document 2 JP-A-6-316621
  • Patent Document 3 JP 2002-363241
  • a polyester polyol having a hydroxyl group having a stronger cohesive force between molecules than polyether polyol, and causing no reduction in flame retardancy
  • an appropriate amount of it can be used as a part of the polyol component to obtain a liquid B with good uniform stability.
  • a polyurethane foam having excellent physical properties can be obtained.
  • succinic acid is used as at least a part of the carboxylic acid component, which is a raw material for producing polyester polyol, as at least a part of the alcohol component.
  • the polyester polyol obtained by the present invention is incorporated into the polyurethane molecule as one component of the polyurethane, similarly to the conventionally used polyester polyol, so that the physical properties of the polyurethane are not impaired. Demonstrate the above characteristics Can do.
  • this invention has the summary characterized by the following.
  • the above (6) is characterized in that the amount of the polyester polyol described in any one of (1) to (5) is 1% by weight or more and 50% by weight or less in the total polyol component.
  • foaming agent is one or more foaming agents selected from the group consisting of HFC foaming agents, HC foaming agents and hydraulic power. .
  • the invention's effect is one or more foaming agents selected from the group consisting of HFC foaming agents, HC foaming agents and hydraulic power.
  • blowing agents particularly HFC-based blowing agents such as HFC-245fa, pentane, cyclohexane It is possible to provide a polyester polyol capable of improving the adhesive strength between a polyurethane foam obtained by increasing compatibility with water and an HC foaming agent such as pentane and water and an adherend.
  • the polyester polyol in the present invention is preferably a polyester polyol used for polyurethane, particularly a polyurethane foam, and is a polyester polyol obtained from a carboxylic acid component and an alcohol component.
  • succinic acid as at least a part of the carboxylic acid component that is a raw material of the polyester polyol.
  • the amount of succinic acid used is usually 30% by weight or more, preferably 50% by weight or more, more preferably 70% by weight or more of the total carboxylic acid component, and the total amount of the carboxylic acid component may be succinic acid. If the amount of succinic acid used is less than 30% by weight of the total carboxylic acid component, the effect of improving the compatibility with the foaming agent and improving the adhesive strength with the adherend is small.
  • the succinic acid of the present invention includes succinic anhydride, and instead of succinic acid, methanol, ethanol,
  • dimethyl succinic acid or the like esterified with a monoalcohol having 1 to 8 carbon atoms such as 2-ethylhexanol may be used.
  • the amount used in these cases shall be calculated based on the weight converted to succinic acid.
  • Examples of the carboxylic acid used when the total amount of the carboxylic acid component is not succinic acid include aliphatic dicarboxylic acids other than succinic acid, and aliphatic polycarboxylic acids such as aliphatic tricarboxylic acids.
  • Suitable aliphatic polycarboxylic acid components include dartaric acid, adipic acid, fumaric acid, maleic acid, and acid anhydrides thereof.
  • Aromatic polycarboxylic acids such as phthalic acid, terephthalic acid and trimellitic acid may be used as carboxylic acids other than these aliphatic polycarboxylic acids.
  • phthalic acid and adipic acid are particularly preferred.
  • carboxylic acids are Those obtained by esterification with a monoalcohol having 1 to 8 carbon atoms such as ethanol, ethanol and 2-ethylhexanol, such as dimethyl terephthalic acid, may be used. These carboxylic acid components used in addition to succinic acid can be used alone or in admixture of two or more.
  • triethylene glycol as at least a part of the alcohol component that is a raw material of the polyester polyol.
  • the amount of triethylene glycol used is usually 30% by weight or more of the total alcohol component, preferably 40% by weight or more, and more preferably 50% by weight or more.
  • the total amount of the alcohol component may be triethylene glycol. If the amount of triethylene glycol used is less than 30% by weight of the total alcohol component, the effect of improving the compatibility with the foaming agent and the adhesive strength with the adherend will be small, and the adverse effect such as a marked increase in viscosity will be caused. Since it may occur, it is not preferable.
  • the alcohol used when the total amount of the alcohol component is not triethylene glycol is ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, 1,2 butanediol, 1,3 butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, cyclohexanediol, dioxane such as cyclohexanedimethanol, and triols such as glycerin and trimethylolpropane .
  • alcohol components include long-chain polyether polyols such as polyethylene glycol, polypropylene glycol, polyoxyethylene Z-oxypropylene copolymer dallicol, and polytetramethylene ether dallicol. These alcohol components other than triethylene glycol can be used alone or in admixture of two or more.
  • the viscosity of the polyester polyol is preferably 30000 mPa's or less, particularly 2500 OmPa ⁇ s or less! / ⁇ .
  • monools such as methanol, ethanol, isopropanol, 2-ethylhexanol and the like can be used.
  • these monools when used, they may be distilled out of the reaction system in the synthesis of polyester polyols, resulting in poor yields and adversely affecting the strength and heat resistance of polyurethane. Practical questions It is preferred to use in a range, not the subject.
  • an esterification catalyst is usually used.
  • an acid catalyst is often used as the catalyst.
  • the Lewis acid include orthotitanate esters such as tetraisopropyl titanate and tetra n -butyl titanate, tin compounds such as jetyl tin oxide and dibutyl tin oxide, and metal compounds such as zinc oxide.
  • a Bronsted acid such as p-toluenesulfonic acid may be used.
  • the obtained polyester polyol has a urethane reaction with the polyisocyanate component to form a polyurethane.
  • the catalytic force used in the synthesis of the polyester polyol has an influence on the reaction behavior of the urethane reaction.
  • the preferred amount of orthotitanate used is usually 1.0% by weight or less, preferably with respect to the total of the carboxylic acid component and alcohol component used as raw materials. Is not more than 0.2% by weight, usually not less than 0.01% by weight, preferably not less than 0.03% by weight.
  • the reaction may be performed without using these ester catalysts.
  • the ratio of the carboxylic acid component and the alcohol component used depends on the hydroxyl value, viscosity, number average molecular weight, etc. of the target polyester polyol.
  • the equivalent of the hydroxyl group of the alcohol component to 1 equivalent of the group is usually 1.05 equivalent or more, preferably 1.1 equivalent or more, more preferably 1.2 equivalent or more, usually 4.0 equivalent or less, preferably 3. 0 equivalent or less, more preferably 2.5 equivalent or less.
  • this value is too small, the hydroxyl groups in the polyester polyol are significantly reduced, and there is a risk that the polyurethane foam obtained by urethanation with the polyisocyanate component will have a significant adverse effect on the strength and heat resistance of the polyurethane foam. .
  • this value is too large, a large amount of free alcohol components that have not been subjected to esterification reaction remain in the polyester polyol. If the polyester polyol obtained in this way is used, the strength and heat resistance of the rigid polyurethane foam obtained by further reacting with the polyisocyanate component and urethane can be significantly affected. is there.
  • the reaction temperature in the production of the polyester polyol of the present invention is usually 150 ° C or higher, preferably 180 ° C or higher, and usually 250 ° C or lower, preferably 230 ° C or lower.
  • the reaction is easy to control if the reaction is started at 150 ° C and the temperature is gradually raised to 230 ° C as the reaction proceeds.
  • the reaction pressure may be normal pressure, but it may be gradually reduced as the reaction proceeds to remove by-product water out of the system and complete the reaction quickly. However, if the degree of pressure reduction during the reaction is insufficient, the degree of completion of the esterification reaction is lowered, and a polyester polyol having a high acid value is produced.
  • the appropriate ultimate reaction pressure varies depending on the reaction temperature.For example, when the reaction temperature is 200 ° C, the pressure is usually 2 kPa or more, preferably 5 kPa or more, and usually 50 kPa or less, preferably 30 kPa.
  • the reaction may be performed under conditions other than the above pressure range depending on the viscosity and hydroxyl value of the target polyester polyol, the type of alcohol used, and the amount used.
  • a small amount of an organic solvent such as toluene or xylene may be used in combination, and the by-produced water may be removed azeotropically from the system.
  • the end point of the reaction in the production of the polyester polyol of the present invention is usually determined by the amount of unreacted carboxyl groups of the polyvalent carboxylic acid used in the case of polyester polyol.
  • the presence of an acid in many cases is not preferable, such as a decrease in reactivity, with respect to a urethanization reaction with a polyisocyanate component. Therefore, it is preferable for the polyester polyol that the amount of unreacted carboxylic acid, that is, the acid value is as low as possible.
  • the acid value is usually 10 mgKOHZg or less, preferably 5 mgKOHZg or less, more preferably 3 mgKOHZg or less. Also, under severe urethane reaction conditions, lmgKOHZg or less may be desired.
  • the polyester polyol obtained as described above is usually an ester compound having a structure having a carboxylic acid component and an alcohol component, and an unreacted alcohol component. And become mosquitoes.
  • the average number of functional groups of the ester compound is usually 1.0 or more, preferably 1.5 or more, and more preferably 2.0 or more. If the average number of functional groups of the ester compound is too small, the degree of polymerization of the polyurethane obtained by urethanation reaction with the polyisocyanate component is further reduced. For example, in the case of polyurethane foam, strength and heat resistance are remarkably increased. May be exacerbated.
  • an alcohol component that is in an equilibrium state with the transesterification reaction during the esterification reaction is added. It is important not to distill out of the reaction system as much as possible. If the alcohol component is distilled too much, the average number of functional groups of the ester compound will differ from the original product design, the average molecular weight will increase, and the resulting polyester polyol will have a significant viscosity. It is not desirable to grow large.
  • the amount of the alcohol component distilled out of the system during the esterification reaction is usually 5% or less, preferably 3% or less, more preferably 1% or less, based on the total alcohol components.
  • the alcohol component may be distilled out beyond the above range.
  • the desirable number average molecular weight of the polyester polyol of the present invention is generally in the range of 300 to 3000, more preferably in the range of 500 to 2000, depending on the intended use.
  • the space of the reaction vessel with nitrogen in order to prevent coloring of the produced polyester polyol, and also to remove dissolved oxygen in the reaction solution.
  • the physical properties and performance of the polyester polyol may be adjusted by distilling off the unreacted free alcohol component outside the system under an appropriate reduced pressure condition.
  • the reaction mode of the polyester polyol in the present invention is a force that can be applied to normal batch equipment or continuous equipment.
  • the reaction time takes a long time, and the viscosity of the obtained polyester polyol is compared with the alcohol component used as a raw material. Therefore, the reaction by notch equipment is preferable.
  • the polyester polyol obtained according to the present invention is preferably used in a polyurethane obtained by reacting a polyol and a polyisocyanate component, particularly in a polyurethane foam.
  • foaming agents with an ozone depletion coefficient of 0.8 or less especially HFC-based foaming agents such as HFC-245fa to be used in the future, and HC-based systems such as pentane and cyclopentane It is useful as a polyester polyol having high compatibility with a foaming agent such as a foaming agent and water.
  • the polyurethane foam is composed of a liquid A composed of a polyisocyanate component, a polyol component such as polyether polyol and Z or polyester polyol, a foaming agent, a catalyst and a foam stabilizer, and other components as necessary. Manufactured by mixing, foaming, and curing the liquid B containing additives and auxiliaries in a short time.
  • the polyisocyanate component is not particularly limited as long as it is an organic compound having two or more isocyanate groups in one molecule.
  • examples thereof include aliphatic, alicyclic or aromatic polyisocyanates and modified products thereof.
  • examples of the aliphatic or alicyclic polyisocyanate include hexamethylene diisocyanate and isophorone diisocyanate.
  • examples of aromatic polyisocyanates include tolylene diisocyanate, diphenylmethane diisocyanate, and polyphenylene-polymethylene polyisocyanate, and also include modified products such as these carpositimide modified products and prepolymers. .
  • the polyisocyanate component in the present invention is an aromatic polyisocyanate or a modified product thereof, particularly preferably diphenylmethane diisocyanate, polyphenylene polymethylene polyisocyanate. , Tolylene diisocyanate, and modified products thereof. These may be used alone or in combination.
