WO2006070165A1 - Method for deposing a metallic carbonitride layer for producing barrier electrodes or layers - Google Patents

Method for deposing a metallic carbonitride layer for producing barrier electrodes or layers Download PDF

Info

Publication number
WO2006070165A1
WO2006070165A1 PCT/FR2005/051134 FR2005051134W WO2006070165A1 WO 2006070165 A1 WO2006070165 A1 WO 2006070165A1 FR 2005051134 W FR2005051134 W FR 2005051134W WO 2006070165 A1 WO2006070165 A1 WO 2006070165A1
Authority
WO
WIPO (PCT)
Prior art keywords
amine
reactor
compound
reducing
nitrogen
Prior art date
Application number
PCT/FR2005/051134
Other languages
French (fr)
Inventor
Nicolas Blasco
Vincent Meric
Original Assignee
L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude filed Critical L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Publication of WO2006070165A1 publication Critical patent/WO2006070165A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides

Definitions

  • the present invention relates to a method of depositing a layer of a metal compound, in particular of the metal carbonitride type, on a substrate, in particular with a view to its application as a metal electrode or as a diffusion barrier in integrated circuits.
  • MOSFETs metal oxide field effect transistors
  • MOS metal-oxide-semiconductor
  • the required gate oxide thickness is less than 2 nm.
  • Conventional polycrystalline silicon electrodes thus pose a number of problems such as a lack of charge carriers during the activation of the transistor leading to an artificial increase in the real capacity of the assembly, which would temper the advantage obtained with the envisaged use of high permittivity oxides, since this contribution to the effective capacitive thickness would become a limitation.
  • These disadvantages therefore encourage those skilled in the art to use, for producing the gate electrodes of these transistors, metal compounds in place of polycrystalline silicon, in particular for future grids of size 65 nm and less.
  • refractory metals such as Mo, Ta, Ti, Nb, Hf, Zr, V or W and their associated nitrides are contemplated as possible candidates for substituting for polycrystalline silicon.
  • the work of extracting an electron or a hole in these metals is potentially compatible with n-doped or p-doped transistors and these metals make it possible to obtain the same performances as polycrystalline silicon in terms of activation voltage. while suppressing the increase in effective capacity. They likewise have good thermal stability.
  • pure metal nitride is not necessarily the most suitable in terms of extraction work and that it could not be advantageous to dope the material used to control this work of extraction.
  • tantalum nitride has an estimated workload of 3.8- 3.9eV, adapted to an nMOSFET device, while tantalum carbonitride has an estimated 4.8-5eV extraction work, making it usable on a pMOSFET device.
  • tantalum nitride has an estimated workload of 3.8- 3.9eV, adapted to an nMOSFET device
  • tantalum carbonitride has an estimated 4.8-5eV extraction work, making it usable on a pMOSFET device.
  • the replacement of aluminum connections by copper connections causes new problems.
  • copper has a high affinity for silicon compounds and diffuses easily into low-dielectric insulator layers obtained from silicon-based precursors.
  • Refractory metals such as Mo, Ta, Ti, Nb, Hf, Zr or W and their associated nitrides having good thermodynamic resistance to the diffusion of copper atoms while having a low resistivity; they are therefore naturally considered by those skilled in the art as good candidates for the realization of the diffusion barrier layers deposited between the copper connections and the insulators with a low dielectric constant.
  • Refractory metals such as Mo, Ta, Ti, Nb, Hf, Zr or W and their associated nitrides having good thermodynamic resistance to the diffusion of copper atoms while having a low resistivity; they are therefore naturally considered by those skilled in the art as good candidates for the realization of the diffusion barrier layers deposited between the copper connections and the insulators with a low dielectric constant.
  • these crystalline forms of "barriers" do not constitute an optimal solution.
  • Those skilled in the art are therefore confronted today with the problem of producing a copper connection deposited on insulating layers with a low dielectric constant without the copper atoms diffusing into said
  • the idea underlying the invention consists in producing metal carbonitride layers with controlled carbon stoichiometry for their application in particular as diffusion barriers or as metal electrodes.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • the physical path makes it possible to control the final stoichiometry of the deposit.
  • the metal nitrides are thus obtained.
  • the physical route is generally not retained because the low quality of the films obtained makes it possible to envisage the use of these techniques for generations of integrated circuits whose characteristic dimensions are less than 65 nm.
  • the classical chemical route consists in reacting in the same enclosure organometallic or inorganic species containing the metal in question (for example TaCl5 or the products known under the name TBTDET, TAIMATA, PDMAT for Tantalum,) with a reducing gas containing at least one nitrogen atom.
  • the reaction energy is preferably brought in thermal form by heating the susceptor or walls of the enclosure. It is thus possible to deposit metal nitride layers at low temperature (below
  • the invention makes it possible to solve the problems posed and to obtain metal carbonitride layers with a controlled stoichiometry, preferably by chemical means in the gas phase. It makes it possible in particular to obtain a carbon content in the carbonitride layer directly dependent on the relative amount of one of the reaction compounds and to ensure effective control of the stoichiometry of the material obtained and the properties resulting therefrom.
  • the invention essentially consists in reacting an organometallic precursor (for example a liquid) with a source of reducing gas, such as hydrogen or ammonia, by also adding an amine and in particular mono and / or dialkylamine, preferably in a low concentration relative to the other compounds and in particular the precursor and / or the reducing gas.
  • a source of reducing gas such as hydrogen or ammonia
  • the amines and in particular those mentioned above, are more reactive than ammonia or hydrogen during trans-amidation reactions, which makes it possible to control carbon doping, especially from their alkyl groups.
  • the use of reducing gas is nevertheless necessary to maintain sufficient growth of the film.
  • the process according to the invention is characterized in that it consists in: introducing into a reactor an organometallic compound of formula
  • the process according to the invention consists in reacting the organometallic compounds and the reducing compounds as well as the amines in a chemical vapor deposition reactor, in particular of the LPCVD and ALCVD type.
  • the amine is chosen from mono-alkylamines and dialkylamines, preferably from mono-methylamine, dimethylamine and / or diethylamine.
  • the organometallic compound in liquid form and will be vaporized by direct injection or by bubbling an ultra-pure carrier gas therethrough.
  • This precursor may or may not be diluted in an organic solvent and the concentration of the precursor in the reactor will preferably be between 0.1% and 10% by volume.
  • the carrier gas used will be chosen from argon, nitrogen and / or helium.
  • the reducing gas will be selected from hydrogen and / or ammonia.
  • the ratio by volume of reducing gas and precursor will be between 1 and 2000, preferably between 10 and 100 while that between the reducing gas and the amine will be between 1 and 1000, preferably between 10 and 100.
  • the substrate is brought to a temperature of at least 200 ° C. and preferably between 200 ° C. and 600 ° C., during the carbonitride layer deposition step.
  • the reagents are introduced simultaneously (CVD) or alternating cycles (ALD, pulsed CVD (pulsed CVD)).
  • CVD chemical vapor deposition
  • ALD alternating cycles
  • pulsed CVD pulsed CVD
  • a flow of neutral gas will purge the deposition chamber between each stream of reactive compound in order to avoid parasitic reactions.
  • the precursor will be selected from Tert-ButylimidoTris (Diethylamido) Tantalum, Penta (DiMethylAmido) Tantalum, Tert-AmylimidoTris (dimethylamido) Tantalum, Tetra (Diethylamido) Tungsten, Bis (tert-Butylimido) Bis (Methyl Ethylamido) ) Tungsten, Tetra (Methyl Ethylamindo) Tungsten,
  • N-W N -C -Me Me ⁇ and Me

