WO2006069551A1 - Procede de protection du partage de voies de transmission optique par paquets, dispositif et systeme associes - Google Patents

Procede de protection du partage de voies de transmission optique par paquets, dispositif et systeme associes Download PDF

Info

Publication number
WO2006069551A1
WO2006069551A1 PCT/CN2005/002428 CN2005002428W WO2006069551A1 WO 2006069551 A1 WO2006069551 A1 WO 2006069551A1 CN 2005002428 W CN2005002428 W CN 2005002428W WO 2006069551 A1 WO2006069551 A1 WO 2006069551A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
wavelength
fiber
node
backup
Prior art date
Application number
PCT/CN2005/002428
Other languages
English (en)
French (fr)
Inventor
Congqi Li
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to US11/813,143 priority Critical patent/US8103161B2/en
Priority to EP05847861.1A priority patent/EP1833180B1/en
Publication of WO2006069551A1 publication Critical patent/WO2006069551A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0793Network aspects, e.g. central monitoring of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/035Arrangements for fault recovery using loopbacks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0283WDM ring architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0284WDM mesh architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • H04J14/0289Optical multiplex section protection
    • H04J14/0291Shared protection at the optical multiplex section (1:1, n:m)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • H04J14/0293Optical channel protection
    • H04J14/0295Shared protection at the optical channel (1:1, n:m)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0208Interleaved arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0213Groups of channels or wave bands arrangements

Definitions

  • the present invention relates to optical communication technologies, and more particularly to fault protection of optical networks in optical communications. Background technique
  • Network survivability refers to the ability of a network to maintain an acceptable level of quality of service while experiencing network failures and equipment failures.
  • the main technical indicators that characterize the performance of the network are: redundancy, recovery rate and recovery time. Redundancy is defined as the ratio of the total idle capacity to the total working capacity in the network. It is mainly to measure the additional cost of the system to improve the survival performance.
  • the recovery rate refers to the number of recovered channels and the original failure in the event of a failure. The ratio of the total number of channels, or the ratio of the recovered capacity to the original total failure capacity; Recovery time refers to the time it takes for the network to recover the failed service.
  • Optical communication technology is currently the fastest growing technology field in the field of communication, especially the advancement of optical devices, which greatly promotes the development of optical communication technology. Its transmission rate doubling every 9 months, faster than Moore's Law. Times.
  • Wavelength Division Multiplexing (WDM) technology is the technology of choice for high-speed and large-capacity transmission. Now the development of WDM technology has enabled a single fiber to carry up to Tbps. In this case, the underlying optical network fiber line failure or equipment failure often affects a large number of services and improves optical communication. The network survivability of the network has increasingly become a research hotspot for operators and equipment suppliers.
  • WDM technology is becoming more and more mature, and its networking mode has also evolved from a back-to-back chain connection to a ring network and a mesh network.
  • Metropolitan WDM is often networked in the form of a ring network, simulating a Unidirectional Path Switching Ring (UPSR) provided by the Synchronous Optical Network (SDH) ring network, and bidirectional channel switching.
  • UPSR Unidirectional Path Switching Ring
  • SDH Synchronous Optical Network
  • BPSR Bidirectional Path Switching Ring
  • ULSR Unidirectional Line Switching Ring
  • BLSR Bidirectional Line Switching Ring
  • SNCP subnet connection protection
  • the WDM system provides a similar protection method: Optical Unidirectional Path Switching Ring (OUPSR), optical bidirectional channel switching ring ( Optical Bidirectional Path Switching Ring (“OBPSR”), Optical Unidirectional Line Switching Ring (OULSR), Optical Bidirectional Line Switching Ring (OBLSR), Optical Subnet Connection protection ( Optical Sub-Network Conne Nction Protection (OSNCP), Optical Channel Shared Protection Ring (OCh-SPRing)
  • optical channel shared protection means that the two-way service connection existing on different segments of a ring shares the same pair of wavelengths ⁇ ⁇ and ⁇ 2 , respectively, on two different fibers, and at the same time, on the two fibers.
  • the corresponding ⁇ 2 and ⁇ are used as the guard wavelengths of the operating wavelengths ⁇ and ⁇ 2. Because two-way service connections on different spans can share the same pair of wavelengths as protection wavelengths, this protection method is called optical channel sharing protection.