  • the polyphenylene-polymethylene polyisocyanate those having an isocyanate group content of usually 29 to 32% by weight and a viscosity of usually 250 mPa's (25 ° C.) or less are used.
  • the carbodiimide modified product is a product obtained by introducing a carbopositimide bond using a known phosphorus catalyst or the like.
  • Prepolymers are those obtained by reacting the above polyisocyanate with a polyol, leaving an isocyanate group at the end.
  • the polyol used at that time the polyol used in the production of polyurethane can be usually used.
  • additives and auxiliaries may be mixed with the polyisocyanate component and used depending on the application.
  • the foam stabilizer used in the B liquid is also used as a compatibilizer.
  • a silicone surfactant is often used as a nonionic surfactant is preferred.
  • a flame retardant may be used together for the purpose of improving flame retardancy and adjusting viscosity.
  • black mouth alkyl phosphates for example, tris (betachloroethinore) phosphate, tris (beta black mouth propinore) phosphate, etc. are often used.
  • Additives and auxiliaries other than those mentioned above are not particularly limited, but are used for the purpose of improving physical properties and operability in ordinary rosin, and have an adverse effect on the urethane reaction. Otherwise, you can use anything.
  • polyether polyols and polyester polyols having a hydroxyl value of usually 50 to 800 and a functional group power of 2 to 8 can be used. You may mix and use above.
  • the polyether polyol may be a trifunctional or higher functional group such as ethylene oxide, propylene oxide, 1,2-butylene oxide, tetrahydrofuran, or a single alkylene oxide polymer, sucrose, sorbitol, glycerin or the like. And adducts of the above-mentioned polyhydric alcohols and the above-mentioned alkylenoxides, amines such as aliphatic amines and aromatic amines, and adducts of the above-mentioned alkylenoxides.
  • polyester polyol aromatic carboxylic acids such as phthalic acid, terephthalic acid and trimellitic acid, and glycols such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, glycerin and trimethylolpropane
  • aromatic carboxylic acids such as phthalic acid, terephthalic acid and trimellitic acid
  • glycols such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, glycerin and trimethylolpropane
  • polyester polyols having a hydroxyl value of usually 200 to 400 and an average functional group number of usually about 2 to 3, which are obtained by esterification reaction, either alone or in combination.
  • polyester polyol having the succinic acid and triethylene glycol power of the present invention in combination with these polyether polyols and polyester polyols.
  • Succinic acid and triethylene glycol of the present invention The amount of the polyester polyol obtained is usually 1% by weight or more, preferably 3% by weight or more, more preferably 5% by weight or more, usually 50% in the total polyol component. % By weight or less, preferably 40% by weight or less, more preferably 30% by weight or less.
  • compounds having two or more active hydrogens in one molecule such as alcohols such as ethylene glycol, diethylene glycol, propylene glycol, and glycerol, and alkanolamines such as triethanolamine are also used in combination. can do.
  • an ozone depleting coefficient is usually 0.8 or less, for example, in addition to HCFC-141b, HFC-based foaming agents such as HFC-245fa, pentane, HC foaming agents such as cyclopentane and foaming agents used in the future such as water can be preferably used because the compatibility of the polyester polyol of the present invention with these foaming agents is improved. These foaming agents may be used alone or in combination.
  • catalysts used in the polyurethane foam of the present invention known catalysts used for the production of ordinary urethane foams can be used.
  • amine catalysts such as triethylamine and N, N-dimethylhexylamine
  • metal catalysts such as tin catalysts such as dibutyltin dilaurate and tin octylate and lead catalysts such as lead octylate and the like can be mentioned.
  • a non-ionic surfactant As the foam stabilizer used in the polyurethane foam of the present invention, a non-ionic surfactant, a ionic surfactant, or a force thione surfactant can be used, and a nonionic surfactant is particularly preferred. Silicone surfactants are often used. In addition, depending on the application, it may be used together as various compound strength additives and auxiliaries. For example, a flame retardant is mentioned as a typical additive. In the use of polyurethane foam, chloroalkyl phosphates such as tris (betachloroethyl) phosphate or tris (betaclopropylpropyl) phosphate are usually used. Additives and auxiliaries other than those mentioned above are not particularly limited and are used for the purpose of improving physical properties and operability in ordinary greaves. It can be used as long as it is not.
  • the specific procedure of the method for producing the polyurethane foam in the present invention is as follows.
  • the above-mentioned polyisocyanate component is liquid A
  • the above-mentioned polyol component is liquid B
  • the liquid A is mixed with the liquid A and the liquid Z or B as appropriate, and the two liquids are mixed, foamed, and cured using an apparatus described later.
  • the polyurethane foam obtained by the present invention has a chemical bond such as a urethane bond or urea bond.
  • a chemical bond such as a urethane bond or urea bond.
  • an isocyanurate group can be generated during foaming.
  • the isocyanurate group is generated by trimerizing the isocyanate group with a catalyst, and can improve mechanical strength and heat resistance.
  • Isocyanate index (number of moles of all isocyanate groups in the polyisocyanate component Z number of moles of all active hydrogen groups in the polyol X 100) is In the case of a so-called urethane foam, it is usually 70 or more, preferably 80 or more, more preferably 90 or more, usually 150 or less, preferably 140 or less, more preferably 130 or less. In the case of the so-called isocyanurate foam used, it is usually 150 or more, preferably 160 or more, more preferably 170 or more, and usually 800 or less, preferably 700 or less, more preferably 600 or less.
  • the resulting foam may not have sufficient strength and is likely to shrink. If it exceeds 150 in this case, and more than 800 in the case of isocyanurate foam, the brittleness of the resulting foam increases and the adhesive strength tends to decrease, such being undesirable.
  • any apparatus can be used as long as the liquid A and the liquid B can be mixed uniformly.
  • spray foaming machines for spraying work can be used.
  • the polyester polyol is synthesized and evaluated by the following method. Table 1 shows. (Examples 1 to 5 and Comparative Example 1)
  • a glass reactor with a volume of 2 liters equipped with a stirrer, reflux condenser, thermometer, pressure gauge, heating device, etc. was charged with cono, succinic acid 500 g, diethylene glycol 320 g, and triethylene glycol 320 g. After the space in the reactor was replaced with nitrogen gas, heating of the reactor internal material was started. When the reactor internal temperature reached 150 ° C, 0.5 g of tetraisopropyl titanate was added as a catalyst to the reactor to start the reaction.
  • the internal temperature was raised to 210 ° C over 3 hours, and this temperature was maintained until the end of the reaction.
  • the pressure in the reactor was maintained at 88. OkPa from the time when the internal temperature reached 150 ° C until the internal temperature reached 210 ° C. Thereafter, the pressure was gradually reduced for 3 hours to 5.3 kPa, and this pressure was maintained until the reaction was completed. It was visually observed that the reaction mixture became a homogeneous solution as the reaction progressed. While the reaction was in progress, a part of the reaction mixture was withdrawn from the reactor, and the acid value of each sample was measured and used as an indicator for confirming the progress of the reaction.
  • the reaction was completed when the acid value became 1.0 or less and the reaction mixture became a homogeneous solution. After completion of the reaction, heating was stopped and the system was cooled to around 100 ° C., the reaction product was extracted, and the acid value, hydroxyl value, and viscosity of the extracted sample were measured.
  • polyester polyol 1 The polyester polyol obtained here was designated as “Polyol 1”.
  • the reaction was conducted in the same manner as in the raw material of Example 1, except that 260 g of succinic acid, 300 g of diethylene glycol, 300 g of triethylene glycol, and 260 g of phthalic anhydride were used.
  • the polyester polyol obtained here was designated as “Polyol 2”.
  • the reaction was carried out in the same procedure except that diethylene glycol was not used in the charged raw material of Example 1, but 440 g of succinic acid and 690 g of triethylene glycol were used.
  • the polyester polyol obtained here was designated as “Polyol 3”.
  • Example 4 The reaction was carried out in the same procedure except that diethylene glycol was not used in the charged raw material of Example 1 and succinic acid was changed to 40 4 g and triethylene glycol 719 g.
  • the polyester polyol obtained here was designated as “Polyol 4”.
  • the reaction was conducted in the same manner as in the raw material of Example 1, except that diethylene glycol was not used, 412 g of succinic acid, 640 g of triethylene glycol, and 74 g of glycerin were used.
  • the polyester polyol obtained here was designated as “Polyol 5”.
  • the reaction was carried out in the same manner as in the raw material of Example 1, except that succinic acid and triethylene glycol were not used, 570 g of phthalic anhydride and 500 g of diethylene glycol were used.
  • the polyester polyol obtained here was designated as “Polyol 6”.
  • Polyol premixes for polyurethane foam “Premix 1 to 14” were prepared using the raw materials and blends shown in Tables 2 and 3.
  • Polyol—7 “MAXIMOL RFK—504” terephthalic acid-based polyester poly-olli 11 manufactured by Sasaki Chemical Co., Ltd.)
  • Polyol— 8 “MAXIMOL RFK— 556” terephthalic acid-based polyester poly-olli 11 manufactured by Sasaki Chemical Co., Ltd.)
  • Polyol 9 “GR-04” Ethylenediamine amine polyether polyol (Mitsui Takeda Chemical Co., Ltd.)
  • Polyol 10 “GR-07” Ethylenediamine amine polyether polyol (Mitsui Takeda Chemical Co., Ltd.)
  • Polyol 11 “MN-3050” Glycerin-based polyether polyol (Mitsui Takeda Chemical Co., Ltd.)
  • Foaming agent—1 HCFC—141b (manufactured by Daikin Industries, Ltd.)
  • Foaming agent 2 HFC—245fa (manufactured by Central Glass Co., Ltd.)
  • Catalyst 1 “KAO Riser I Nol” Amine-based catalyst (manufactured by Kao Corporation)
  • Catalyst 2 “DABCO K-15” Fatty acid potassium catalyst (Air Products Japan Co., Ltd.)
  • Foam stabilizer “SZ—1717” Silicone foam stabilizer (manufactured by Toray 'Dow Corning' Silicone Co., Ltd.)
  • Polyurethane foams were produced and evaluated by the methods shown below.
  • Polyisocyanate solution "Millionate MR-200" Polymeric MDI (manufactured by Nippon Polyuretan Kogyo Co., Ltd.)
  • Liquid temperature 20 ° C ⁇ 1 ° C
  • Liquid temperature 15 ° C ⁇ 1 ° C
  • the time defined below was measured starting from the start of mixing the premix solution and isocyanate.
  • Cream time Time until foaming height reaches 1%.
  • Gel time The time it takes to draw a thread when a needle is inserted into the foam surface and pulled out.
  • the urethane foam was evaluated by qualitative observation.
  • the cut urethane foam was burned and evaluated by measuring the weight of the remaining carbide (carbide) relative to the weight of the original urethane foam.
  • More than 20% by weight of chia remains.
  • the amount of succinic acid used in the rubonic acid component is 50 to 100 weight. / 0, and 50 to the amount of triethylene glycol in the total alcohol components: LOO Weight 0/0 is a case of Examples 1-5, succinic force of Comparative Example 1 ⁇ weight 0/0, and tri ethylene glycol than that of 0 wt 0/0, the solubility of the further blowing agent viscosity Teigu is higher polyester polyols obtained
  • Example 6- Comparison results of LO and Examples 11-13 and Comparative Examples 2, 3 and Comparative Examples 5 and 6
  • the amount of succinic acid used in the full strength rubonic acid component is 50 to 100% by weight, and the total the amount mosquito 50 of triethylene glycol in the alcohol component: for LOO weight 0/0 examples 6-10 using a polyester polyol is and examples 11-13, succinic acid 0 weight 0/0, Compared with Comparative Example 2 and Comparative Example 5 using polyester polyol with 0% by weight of triethylene glycol, and Comparative Example 3 and Comparative Example 6 using only terephthalic acid-based polyester polyol, adhesive strength and urethane foam The brittleness is improved. In addition, there is little decrease in compressive strength, flame retardancy, and self-extinguishing properties.
  • Example 6 ⁇ Comparison results of LO and Examples 11-13 and Comparative Example 4 and Comparative Example 7
  • the amount of succinic acid used in the full strength rubonic acid component is 50 to 100% by weight, and in all alcohol components polyester poly amount of triethylene glycol is from 50 to 100 weight 0/0
  • polyester poly amount of triethylene glycol is from 50 to 100 weight 0/0
  • the improvement in adhesive strength and brittleness is equal to or greater than in Comparative Examples 4 and 7 using glycerin-based polyether polyol.
  • compressive strength, flame retardancy and self-extinguishing properties were improved.
  • the polyester polyol of the present invention has a low viscosity and is easy to handle, and also has a foaming agent, particularly an HFC foaming agent such as HFC-245fa, an HC foaming agent such as pentane and cyclopentane, and water. It is useful as a raw material polyol for polyurethane, particularly polyurethane foam, because it has high solubility and further improves the adhesive strength with the adherend.
  • the specifications, claims and drawings of Japanese patent application 2004-377809 filed on December 27, 2004 and Japanese Patent Application 2005-056984 filed March 2, 2005 The entire contents of the abstract are cited herein and can be taken as the disclosure of the specification of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