Abstract

The invention relates to a method for deposing thin metallic nitride layers whose carbon and nitrogen composition is controllable by varying reagent flows. The inventive method consists in reacting in a chemical gas-phase deposition reactor (LPCVD1ALD): a liquid organometallic compound of formula Me (NR1R2)^=NRs)x, wherein x = 1, y = 3 or x = 0, y = 4 or 5 for Me = Ta, V, Nb x = 2, y = 2 or x = 0, y = 4 to 6 for Me = Mo, W, Cr x = 0, y = 4 for Me = Hf, Ti, Zr Ri, R2, R3 = alkyl and/or aryl groups, a reducing gas such as hydrogen and ammonia and an amine having at least one nitrogen-hydrogen bond in such a way that desired layers are deposited to a desired substrate.

Description

Procédé de dépôt d'une couche de carbonitrure métallique pour la fabrication d'électrodes ou de couches barrièresProcess for depositing a metal carbonitride layer for the manufacture of electrodes or barrier layers
La présente invention concerne un procédé de dépôt d'une couche d'un composé métallique, notamment du type carbonitrure métallique, sur un substrat notamment en vue de son application comme électrode métallique ou comme barrière de diffusion dans les circuits intégrés.The present invention relates to a method of depositing a layer of a metal compound, in particular of the metal carbonitride type, on a substrate, in particular with a view to its application as a metal electrode or as a diffusion barrier in integrated circuits.
Avec la diminution des dimensions caractéristiques des semi-conducteurs, plusieurs problèmes se posent tant au niveau de la conception des transistors à effet de champ à base d'oxyde métallique (MOSFET) qu'à celui des différents niveaux de métallisation.With the decrease in the characteristic dimensions of the semiconductors, several problems arise both in the design of metal oxide field effect transistors (MOSFETs) and in the different levels of metallization.
Au niveau de la conception des nouveaux transistors à effet de champ en technologie dite métal-oxyde-semiconducteur (MOS) pour des tailles de grille inférieures à 65 nm, l'épaisseur d'oxyde de grille nécessaire est inférieure à 2 nm. Les électrodes conventionnelles en silicium polycristallin posent ainsi un certain nombre de problèmes tels qu'une lacune de porteurs de charges lors de l'activation du transistor conduisant à une augmentation artificielle de la capacité réelle de l'ensemble, qui tempérerait l'avantage obtenu avec l'utilisation envisagée d'oxydes à forte permittivité, car cette contribution à l'épaisseur capacitive effective deviendrait une limitation. Ces inconvénients incitent donc l'homme de métier à utiliser pour la réalisation des électrodes de grilles de ces transistors des composés métalliques en remplacement du silicium polycristallin, notamment pour les futures grilles de taille 65 nm et moins.In terms of the design of new field effect transistors in so-called metal-oxide-semiconductor (MOS) technology for grid sizes below 65 nm, the required gate oxide thickness is less than 2 nm. Conventional polycrystalline silicon electrodes thus pose a number of problems such as a lack of charge carriers during the activation of the transistor leading to an artificial increase in the real capacity of the assembly, which would temper the advantage obtained with the envisaged use of high permittivity oxides, since this contribution to the effective capacitive thickness would become a limitation. These disadvantages therefore encourage those skilled in the art to use, for producing the gate electrodes of these transistors, metal compounds in place of polycrystalline silicon, in particular for future grids of size 65 nm and less.
Aujourd'hui, les métaux réfractaires tels que Mo, Ta, Ti, Nb, Hf, Zr, V ou W et leurs nitrures associés sont envisagés comme des candidats possibles pour se substituer au silicium polycristallin. En effet le travail d'extraction d'un électron ou d'un trou dans ces métaux est potentiellement compatible avec les transistors dopés n ou p et ces métaux permettent d'obtenir les mêmes performances que le silicium polycristallin en termes de tension d'activation tout en supprimant l'augmentation de capacité effective. Ils ont de même une bonne stabilité thermique. Cependant, on a constaté que le nitrure métallique pur n'est pas forcément le plus adapté en terme de travail d'extraction et qu'il ne pouvait être avantageux de doper le matériau utilisé pour contrôler ce travail d'extraction. On a ainsi mis en évidence que les carbonitrures métalliques ont un travail d'extraction différent des nitrures, par exemple notamment dans le cas du tantale : (ref). le nitrure de tantale a un travail d'extraction estimé à 3.8- 3.9eV, adapté à un dispositif