  • Service punch-through means that the protection services of other sites can be directly traversed at the site to ensure correct transmission to the destination node.
  • the service refers to the local service being affected and can be correctly switched to the backup channel for transmission. It means that the service whose destination is local can be transmitted to the local through the backup channel after the working channel is affected by the fault, and the service of the backup channel can be correctly translated into the receiver locally.
  • FIG. 1 is a schematic diagram showing the internal composition of an existing optical channel shared protection node.
  • the letter W indicates the working wavelength
  • the letter P indicates the Protect wavelength
  • the working wavelength and the protective wavelength are respectively identified by solid lines and broken lines in Fig. 1
  • the letter D indicates the drop service (let)
  • the letter A Indicates the road business (Add).
  • each wavelength can be configured as follows: the westward outer fiber wavelength W11 uses the wavelength 1 as the operating wavelength, and the westward inner fiber wavelength W21 uses the wavelength 2 as the operating wavelength.
  • the eastward outer fiber wavelength W12 uses wavelength 1 as the operating wavelength, and the eastward inner fiber wavelength W22 uses wavelength 2 as the operating wavelength.
  • the westward outer fiber wavelength P22 uses wavelength 2 as the W22 protection wavelength, westward.
  • the fiber wavelength P12 uses the wavelength 1 as the protection wavelength of W12
  • the east outer fiber wavelength P21 uses the wavelength 2 as the W21 protection wavelength
  • the eastward inner fiber wavelength P11 uses the wavelength 1 as the W11 protection wavelength.
  • the two-way service on the two fibers connected to the node shares a pair of wavelengths to achieve optical channel sharing protection.
  • multiple services existing on different segments can adopt the same wavelength, that is, one wavelength can be shared and protected by multiple services on different segments, so it is called optical channel sharing protection.
  • the wavelength pair is demultiplexed from the east and west lines by OADM, and then processed by the optical channel shared protection switching unit, and then transmitted through the OADM and then sent out from the east and west lines.
  • the road service also completes the uplink and the downlink of the service through the optical channel shared protection switching unit.
  • the node shown in Figure 1 completes the uplink of the service A2 on the external fiber and the downlink of the service D1, and the upper road of the service A1 on the internal fiber. And the way down the business D2.
  • the receiving end automatically detects the loss of a certain direction signal and then selects to receive the signal in the other direction.
  • the OADM detects that the foreign fiber signal (W11) received from the west direction is lost, and automatically switches to the signal (P11) received from the east to the inner fiber, and P11 is used as the W11.
  • W11 foreign fiber signal
  • P11 the east to the inner fiber
  • the optical channel shared protection described above is based on a pair of wavelengths as the basic unit.
  • the wavelength pair is demultiplexed from the east and west lines by OADM, and is shared by the optical channel.
  • the protection unit is processed, and then multiplexed by OADM and sent out from the east and west lines.
  • the disadvantage of this solution is that when a ring needs to share optical channel sharing protection for multiple wavelength pairs at the same time, it is necessary to set a corresponding OADM station and optical channel sharing protection unit for each wavelength pair, which greatly increases optical channel sharing protection.
  • the protection method utilizes the characteristics of different wavelengths in the two-way service connection in the optical channel sharing protection, in the outer fiber.
  • Use one wavelength band such as red band
  • the inner fiber uses another wavelength band such as blue band, the blue band wavelength of the outer fiber as the protection wavelength of the inner band blue band wavelength, and the red band wavelength of the inner fiber as the protection of the outer band red band wavelength Wavelength
  • this method obviously has the same wavelength utilization efficiency as the optical channel shared protection wavelength, and only all nodes on the entire ring need to be configured with the same protection switching unit to realize protection switching of all wavelength pairs, and only need to be needed when the fault occurs.
  • the protection switching can be performed on the adjacent nodes of the faulty segment, which is simple and convenient to implement.
  • the shared-band protection protection still belongs to the multiplex section shared protection, when the protection switching occurs, the protected wavelength needs to be wound around the protection fiber, which means that the distance that the wavelength passes during the protection switching will far exceed the normal working time.
  • this protection method requires careful 0SNR budgeting and wavelength planning, with many constraints and complex implementations. Summary of the invention
  • the main object of the present invention is to provide a packet optical channel sharing protection method, apparatus, and system, so that the cost of optical channel sharing protection is reduced and implemented.