This invention provides a polyester polyol that, when used as a starting polyol for polyurethane, particularly a polyurethane foam, has low viscosity and is easy to handle, and has high compatibility with foaming agents, particularly HFC foaming agents such as HFC-245fa, HC foaming agents such as pentane and cyclopentane, and water, and, at the same time, can improve the strength of bonding to adherends. A polyester polyol produced by an esterification reaction of a carboxylic acid component and an alcohol component. In this case, succinic acid is used as at least a part of the carboxylic acid component, and triethylene glycol is used as at least a part of the alcohol component.

Description

ポリエステルポリオール、それを用いたポリウレタン及びポリウレタンフォー ム  Polyester polyol, polyurethane and polyurethane foam using the same
技術分野  Technical field
[0001] 本発明は、ポリエステルポリオールに関する。詳しくは、低粘度で取り扱いが容易で [0001] The present invention relates to a polyester polyol. Specifically, low viscosity and easy handling
、ポリウレタン、特に、ポリウレタンフォーム原料に使用した際に発泡剤との優れた相 溶性を発現し、かつ、得られたポリウレタンフォームと被着部材との接着強度を向上さ せることのできるポリエステルポリオールに関するものである。 Polyurethane, in particular, a polyester polyol that exhibits excellent compatibility with a foaming agent when used as a raw material for polyurethane foam and can improve the adhesive strength between the obtained polyurethane foam and an adherend. Is.
背景技術  Background art
[0002] ポリウレタンフォームは優れた断熱特性を有することから、冷蔵室、冷蔵庫、冷凍室 、冷凍庫、一般建造物の断熱材等に広く用いられている。ポリウレタンフォームは、一 般にポリイソシァネート成分液 (以下、 A液と略記)と、ポリエーテルポリオール及び Z またはポリエステルポリオール、発泡剤、さらに必要に応じて触媒や整泡剤等を混合 した混合液 (以下、 B液と略記)を用意し、 A液と B液を混合して、短時間で発泡、硬 化させる方法で製造される。このため、ポリエステルポリオールには発泡剤との相溶 性が高いことに加えて、低粘度で取り扱いが容易であることが求められる。  [0002] Polyurethane foam has excellent heat insulation properties, and is therefore widely used in refrigerators, refrigerators, freezer rooms, freezers, heat insulating materials for general buildings, and the like. Polyurethane foam is generally a mixture of a polyisocyanate component liquid (hereinafter abbreviated as A liquid), polyether polyol and Z or polyester polyol, foaming agent, and if necessary, a catalyst or foam stabilizer. A liquid (hereinafter abbreviated as B liquid) is prepared, and A liquid and B liquid are mixed, and foamed and hardened in a short time. For this reason, polyester polyols are required to have low viscosity and easy handling in addition to high compatibility with foaming agents.
[0003] 発泡剤としては、一般的に低沸点無極性有機溶媒が用いられ、具体的には、 HCF C系発泡剤の他、ペンタン、シクロペンタン等の HC系発泡剤が用いられている。また 、用途やポリウレタンフォームの製造条件によっては、引火点が低く爆発性を有する HC系発泡剤では実用上問題があり、 HCFC系発泡剤が多用されている。  [0003] As the foaming agent, a low-boiling nonpolar organic solvent is generally used. Specifically, in addition to the HCFC-based foaming agent, HC-based foaming agents such as pentane and cyclopentane are used. In addition, depending on the application and the production conditions of polyurethane foam, there are practical problems with HC foaming agents having a low flash point and explosive properties, and HCFC foaming agents are frequently used.
[0004] 一方、オゾン層破壊が問題となって以来、それまで汎用的に用いられてきた CFC 系発泡剤、特に CFC— 11E等力もオゾン破壊係数の小さい HCFC系発泡剤、特に HCFC - 14 lbが現在は代替使用されて!/、る。しかしこの HCFC - 14 lbもオゾン破 壊係数がゼロではなぐ 2003年末以降使用が制限されており、その代替品としては 、 HFC系発泡剤、特に HFC— 245faが想定されているほか、 HC系発泡剤及び水も 有望な発泡剤となっている。  [0004] On the other hand, CFC-based blowing agents that have been widely used since the ozone layer devastation became a problem, especially HCFC-based blowing agents with a low ozone depletion potential, especially HCFC-14 lb Is currently being used as an alternative! However, this HCFC-14 lb also has a zero ozone destruction factor, and its use has been restricted since the end of 2003. As an alternative, HFC-based foaming agents, especially HFC-245fa, are envisaged. Agents and water are also promising blowing agents.
[0005] 現在及び将来使用が想定されるこれらの発泡剤を用いた場合の共通の問題点とし て、 B液の主成分であるポリエーテルポリオール及び Zまたはポリエステルポリオ一 ルカ なるポリオール成分とこれらの発泡剤との相溶性が悪 、ことが挙げられる。特 に、 HCFC系発泡剤の代替品として想定されている、 HFC— 245fa等の HFC系発 泡剤、ペンタン、シクロペンタン等の HC系発泡剤及び水との相溶性の悪さ力 B液 糸且成の設定の制約となって 、る。 [0005] As a common problem when using these blowing agents that are expected to be used now and in the future Thus, the compatibility between the polyether polyol and the polyol component, which are the main components of the B liquid, and the polyol component such as Z or polyester polyol is poor. In particular, HFC foaming agents such as HFC-245fa, poor compatibility with HC foaming agents such as pentane and cyclopentane, and water, which are assumed as substitutes for HCFC foaming agents. This is a limitation of the configuration.
[0006] さらに、 HFC系発泡剤、 HC系発泡剤、水等の発泡剤を用いた発泡処方は、従来 の HCFC系発泡剤を用いた発泡処方と比較して、発泡剤とウレタン原料との相溶性. 分散性が低いために、反応性や発泡効率の低下 (高密度化)、成形体の表面の仕上 力 Sり不良、得られるフォームの強度低下、寸法安定性の低下、特に被着部材との接 着強度の低下を生じやすい。また、断熱性能が必要な分野では、セル荒れによる熱 伝導率の悪化を生じやすぐ低温吹き付け工事においては、相溶性低下のために接 着強度の低下、層間剥離、へタリ等が発生しやすい。特に、発泡剤として水だけを用 いた場合に、この傾向が顕著に現れる。  [0006] Furthermore, the foaming formulation using a foaming agent such as an HFC-based foaming agent, HC-based foaming agent, water, etc. is more effective than the conventional foaming formulation using an HCFC-based foaming agent. Compatibility. Due to low dispersibility, reactivity and foaming efficiency decrease (densification), surface finish of molded product, poor foam strength, reduced foam strength, dimensional stability, especially adhesion It tends to cause a decrease in adhesion strength with the member. Also, in areas where heat insulation performance is required, thermal conductivity deteriorates due to cell roughening, and in low-temperature spraying construction, adhesion strength decreases, delamination, and dripping easily occur due to poor compatibility. . This tendency is particularly noticeable when only water is used as the blowing agent.
[0007] 一方で、 HFC系発泡剤、 HC系発泡剤を用いる処方においても、環境への配慮、 コスト削減の面力 も水を多く配合する処方が検討されており、水とポリイソシァネート 成分との反応によって生成するゥレア基の増加により、ポリウレタンフォームのフライ アビリティが大きくなり、さらに接着強度の低下を引き起こすことで問題となる。  [0007] On the other hand, prescriptions using HFC-based foaming agents and HC-based foaming agents are also being studied for formulations that incorporate a large amount of water for environmental considerations and cost reduction. Water and polyisocyanate The increase in urea groups generated by reaction with the components increases the flyability of polyurethane foam, and further causes a decrease in adhesive strength.
[0008] これらの問題点、特に発泡剤との相溶性の悪さ及び被着部材との接着強度の低下 を解決するため、これまでにも種々の検討がなされてきた。例えば、相溶性を向上さ せるある種の界面活性効果を有する相溶化剤(特許文献 1)が近年種々提案されて いる。し力しながら、これらの相溶化剤は、通常水酸基を持たない化合物が殆どのた め、たとえ B液の補助成分として、上記の発泡剤との相溶性向上に寄与したとしても、 ウレタン化反応には供しないため、ポリウレタンフォーム中にそのまま存在し、その物 性、特に強度や耐熱性、接着強度などを著しく悪化させる場合がある。従って、発泡 剤と B液との相溶性の低さを解決するためには、相溶性の向上と共に分子内に水酸 基を有したポリオールとしても機能する化合物であることが実用上極めて重要と考え られる。  [0008] Various studies have been made so far in order to solve these problems, particularly the poor compatibility with the foaming agent and the decrease in the adhesive strength with the adherend. For example, various compatibilizers (Patent Document 1) having a certain surface active effect for improving compatibility have recently been proposed. However, since most of these compatibilizers are usually compounds that do not have a hydroxyl group, even if they contribute to improving the compatibility with the foaming agent as an auxiliary component of the liquid B, the urethanization reaction Therefore, it may be present in the polyurethane foam as it is, and its physical properties, particularly strength, heat resistance, adhesive strength, etc. may be significantly deteriorated. Therefore, in order to solve the low compatibility between the blowing agent and the liquid B, it is extremely important in practice to be a compound that functions as a polyol having a hydroxyl group in the molecule as well as improving the compatibility. Conceivable.
[0009] また、被着部材との接着強度や寸法安定性の改良方法も検討されており、例えば、 トリレンジァミン、トリエタノールァミン、グリセリン、エチレンジァミンを開始剤にェチレ ンォキシド ·プロピレンォキシドを付加したポリエーテルポリオールを使用した方法 (特 許文献 2)、あるいは、ォキシエチレン及び Zまたはォキシプロピレングリコールのジ アルキルエーテルのような水酸基を持たな ヽ助剤を使用する方法 (特許文献 3)が挙 げられる。 [0009] Further, methods for improving the adhesive strength and dimensional stability with the adherend have been studied, for example, A method using polyether polyol in which ethylenediamine / propylene oxide is added to tolylenediamine, triethanolamine, glycerin, ethylenediamine as an initiator (Patent Document 2), or dialkylene of oxyethylene and Z or oxypropylene glycol There is a method (Patent Document 3) using an auxiliary agent having no hydroxyl group such as ether.
特許文献 1 :特開 2004— 107439  Patent Document 1: JP 2004-107439
特許文献 2 :特開平 6— 316621  Patent Document 2: JP-A-6-316621
特許文献 3:特開 2002— 363241  Patent Document 3: JP 2002-363241
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] し力しながら、これらの方法では、添加量が少量では接着強度を改善させる効果が 小さぐまた添加量を多くするとコスト面で不利になるほか、ポリウレタンフォームの難 燃性の低下等の悪影響が生じる。  [0010] However, with these methods, the effect of improving the adhesive strength is small if the addition amount is small, and the cost is disadvantageous if the addition amount is large, and the flame retardancy of the polyurethane foam is reduced. Adverse effects occur.
[0011] そこで、これら添加剤の使用に代えて、水酸基を有し、ポリエーテルポリオールに比 ベて分子間の凝集力が強ぐ難燃性の低下を招かないポリエステルポリオールであ つて、発泡剤との相溶性が良ぐかつポリウレタンフォームと被着部材との接着強度を 改善させるようなポリエステルポリオールを提供できれば、ポリオール成分の一部とし て適量用いることにより、均一安定性の良い B液が得られ、さらには優れた物性を有 するポリウレタンフォームを得ることができると期待される。  [0011] Therefore, instead of using these additives, a polyester polyol having a hydroxyl group, having a stronger cohesive force between molecules than polyether polyol, and causing no reduction in flame retardancy, If it is possible to provide a polyester polyol that has good compatibility with the polyurethane foam and improves the adhesive strength between the polyurethane foam and the adherend, an appropriate amount of it can be used as a part of the polyol component to obtain a liquid B with good uniform stability. In addition, it is expected that a polyurethane foam having excellent physical properties can be obtained.
課題を解決するための手段  Means for solving the problem
[0012] これらの課題を解決すベぐ本発明者らが鋭意検討した結果、ポリエステルポリオ ールの製造原料であるカルボン酸成分の少なくとも一部としてコハク酸を、アルコー ル成分の少なくとも一部としてトリエチレングリコールをそれぞれ特定量用いることに よって、発泡剤との相溶性が良ぐかつポリウレタンフォームと被着部材との接着強度 を改善させるポリエステルポリオールが得られることを見 、だし、本発明に至った。  [0012] As a result of intensive studies by the present inventors to solve these problems, succinic acid is used as at least a part of the carboxylic acid component, which is a raw material for producing polyester polyol, as at least a part of the alcohol component. By using a specific amount of each of triethylene glycol, it was found that a polyester polyol having good compatibility with the blowing agent and improving the adhesive strength between the polyurethane foam and the adherend was obtained. It was.
[0013] 本発明により得られたポリエステルポリオールは、従来汎用的に用いられているポリ エステルポリオールと同様に、ポリウレタンの一構成成分としてポリウレタンの分子内 に組み込まれるため、ポリウレタンの物性を損なうことなぐ上記の特性を発揮すること ができる。 [0013] The polyester polyol obtained by the present invention is incorporated into the polyurethane molecule as one component of the polyurethane, similarly to the conventionally used polyester polyol, so that the physical properties of the polyurethane are not impaired. Demonstrate the above characteristics Can do.
即ち、本発明は、以下を特徴とする要旨を有するものである。  That is, this invention has the summary characterized by the following.
(1)カルボン酸成分及びアルコール成分をエステルイ匕反応させて得られるポリエステ ルポリオールであって、カルボン酸成分の少なくとも一部としてコハク酸を用い、且つ 、アルコール成分の少なくとも一部としてトリエチレングリコールを用いることを特徴と するポリエステルポリオール。  (1) A polyester polyol obtained by subjecting a carboxylic acid component and an alcohol component to an esterification reaction, using succinic acid as at least a part of the carboxylic acid component, and triethylene glycol as at least a part of the alcohol component. A polyester polyol characterized by being used.
(2)コハク酸の使用量が全力ルボン酸成分中の 30重量%以上であり、且つ、トリェチ レンダリコールの使用量が全アルコール成分中の 30重量%以上であることを特徴と する上記(1)に記載のポリエステルポリオール。  (2) The above-mentioned (1) characterized in that the amount of succinic acid used is 30% by weight or more in the full strength rubonic acid component, and the amount of tritendendralol used is 30% by weight or more in all alcohol components. ) Polyester polyols.
(3)コハク酸の使用量が全力ルボン酸成分中の 50重量%以上であり、且つ、トリェチ レンダリコールの使用量が全アルコール成分中の 50重量%以上であることを特徴と する上記(2)に記載のポリエステルポリオール。  (3) The above-mentioned (2) characterized in that the amount of succinic acid used is 50% by weight or more in the full strength rubonic acid component, and the amount of tritendender alcohol used is 50% by weight or more in all alcohol components. ) Polyester polyols.
(4)粘度が 30000mPa · s以下であることを特徴とする上記(1)〜(3)の 、ずれかに 記載のポリエステルポリオール。  (4) The polyester polyol according to any one of (1) to (3) above, wherein the viscosity is 30000 mPa · s or less.
(5)酸価が lOmgKOHZg以下であることを特徴とする上記(1)〜(4)の 、ずれかに 記載のポリエステルポリオール。  (5) The polyester polyol according to any one of the above (1) to (4), wherein the acid value is 1 OmgKOHZg or less.