nMOSFET, tandis que le carbonitrure de tantale a un travail d'extraction estimé à 4.8-5eV, le rendant utilisable sur un dispositif pMOSFET. Au niveau de la métallisation, par ailleurs, le remplacement des connexions en aluminium par des connexions en cuivre engendre de nouveaux problèmes. En effet, le cuivre possède une grande affinité avec les composés siliciés et diffuse facilement dans les couches d'isolants à faible constante diélectrique obtenues à partir de précurseurs à base de silicium. Les métaux réfractaires comme Mo, Ta, Ti, Nb, Hf, Zr ou W, ainsi que leurs nitrures associés possédant une bonne résistance thermodynamique à la diffusion des atomes de cuivre tout en ayant une faible résistivité ; ils sont donc naturellement considérés par l'homme de métier comme de bons candidats pour la réalisation des couches de barrière de diffusion, déposées entre les connexions en cuivre et les isolants à faible constante diélectrique. Cependant, la diffusion des atomes de cuivre s'effectuant via les joints de grains, ces formes cristallines de « barrières » ne constituent pas une solution optimale. L'homme de métier est donc confronté aujourd'hui au problème de la réalisation de connexion en cuivre déposé sur des couches isolantes à faible constante diélectrique sans que les atomes de cuivre ne diffusent dans lesdites couches isolantes.Today, refractory metals such as Mo, Ta, Ti, Nb, Hf, Zr, V or W and their associated nitrides are contemplated as possible candidates for substituting for polycrystalline silicon. Indeed, the work of extracting an electron or a hole in these metals is potentially compatible with n-doped or p-doped transistors and these metals make it possible to obtain the same performances as polycrystalline silicon in terms of activation voltage. while suppressing the increase in effective capacity. They likewise have good thermal stability. However, it has been found that pure metal nitride is not necessarily the most suitable in terms of extraction work and that it could not be advantageous to dope the material used to control this work of extraction. It has thus been demonstrated that the metal carbonitrides have a different extraction work of the nitrides, for example in the case of tantalum: (ref). tantalum nitride has an estimated workload of 3.8- 3.9eV, adapted to an nMOSFET device, while tantalum carbonitride has an estimated 4.8-5eV extraction work, making it usable on a pMOSFET device. At the level of metallization, moreover, the replacement of aluminum connections by copper connections causes new problems. In fact, copper has a high affinity for silicon compounds and diffuses easily into low-dielectric insulator layers obtained from silicon-based precursors. Refractory metals such as Mo, Ta, Ti, Nb, Hf, Zr or W and their associated nitrides having good thermodynamic resistance to the diffusion of copper atoms while having a low resistivity; they are therefore naturally considered by those skilled in the art as good candidates for the realization of the diffusion barrier layers deposited between the copper connections and the insulators with a low dielectric constant. However, since the diffusion of copper atoms takes place via the grain boundaries, these crystalline forms of "barriers" do not constitute an optimal solution. Those skilled in the art are therefore confronted today with the problem of producing a copper connection deposited on insulating layers with a low dielectric constant without the copper atoms diffusing into said insulating layers.
L'idée à la base de l'invention consiste à réaliser des couches de carbonitrure métallique à stoechiométrie contrôlée en carbone pour leur application notamment comme barrières de diffusion ou comme électrodes métalliques.The idea underlying the invention consists in producing metal carbonitride layers with controlled carbon stoichiometry for their application in particular as diffusion barriers or as metal electrodes.
Il est connu des différentes publications citées ci-après de déposer des couches de nitrures métalliques par des méthodes de dépôt physique (PVD) ou chimique (CVD) en phase gazeuse.It is known from the various publications cited below to deposit layers of metal nitrides by physical vapor deposition (PVD) or chemical vapor deposition (CVD) methods.