  • the present invention provides a packet optical channel sharing protection method, which is used for connecting a ring network composed of at least two nodes, which are mutually working and name-distributed, to which at least two nodes are connected, wherein The node is configured to complete the uplink and the downlink of the service signal, and each of the nodes performs the following steps when the fault occurs:
  • the optical nodes in the backup fiber are not combined into a group of optical wavelengths of the local node, and the node is transparently penetrated.
  • the wavelengths of the backup lights transmitted in the backup fiber are blocked or stripped according to their source and sink information to prevent loopback.
  • the two optical fibers that are mutually working and backup relationship respectively use different wavelengths as working wavelengths, and the wavelength channel with the same working wavelength as the opposite wavelength is used as the protection wavelength;
  • the operating wavelengths used by the two fibers of the working and backup relationship include, but are not limited to, odd wavelengths, even wavelengths, red bands, and blue bands.
  • Switching. , 'Japan,. , , ,. ' 5 ' The source or sink node of the backup wavelength blocks or strips each backup light wavelength transmitted in the backup fiber.
  • the backup optical wavelength is blocked or stripped at the faulty neighboring node.
  • the packet optical channel sharing protection system comprises a ring network composed of a first and a second optical fiber connected to each other by at least two nodes.
  • Each of the nodes is further configured to synthesize a pair of affected optical wavelengths of the source node in the working optical fiber into a backup optical fiber in the event of a fault, and synthesize each optical wavelength of the node in the backup optical fiber as a node.
  • the group is switched to the working fiber, and the pair of optical wavelengths in the backup fiber are not combined with the optical wavelengths of the node to form a transparent through-node.
  • the node further blocks or strips each backup light wavelength transmitted in the backup fiber according to its source and sink information to prevent loopback.
  • the node further blocks or strips the backup optical wavelength at a neighboring node of the faulty segment.
  • Each of the nodes contains:
  • At least two optical add/drop multiplexers are respectively connected to the first and second optical fibers for uplink and downlink of service signals in the connected optical fibers;
  • At least four optical wavelength selective devices wherein two optical wavelength selective devices are respectively connected in series in the first and second optical fibers for selectively blocking the wavelength of the backup light, and the other two optical wavelength selective
  • the first and second optical fibers are respectively connected at two ends of the device, respectively for selectively switching the wavelength of light in the first optical fiber to the second optical fiber or switching the optical wavelength in the second optical fiber to the first optical fiber.
  • the optical wavelength selective device comprises a wavelength blocker, or a combination of an optical demultiplexer, an adjustable attenuator and an optical multiplexer, or a combination of an optical demultiplexer, an optical switch array and an optical multiplexer.
  • the optical wavelength selective device for switching is set to an open state for the source node to be the node, and the affected optical wavelength group of the working fiber is set to an open state for switching the optical wavelength to the backup optical fiber.
  • the optical wavelength selective device for switching of each of the nodes is set to an open state for the backup optical wavelength group of the node in the backup optical fiber for switching the backup optical wavelength group back to the working optical fiber, and
  • the optical add/drop multiplexer connected to the working fiber trips the wavelength signal.
  • the optical wavelength selective device for blocking the node connected to the optical fiber is set to a blocking state for the source node or the sink node for the optical wavelength group of the node, so as to prevent the backup optical wavelength from forming a ring on the backup optical fiber. return.
  • the optical wavelength selective device for blocking the node connected to the optical fiber is set to an open state for the optical wavelength group in which the source node or the sink node is not the local node in the backup optical fiber, and is used for the source node or the sink node in the backup optical fiber.
  • the wavelengths of the light that are not in this node are transparently passed through the node.
  • the system includes first, second, third, and fourth optical add/drop multiplexers, wherein the first and second optical add/drop multiplexers are coupled to the first optical fiber, and the third and fourth optical sub-fractions Inserting a multiplexer connected to the second optical fiber;
  • the first optical add/drop multiplexer is used for the downlink of the service signal in the first optical fiber
  • the second optical add/drop multiplexing The device is used for the uplink of the service signal in the first optical fiber
  • the third optical add/drop multiplexer is used for the downlink of the service signal in the second optical fiber
  • the fourth optical add/drop multiplexer is used for the uplink of the service signal in the second optical fiber.