(6)上記(1)〜(5)の 、ずれかに記載のポリエステルポリオールを含むポリオール成 分と、ポリイソシァネート成分とを反応させてなることを特徴とするポリウレタン。  (6) A polyurethane obtained by reacting a polyol component containing the polyester polyol according to any one of (1) to (5) above and a polyisocyanate component.
(7)上記(1)〜(5)の 、ずれかに記載のポリエステルポリオールを含むポリオール成 分と、ポリイソシァネート成分とを発泡剤の存在下反応させてなることを特徴とするポリ ウレタンフォーム。  (7) A polyurethane obtained by reacting a polyol component containing the polyester polyol according to any one of (1) to (5) above and a polyisocyanate component in the presence of a foaming agent. Form.
(8)上記(1)〜(5)のいずれかに記載のポリエステルポリオールの使用量が全ポリオ ール成分中の 1重量%以上 50重量%以下であることを特徴とする上記(6)に記載の ポリウレタン又は上記(7)に記載のポリウレタンフォーム。  (8) The above (6) is characterized in that the amount of the polyester polyol described in any one of (1) to (5) is 1% by weight or more and 50% by weight or less in the total polyol component. The polyurethane described in the above or the polyurethane foam described in (7) above.
(9)オゾン破壊係数が 0. 8以下の発泡剤を使用してなる上記(7)又は(8)に記載の ポリウレタンフォーム。  (9) The polyurethane foam as described in (7) or (8) above, wherein a foaming agent having an ozone depletion coefficient of 0.8 or less is used.
(10)発泡剤が、 HFC系発泡剤、 HC系発泡剤及び水力 なる群より選ばれた 1種以 上の発泡剤である上記(7)、 (8)又は(9)に記載のポリウレタンフォーム。 発明の効果 (10) The polyurethane foam according to (7), (8) or (9), wherein the foaming agent is one or more foaming agents selected from the group consisting of HFC foaming agents, HC foaming agents and hydraulic power. . The invention's effect
[0015] 本発明によれば、ポリウレタン、特に、ポリウレタンフォームの原料ポリオールとして、 低粘度で取り扱いが容易であることに加えて、発泡剤、特に HFC— 245fa等の HFC 系発泡剤、ペンタン、シクロペンタン等の HC系発泡剤及び水との相溶性が高ぐさら に得られたポリウレタンフォームと被着部材との接着強度を向上させることができるポ リエステルポリオールを提供できる。 発明を実施するための最良の形態  [0015] According to the present invention, as a raw material polyol for polyurethane, particularly polyurethane foam, in addition to low viscosity and easy handling, blowing agents, particularly HFC-based blowing agents such as HFC-245fa, pentane, cyclohexane It is possible to provide a polyester polyol capable of improving the adhesive strength between a polyurethane foam obtained by increasing compatibility with water and an HC foaming agent such as pentane and water and an adherend. BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下、本発明について詳細に説明する。本発明におけるポリエステルポリオールは 、好適には、ポリウレタン、特にポリウレタンフォームに使用されるポリエステルポリオ ールであって、カルボン酸成分とアルコール成分から得られるポリエステルポリオ一 ルである。 Hereinafter, the present invention will be described in detail. The polyester polyol in the present invention is preferably a polyester polyol used for polyurethane, particularly a polyurethane foam, and is a polyester polyol obtained from a carboxylic acid component and an alcohol component.
[0017] 本発明において、ポリエステルポリオールの原料であるカルボン酸成分の少なくとも 一部として、コハク酸を用いることを必須とする。コハク酸の使用量は、通常、全カル ボン酸成分の 30重量%以上、好ましくは 50重量%以上、さらに好ましくは 70重量% 以上であり、カルボン酸成分の全量をコハク酸としても良い。コハク酸の使用量が全 カルボン酸成分の 30重量%未満では、発泡剤との相溶性向上や被着部材との接着 強度の向上といった効果が小さいため好ましくない。なお、本発明のコハク酸には、 無水コハク酸をも含めるものとし、また、コハク酸のかわりに、メタノール、エタノール、 In the present invention, it is essential to use succinic acid as at least a part of the carboxylic acid component that is a raw material of the polyester polyol. The amount of succinic acid used is usually 30% by weight or more, preferably 50% by weight or more, more preferably 70% by weight or more of the total carboxylic acid component, and the total amount of the carboxylic acid component may be succinic acid. If the amount of succinic acid used is less than 30% by weight of the total carboxylic acid component, the effect of improving the compatibility with the foaming agent and improving the adhesive strength with the adherend is small. The succinic acid of the present invention includes succinic anhydride, and instead of succinic acid, methanol, ethanol,
2—ェチルへキサノール等の炭素数が 1〜8のモノアルコールでエステル化されたも の、例えばジメチルコハク酸等を用いてもよい。これらの場合の使用量は、コハク酸に 換算した重量で計算するものとする。 For example, dimethyl succinic acid or the like esterified with a monoalcohol having 1 to 8 carbon atoms such as 2-ethylhexanol may be used. The amount used in these cases shall be calculated based on the weight converted to succinic acid.
[0018] カルボン酸成分の全量をコハク酸としない場合に用いるカルボン酸としては、コハク 酸以外の脂肪族ジカルボン酸、または、脂肪族トリカルボン酸等の脂肪族ポリカルボ ン酸が挙げられる。好適な脂肪族ポリカルボン酸成分としては、ダルタル酸、アジピン 酸、フマル酸、マレイン酸、及びこれらの酸無水物が挙げられる。これら脂肪族ポリ力 ルボン酸以外のカルボン酸として、フタル酸、テレフタル酸、トリメリット酸などの芳香 族ポリカルボン酸を用いてもょ 、。これらコハク酸以外に用いるカルボン酸成分のうち 、特に好ましいのは、フタル酸、アジピン酸である。なお、これらのカルボン酸類は、メ タノール、エタノール、 2 ェチルへキサノール等の炭素数が 1〜8のモノアルコール でエステルイ匕されたもの、例えばジメチルテレフタル酸等を用いても構わない。コハク 酸以外に用いるこれらのカルボン酸成分は、それぞれ単独で或いは 2種以上を混合 して用いることができる。 [0018] Examples of the carboxylic acid used when the total amount of the carboxylic acid component is not succinic acid include aliphatic dicarboxylic acids other than succinic acid, and aliphatic polycarboxylic acids such as aliphatic tricarboxylic acids. Suitable aliphatic polycarboxylic acid components include dartaric acid, adipic acid, fumaric acid, maleic acid, and acid anhydrides thereof. Aromatic polycarboxylic acids such as phthalic acid, terephthalic acid and trimellitic acid may be used as carboxylic acids other than these aliphatic polycarboxylic acids. Of these carboxylic acid components other than succinic acid, phthalic acid and adipic acid are particularly preferred. These carboxylic acids are Those obtained by esterification with a monoalcohol having 1 to 8 carbon atoms such as ethanol, ethanol and 2-ethylhexanol, such as dimethyl terephthalic acid, may be used. These carboxylic acid components used in addition to succinic acid can be used alone or in admixture of two or more.
[0019] 本発明において、ポリエステルポリオールの原料であるアルコール成分の少なくとも 一部として、トリエチレングリコールを用いることを必須とする。トリエチレングリコール の使用量は、通常、全アルコール成分の 30重量%以上、好ましくは 40重量%以上、 さらに好ましくは 50重量%以上であり、アルコール成分の全量をトリエチレングリコー ルとしても良い。トリエチレングリコールの使用量が全アルコール成分の 30重量%未 満では、発泡剤との相溶性向上や被着部材との接着強度の向上といった効果が小さ ぐまた粘度が著しく増加する等の悪影響を生じる場合があるため好ましくない。  In the present invention, it is essential to use triethylene glycol as at least a part of the alcohol component that is a raw material of the polyester polyol. The amount of triethylene glycol used is usually 30% by weight or more of the total alcohol component, preferably 40% by weight or more, and more preferably 50% by weight or more. The total amount of the alcohol component may be triethylene glycol. If the amount of triethylene glycol used is less than 30% by weight of the total alcohol component, the effect of improving the compatibility with the foaming agent and the adhesive strength with the adherend will be small, and the adverse effect such as a marked increase in viscosity will be caused. Since it may occur, it is not preferable.
[0020] アルコール成分の全量をトリエチレングリコールとしない場合に用いるアルコールと しては、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレ ングリコール、トリプロピレングリコール、 1, 2 ブタンジオール、 1, 3 ブタンジォー ル、 1, 4 ブタンジオール、 1, 5 ペンタンジオール、 1, 6 へキサンジオール、ネ ォペンチルグリコール、シクロへキサンジオール、シクロへキサンジメタノール等のジ オール、グリセリン、トリメチロールプロパン等のトリオールが挙げられる。その他使用 可能なアルコール成分として、ポリエチレングリコール、ポリプロピレングリコール、ポリ ォキシエチレン Zォキシプロピレン共重合ダリコール、ポリテトラメチレンエーテルダリ コール等の長鎖ポリエーテルポリオール類も挙げられる。トリエチレングリコール以外 に用いるこれらのアルコール成分は、それぞれ単独で或いは 2種以上を混合して用 いることがでさる。  [0020] The alcohol used when the total amount of the alcohol component is not triethylene glycol is ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, 1,2 butanediol, 1,3 butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, cyclohexanediol, dioxane such as cyclohexanedimethanol, and triols such as glycerin and trimethylolpropane . Other usable alcohol components include long-chain polyether polyols such as polyethylene glycol, polypropylene glycol, polyoxyethylene Z-oxypropylene copolymer dallicol, and polytetramethylene ether dallicol. These alcohol components other than triethylene glycol can be used alone or in admixture of two or more.
[0021] また、ポリエステルポリオールの粘度は、好ましくは 30000mPa' s以下、特に 2500 OmPa · s以下であることが好まし!/ヽ。ポリエステルポリオールの粘度を 30000mPa · s 以下に下げる方法として、メタノール、エタノール、イソプロパノール、 2—ェチルへキ サノール等のモノオールを用いることもできる。但し、これらのモノオールを用いた場 合、ポリエステルポリオールの合成において反応系外に留出して収率を悪ィ匕させたり 、ポリウレタンの強度や耐熱性に悪影響を及ぼしたりする場合があるので、実用上問 題とならな 、範囲で使用することが好ま 、。 [0021] The viscosity of the polyester polyol is preferably 30000 mPa's or less, particularly 2500 OmPa · s or less! / ヽ. As a method for lowering the viscosity of the polyester polyol to 30000 mPa · s or less, monools such as methanol, ethanol, isopropanol, 2-ethylhexanol and the like can be used. However, when these monools are used, they may be distilled out of the reaction system in the synthesis of polyester polyols, resulting in poor yields and adversely affecting the strength and heat resistance of polyurethane. Practical questions It is preferred to use in a range, not the subject.
[0022] 本発明におけるエステルイ匕反応においては、通常、エステルイ匕触媒が用いられる。 [0022] In the esterification reaction in the present invention, an esterification catalyst is usually used.
触媒としては、一般に酸触媒が用いられることが多い。ルイス酸としては、例えば、テ トライソプロピルチタネート、テトラー n—ブチルチタネート等のオルトチタン酸エステ ルゃ、ジェチル錫ォキシド、ジブチル錫ォキシド等の錫系化合物や、酸化亜鉛等の 金属化合物が用いられる。また、ルイス酸の他には、パラトルエンスルホン酸等のブ レンステッド酸を用いても構わな 、。 In general, an acid catalyst is often used as the catalyst. Examples of the Lewis acid include orthotitanate esters such as tetraisopropyl titanate and tetra n -butyl titanate, tin compounds such as jetyl tin oxide and dibutyl tin oxide, and metal compounds such as zinc oxide. In addition to the Lewis acid, a Bronsted acid such as p-toluenesulfonic acid may be used.
[0023] 一方、得られたポリエステルポリオールは、ポリイソシァネート成分とウレタンィ匕反応 してポリウレタンとなる力 この際、ポリエステルポリオールの合成に用いた触媒力 ゥ レタンィ匕反応の反応挙動に影響を及ぼさない方が望ましい。そのため、上記のエス テル化触媒の中では、オルトチタン酸エステルが好ましぐ使用量についても、原料 に用いるカルボン酸成分とアルコール成分の合計に対して、通常、 1. 0重量%以下 、好ましくは 0. 2重量%以下で、通常、 0. 01重量%以上、好ましくは 0. 03重量% 以上である。ポリウレタンの用途によっては、これらのエステルイ匕触媒を用いないで反 応しても構わない。 [0023] On the other hand, the obtained polyester polyol has a urethane reaction with the polyisocyanate component to form a polyurethane. At this time, the catalytic force used in the synthesis of the polyester polyol has an influence on the reaction behavior of the urethane reaction. Preferably not. Therefore, among the esterification catalysts described above, the preferred amount of orthotitanate used is usually 1.0% by weight or less, preferably with respect to the total of the carboxylic acid component and alcohol component used as raw materials. Is not more than 0.2% by weight, usually not less than 0.01% by weight, preferably not less than 0.03% by weight. Depending on the use of polyurethane, the reaction may be performed without using these ester catalysts.
[0024] 本発明のポリエステルポリオールの製造において、カルボン酸成分とアルコール成 分を使用する割合は、 目標とするポリエステルポリオールの水酸基価や粘度、数平 均分子量などによっても異なる力 カルボン酸成分のカルボキシル基 1当量に対する アルコール成分の水酸基の当量として、通常、 1. 05当量以上、好ましくは 1. 1当量 以上、さらに好ましくは 1. 2当量以上で、通常、 4. 0当量以下、好ましくは 3. 0当量 以下、さらに好ましくは 2. 5当量以下である。この値が小さすぎると、ポリエステルポリ オール中の水酸基が著しく減少し、さらにポリイソシァネート成分とウレタン化反応し て得られるポリウレタンフォームの強度や耐熱性等の性能に著しい悪影響を及ぼす 恐れがある。一方、この値が大きすぎると、ポリエステルポリオール中にエステルイ匕反 応に供されなかった、フリーのアルコール成分が多量に残ってしまう。この様にして得 られたポリエステルポリオールを用いると、さらにポリイソシァネート成分とウレタンィ匕 反応して得られる硬質ポリウレタンフォームの強度や耐熱性等の性能に、やはり著し V、悪影響を及ぼす恐れがある。 [0025] 本発明のポリエステルポリオールの製造における反応温度は、通常、 150°C以上、 好ましくは 180°C以上で、通常、 250°C以下、好ましくは 230°C以下の範囲で行われ る。例えば、 150°Cで反応を開始し、反応の進行に伴って 230°Cまで徐々に昇温す るような条件であれば、反応を制御し易い。一方、反応圧力は常圧でも構わないが、 副生する水を系外に除去し、反応を速やかに完結させるために反応の進行に伴って 、徐々に減圧すると良い。ただし、反応時の減圧度が不足するとエステル化反応の 完結度が低くなり、酸価の高いポリエステルポリオールが生成してしまう。一方、反応 時に過度に減圧してしまうと、アルコール成分が系外に留去され収率を損なうばかり 力 高分子量のポリエステルポリオールを形成し、得られたポリエステルポリオールの 粘度を著しく上昇させると共に、発泡剤に対する相溶性を低下させる傾向を示す場 合もある。従って、適切な到達反応圧力は、反応温度によっても異なる力 例えば、 反応温度が 200°Cの場合においては、圧力は、通常、 2kPa以上、好ましくは 5kPa 以上で、通常、 50kPa以下、好ましくは 30kPa以下であるが、 目標とするポリエステ ルポリオールの粘度や水酸基価、用いるアルコールの種類、使用量によっては、上 記の圧力範囲以外の条件で反応を行っても構わない。また、減圧する代わりに、トル ェン、キシレン等の有機溶媒を少量併用して、副生する水を系外に共沸させて除去 しても構わない。 In the production of the polyester polyol of the present invention, the ratio of the carboxylic acid component and the alcohol component used depends on the hydroxyl value, viscosity, number average molecular weight, etc. of the target polyester polyol. The equivalent of the hydroxyl group of the alcohol component to 1 equivalent of the group is usually 1.05 equivalent or more, preferably 1.1 equivalent or more, more preferably 1.2 equivalent or more, usually 4.0 equivalent or less, preferably 3. 0 equivalent or less, more preferably 2.5 equivalent or less. If this value is too small, the hydroxyl groups in the polyester polyol are significantly reduced, and there is a risk that the polyurethane foam obtained by urethanation with the polyisocyanate component will have a significant adverse effect on the strength and heat resistance of the polyurethane foam. . On the other hand, if this value is too large, a large amount of free alcohol components that have not been subjected to esterification reaction remain in the polyester polyol. If the polyester polyol obtained in this way is used, the strength and heat resistance of the rigid polyurethane foam obtained by further reacting with the polyisocyanate component and urethane can be significantly affected. is there. [0025] The reaction temperature in the production of the polyester polyol of the present invention is usually 150 ° C or higher, preferably 180 ° C or higher, and usually 250 ° C or lower, preferably 230 ° C or lower. For example, the reaction is easy to control if the reaction is started at 150 ° C and the temperature is gradually raised to 230 ° C as the reaction proceeds. On the other hand, the reaction pressure may be normal pressure, but it may be gradually reduced as the reaction proceeds to remove by-product water out of the system and complete the reaction quickly. However, if the degree of pressure reduction during the reaction is insufficient, the degree of completion of the esterification reaction is lowered, and a polyester polyol having a high acid value is produced. On the other hand, if the pressure is excessively reduced during the reaction, the alcohol component is distilled out of the system and the yield is deteriorated. A high-molecular weight polyester polyol is formed, the viscosity of the resulting polyester polyol is remarkably increased, and foaming is performed. It may also show a tendency to reduce compatibility with the agent. Accordingly, the appropriate ultimate reaction pressure varies depending on the reaction temperature.For example, when the reaction temperature is 200 ° C, the pressure is usually 2 kPa or more, preferably 5 kPa or more, and usually 50 kPa or less, preferably 30 kPa. Although it is as follows, the reaction may be performed under conditions other than the above pressure range depending on the viscosity and hydroxyl value of the target polyester polyol, the type of alcohol used, and the amount used. Instead of reducing the pressure, a small amount of an organic solvent such as toluene or xylene may be used in combination, and the by-produced water may be removed azeotropically from the system.