La voie physique permet de bien contrôler la stoechiométrie finale du dépôt. En partant de cibles en métal et d'azote, les nitrures métalliques sont ainsi obtenus. En réalisant le recuit en présence d'une atmosphère carbonée, il est possible de créer des carbonitrures métalliques.. Cependant, la voie physique n'est généralement pas retenue car la faible qualité des films obtenus ne permet d'envisager l'utilisation de ces techniques pour des générations de circuits intégrés dont les dimensions caractéristiques sont inférieures à 65 nm.The physical path makes it possible to control the final stoichiometry of the deposit. Starting from metal and nitrogen targets, the metal nitrides are thus obtained. By carrying out annealing in the presence of a carbonaceous atmosphere, it is possible to create metal carbonitrides. However, the physical route is generally not retained because the low quality of the films obtained makes it possible to envisage the use of these techniques for generations of integrated circuits whose characteristic dimensions are less than 65 nm.
La voie chimique classique consiste pour sa part à faire réagir dans une même enceinte des espèces organo-métalliques ou inorganiques contenant le métal en question (par exemple TaCI5 ou les produits connus sous l'appellation TBTDET, TAIMATA, PDMAT pour le Tantale,) avec un gaz réducteur contenant au moins un atome d'azote. L'énergie réactionnelle est préférentiellement apportée sous forme thermique par chauffage du suscepteur ou des murs de l'enceinte. Il est ainsi possible de déposer des couches de nitrures métalliques à basse température (inférieure aThe classical chemical route consists in reacting in the same enclosure organometallic or inorganic species containing the metal in question (for example TaCl5 or the products known under the name TBTDET, TAIMATA, PDMAT for Tantalum,) with a reducing gas containing at least one nitrogen atom. The reaction energy is preferably brought in thermal form by heating the susceptor or walls of the enclosure. It is thus possible to deposit metal nitride layers at low temperature (below
5000C). Cependant, il n'est pas possible de contrôler la stœchiométrie en carbone de la couche en utilisant des réactifs standards tels que l'hydrogène ou l'ammoniac. En particulier, la contamination carbone provenant principalement du choix du précurseur organométallique, le rapport N/C du nombre de molécules d'azote sur le nombre de molécules de carbone dans la même unité de volume ne peut pas être contrôlé efficacement. Il est connu de l'article de Pan et al. publié dans IEEE transactions Vol 51 n°4 Avril 2004 pp581-585 et dans IEEE letters vol 24 n°9 septembre 2003 pp547-549 la modification du travail d'extraction d'une électrode TaN déposée par PVD par différent dopants. Ces articles mentionnent de bons résultats obtenus par cémentation thermique et obtention d'une couche TaCN. L'article de Oshita et al dans MRS Symp vol 427 (1996) 349-354 décrit le dépôt de carbonitrure de tantale, TaCN, par pyrolyse du Ta(NEt2)4 (tetrakis diethylamino tantale). L'incorporation de carbone permet de réduire la résistivité du film mais n'est pas contrôlable.500 0 C). However, it is not possible to control the carbon stoichiometry of the layer using standard reagents such as hydrogen or ammonia. In particular, since carbon contamination comes mainly from the choice of the organometallic precursor, the N / C ratio of the number of nitrogen molecules to the number of carbon molecules in the same volume unit can not be effectively controlled. It is known from the article by Pan et al. published in IEEE Transactions Vol 51 No. 4 April 2004 pp581-585 and in IEEE letters vol 24 No. 9 September 2003 pp547-549 the modification of the work of extraction of a TaN electrode deposited by PVD by different dopants. These articles mention good results obtained by thermal carburizing and obtaining a TaCN layer. The article by Oshita et al in MRS Symp vol 427 (1996) 349-354 describes the deposition of tantalum carbonitride, TaCN, by pyrolysis of Ta (NEt 2 ) 4 (diethylamino tantal tetrakis). The incorporation of carbon reduces the resistivity of the film but is not controllable.
L'article de Park et al. dans J. ECS 149 (1) C28-C32 (2002) décrit le dépôt de Ta(C)N par voie chimique en utilisant le TBTDET comme précurseur et NH3 ou un plasma hydrogène comme réactifs. La contamination en carbone provient du précurseur organo-métallique utilisé qui contient des liaisons carbonées.The article by Park et al. in J. ECS 149 (1) C28-C32 (2002) describes the deposition of Ta (C) N chemically using TBTDET as a precursor and NH3 or hydrogen plasma as reagents. The carbon contamination comes from the organometallic precursor used which contains carbon bonds.
L'article de Choi et al. dans IEEE letters 0-7803-7797 - (2003) décrit le dépôt de TaN par voie chimique en utilisant le TBTDET et le TAIMATA comme précurseurs. Une contamination en carbone de l'ordre de 10% est mesurée et résulte essentiellement des liaisons carbonées des précurseurs utilisés.The article by Choi et al. in IEEE Letters 0-7803-7797 - (2003) describes the deposition of TaN chemically using TBTDET and TAIMATA as precursors. Carbon contamination of the order of 10% is measured and results essentially from the carbon bonds of the precursors used.