  • the packet optical channel sharing protection system of the present invention may also comprise six optical wavelength selective devices, two of which are respectively connected in series in the two optical fibers for selectively blocking the backup optical wavelength, and the other four The two ends are respectively connected to the first and second optical fibers, respectively, for selectively switching the wavelength of the working light in the first optical fiber to the second optical fiber, or switching the wavelength of the backup optical light in the first optical fiber to the second The optical fiber, or the wavelength of the working light in the second fiber is switched to the first fiber, or the wavelength of the backup light in the second fiber is switched to the first fiber.
  • Each of the nodes contains:
  • At least two optical add/drop multiplexers are respectively connected to the first and second optical fibers for uplink and downlink of service signals in the connected optical fibers;
  • At least two optical wavelength selective devices wherein two ends of the two optical wavelength selective devices are respectively connected to the first and second optical fibers for selectively switching wavelengths of light in the first optical fiber to the second optical fiber or Converting the wavelength of light in the second optical fiber to the first optical fiber;
  • At least two optical switches are respectively connected in series on the first optical fiber and the second optical fiber for forcibly failing the east or west optical fibers when the adjacent optical fibers of the node fail.
  • the optical wavelength selective device for switching is set to an open state for the source node to be the node, and the affected optical wavelength group of the working fiber is set to an open state for switching the optical wavelength to the backup optical fiber.
  • the optical wavelength selective device for switching of each of the nodes is set to an open state for the backup optical wavelength group of the node in the backup optical fiber for switching the backup optical wavelength group back to the working optical fiber, and
  • the optical add/drop multiplexer connected to the working fiber trips the wavelength signal.
  • the adjacent node of the fiber fault is disconnected by controlling the optical switch connected to the faulty fiber segment to block the backup optical wavelength to form a loopback on the backup fiber.
  • the two fibers that are in the working and backup relationship use different wavelengths as the working wavelengths, and the wavelength channels that are the same as the working wavelength of the other pair are used as the protection wavelengths.
  • the working wavelengths of the two fibers of the working and backup relationship respectively include an odd wavelength, an even wavelength, a red band, and a blue band.
  • the optical channel sharing protection device for a dual fiber optical channel shared protection ring composed of two optical fibers and at least two nodes, comprising at least two optical add/drop multiplexing units, respectively for the first optical fiber and the first optical fiber a second optical fiber, used for the uplink and the downlink of the service signal in the optical fiber; at least two optical wavelength selective devices, wherein the two optical wavelength selective devices are respectively connected to the first and second optical fibers, respectively For selectively switching the wavelength of light in the first fiber to the second fiber or switching the wavelength of light in the second fiber to the first fiber.
  • the optical channel sharing protection device further includes: at least two optical switches respectively connected in series on the first optical fiber and the second optical fiber, configured to forcibly disable the east or west optical fiber when the adjacent optical fiber of the node fails .
  • the adjacent node of the fiber fault is disconnected by controlling the optical switch connected to the faulty fiber segment to block the backup optical wavelength to form a loopback on the backup fiber.
  • the optical channel sharing protection device further includes: at least two optical wavelength selective devices, wherein two optical wavelength selective devices are respectively serially connected in the first and second optical fibers for selectively pairing the backup light The wavelength is blocked.
  • the optical wavelength selective device for switching is set to an open state for the source node to be the node, and the affected optical wavelength group of the working fiber is set to an open state for switching the optical wavelength to the backup optical fiber.
  • the optical wavelength selective device for switching of each of the nodes is set to an open state for the backup optical wavelength group of the node in the backup optical fiber for switching the backup optical wavelength group back to the working optical fiber, and
  • the optical add/drop multiplexer connected to the working fiber trips the wavelength signal.
  • the optical wavelength selective device includes, but is not limited to, a wavelength blocker, or a combination of an optical demultiplexer, an adjustable attenuator, and an optical multiplexer, or a combination of an optical demultiplexer, an optical switch array, and an optical multiplexer.
  • the optical wavelength group is operated instead of the single optical wavelength, and four operations are completed during the switching, that is, the working optical fiber is subjected to
  • the optical wavelength group of the backup optical fiber is switched to the backup optical fiber (Steer), and the optical wavelength group of the standby node in the backup optical fiber is switched to the working optical fiber (Copy), and the optical wavelength group in the backup optical fiber is not the transparent wavelength group of the local node. ( Pass Through ), Block or strip the set of backup light wavelengths transmitted in the backup fiber to prevent the formation of a loop.