[0026] 本発明のポリエステルポリオールの製造における反応の終点は、ポリエステルポリ オールの場合には、通常、用いた多価カルボン酸の未反応カルボキシル基の量で 決定する。一方、ポリウレタンの用途においては、ポリイソシァネート成分とのウレタン 化反応に対して、酸の存在は反応性を低下させる等好ましくない場合が多い。従つ て、ポリエステルポリオールについても、未反応のカルボン酸の量、すなわち酸価は 出来るだけ低い方が好ましい。硬質ポリウレタンフォームの用途において、酸価は、 通常、 lOmgKOHZg以下、好ましくは 5mgKOHZg以下、さらに好ましくは 3mgK OHZg以下である。また、さらに厳しいウレタンィ匕反応条件下では、 lmgKOHZg 以下が望まれる場合がある。  [0026] The end point of the reaction in the production of the polyester polyol of the present invention is usually determined by the amount of unreacted carboxyl groups of the polyvalent carboxylic acid used in the case of polyester polyol. On the other hand, in the use of polyurethane, the presence of an acid in many cases is not preferable, such as a decrease in reactivity, with respect to a urethanization reaction with a polyisocyanate component. Therefore, it is preferable for the polyester polyol that the amount of unreacted carboxylic acid, that is, the acid value is as low as possible. In the use of rigid polyurethane foam, the acid value is usually 10 mgKOHZg or less, preferably 5 mgKOHZg or less, more preferably 3 mgKOHZg or less. Also, under severe urethane reaction conditions, lmgKOHZg or less may be desired.
[0027] 上記の様にして得られたポリエステルポリオールは、通常、用いたカルボン酸成分 とアルコール成分力 なる構造を有するエステルイ匕合物と未反応のアルコール成分 とカゝらなる。本発明において得られるポリエステルポリオールでは、上記のエステルイ匕 合物の平均官能基数は、通常、 1. 0以上、好ましくは 1. 5以上、さらに好ましくは 2. 0以上である。エステル化合物の平均官能基数が小さすぎると、それからさらにポリイ ソシァネート成分とウレタン化反応して得られるポリウレタンの重合度を低下させ、例 えば、ポリウレタンフォームの場合には、特に強度や耐熱性などを著しく悪化させる場 合がある。 [0027] The polyester polyol obtained as described above is usually an ester compound having a structure having a carboxylic acid component and an alcohol component, and an unreacted alcohol component. And become mosquitoes. In the polyester polyol obtained in the present invention, the average number of functional groups of the ester compound is usually 1.0 or more, preferably 1.5 or more, and more preferably 2.0 or more. If the average number of functional groups of the ester compound is too small, the degree of polymerization of the polyurethane obtained by urethanation reaction with the polyisocyanate component is further reduced. For example, in the case of polyurethane foam, strength and heat resistance are remarkably increased. May be exacerbated.
[0028] また、エステル化合物の平均官能基数を一定の目標値に保ち、及び Zまたは平均 分子量を一定に保つには、エステルイ匕反応中にエステル交換反応に伴って平衡状 態にあるアルコール成分を極力反応系外に留出させないことが重要である。アルコ ール成分の留出が多すぎると、エステル化合物の平均官能基数が当初の製品設計 に対して異なったものになったり、平均分子量が大きくなり、その結果得られるポリエ ステルポリオールの粘度が著しく大きくなつたりして好ましくない。従って、エステル化 反応中に系外に留出するアルコール成分の量は、全アルコール成分に対して、通常 、 5%以下、好ましくは 3%以下、さらに好ましくは 1%以下である。但し、 目標とするポ リエステルポリオールの粘度や水酸基価、用いるアルコール成分の使用量によって は、上記の範囲を超えてアルコール成分を留去しても構わない。なお、本発明のポリ エステルポリオールの望ましい数平均分子量としては、 目的とする用途にもよるが、 概ね 300〜3000の範囲、さらに好ましくは 500〜2000の範囲である。  [0028] Also, in order to keep the average number of functional groups of the ester compound at a constant target value and to keep Z or the average molecular weight constant, an alcohol component that is in an equilibrium state with the transesterification reaction during the esterification reaction is added. It is important not to distill out of the reaction system as much as possible. If the alcohol component is distilled too much, the average number of functional groups of the ester compound will differ from the original product design, the average molecular weight will increase, and the resulting polyester polyol will have a significant viscosity. It is not desirable to grow large. Therefore, the amount of the alcohol component distilled out of the system during the esterification reaction is usually 5% or less, preferably 3% or less, more preferably 1% or less, based on the total alcohol components. However, depending on the viscosity and hydroxyl value of the target polyester polyol and the amount of alcohol component used, the alcohol component may be distilled out beyond the above range. The desirable number average molecular weight of the polyester polyol of the present invention is generally in the range of 300 to 3000, more preferably in the range of 500 to 2000, depending on the intended use.
[0029] なお、反応開始時には、生成するポリエステルポリオールの着色を防ぐために反応 容器の空間部を窒素置換し、さらに反応液中の溶存酸素も除去することが好ましい。 また、反応終了の後に、適当な減圧条件下に、未反応のフリーのアルコール成分を 系外に留去させて、ポリエステルポリオールの物性や性能を調節しても構わな 、。  [0029] At the start of the reaction, it is preferable to replace the space of the reaction vessel with nitrogen in order to prevent coloring of the produced polyester polyol, and also to remove dissolved oxygen in the reaction solution. Further, after completion of the reaction, the physical properties and performance of the polyester polyol may be adjusted by distilling off the unreacted free alcohol component outside the system under an appropriate reduced pressure condition.
[0030] 本発明におけるポリエステルポリオールの反応形式は、通常のバッチ設備あるいは 連続設備に適用できる力 反応時間が長時間に渡ること、及び得られるポリエステル ポリオールの粘度が原料に用いられたアルコール成分に比べてかなり高くなること等 から、ノ ツチ設備による反応の方が好ましい。  [0030] The reaction mode of the polyester polyol in the present invention is a force that can be applied to normal batch equipment or continuous equipment. The reaction time takes a long time, and the viscosity of the obtained polyester polyol is compared with the alcohol component used as a raw material. Therefore, the reaction by notch equipment is preferable.
[0031] 本発明により得られるポリエステルポリオールは、好適には、ポリオールとポリイソシ ァネート成分とを反応させて得られるポリウレタン、特に、ポリウレタンフォームに使用 され、低粘度で取り扱いが容易であることに加えて、オゾン破壊係数が 0. 8以下の発 泡剤、特に今後用いられる HFC— 245fa等の HFC系発泡剤、ペンタン、シクロペン タン等の HC系発泡剤及び水等の発泡剤との相溶性が高いポリエステルポリオール として有用である。 [0031] The polyester polyol obtained according to the present invention is preferably used in a polyurethane obtained by reacting a polyol and a polyisocyanate component, particularly in a polyurethane foam. In addition to low viscosity and easy handling, foaming agents with an ozone depletion coefficient of 0.8 or less, especially HFC-based foaming agents such as HFC-245fa to be used in the future, and HC-based systems such as pentane and cyclopentane It is useful as a polyester polyol having high compatibility with a foaming agent such as a foaming agent and water.
[0032] ポリウレタンフォームは、ポリイソシァネート成分からなる A液と、ポリエーテルポリオ ール及び Zまたはポリエステルポリオール等力 なるポリオール成分、発泡剤、触媒 や整泡剤、さらに必要に応じてその他の添加剤や助剤を混合してなる B液とを、短時 間で混合、発泡、硬化させる方法で製造される。  [0032] The polyurethane foam is composed of a liquid A composed of a polyisocyanate component, a polyol component such as polyether polyol and Z or polyester polyol, a foaming agent, a catalyst and a foam stabilizer, and other components as necessary. Manufactured by mixing, foaming, and curing the liquid B containing additives and auxiliaries in a short time.
[0033] ポリイソシァネート成分としては、 1分子中にイソシァネート基を 2個以上有する有機 化合物であれば特に限定されるものではない。例えば、脂肪族系、脂環族系又は芳 香族系のポリイソシァネート並びにこれらの変性物が挙げられる。具体的には、脂肪 族系又は脂環族系ポリイソシァネートとしては、へキサメチレンジイソシァネート、イソ ホロンジイソシァネート等が挙げられる。芳香族系ポリイソシァネートとしては、トリレン ジイソシァネート、ジフエ-ルメタンジイソシァネート及びポリフエ-レンポリメチレンポ リイソシァネート等が挙げられ、さらにこれらのカルポジイミド変性物やプレボリマー等 の変性物も包含される。  [0033] The polyisocyanate component is not particularly limited as long as it is an organic compound having two or more isocyanate groups in one molecule. Examples thereof include aliphatic, alicyclic or aromatic polyisocyanates and modified products thereof. Specifically, examples of the aliphatic or alicyclic polyisocyanate include hexamethylene diisocyanate and isophorone diisocyanate. Examples of aromatic polyisocyanates include tolylene diisocyanate, diphenylmethane diisocyanate, and polyphenylene-polymethylene polyisocyanate, and also include modified products such as these carpositimide modified products and prepolymers. .
[0034] 本発明における好ま 、ポリイソシァネート成分は、芳香族ポリイソシァネートまたは その変性物であり、特に好ましくは、ジフエ-ルメタンジイソシァネート、ポリフエ-レン ポリメチレンポリイソシァネート、トリレンジイソシァネート、及びこれらの変性物が挙げ られ、単独でもそれらを混合して用いてもよい。ポリフエ-レンポリメチレンポリイソシァ ネートとしては、イソシァネート基含有率が通常、 29〜32重量%、粘度が通常、 250 mPa' s (25°C)以下のものが使用される。また、これらの変性物のうち、カルボジイミド 変性物は、公知のリン系触媒等を用いてカルポジイミド結合を導入したものである。 プレボリマーは、上記のポリイソシァネートとポリオールとを反応させ、末端にイソシァ ネート基を残したものである。その際用いるポリオールは、ポリウレタンを製造する際 に使用するポリオールが通常使用できる。  [0034] Preferably, the polyisocyanate component in the present invention is an aromatic polyisocyanate or a modified product thereof, particularly preferably diphenylmethane diisocyanate, polyphenylene polymethylene polyisocyanate. , Tolylene diisocyanate, and modified products thereof. These may be used alone or in combination. As the polyphenylene-polymethylene polyisocyanate, those having an isocyanate group content of usually 29 to 32% by weight and a viscosity of usually 250 mPa's (25 ° C.) or less are used. Among these modified products, the carbodiimide modified product is a product obtained by introducing a carbopositimide bond using a known phosphorus catalyst or the like. Prepolymers are those obtained by reacting the above polyisocyanate with a polyol, leaving an isocyanate group at the end. As the polyol used at that time, the polyol used in the production of polyurethane can be usually used.
[0035] さらに、これらのポリイソシァネートの他に、用途に応じて、添加剤、助剤をポリイソシ ァネート成分に混合して用いてもよい。例えば、 B液との混合性を向上させる目的で 、 B液でも用いられる整泡剤を相溶化剤として併用する場合がある。その際には、通 常、ノ-オン系界面活性剤が好ましぐ特にシリコーン系界面活性剤がよく用いられる 。また、難燃性の向上及び粘度の調整を目的として、難燃剤を併用する場合がある。 ポリウレタンフォームの用途においては、通常、クロ口アルキルホスフェート類、例えば 、トリス(ベータクロロェチノレ)ホスフェートやトリス(ベータクロ口プロピノレ)ホスフェート 等がよく用いられる。上記以外の添加剤、助剤については、特に限定されるものでは なぐ通常の榭脂において物性向上や操作性向上等の目的で用いられるもので、ゥ レタンィ匕反応に著し 、悪影響を及ぼすものでなければ何を用いても構わな 、。 [0035] In addition to these polyisocyanates, additives and auxiliaries may be mixed with the polyisocyanate component and used depending on the application. For example, for the purpose of improving the mixing with B liquid In some cases, the foam stabilizer used in the B liquid is also used as a compatibilizer. In that case, normally, a silicone surfactant is often used as a nonionic surfactant is preferred. Moreover, a flame retardant may be used together for the purpose of improving flame retardancy and adjusting viscosity. In the use of polyurethane foam, black mouth alkyl phosphates, for example, tris (betachloroethinore) phosphate, tris (beta black mouth propinore) phosphate, etc. are often used. Additives and auxiliaries other than those mentioned above are not particularly limited, but are used for the purpose of improving physical properties and operability in ordinary rosin, and have an adverse effect on the urethane reaction. Otherwise, you can use anything.
[0036] 一方、ポリオール成分としては、一般に、水酸基価が、通常、 50〜800、官能基数 力 通常、 2〜8のポリエーテルポリオールやポリエステルポリオール等を用いることが でき、また、これらを 2種類以上混合して用いても構わない。  [0036] On the other hand, as the polyol component, generally, polyether polyols and polyester polyols having a hydroxyl value of usually 50 to 800 and a functional group power of 2 to 8 can be used. You may mix and use above.
[0037] ポリエーテルポリオールとしては、エチレンォキシド、プロピレンォキシド、 1, 2—ブ チレンォキシド、テトラヒドロフラン等の単独または併用によるアルキレンォキシドの重 合物、ショ糖、ソルビトール、グリセリン等の 3官能以上の多価アルコール類と上記ァ ルキレンォキシドの付加物、脂肪族ァミン、芳香族ァミン等のアミン類と上記アルキレ ンォキシドの付加物等が挙げられる。  [0037] The polyether polyol may be a trifunctional or higher functional group such as ethylene oxide, propylene oxide, 1,2-butylene oxide, tetrahydrofuran, or a single alkylene oxide polymer, sucrose, sorbitol, glycerin or the like. And adducts of the above-mentioned polyhydric alcohols and the above-mentioned alkylenoxides, amines such as aliphatic amines and aromatic amines, and adducts of the above-mentioned alkylenoxides.