L'invention permet de résoudre les problèmes posés et d'obtenir des couches de carbonitrures métalliques à stoechiométrie contrôlée de préférence par voie chimique en phase gazeuse. Elle permet notamment d'obtenir un taux de carbone dans la couche de carbonitrure dépendant directement de la quantité relative de l'un des composés de la réaction et d'assurer un contrôle efficace de la stœchiométrie du matériau obtenu et des propriétés qui en découlent.The invention makes it possible to solve the problems posed and to obtain metal carbonitride layers with a controlled stoichiometry, preferably by chemical means in the gas phase. It makes it possible in particular to obtain a carbon content in the carbonitride layer directly dependent on the relative amount of one of the reaction compounds and to ensure effective control of the stoichiometry of the material obtained and the properties resulting therefrom.
L'invention consiste essentiellement à faire réagir un précurseur (par exemple liquide) organo-métallique avec une source de gaz réducteur comme l'hydrogène ou l'ammoniac, en y ajoutant également une aminé et notamment de la mono et/ou dialkylamine, de préférence dans une concentration faible par rapport aux autres composés et notamment le précurseur et/ou le gaz réducteur.The invention essentially consists in reacting an organometallic precursor (for example a liquid) with a source of reducing gas, such as hydrogen or ammonia, by also adding an amine and in particular mono and / or dialkylamine, preferably in a low concentration relative to the other compounds and in particular the precursor and / or the reducing gas.
Les aminés, et notamment celles citées ci-dessus sont plus réactives que l'ammoniac ou l'hydrogène lors des réactions des trans-amidation, ce qui permet de contrôler le dopage en carbone, provenant notamment de leurs groupements alkyles. L'utilisation de gaz réducteur est néanmoins nécessaire pour maintenir une croissance suffisante du film.The amines, and in particular those mentioned above, are more reactive than ammonia or hydrogen during trans-amidation reactions, which makes it possible to control carbon doping, especially from their alkyl groups. The use of reducing gas is nevertheless necessary to maintain sufficient growth of the film.
Le procédé selon l'invention est caractérisé en ce qu'il consiste à : introduire dans un réacteur un composé organométallique de formule
Figure imgf000005_0001
The process according to the invention is characterized in that it consists in: introducing into a reactor an organometallic compound of formula
Figure imgf000005_0001
Avec x = 1 , y = 3 ou x = 0, y = 4 ou 5 pour Me = Ta, V, Nb x = 2, y = 2 ou x = 0, y = 4 à 6 pour Me = Mo, W, Cr x = 0, y = 4 pour Me = Hf, Ti, Zr Ri, R2, R3 = groupements alkyle et/ou aryleWith x = 1, y = 3 or x = 0, y = 4 or 5 for Me = Ta, V, Nb x = 2, y = 2 or x = 0, y = 4 to 6 for Me = Mo, W, Cr x = 0, y = 4 for Me = Hf, Ti, ZrRi, R 2 , R 3 = alkyl and / or aryl groups
- introduire dans le réacteur un composé réducteur comportant des atomes d'hydrogène ;introducing into the reactor a reducing compound comprising hydrogen atoms;
- introduire dans le réacteur une aminé possédant au moins une liaison azote-hydrogène ; - amener le substrat à une température d'au moins 200°c ;introducing into the reactor an amine having at least one nitrogen-hydrogen bond; bringing the substrate to a temperature of at least 200 ° C .;
- faire réagir le composé organométallique, le composé réducteur et l'aminé ;reacting the organometallic compound, the reducing compound and the amine;
- contrôler le rapport des quantités respectives du composé réducteur et de l'aminé introduites dans le réacteur ; de manière à obtenir une couche de carbonitrure métallique MeCzNt 0 < z < 1 ;0 ≤ t ≤ 1 sur le substrat ayant une stoechiométrie contrôlée en azote et carbone.controlling the ratio of the respective amounts of reducing compound and amine introduced into the reactor; so as to obtain a metal carbonitride layer MeC z N t 0 <z <1; 0 ≤ t ≤ 1 on the substrate having a controlled stoichiometry of nitrogen and carbon.
Selon une variante, le procédé selon l'invention consiste à faire réagir les composés organométalliques et les composes réducteurs ainsi que les aminés dans un réacteur de dépôt chimique en phase gazeuse, notamment du type LPCVD et ALCVD.According to one variant, the process according to the invention consists in reacting the organometallic compounds and the reducing compounds as well as the amines in a chemical vapor deposition reactor, in particular of the LPCVD and ALCVD type.