  • a plurality of node structures for implementing the above four operations are also disclosed.
  • the common feature is that there is a pair of WBs (wavelength blockers) between the upper and lower fibers, and one WB is connected in series in the upper and lower fibers and each is connected to one OADM.
  • the difference in this technical solution brings about a more obvious beneficial effect.
  • the switching of the packet since the switching of the packet is adopted, it is not necessary to provide a separate switching device for each wavelength, thereby greatly saving the cost of the system;
  • the switching distance is relatively short, and can be less than one week. Therefore, for a relatively small number of constraints such as OS, a larger range of group rings can be realized.
  • the solution of the present invention does not need to be uniformly switched.
  • the source and sink nodes have more flexible system configurations and a wider application range.
  • the service nodes of the solution of the present invention are relatively flexible, and can support both optical channel protection and multiplex section protection.
  • 1 is a schematic diagram of the internal composition of a conventional optical channel shared protection node
  • 2 is a schematic diagram of packet optical channel sharing protection
  • FIG. 3 is a schematic diagram showing the internal composition of a node optical channel shared protection terminated by a source node according to a preferred embodiment of the present invention
  • FIG. 4 is a schematic diagram of service connections and failures of different sources of the same source and the same source according to a preferred embodiment of the present invention
  • FIG. 5 is a schematic diagram showing the internal composition of a node optical channel shared protection terminated by a sink node according to a preferred embodiment of the present invention
  • FIG. 6 is a schematic diagram showing the internal composition of a loopback type optical channel shared protection node according to a preferred embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing the internal composition of a node for cross-packet optical channel shared protection of source stripping according to a preferred embodiment of the present invention.
  • FIG. 8 is a schematic diagram showing the internal composition of a node of a cross-packet optical channel shared protection of a sink strip according to a preferred embodiment of the present invention.
  • FIG. 9 is a schematic diagram showing the internal composition of a node of a ring-peeled loopback packet optical channel shared protection according to a preferred embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a ring network and a ring network failure after the multiplex section protection is implemented by using the packet optical channel sharing protection device of the present invention.
  • the present invention employs wavelength selective devices, including wavelength blockers and wavelength selectors, to effect re-split and combine these wavelength sets at different nodes.
  • Each node of the present invention uses the affected optical wavelength channel services, which are the source node and the sink node, as the source optical channel group and the sink optical channel group respectively, and can complete the switching (Steer), copying (copying), and punching through ( Pass through ) and strip function.
  • the Steer process is performed on the source node to separate the source optical channel group from the local service and switch from the working fiber to the backup fiber.
  • the copy processing is performed on the sink node to set the optical channel group from ⁇
  • the protection channel in the sub-fiber is separated and switched to the working fiber to terminate at the sink node; at the same time, the source or sink node can use the strip processing to remove the source optical channel group or the sink optical channel group from the corresponding backup fiber;
  • the Pass Through process is performed, and the backup channel signal transmitted from the previous node to the backup fiber is transparently transmitted to the next node according to the signaling or the self-detection result.
  • the sink nodes of the source optical channel groups are not necessarily the same.
  • the source nodes of the sink optical channel group are not necessarily the same.
  • the working fiber and the backup fiber are relative to the wavelength of the transmitted light, and not one of the two fibers is fixed as the working fiber and the other is fixed as the backup fiber. That is to say, if a certain optical wavelength is normally transmitted through the optical fiber, then for the optical wavelength, the optical fiber is the working optical fiber, and the optical fiber 2 is the backup optical fiber when the failure occurs. In fact, the two optical fibers are mutually working and separated. In the normal case, the optical wavelength transmitted by the optical fiber is the optical fiber 2 as the backup optical fiber, and the optical wavelength transmitted by the optical fiber 2 is normally backed by the optical fiber. Optical fiber.
  • a system for packet optical channel shared protection consists of multiple service nodes. These service nodes form a WDM ring network through optical connections, and each node can provide Steer, Copy, Pass through and Strip functions. Compared with optical wavelength channel services, service nodes are classified into source nodes, sink nodes, and intermediate nodes.
  • Steer processing is performed at the source node, and the source optical channel group is separated from the local service and switched from the working optical fiber to the backup optical fiber for transmission; Copy processing is performed to separate the sink channel group from the protection channel in the backup fiber and switch to the working fiber to terminate at the sink node; at the same time, the source or sink node can use the Strip process to source the source channel group or the sink channel group.