[0038] また、ポリエステルポリオールとしては、フタル酸、テレフタル酸、トリメリット酸等の芳 香族カルボン酸と、エチレングリコール、ジエチレングリコール、プロピレングリコール 、ジプロピレングリコール、グリセリン、トリメチロールプロパン等のグリコールを、それ ぞれ単独または混合使用して、エステルイ匕反応により得られる、水酸基価が、通常、 200〜400、平均官能基数が、通常、 2〜3程度のポリエステルポリオールが挙げら れる。  [0038] As the polyester polyol, aromatic carboxylic acids such as phthalic acid, terephthalic acid and trimellitic acid, and glycols such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, glycerin and trimethylolpropane, Examples thereof include polyester polyols having a hydroxyl value of usually 200 to 400 and an average functional group number of usually about 2 to 3, which are obtained by esterification reaction, either alone or in combination.
[0039] 本発明においては、これらのポリエーテルポリオールやポリエステルポリオールと組 み合わせて、前記した本発明のコハク酸とトリエチレングリコール力も得られたポリエ ステルポリオールを用いることが重要である。本発明のコハク酸とトリエチレングリコー ルカ 得られたポリエステルポリオールの使用量としては全ポリオール成分中、通常 、 1重量%以上、好ましくは 3重量%以上、さらに好ましくは 5重量%以上、通常、 50 重量%以下、好ましくは 40重量%以下、さらに好ましくは 30重量%以下の範囲であ る。 [0039] In the present invention, it is important to use the above-described polyester polyol having the succinic acid and triethylene glycol power of the present invention in combination with these polyether polyols and polyester polyols. Succinic acid and triethylene glycol of the present invention The amount of the polyester polyol obtained is usually 1% by weight or more, preferably 3% by weight or more, more preferably 5% by weight or more, usually 50% in the total polyol component. % By weight or less, preferably 40% by weight or less, more preferably 30% by weight or less. The
[0040] また、この他に、エチレングリコール、ジエチレングリコール、プロピレングリコール、 グリセリン等のアルコールゃジエタノールァミン、トリエタノールァミン等のアルカノー ルァミン等の活性水素を 1分子中に 2個以上有する化合物も併用することができる。  [0040] In addition, compounds having two or more active hydrogens in one molecule such as alcohols such as ethylene glycol, diethylene glycol, propylene glycol, and glycerol, and alkanolamines such as triethanolamine are also used in combination. can do.
[0041] 本発明のポリウレタンフォームに用いる発泡剤としては、オゾン破壊係数が通常、 0 . 8以下の発泡剤、例えば、 HCFC—141bの他に、 HFC— 245fa等の HFC系発泡 剤、ペンタン、シクロペンタン等の HC系発泡剤及び水等の今後用いられる発泡剤が 、本発明のポリエステルポリオールのこれらの発泡剤との相溶性が向上しているため 、好適に使用できる。また、これらの発泡剤を単独で使用しても、混合使用しても構わ ない。  [0041] As the foaming agent used in the polyurethane foam of the present invention, an ozone depleting coefficient is usually 0.8 or less, for example, in addition to HCFC-141b, HFC-based foaming agents such as HFC-245fa, pentane, HC foaming agents such as cyclopentane and foaming agents used in the future such as water can be preferably used because the compatibility of the polyester polyol of the present invention with these foaming agents is improved. These foaming agents may be used alone or in combination.
[0042] 本発明のポリウレタンフォームに用いる触媒としては、通常のウレタンフォームの製 造に使用される公知の触媒が使用できる。例えば、トリェチルァミン、 N, N—ジメチ ルへキシルァミン等のアミン系触媒の他に、ジブチル錫ジラウレート、ォクチル酸錫等 の錫系及びォクチル酸鉛等の鉛系等の金属系触媒等が挙げられる。  [0042] As the catalyst used in the polyurethane foam of the present invention, known catalysts used for the production of ordinary urethane foams can be used. For example, in addition to amine catalysts such as triethylamine and N, N-dimethylhexylamine, metal catalysts such as tin catalysts such as dibutyltin dilaurate and tin octylate and lead catalysts such as lead octylate and the like can be mentioned.
[0043] 本発明のポリウレタンフォームに用いる整泡剤としては、ノ-オン系、ァ-オン系、力 チオン系界面活性剤を用いることができるが、ノニオン系界面活性剤が好ましぐ特 にシリコーン系界面活性剤がよく用いられる。その他、用途に応じて、様々な化合物 力 添加剤、助剤として併せて用いられる場合がある。例えば、代表的な添加剤とし て難燃剤が挙げられる。ポリウレタンフォームの用途においては、通常、クロロアルキ ルホスフェート類、例えば、トリス(ベータクロロェチル)ホスフェートゃトリス(ベータクロ 口プロピル)ホスフェート等がよく用いられる。上記以外の添加剤、助剤については、 特に限定されるものではなぐ通常の榭脂において物性向上や操作性向上等の目 的で用いられるもので、ウレタンィ匕反応に著し 、悪影響を及ぼすものでない限りにお いて使用することができる。  [0043] As the foam stabilizer used in the polyurethane foam of the present invention, a non-ionic surfactant, a ionic surfactant, or a force thione surfactant can be used, and a nonionic surfactant is particularly preferred. Silicone surfactants are often used. In addition, depending on the application, it may be used together as various compound strength additives and auxiliaries. For example, a flame retardant is mentioned as a typical additive. In the use of polyurethane foam, chloroalkyl phosphates such as tris (betachloroethyl) phosphate or tris (betaclopropylpropyl) phosphate are usually used. Additives and auxiliaries other than those mentioned above are not particularly limited and are used for the purpose of improving physical properties and operability in ordinary greaves. It can be used as long as it is not.
[0044] 本発明におけるポリウレタンフォームの製造方法の具体的な手順は、前述のポリイ ソシァネート成分を A液、前述のポリオール成分を B液として、発泡剤、触媒、整泡剤 及びその他の添加剤等をあら力じめ A液及び Zまたは B液に適宜混合させ、後述す る装置を用いて 2液を混合し、発泡、硬化させるという方法である。なお、発泡剤、触 媒、整泡剤は B液に混合しておくほうが好ま 、。 [0044] The specific procedure of the method for producing the polyurethane foam in the present invention is as follows. The above-mentioned polyisocyanate component is liquid A, the above-mentioned polyol component is liquid B, and a foaming agent, a catalyst, a foam stabilizer, other additives, etc. In this method, the liquid A is mixed with the liquid A and the liquid Z or B as appropriate, and the two liquids are mixed, foamed, and cured using an apparatus described later. In addition, foaming agent, touch It is better to mix the medium and foam stabilizer with B liquid.
[0045] 本発明によって得られたポリウレタンフォームは、ウレタン結合やゥレア結合といつ た化学結合を有するものである。また、製造条件によっては、発泡時にイソシァヌレ 一ト基を生成させることができる。イソシァヌレート基は、イソシァネート基を触媒により 三量化させて生成され、機械的強度や耐熱性を向上させることができる。  [0045] The polyurethane foam obtained by the present invention has a chemical bond such as a urethane bond or urea bond. Depending on the production conditions, an isocyanurate group can be generated during foaming. The isocyanurate group is generated by trimerizing the isocyanate group with a catalyst, and can improve mechanical strength and heat resistance.
[0046] 本発明にお!/、て、好まし!/、イソシァネートインデックス(ポリイソシァネート成分中の 全イソシァネート基のモル数 Zポリオール中の全活性水素基のモル数 X 100)は、い わゆるウレタンフォームの場合で、通常 70以上、好ましくは 80以上、さらに好ましくは 90以上で、通常、 150以下、好ましくは 140以下、さらに好ましくは 130以下であり、 三量ィ匕触媒を用いてのいわゆるイソシァヌレートフォームの場合で、通常 150以上、 好ましくは 160以上、さらに好ましくは 170以上で、通常、 800以下、好ましくは 700 以下、さらに好ましくは 600以下である。イソシァネートインデックスがウレタンフォー ムの場合で 70未満、イソシァヌレートフォームの場合で 150未満になると、得られた フォームが十分な強度を有しないことがあり、収縮し易くなる、また、ウレタンフォーム の場合で 150を超え、イソシァヌレートフォームの場合で 800を超えると、得られるフ オームの脆性が高くなり、接着強度が低下する傾向にあるので好ましくない。  [0046] In the present invention! /, Preferred! /, Isocyanate index (number of moles of all isocyanate groups in the polyisocyanate component Z number of moles of all active hydrogen groups in the polyol X 100) is In the case of a so-called urethane foam, it is usually 70 or more, preferably 80 or more, more preferably 90 or more, usually 150 or less, preferably 140 or less, more preferably 130 or less. In the case of the so-called isocyanurate foam used, it is usually 150 or more, preferably 160 or more, more preferably 170 or more, and usually 800 or less, preferably 700 or less, more preferably 600 or less. If the isocyanate index is less than 70 for urethane foam and less than 150 for isocyanurate foam, the resulting foam may not have sufficient strength and is likely to shrink. If it exceeds 150 in this case, and more than 800 in the case of isocyanurate foam, the brittleness of the resulting foam increases and the adhesive strength tends to decrease, such being undesirable.
[0047] ウレタンフォームを製造するにあたっては、 A液と B液を均一に混合可能であれば いかなる装置でも使用することができる。例えば、小型ミキサーや、一般のウレタンフ オームを製造する際に使用する、注入発泡用の低圧、または高圧発泡機、スラブ発 泡用の低圧、または高圧発泡機、連続ライン用の低圧、または高圧発泡機、吹き付 け工事用のスプレー発泡機等を使用することができる。なお、ウレタンフォームを製造 するに際し、 A液、 B液それぞれの液温は 20〜60°Cに調節しておくことが好ましい。  [0047] In producing the urethane foam, any apparatus can be used as long as the liquid A and the liquid B can be mixed uniformly. For example, low pressure or high pressure foaming machines for injection foaming, low pressure or high pressure foaming for slab foaming, low pressure or high pressure foaming for continuous lines, used in the production of small mixers and general urethane foam. And spray foaming machines for spraying work can be used. In producing the urethane foam, it is preferable to adjust the temperature of each of the liquids A and B to 20 to 60 ° C.
[0048] 以下に、実施例により本発明の具体的態様をさらに詳細に説明するが、本発明は その要旨を超えない限り、これらの実施例によって限定されるものではない。なお、特 に断りのないかぎり、実施例中の「部」、及び「%」はそれぞれ「重量部」、及び「重量 %」を意味する。  [0048] Specific examples of the present invention will be described below in more detail with reference to examples. However, the present invention is not limited to these examples unless it exceeds the gist. Unless otherwise specified, “parts” and “%” in the examples mean “parts by weight” and “% by weight”, respectively.
[ポリウレタンフォーム用ポリエステルポリオールの合成]  [Synthesis of Polyester Polyol for Polyurethane Foam]
以下に示す方法で、ポリエステルポリオールの合成、及び評価を行い、評価結果を 表 1に示す。(実施例 1〜5及び比較例 1) The polyester polyol is synthesized and evaluated by the following method. Table 1 shows. (Examples 1 to 5 and Comparative Example 1)
[0049] 「実施例 1」 [0049] "Example 1"
攪拌機、還流冷却機、温度計、圧力計、加熱装置などを装備した、容積が 2リットル のガラス製反応器に、コノ、ク酸 500g、ジエチレングリコール 320g、トリエチレングリコ ール 320gを仕込み、反応器の空間部を窒素ガス置換した後、反応器内用物の加熱 を開始した。反応器内温が 150°Cに達した時点で、触媒としてテトライソプロピルチタ ネート 0. 5gを反応器内に添加し、反応を開始した。  A glass reactor with a volume of 2 liters equipped with a stirrer, reflux condenser, thermometer, pressure gauge, heating device, etc. was charged with cono, succinic acid 500 g, diethylene glycol 320 g, and triethylene glycol 320 g. After the space in the reactor was replaced with nitrogen gas, heating of the reactor internal material was started. When the reactor internal temperature reached 150 ° C, 0.5 g of tetraisopropyl titanate was added as a catalyst to the reactor to start the reaction.
その後、 3時間かけて内温を 210°Cに昇温し、反応終了時までこの温度を保持した 。一方、反応器内の圧力は、内温が 150°Cの時点から内温が 210°Cに達するまでは 、 88. OkPaに維持した。その後、 3時間力、けて徐々に減圧して、 5. 3kPaとし、反応 が終了するまでこの圧力を保持した。反応の進行に伴い、反応混合物は均一な溶液 になることが、 目視観察された。反応進行中に、反応混合物の一部を反応器カゝら抜き 出して、抜き出した試料につき、酸価を測定して反応の進行状況確認の指標とした。 反応の終了は、酸価が 1. 0以下となり、かつ、反応混合物が均一な溶液となった時 点とした。反応終了後、加熱を停止して 100°C付近まで冷却し、反応生成物を抜き 出し、抜き出した試料につき酸価、水酸基価、及び粘度を測定した。  Thereafter, the internal temperature was raised to 210 ° C over 3 hours, and this temperature was maintained until the end of the reaction. On the other hand, the pressure in the reactor was maintained at 88. OkPa from the time when the internal temperature reached 150 ° C until the internal temperature reached 210 ° C. Thereafter, the pressure was gradually reduced for 3 hours to 5.3 kPa, and this pressure was maintained until the reaction was completed. It was visually observed that the reaction mixture became a homogeneous solution as the reaction progressed. While the reaction was in progress, a part of the reaction mixture was withdrawn from the reactor, and the acid value of each sample was measured and used as an indicator for confirming the progress of the reaction. The reaction was completed when the acid value became 1.0 or less and the reaction mixture became a homogeneous solution. After completion of the reaction, heating was stopped and the system was cooled to around 100 ° C., the reaction product was extracted, and the acid value, hydroxyl value, and viscosity of the extracted sample were measured.
また、得られたポリエステルポリオールに対する発泡剤(HFC— 245fa、シクロペン タン、水)の溶解度を測定した。ここで得られたポリエステルポリオールを「ポリオール 1」とした。  Further, the solubility of the foaming agent (HFC-245fa, cyclopentane, water) in the obtained polyester polyol was measured. The polyester polyol obtained here was designated as “Polyol 1”.
[0050] 「実施例 2」 [0050] "Example 2"
実施例 1の仕込み原料において、コノヽク酸を 260g、ジエチレングリコール 300g、ト リエチレングリコール 300gとし、さらに無水フタル酸を 260g用いた以外は、同様の手 順で反応させた。ここで得られたポリエステルポリオールを「ポリオール 2」とした。  The reaction was conducted in the same manner as in the raw material of Example 1, except that 260 g of succinic acid, 300 g of diethylene glycol, 300 g of triethylene glycol, and 260 g of phthalic anhydride were used. The polyester polyol obtained here was designated as “Polyol 2”.
[0051] 「実施例 3」 [0051] "Example 3"
実施例 1の仕込み原料において、ジエチレングリコールを使用せず、コハク酸を 44 0g、トリエチレングリコール 690gとした以外は、同様の手順で反応させた。ここで得ら れたポリエステルポリオールを「ポリオール 3」とした。  The reaction was carried out in the same procedure except that diethylene glycol was not used in the charged raw material of Example 1, but 440 g of succinic acid and 690 g of triethylene glycol were used. The polyester polyol obtained here was designated as “Polyol 3”.
[0052] 「実施例 4」 実施例 1の仕込み原料において、ジエチレングリコールを使用せず、コハク酸を 40 4g、トリエチレングリコール 719gとした以外は、同様の手順で反応させた。ここで得ら れたポリエステルポリオールを「ポリオール 4」とした。 [0052] "Example 4" The reaction was carried out in the same procedure except that diethylene glycol was not used in the charged raw material of Example 1 and succinic acid was changed to 40 4 g and triethylene glycol 719 g. The polyester polyol obtained here was designated as “Polyol 4”.
[0053] 「実施例 5」 [Example 5]