De préférence, l'aminé est choisie parmi les mono-alkylamines et les dialkylamines, de préférence parmi les mono-méthylamine, diméthylamine et/ou diéthylamine.Preferably, the amine is chosen from mono-alkylamines and dialkylamines, preferably from mono-methylamine, dimethylamine and / or diethylamine.
En général le composé organo-métallique (précurseur), sera sous forme liquide et sera vaporisé par injection directe ou par bullage d'un gaz vecteur ultra-pur à travers celui-ci.In general, the organometallic compound (precursor) will be in liquid form and will be vaporized by direct injection or by bubbling an ultra-pure carrier gas therethrough.
Ce précurseur pourra être dilué ou non dans un solvant organique et la concentration du précurseur dans le réacteur sera de préférence comprise entre 0.1 % et 10 % volume. De préférence, le gaz vecteur utilisé sera choisi parmi l'argon, l'azote et/ou l'hélium. De préférence, le gaz réducteur sera choisi parmi l'hydrogène et/ou l'ammoniac.This precursor may or may not be diluted in an organic solvent and the concentration of the precursor in the reactor will preferably be between 0.1% and 10% by volume. Preferably, the carrier gas used will be chosen from argon, nitrogen and / or helium. Preferably, the reducing gas will be selected from hydrogen and / or ammonia.
De préférence, l'aminé sera choisie parmi les aminés de formule NH2Ri avec Ri=C1-C3 et/ou celles des formules NHRiR2 avec Ri, R2=CI -C3.Preferably, the amine will be chosen from amines of formula NH 2 Ri with R 1 = C 1 -C 3 and / or those of formulas NHR 1 R 2 with R 1, R 2 = C 1 -C 3.
Parmi les aminés citées ci-dessus on choisira de préférence la méthylamine, l'éthylamine, la diméthylamine et/ou de diéthylamine.Among the amines mentioned above, preference will be given to methylamine, ethylamine, dimethylamine and / or diethylamine.
Le rapport en volume de gaz réducteur et de précurseur sera compris entre 1 et 2000, de préférence entre 10 et 100 tandis que celui entre le gaz réducteur et l'aminé sera compris entre 1 et 1000, de préférence entre 10 et 100.The ratio by volume of reducing gas and precursor will be between 1 and 2000, preferably between 10 and 100 while that between the reducing gas and the amine will be between 1 and 1000, preferably between 10 and 100.
D'une manière générale, le substrat est porté à une température d'au moins 2000C et de préférence comprise entre 2000C et 600°C , pendant l'étape de dépôt de la couche de carbonitrure.In general, the substrate is brought to a temperature of at least 200 ° C. and preferably between 200 ° C. and 600 ° C., during the carbonitride layer deposition step.
De préférence, les réactifs sont introduits simultanément (CVD) ou selon des cycles alternés (ALD, CVD puisée (pulsed CVD)). Dans ce dernier cas un flux de gaz neutre viendra purger la chambre de dépôt entre chaque flux de composé réactif afin d'éviter les réactions parasites.Preferably, the reagents are introduced simultaneously (CVD) or alternating cycles (ALD, pulsed CVD (pulsed CVD)). In the latter case, a flow of neutral gas will purge the deposition chamber between each stream of reactive compound in order to avoid parasitic reactions.
De préférence, le précurseur sera choisi parmi le Tert-ButylimidoTris (Diethylamido)Tantale, le Penta(DiMethylAmido)Tantale, le Tert- amylimidoTris(dimethylamido)Tantale, le Tetra (Diethylamido) Tungstène , le Bis (tert- Butylimido)Bis (MethylEthylamido) Tungstène , le Tetra (MethylEthylamindo) Tungstène,Preferably, the precursor will be selected from Tert-ButylimidoTris (Diethylamido) Tantalum, Penta (DiMethylAmido) Tantalum, Tert-AmylimidoTris (dimethylamido) Tantalum, Tetra (Diethylamido) Tungsten, Bis (tert-Butylimido) Bis (Methyl Ethylamido) ) Tungsten, Tetra (Methyl Ethylamindo) Tungsten,
Figure imgf000006_0001
Figure imgf000006_0001
TerT-ButylimidoTris Penta (dimethylamido) Tantale Tetra (diethylamido) TungstèneTerT-ButylimidoTris Penta (dimethylamido) Tantalum Tetra (diethylamido) Tungsten
(diethylamido) Tantale PDMAT(Diethylamido) Tantalum PDMAT
TBTDETTBTDET
Me Et Et Me Me MeMe And And Me Me Me
MeMe
Me N N MeMe N N Me
N—W=N —C —Me Me ^Et MeN-W = N -C -Me Me ^ and Me
Et N—W—Nx N — Ta = N C — EtAnd N-W-N x N - Ta = NC - And
Me Et Me MeMe And Me Me
Me —C —Me N N Me Me Et Me MeMe -C -Me N N Me Me Me And Me Me
MeMe
Bis (tertButylimido)Bis Tetra (ethylmethylamido) TerT-AmylimidoTris (MethylEthylamido) Tungstène Tungstène (dimethylamido) TantaleBis (tertButylimido) Bis Tetra (ethylmethylamido) TerT-AmylimidoTris (MethylEthylamido) Tungsten Tungsten (dimethylamido) Tantalum
TAIMATA TAIMATA