  • the intermediate node performs the Pass Through process, and the backup channel signal transmitted from the previous node to the backup fiber is transparently transmitted to the next node according to the signaling or the self-detection result.
  • the source optical channel group is the optical wavelength channel of all services with the service node as the source node
  • the sink optical channel group is the optical wavelength of all services with the service node as the sink node. aisle.
  • Steer specifically separates the source optical channel group from the local service at the source node and switches from the working optical fiber to the backup optical fiber.
  • the text can be simply translated as a switching;
  • the sink node separates the sink channel group from the protection channel in the backup fiber and switches to the working fiber to terminate at the sink node, which can be simply translated as replication.
  • the outer fiber is a clockwise direction indicated by a solid line
  • the inner fiber is a counterclockwise direction indicated by a broken line
  • the service connection is allocated in a forward direction.
  • the transmission path of the service connection at this time is indicated by a thick solid line in FIG.
  • A, B, C, D, E, and F are service nodes, and there is one service connection between service nodes 8 and 8, E (services 1, 4), and there are two service connections between A and D (service 2, 3), there is a service connection between B and E (service 5), and there are two service connections between B and F (services 6, 7).
  • the numbers in Figure 2 are used to identify service connections, and different services, such as Service 1 and Service 7, can use the same wavelength.
  • the service nodes A and B perform the Steer actions on the respective original optical channel groups, and the services of the service nodes A and B to the service nodes D, E, and F, that is, Services 2, 3, 4, 5, 6 and 7 will be switched to the inner fiber for transmission, A to B
  • the service that is, the service 1 will not be switched; at the same time, the service node A node needs to pass the B node to the E and F nodes, that is, the services 5, 6, and 7, pass through the A node, and perform the Pass through action;
  • the services 6 and 7 transmitted by the B node are split to the local end, the Copy action is executed, and the services of A, B S'J D.
  • the service node on the ring must be able to switch the outer fiber to the optical fiber wavelength channel of the inner fiber after the sink node to the source node.
  • Set an endpoint on the service node (including the sink node and the source node).
  • the termination point is placed on the sink node or the source node, so this is set because the sink node and the source node may be contiguous.
  • the end node is set at the source node, it means that the optical signal after the switching will be bypassed on the inner fiber, and finally stripped out at the source node. In Figure 2, it is executed by the service nodes A and B.
  • Strip action if it is set in the sink node, the Strip action is performed by the D, E, and F nodes respectively, and the optical signal does not wrap around the ring for one week.
  • the reason for setting the end node and performing the Strip action is that if there is no termination point, in the case of a unidirectional fiber failure, the optical signal will loop on the backup fiber to form a loopback self-excitation, which ultimately affects the optical signal quality.
  • the transmission path of the service connection is indicated by a thick broken line in FIG.
  • FIG. 1 a schematic diagram of the internal composition of a service node in a system for packet optical channel sharing protection terminated by a source node is shown in FIG.
  • the service node includes: 4 wavelength blockers 10 (10-31 respectively,
  • the wavelength occluder 10-31 receives the traffic entering from the upper fiber in the west direction, and the output terminal is connected to the input terminal of the optical add/drop multiplexer 20-31; the input end of the wavelength occluder 10-32 and the optical add/drop multiplexer
  • the output of 20-32 is connected, and the output is connected to the output of optical add/drop multiplexer 20-32; the input of wavelength occluder 10-33 is connected with the output of optical add/drop multiplexer 20-31, output and light
  • the input terminals of the add/drop multiplexers 20-32 are connected;
  • the wavelength occluder 10-34 receives the traffic entering from the lower optical fiber in the east direction, and the output terminal is connected to the input end of the optical add/drop multiplexer 20-32; optical add/drop multiplexing
  • the device 20-31 outputs the service from the east-up fiber; the optical add-drop multiplexer 20-32 outputs the service from the west-down fiber.
  • the wavelength blocker 10 is used to block or allow the passage of a certain wavelength of traffic by a change in state.
  • the specific implementation and function of the wavelength occluder 10 are well known to those skilled in the art and will not be described in detail herein.
  • the optical add/drop multiplexer 20 is used to perform multiplexing/demultiplexing of services, and implements the uplink and the downlink of the client's services.
  • the specific implementation and function of the optical add/drop multiplexer 20 are well known to those skilled in the art and will not be described in detail in j3 ⁇ 4.