実施例 1の仕込み原料において、ジエチレングリコールを使用せず、コハク酸を 41 2g、トリエチレングリコール 640g、グリセリンを 74gとした以外は、同様の手順で反応 させた。ここで得られたポリエステルポリオールを「ポリオール 5」とした。  The reaction was conducted in the same manner as in the raw material of Example 1, except that diethylene glycol was not used, 412 g of succinic acid, 640 g of triethylene glycol, and 74 g of glycerin were used. The polyester polyol obtained here was designated as “Polyol 5”.
[0054] 「比較例 1」 [0054] "Comparative Example 1"
実施例 1の仕込み原料において、コハク酸及びトリエチレングリコールを使用せず、 無水フタル酸を 570g、ジエチレングリコール 500gとした以外は、同様の手順で反応 させた。ここで得られたポリエステルポリオールを「ポリオール 6」とした。  The reaction was carried out in the same manner as in the raw material of Example 1, except that succinic acid and triethylene glycol were not used, 570 g of phthalic anhydride and 500 g of diethylene glycol were used. The polyester polyol obtained here was designated as “Polyol 6”.
[0055] 得られたポリエステルポリオールの評価は、下記の方法で行い、結果を「表 1」に示 した。 [0055] The polyester polyol obtained was evaluated by the following method, and the results are shown in "Table 1".
<評価方法 >  <Evaluation method>
(1)酸価  (1) Acid value
JIS K1557 に準拠して測定した。  Measured according to JIS K1557.
1970  1970
(2)水酸基価  (2) Hydroxyl value
JIS K1557 に準拠して測定した。  Measured according to JIS K1557.
1970  1970
(3)粘度  (3) Viscosity
JIS K1557 に準拠して回転粘度計 (B型粘度計)を使用し、 25°Cで測定した。  According to JIS K1557, a rotational viscometer (B-type viscometer) was used and measured at 25 ° C.
1970  1970
(4)ポリエステルポリオールへの発泡剤の溶解度  (4) Solubility of blowing agent in polyester polyol
200mlのビーカーにポリエステルポリオール 30〜50gを採り、室温 ·大気圧下の解 放系において、 30 φの三方後退翼を用いて、 400rpmで攪拌しながら発泡剤を徐々 に添加し、 目視で 30秒以内に透明な均一相を形成しうる最大添加量を測定して求め た溶解度をポリエステルポリオールと発泡剤の相溶性の指標とした。  In a 200 ml beaker, take 30 to 50 g of polyester polyol, and in a release system at room temperature and atmospheric pressure, add a foaming agent gradually while stirring at 400 rpm using a 30φ three-way swept blade, and visually check for 30 seconds. The solubility obtained by measuring the maximum addition amount capable of forming a transparent homogeneous phase within the range was used as an indicator of the compatibility between the polyester polyol and the blowing agent.
[0056] [表 1] 表 1 [0056] [Table 1] table 1
Figure imgf000017_0001
Figure imgf000017_0001
※,:高粘度のため測定不能であった。  * ,: Measurement was impossible due to high viscosity.
※2 :高粘度のため測定不能だが、溶ける様子がほとんど見られなかった。 * 2 : Measurement was impossible due to high viscosity, but almost no melting was observed.
[0057] 「実施例 6〜13及び比較例 2〜7」 [0057] "Examples 6 to 13 and Comparative Examples 2 to 7"
[ポリウレタンフォーム用ポリオールプレミックス液の調製]  [Preparation of polyol premix solution for polyurethane foam]
表 2及び表 3に示す原料、配合でポリウレタンフォーム用ポリオールプレミックス、「 プレミックス 1〜 14」を調製した。  Polyol premixes for polyurethane foam, “Premix 1 to 14” were prepared using the raw materials and blends shown in Tables 2 and 3.
[0058] [表 2] [0058] [Table 2]
表 2  Table 2
Figure imgf000017_0002
Figure imgf000017_0002
※それぞれ重量部数  * Number of parts by weight
[0059] [表 3] 表 3 [0059] [Table 3] Table 3
Figure imgf000018_0001
Figure imgf000018_0001
※それぞれ重量部数 なお、「表 2」及び「表 3」の配合例において、原料は以下のものを用いた。 ポリオール一:!〜 6 : 前述のポリエステルポリオール  * Each part by weight In the formulation examples in Table 2 and Table 3, the following raw materials were used. Polyol I:! ~ 6: The aforementioned polyester polyol
ポリオール— 7 : 「MAXIMOL RFK— 504」 テレフタル酸系ポリエステルポリ オールリ 11崎化成工業株式会社製)  Polyol—7: “MAXIMOL RFK—504” terephthalic acid-based polyester poly-olli 11 manufactured by Sasaki Chemical Co., Ltd.)
ポリオール— 8 : 「MAXIMOL RFK— 556」 テレフタル酸系ポリエステルポリ オールリ 11崎化成工業株式会社製)  Polyol— 8: “MAXIMOL RFK— 556” terephthalic acid-based polyester poly-olli 11 manufactured by Sasaki Chemical Co., Ltd.)
ポリオール 9 : 「GR—04」 エチレンジァミン系ポリエーテルポリオール(三井 武田ケミカル株式会社製)  Polyol 9: “GR-04” Ethylenediamine amine polyether polyol (Mitsui Takeda Chemical Co., Ltd.)
ポリオール 10 : 「GR— 07」 エチレンジァミン系ポリエーテルポリオール(三井 武田ケミカル株式会社製)  Polyol 10: “GR-07” Ethylenediamine amine polyether polyol (Mitsui Takeda Chemical Co., Ltd.)
ポリオール 11 : 「MN— 3050」 グリセリン系ポリエーテルポリオール(三井武 田ケミカル株式会社製)  Polyol 11: “MN-3050” Glycerin-based polyether polyol (Mitsui Takeda Chemical Co., Ltd.)
発泡剤— 1 : HCFC— 141b (ダイキン工業株式会社製)  Foaming agent—1: HCFC—141b (manufactured by Daikin Industries, Ltd.)
発泡剤 2 : HFC— 245fa (セントラル硝子株式会社製)  Foaming agent 2: HFC—245fa (manufactured by Central Glass Co., Ltd.)
触媒 1 : 「KAOライザ一 Nol」 アミン系触媒 (花王株式会社製)  Catalyst 1: “KAO Riser I Nol” Amine-based catalyst (manufactured by Kao Corporation)
触媒 2 : 「DABCO K— 15」 脂肪酸カリウム系触媒 (エアープロダクツジャパ ン株式会社製) 整泡剤 : 「SZ— 1717」 シリコーン系整泡剤(東レ 'ダウ コ一-ング'シリコーン 株式会社製) Catalyst 2: “DABCO K-15” Fatty acid potassium catalyst (Air Products Japan Co., Ltd.) Foam stabilizer: “SZ—1717” Silicone foam stabilizer (manufactured by Toray 'Dow Corning' Silicone Co., Ltd.)
難燃剤 : トリス (ベータクロ口プロピル)ホスフェート リン系難燃剤(大八化学株式 会社製)  Flame Retardant: Tris (Beta Black Propyl) Phosphate Phosphorus flame retardant (Daihachi Chemical Co., Ltd.)
[0061] [ポリウレタンフォームの製造]  [0061] [Production of polyurethane foam]
以下に示す方法で、ポリウレタンフォームの製造、評価を行った。  Polyurethane foams were produced and evaluated by the methods shown below.
<製造方法 >  <Manufacturing method>
A液 (ポリイソシァネート液)と表 2及び表 3に記載の B液 (ポリオールプレミック ス液)を混合した後、注入ボックスに流し込んでフリー発泡させ、ウレタンフォームを製 造した。(実施例 6〜13、比較例 2〜7) 反応性及び評価結果を表 4及び表 5に 示す。なお、ポリイソシァネート液は下記のものを用いた。また、発泡条件及び反応 性は以下の通りとした。  After mixing the liquid A (polyisocyanate liquid) and the liquid B (polyol premix liquid) shown in Tables 2 and 3, the mixture was poured into an injection box for free foaming to produce a urethane foam. (Examples 6 to 13, Comparative Examples 2 to 7) The reactivity and evaluation results are shown in Table 4 and Table 5. The following polyisocyanate solution was used. The foaming conditions and reactivity were as follows.
ポリイソシァネート液 : 「ミリオネート MR— 200」 ポリメリック MDI (日本ポリウレ タン工業株式会社製)  Polyisocyanate solution: "Millionate MR-200" Polymeric MDI (manufactured by Nippon Polyuretan Kogyo Co., Ltd.)
[0062] <発泡条件 > [0062] <Foaming conditions>
実施例 6〜10、比較例 2〜4  Examples 6-10, Comparative Examples 2-4
イソシァネートインデックス : 110  Isocyanate index: 110
室温 : 24°C± 1°C  Room temperature: 24 ° C ± 1 ° C
液温 : 20°C± 1°C  Liquid temperature: 20 ° C ± 1 ° C
攪拌 : 3000rpm X 7秒間  Stirring: 3000rpm x 7 seconds
注入ボックス : 木製 200mm X 200mm X 200mm 上部開放  Injection box: Wooden 200mm X 200mm X 200mm Open top
脱型時間 : 1時間 実施例 11〜13、比較例 5〜7  Demolding time: 1 hour Examples 11-13, Comparative Examples 5-7
イソシァネートインデックス : 170  Isocyanate index: 170
室温 : 24°C± 1°C  Room temperature: 24 ° C ± 1 ° C
液温 : 15°C± 1°C  Liquid temperature: 15 ° C ± 1 ° C
攪拌 : 3000rpmX 5秒間 注入ボックス : 木製 200mm X 200mm X 200mm 上部開放 Stirring: 3000rpmX for 5 seconds Injection box: Wooden 200mm X 200mm X 200mm Open top
脱型時間 : 1時間  Demolding time: 1 hour
<反応性 > <Reactivity>
プレミックス液とイソシァネートを混合し始めた時をスタートとして以下に定義される時 間を測定した。 The time defined below was measured starting from the start of mixing the premix solution and isocyanate.
クリームタイム: 発泡高さ 1 %になるまでの時間。 Cream time: Time until foaming height reaches 1%.
ゲルタイム: フォーム表面に針を刺し、引き抜いた時に糸を引くようになるまでの時 間。 Gel time: The time it takes to draw a thread when a needle is inserted into the foam surface and pulled out.
ライズタイム:発泡高さ 95%になるまでの時間。 得られたポリウレタンフォームの評価は、下記の方法で行い、結果を「表 4」「表 5」に 示した。 Rise time: Time until foam height reaches 95%. The obtained polyurethane foam was evaluated by the following methods, and the results are shown in Table 4 and Table 5.
<評価方法 > <Evaluation method>
(1)コア密度  (1) Core density
JIS A9511 に準拠して測定した。  Measured according to JIS A9511.
2003  2003
(2)圧縮強度  (2) Compressive strength
JIS A9511 に準拠して測定した。  Measured according to JIS A9511.
2003  2003
(3)接着強さ  (3) Adhesive strength
A液 (ポリイソシァネート液)と B液 (ポリオールプレミックス液)を混合した後、 10°Cに 温度調節したアルミ板上でフリー発泡させ、 10°Cの恒温槽に 1日静置後、ウレタンフ オームを引き剥がす際の力を相対的に評価した。  After mixing A liquid (polyisocyanate liquid) and B liquid (polyol premix liquid), it is free-foamed on an aluminum plate adjusted to 10 ° C, and left in a constant temperature bath at 10 ° C for 1 day. The force when peeling urethane foam was relatively evaluated.
◎:しつ力りと接着している  ◎: Adhering with tension
〇:強い力をかけるとウレタンフォームが剥がれる  ◯: Urethane foam peels off when strong force is applied
△:弱 、力でウレタンフォームが剥がれる  Δ: Weak, the urethane foam peels off with force
(4)脆さ  (4) Brittleness
ウレタンフォームを定性観察して評価した。  The urethane foam was evaluated by qualitative observation.
◎:ほとんど脆さがない。 〇:若干の脆さがある。 A: There is almost no brittleness. A: There is some brittleness.
△:脆い  Δ: brittle
(5)難燃性  (5) Flame resistance
切り出したウレタンフォームを燃焼させて、元のウレタンフォームの重量に対して残 つたチヤ一 (炭化物)の重量を測定することで評価した。  The cut urethane foam was burned and evaluated by measuring the weight of the remaining carbide (carbide) relative to the weight of the original urethane foam.
◎: 30重量%以上のチヤ一が残って 、る  ◎: More than 30% by weight remains
〇: 20重量%以上のチヤ一が残ってレ、る。  〇: More than 20% by weight of chia remains.
△:チヤ一がほとんど残って!/ヽな!、。  △: Almost all the chia remains!
(6)自己消火性  (6) Self-extinguishing
JIS A9511 に準拠して測定した。  Measured according to JIS A9511.
2003  2003
[0064] [表 4]  [0064] [Table 4]
表 4  Table 4
Figure imgf000021_0001
Figure imgf000021_0001
[0065] [表 5] [0065] [Table 5]
表 5 Table 5
Figure imgf000022_0001
表 1〜表 5より次のことが明らかである。
Figure imgf000022_0001
From Table 1 to Table 5, the following is clear.
(1)実施例 1〜5と比較例 1の比較結果  (1) Comparison results of Examples 1 to 5 and Comparative Example 1
全力ルボン酸成分中のコハク酸の使用量が 50〜100重量。 /0、かつ全アルコール 成分中のトリエチレングリコールの使用量が 50〜: LOO重量0 /0である実施例 1〜5の場 合、比較例 1のコハク酸力 ^重量0 /0、かつトリエチレングリコールが 0重量0 /0の場合に 比べ、粘度が低ぐさらに発泡剤の溶解度が高いポリエステルポリオールが得られる The amount of succinic acid used in the rubonic acid component is 50 to 100 weight. / 0, and 50 to the amount of triethylene glycol in the total alcohol components: LOO Weight 0/0 is a case of Examples 1-5, succinic force of Comparative Example 1 ^ weight 0/0, and tri ethylene glycol than that of 0 wt 0/0, the solubility of the further blowing agent viscosity Teigu is higher polyester polyols obtained
(2)実施例 6〜: LO及び実施例 11〜13と比較例 2、 3及び比較例 5、 6の比較結果 全力ルボン酸成分中のコハク酸の使用量が 50〜 100重量%、かつ全アルコール 成分中のトリエチレングリコールの使用量カ 50〜: LOO重量0 /0であるポリエステルポリ オールを用いた実施例 6〜10及び実施例 11〜13の場合、コハク酸が 0重量0 /0、 つトリエチレングリコールが 0重量%のポリエステルポリオールを用いた比較例 2及び 比較例 5、並びにテレフタル酸系ポリエステルポリオールだけを用いた比較例 3及び 比較例 6の場合に比べ、接着強度、及びウレタンフォームの脆さが改善される。また、 圧縮強度、難燃性、自己消火性の低下は少ない。 (2) Example 6-: Comparison results of LO and Examples 11-13 and Comparative Examples 2, 3 and Comparative Examples 5 and 6 The amount of succinic acid used in the full strength rubonic acid component is 50 to 100% by weight, and the total the amount mosquito 50 of triethylene glycol in the alcohol component: for LOO weight 0/0 examples 6-10 using a polyester polyol is and examples 11-13, succinic acid 0 weight 0/0, Compared with Comparative Example 2 and Comparative Example 5 using polyester polyol with 0% by weight of triethylene glycol, and Comparative Example 3 and Comparative Example 6 using only terephthalic acid-based polyester polyol, adhesive strength and urethane foam The brittleness is improved. In addition, there is little decrease in compressive strength, flame retardancy, and self-extinguishing properties.
(3)実施例 6〜: LO及び実施例 11〜13と比較例 4及び比較例 7の比較結果 全力ルボン酸成分中のコハク酸の使用量が 50〜 100重量%、かつ全アルコール 成分中のトリエチレングリコールの使用量が 50〜100重量0 /0であるポリエステルポリ オールを用いた実施例 6〜10及び実施例 11〜13の場合、グリセリン系のポリエーテ ルポリオールを用いた比較例 4及び比較例 7の場合に比べ、接着強度、脆さの改善 は同等以上であり、さらに、圧縮強度、難燃性及び自己消火性が改善された。 (3) Example 6 ~: Comparison results of LO and Examples 11-13 and Comparative Example 4 and Comparative Example 7 The amount of succinic acid used in the full strength rubonic acid component is 50 to 100% by weight, and in all alcohol components polyester poly amount of triethylene glycol is from 50 to 100 weight 0/0 In Examples 6 to 10 and Examples 11 to 13 using oars, the improvement in adhesive strength and brittleness is equal to or greater than in Comparative Examples 4 and 7 using glycerin-based polyether polyol. Furthermore, compressive strength, flame retardancy and self-extinguishing properties were improved.
産業上の利用可能性 Industrial applicability
本発明のポリエステルポリオールは、低粘度で取り扱いが容易であることに加えて、 発泡剤、特に HFC— 245fa等の HFC系発泡剤、ペンタン、シクロペンタン等の HC 系発泡剤、及び水との相溶性が高ぐさらに被着部材との接着強度を向上させるため 、ポリウレタン、特に、ポリウレタンフォームの原料ポリオールとして有用である。 なお、 2004年 12月 27曰に出願された曰本特許出願 2004— 377809号及び 200 5年 3月 2日に出願された日本特許出願 2005— 056984号の明細書、特許請求の 範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り 人れるものである。  The polyester polyol of the present invention has a low viscosity and is easy to handle, and also has a foaming agent, particularly an HFC foaming agent such as HFC-245fa, an HC foaming agent such as pentane and cyclopentane, and water. It is useful as a raw material polyol for polyurethane, particularly polyurethane foam, because it has high solubility and further improves the adhesive strength with the adherend. In addition, the specifications, claims and drawings of Japanese patent application 2004-377809 filed on December 27, 2004 and Japanese Patent Application 2005-056984 filed March 2, 2005 The entire contents of the abstract are cited herein and can be taken as the disclosure of the specification of the present invention.