Claims

REVENDICATIONS
1. Procédé de dépôt d'une couche d'un composé métallique sur un substrat caractérisé en ce qu'il consiste à : - introduire dans un réacteur un composé organométallique de formule
Figure imgf000007_0001
1. A process for depositing a layer of a metal compound on a substrate, characterized in that it consists in: introducing into a reactor an organometallic compound of formula
Figure imgf000007_0001
Avec x = 1 , y = 3 ou x = 0, y = 4 ou 5 pour Me = Ta, V, Nb x = 2, y = 2 ou x = 0, y = 4 à 6 pour Me = Mo, W, Cr x = 0, y = 4 pour Me = Hf, Ti1 ZrWith x = 1, y = 3 or x = 0, y = 4 or 5 for Me = Ta, V, Nb x = 2, y = 2 or x = 0, y = 4 to 6 for Me = Mo, W, Cr x = 0, y = 4 for Me = Hf, Ti 1 Zr
Ri, R2, R3 = groupements alkyle et/ou aryle introduire dans le réacteur un composé réducteur comportant des atomes d'hydrogène ; introduire dans le réacteur une aminé possédant au moins une liaison azote-hydrogène ;R 1, R 2, R 3 = alkyl and / or aryl groups introducing into the reactor a reducing compound comprising hydrogen atoms; introducing into the reactor an amine having at least one nitrogen-hydrogen bond;
- amener le substrat à une température d'au moins 200°c ;bringing the substrate to a temperature of at least 200 ° C .;
- faire réagir le composé organométallique, le composé réducteur et l'aminé ;reacting the organometallic compound, the reducing compound and the amine;
- contrôler le rapport des quantités respectives du composé réducteur et de l'aminé introduites dans le réacteur ; de manière à obtenir une couche de carbonitrure métallique MeCzNt controlling the ratio of the respective amounts of reducing compound and amine introduced into the reactor; in order to obtain a metal carbonitride layer MeC z N t
0 < z < 1 ;0 ≤ t < 1 sur le substrat ayant une stoechiométrie contrôlée en azote et carbone.0 <z <1; 0 ≤ t <1 on the substrate having a controlled stoichiometry of nitrogen and carbon.
2. Procédé selon la revendication 1 , caractérisé en ce qu'il consiste à faire réagir le composé organométallique, le compose réducteur ainsi que l'aminé dans un réacteur de dépôt chimique en phase gazeuse, notamment du type LPCVD et ALCVD.2. Method according to claim 1, characterized in that it consists in reacting the organometallic compound, the reducing compound and the amine in a chemical vapor deposition reactor, in particular of the LPCVD and ALCVD type.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que l'aminé est choisie parmi les mono-alkylamines et les dialkylamines, de préférence parmi les mono- méthylamine, diméthylamine et/ou diéthylamine.3. Method according to claim 1 or 2, characterized in that the amine is chosen from mono-alkylamines and dialkylamines, preferably from monomethylamine, dimethylamine and / or diethylamine.
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que le composé organo-métallique (précurseur), sera sous forme liquide et sera vaporisé par injection directe ou par bullage d'un gaz vecteur ultra-pur à travers celui-ci.4. Method according to one of claims 1 to 3, characterized in that the organometallic compound (precursor), will be in liquid form and will be vaporized by direct injection or by bubbling an ultra-pure carrier gas through that -this.
5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que la concentration du précurseur dans le réacteur sera de préférence comprise entre 0.1 % et 10 % volume. 5. Method according to one of claims 1 to 4, characterized in that the concentration of the precursor in the reactor is preferably between 0.1% and 10% volume.
6. Procédé selon l'une des revendications 4 ou 5, caractérisé en ce que le gaz vecteur utilisé sera choisi parmi l'argon, l'azote et/ou l'hélium. 6. Method according to one of claims 4 or 5, characterized in that the carrier gas used will be selected from argon, nitrogen and / or helium.
7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que le composé réducteur est un gaz réducteur choisi parmi l'hydrogène et/ou l'ammoniac.7. Method according to one of claims 1 to 6, characterized in that the reducing compound is a reducing gas selected from hydrogen and / or ammonia.
8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que Le rapport en volume de gaz réducteur et de précurseur sera compris entre 1 et 2000, de préférence entre 10 et 100 tandis que celui entre le gaz réducteur et l'aminé sera compris entre 1 et 1000, de préférence entre 10 et 100. 8. Method according to one of claims 1 to 7, characterized in that the ratio by volume of reducing gas and precursor will be between 1 and 2000, preferably between 10 and 100 while that between the reducing gas and the Amine will be between 1 and 1000, preferably between 10 and 100.
PCT/FR2005/051134 2004-12-23 2005-12-22 Method for deposing a metallic carbonitride layer for producing barrier electrodes or layers WO2006070165A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0453172 2004-12-23
FR0453172A FR2880037B1 (en) 2004-12-23 2004-12-23 METHOD OF DEPOSITING A METAL CARBONITRIDE LAYER FOR THE PRODUCTION OF ELECTRODES OR BARRIER LAYERS