  • the wavelength occluder 10-32 and the wavelength occluder 10-33 are in a completely blocked state during normal operation, and the wavelength occluder 10-31 and the wavelength occluder 10-34 respectively operate.
  • the wavelength blocker 10-33 When the eastbound fiber fails, all the eastbound services in the above-mentioned nodes are affected. At this time, the wavelength blocker 10-33 will open the wavelength channel corresponding to the eastbound service, and all the eastbound services of the node will be switched to In the following fiber transmission, since the wavelengths of the upper and lower fibers do not collide during normal operation, congestion does not occur in the lower fiber after the service switching, and the node completes the Steer function. Because the fiber fault may only affect the fiber, if only the upper fiber is broken, and the lower fiber is still intact, the wavelength blocker 10-34 performs this function, and only needs to turn on the wavelength of the wavelength blocker 10-33.
  • the pipeline is set to the blocking state in the wavelength blocker 10-34, and the wavelength of the upper fiber can be switched to the lower fiber to eliminate the loop, thereby avoiding the wavelength loopback self-excitation problem in the lower fiber.
  • the node completes the source node strip. Features. When the adjacent east and lower fibers are broken, the node is down to the east. The service is also affected. When the source node switches the service from the lower fiber to the upper fiber to the local node, the wavelength blocker 10-31 and the wavelength blocker 10-33 also need to open channels for these wavelength services, so that the service can be The upper optical fiber is again switched into the lower optical fiber, and the demultiplexing of the corresponding wavelength is completed in the optical add/drop multiplexer 20 to complete the Copy function.
  • the wavelength blocker 10-31 disposed on the upper fiber of the intermediate node must ensure that the wavelength of the lower fiber is switched to the wavelength in the upper fiber to transparently pass through the node, thereby completing the pass through function.
  • the non-source node wavelength blockers 10 - 34 also need to ensure that the backup wavelength of the upper fiber switching to the lower fiber can also be punched through to complete the pass through function.
  • the Strip may be terminated at the sink node at the source node, and the specific implementation depends on which service node sets the state of the wavelength occluder 10 to implement the Strip function for the specific wavelength channel, which does not affect the present invention. substance.
  • FIG. 4 is a schematic diagram of service connections and failures of different sources of the same source and different sources in accordance with a preferred embodiment of the present invention.
  • the strip function is completed at the source node, so the optical wavelength signal corresponding to C->A, C->B will be wrapped around the fiber after being switched to the inner fiber. If the fiber in the B and C segments also breaks at the same time, the C->A, C->B signal will not be able to reach the C node and the ring will be stripped out.
  • C->A, >8 corresponds
  • the wavelength blocker 10-31 in the Node B also opens the channel for both wavelengths, but the wavelength blocker 10-33 of the Node B only turns on the wavelength of light corresponding to C->B, thereby corresponding to C->B.
  • the optical wavelength signal is switched to the normal working channel to complete the entire protection switching action.
  • the wavelength blocker 10-31 of the Node B can also block the optical wavelength signal corresponding to the incoming signal of the A node, but this cannot be changed only by the C node blocking the C->B optical wavelength signal.
  • FIG. 5 A schematic diagram of the internal composition of a node optical channel shared protection terminated by a sink node according to a preferred embodiment of the present invention is shown in FIG. 5.
  • the service node includes: four wavelength blockers 10 (represented by 10-51, 10-52, 10-53, and 10-54, respectively) and two optical add/drop multiplexers 20 (respectively Expressed with 20-51 and 20-52).
  • the input of the wavelength blocker 10-51 is coupled to the output of the optical add/drop multiplexer 20-52 to output traffic from the west down fiber; the input of the wavelength blocker 10-52 and the output of the optical add/drop multiplexer 20-52 The terminal is connected, the output is connected to the output of the optical add/drop multiplexer 20-51; the input of the wavelength occluder 10-53 is connected to the output of the optical add/drop multiplexer 20-51, and the output and the optical add/drop multiplexer are connected.
  • the input of the 20-52 is connected; the input of the wavelength blocker 10-54 is connected to the output of the optical add/drop multiplexer 20-51, and the optical output is output from the east; the optical add/drop multiplexer 20-51 is from the west.
  • Optical fiber receiving service; The optical add/drop multiplexer 20-52 receives traffic from the east to the lower optical fiber.