Claims

請求の範囲 The scope of the claims
[1] カルボン酸成分及びアルコール成分をエステルイ匕反応させて得られるポリエステル ポリオールであって、カルボン酸成分の少なくとも一部としてコハク酸を用い、且つ、 アルコール成分の少なくとも一部としてトリエチレングリコールを用いることを特徴とす るポリエステルポリオール。  [1] A polyester polyol obtained by esterifying a carboxylic acid component and an alcohol component, using succinic acid as at least a part of the carboxylic acid component, and using triethylene glycol as at least a part of the alcohol component A polyester polyol characterized by this.
[2] コハク酸の使用量が全力ルボン酸成分中の 30重量%以上であり、且つ、トリエチレ ングリコールの使用量が全アルコール成分中の 30重量%以上であることを特徴とす る請求項 1に記載のポリエステルポリオール。  [2] The amount of succinic acid used is 30% by weight or more in the total rubonic acid component, and the amount of triethylene glycol used is 30% by weight or more in the total alcohol component. The polyester polyol according to 1.
[3] コハク酸の使用量が全力ルボン酸成分中の 50重量%以上であり、且つ、トリエチレ ングリコールの使用量が全アルコール成分中の 50重量%以上であることを特徴とす る請求項 2に記載のポリエステルポリオール。 [3] The amount of succinic acid used is 50% by weight or more in the total rubonic acid component, and the amount of triethylene glycol used is 50% by weight or more in the total alcohol component. 2. The polyester polyol according to 2.
[4] 粘度が 30000mPa ' s以下であることを特徴とする請求項 1〜3のいずれかに記載 のポリエステルポリオール。 [4] The polyester polyol according to any one of claims 1 to 3, which has a viscosity of 30000 mPa's or less.
[5] 酸価が lOmgKOHZg以下であることを特徴とする請求項 1〜4のいずれかに記載 のポリエステルポリオール。  [5] The polyester polyol according to any one of claims 1 to 4, which has an acid value of lOmgKOHZg or less.
[6] 請求項 1〜5のいずれかに記載のポリエステルポリオールを含むポリオール成分と、 ポリイソシァネート成分とを反応させてなることを特徴とするポリウレタン。  [6] A polyurethane obtained by reacting a polyol component containing the polyester polyol according to any one of claims 1 to 5 with a polyisocyanate component.
[7] 請求項 1〜5のいずれかに記載のポリエステルポリオールを含むポリオール成分と、 ポリイソシァネート成分とを発泡剤の存在下反応させてなることを特徴とするポリウレ タンフォーム。  [7] A polyurethane foam obtained by reacting a polyol component containing the polyester polyol according to any one of claims 1 to 5 with a polyisocyanate component in the presence of a blowing agent.
[8] 請求項 1〜5のいずれかに記載のポリエステルポリオールの使用量が全ポリオール 成分中の 1重量%以上 50重量%以下であることを特徴とする請求項 6に記載のポリ ウレタン又は請求項 7に記載のポリウレタンフォーム。  [8] The polyurethane or the claim according to claim 6, wherein the amount of the polyester polyol according to any one of claims 1 to 5 is 1% by weight or more and 50% by weight or less in the total polyol component. Item 8. The polyurethane foam according to item 7.
[9] オゾン破壊係数が 0. 8以下の発泡剤を使用してなる請求項 7又は 8に記載のポリウ レタンフォーム。  [9] The polyurethane foam according to claim 7 or 8, wherein a foaming agent having an ozone depletion coefficient of 0.8 or less is used.
[10] 発泡剤が、 HFC系発泡剤、 HC系発泡剤及び水力 なる群より選ばれた 1種以上 の発泡剤である請求項 7、 8又は 9に記載のポリウレタンフォーム。  10. The polyurethane foam according to claim 7, 8 or 9, wherein the foaming agent is one or more foaming agents selected from the group consisting of HFC foaming agents, HC foaming agents and hydraulic power.
PCT/JP2005/012951 2004-12-27 2005-07-13 Polyester polyol, and polyurethane and polyurethane foam using the same WO2006070503A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006550598A JP5007567B2 (en) 2004-12-27 2005-07-13 Polyurethane foam

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004377809 2004-12-27
JP2004-377809 2004-12-27
JP2005056984 2005-03-02
JP2005-056984 2005-03-02

Publications (1)

Publication Number Publication Date
WO2006070503A1 true WO2006070503A1 (en) 2006-07-06

Family

ID=36614630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012951 WO2006070503A1 (en) 2004-12-27 2005-07-13 Polyester polyol, and polyurethane and polyurethane foam using the same

Country Status (2)

Country Link
JP (1) JP5007567B2 (en)
WO (1) WO2006070503A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031351A (en) * 2006-07-31 2008-02-14 Asahi Organic Chem Ind Co Ltd Polyol composition for rigid polyurethane foam
JP2009013289A (en) * 2007-07-04 2009-01-22 Kawasaki Kasei Chem Ltd Composition for polyurethane foam and polyurethane foam
JP2009096959A (en) * 2007-10-19 2009-05-07 Kawasaki Kasei Chem Ltd Pouring and foaming composition for polyurethane foam and method for producing polyurethane foam panel
KR20120015431A (en) * 2009-04-09 2012-02-21 바이엘 머티리얼사이언스 아게 Polyester polyols from terephthalic acid and oligoalkyl oxides

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05239201A (en) * 1992-02-28 1993-09-17 Kuraray Co Ltd Preparation of polyester polyol composition
JP2004352891A (en) * 2003-05-29 2004-12-16 Kawasaki Kasei Chem Ltd Method for producing polyester polyol

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4102868A (en) * 1976-08-16 1978-07-25 Monsanto Company Composition and process for the preparation of segmented polyester-urethane polymers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05239201A (en) * 1992-02-28 1993-09-17 Kuraray Co Ltd Preparation of polyester polyol composition
JP2004352891A (en) * 2003-05-29 2004-12-16 Kawasaki Kasei Chem Ltd Method for producing polyester polyol

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031351A (en) * 2006-07-31 2008-02-14 Asahi Organic Chem Ind Co Ltd Polyol composition for rigid polyurethane foam
JP2009013289A (en) * 2007-07-04 2009-01-22 Kawasaki Kasei Chem Ltd Composition for polyurethane foam and polyurethane foam
JP2009096959A (en) * 2007-10-19 2009-05-07 Kawasaki Kasei Chem Ltd Pouring and foaming composition for polyurethane foam and method for producing polyurethane foam panel
KR20120015431A (en) * 2009-04-09 2012-02-21 바이엘 머티리얼사이언스 아게 Polyester polyols from terephthalic acid and oligoalkyl oxides
JP2012523464A (en) * 2009-04-09 2012-10-04 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Polyester polyols from terephthalic acid and oligoalkylene oxide
KR101699098B1 (en) 2009-04-09 2017-02-01 코베스트로 도이칠란드 아게 Polyester polyols from terephthalic acid and oligoalkyl oxides

Also Published As

Publication number Publication date
JPWO2006070503A1 (en) 2008-06-12
JP5007567B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
WO2005090432A1 (en) Process for making rigid polyurethane foams
JP5458753B2 (en) Polyester polyol for polyurethane foam
WO2006070503A1 (en) Polyester polyol, and polyurethane and polyurethane foam using the same
AU2020380306A1 (en) Imide-containing polyester polyols and intumescent rigid foams
EP3774983B1 (en) Polyol blends and rigid foams with improved low-temperature r-values
JP5397170B2 (en) Rigid polyurethane foam composition and method for producing rigid polyurethane foam
JP5263645B2 (en) Water foaming rigid polyurethane foam composition and rigid polyurethane foam
US20020123535A1 (en) Isocyanate - reactive benzoate adduct polyol for use in the prodcution of rigid foam
JP5765669B2 (en) Method for producing polyester polyol and rigid polyurethane foam
JP4817111B2 (en) Polyester polyol, isocyanurate-modified polyurethane foam composition using the same, and isocyanurate-modified polyurethane foam
JP5360520B2 (en) Polyurethane foam composition and polyurethane foam
JP4512491B2 (en) Polyester polyol, polyurethane and rigid polyurethane foam using the same
JP2007297478A (en) Polyester polyol, composition for polyurethane foam by using the same and polyurethane foam
JP4332892B2 (en) Method for producing polyester polyol
JP5043284B2 (en) Method for producing polyester polyol
JP5709045B2 (en) Method for producing polyurethane foam
JP4265265B2 (en) Method for producing polyester polyol
JP4265264B2 (en) Method for producing polyester polyol
JP5233240B2 (en) Additive for producing polyurethane foam, composition for injecting and foaming polyurethane foam, and method for producing polyurethane foam panel
WO2024216035A1 (en) Low residual momomer glycol aromatic polyester polyols
KR101190850B1 (en) Manufacturing method of aromatic ester type polyol and foams using the same for water-blown polyurethane
JP2008266569A (en) Additive for production of polyurethane foam, composition for polyurethane foam, and method for production of polyurethane foam
JP2019001971A (en) Premix liquid for manufacturing polyurethane foam

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006550598

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05760140

Country of ref document: EP

Kind code of ref document: A1