Publications (1)

Publication Number Publication Date
WO2006070165A1 true WO2006070165A1 (en) 2006-07-06

Family

ID=34951861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2005/051134 WO2006070165A1 (en) 2004-12-23 2005-12-22 Method for deposing a metallic carbonitride layer for producing barrier electrodes or layers

Country Status (2)

Country Link
FR (1) FR2880037B1 (en)
WO (1) WO2006070165A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080026576A1 (en) * 2006-07-31 2008-01-31 Rohm And Haas Electronic Materials Llc Organometallic compounds

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004007796A1 (en) * 2002-07-12 2004-01-22 President And Fellows Of Harvard College Vapor deposition of tungsten nitride

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004007796A1 (en) * 2002-07-12 2004-01-22 President And Fellows Of Harvard College Vapor deposition of tungsten nitride

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
H. BERNDT, A.-Q. ZENG, H.-R. STOCK, P. MAYR: "Zirconium carbonitride films produced by plasma-assisted metal organic chemical vapour deposition", SURFACE AND COATINGS TECHNOLOGY, vol. 74-75, 1995, pages 369 - 374, XP008049023 *
HOSHINO, SUZUKI, HIIRO, MACHIDA, AND AL.: "LPCVD of TaCN thin film for barrier layer in cu interconnection", 2001, MATERIAL RESEARCH SOCIETY, WARRENDALE, PENNSYLVANIA, XP008049064 *
JILL S. ECKER, SEIGI SUH, SHENGLONG WANG, ROY G. GORDON: "highly conformal thin films of tungsten nitride prepared by atomic layer deposition from a novel precursor", CHEMISTRY OF MATERIAL, vol. 15, no. 15, 2003, pages 2969 - 2976, XP008049005 *

Also Published As

Publication number Publication date
FR2880037A1 (en) 2006-06-30
FR2880037B1 (en) 2007-03-30

Similar Documents

Publication Publication Date Title
US11286558B2 (en) Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
KR101283835B1 (en) Deposition method of ternary films
US9447496B2 (en) Nanolayer deposition process
US6596643B2 (en) CVD TiSiN barrier for copper integration
US20050179097A1 (en) Atomic layer deposition of CMOS gates with variable work functions
KR20050028015A (en) Vapor deposition of tungsten nitride
US8802194B2 (en) Tellurium precursors for film deposition
US20210047725A1 (en) Methods of vapor deposition of ruthenium using an oxygen-free co-reactant
US20160372543A1 (en) Metal selenide and metal telluride thin films for semiconductor device applications
US20090022958A1 (en) Amorphous metal-metalloid alloy barrier layer for ic devices
US11408068B2 (en) Deposition of tellurium-containing thin films
Senzaki et al. MOCVD of high‐k dielectrics, tantalum nitride and copper from directly injected liquid precursors
WO2006070165A1 (en) Method for deposing a metallic carbonitride layer for producing barrier electrodes or layers
US20230049464A1 (en) Ruthenium-Containing Films Deposited On Ruthenium-Titanium Nitride Films And Methods Of Forming The Same
US20210123136A1 (en) Methods To Grow Low Resistivity Metal Containing Films
TWI515803B (en) Doping aluminum in tantalum silicide
US20230227966A1 (en) Methods Of Forming Ruthenium-Containing Films Without A Co-Reactant
JP2023537931A (en) Method for forming impurity-free metal alloy film
TW202248447A (en) Methods and systems for forming a layer comprising aluminum, titanium, and carbon
WO2023033901A1 (en) Method of forming a metal liner for interconnect structures
CN109609927A (en) A kind of carbon-nitrogen doped metal cobalt thin film, preparation method and the usage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05848365

Country of ref document: EP

Kind code of ref document: A1