  • the east-side adjacent optical fiber segment is opposite to the source node (maybe the adjacent fault segment may also be non-adjacent Fault segment) Switch the service to the upper fiber loop back to the above node.
  • the wavelength blocker 10-53 is the corresponding service open channel
  • the corresponding downstream wavelength can be looped back from the upper fiber to the lower fiber to complete the protection switching process of the service.
  • the wavelength occluder 10-54 needs to block the optical channel that the wavelength occluder 10-53 is turned on to complete the Strip function.
  • the optical channel shared protection called the terminating of the sink node is shared.
  • Other functions such as steer, copy
  • the implementation of the pass through is substantially similar to the implementation of the embodiment shown in FIG. 3, and can be easily implemented by those skilled in the art with reference to the embodiment shown in FIG. 3, and will not be described in detail herein.
  • FIG. 6 A schematic diagram of the internal structure of a loopback type optical channel shared protection node according to a preferred embodiment of the present invention is shown in FIG. 6.
  • the service node includes: 4 wavelength blockers 10 (10-61 respectively,
  • the optical switch 30 is used to control the on and off of the optical fiber by closing or disconnecting, so as to prevent the optical channel from looping back.
  • the specific implementation and function of the optical switch 30 are well known to those skilled in the art and will not be described in detail herein.
  • the input of the wavelength blocker 10-61 is connected to the output of the optical add/drop multiplexer 20-64, and the output is connected to the input of the optical add/drop multiplexer 20-63; the input of the wavelength occluder 10-62 and the optical splitter
  • the inputs of the add-drop multiplexers 20-63 are connected, the outputs are connected to the inputs of the optical add/drop multiplexers 20-61; the inputs of the wavelength occluder 10-63 are connected to the outputs of the optical add/drop multiplexers 20-62.
  • the output is connected to the input of the optical add/drop multiplexer 20-64; the input of the wavelength occluder 10-64 is connected to the output of the optical add/drop multiplexer 20-61, and the output and the optical add/drop multiplexer 20-
  • the input of 62 is connected; the optical add/drop multiplexer 20-61 receives the service from the westward optical fiber; the optical add/drop multiplexer 20-62 outputs the service from the eastward optical fiber through the optical switch 30-62; the optical add/drop multiplexer 20-63 outputs traffic from the west down fiber through the optical switch 30-61; the optical add/drop multiplexer 20-64 receives traffic from the east down fiber.
  • the wavelength blocker 10-61 and the wavelength blocker 10-64 operate in a red band blue band stop, a blue band pass red band stop, and an optical switch 30-61.
  • the optical switches 30-62 are both in the closed state, the wavelength occluder 10-62 and the wavelength occluder 10-63 are respectively operated in a completely blocked state.
  • the node After the fiber breakage occurs in the adjacent fiber section of the east, because the node first detects that there is no signal in the lower fiber, it can determine that the fiber is broken, that is, the command is sent to the optical switch 30-61 to open the circuit to simulate the fiber. Double break failure mode. After that, local activation is affected on the wavelength blocker 10-63.
  • the optical wavelength channel corresponding to the eastbound service reverses the optical wavelength signal received in the upper optical fiber to the lower optical fiber loop for transmission, and the wavelength occluder 10-61 also needs to perform a similar opening action on the loopback wavelength to complete the source light.
  • the Steer source protection switching of the channel group The Steer source protection switching of the channel group.
  • the wavelength blocker 10-61 at the west to the downstream node of the node also performs an opening action on these wavelengths to ensure that the backup channel can be unimpededly transmitted to the west-down optical demultiplexer of the sink node, and the wavelength blockers of these nodes at this time
  • the action performed by 10-61 is Pass through.
  • the wavelength blocker 10-62 of the sink node turns on the wavelength of the node at the destination node, and completes the switching of the fiber to the upper fiber.
  • the wavelength blocker 10-62 performs the Copy action. . That is, the wavelength occluder 10-62 and the wavelength occluder 10-63 assume both the Steer function and the Copy function.
  • the Strip is completed by the optical switch 1 described above, and the fiber double-break fault simulated by it can prevent any one fiber from forming a loopback, thereby preventing the possibility that the optical channel loops back to self-excitation.
  • the east and west optical add/drop multiplexers 20 are separated. This mode is the most used by the current wavelength occluder 10, and the optical add/drop multiplexer 20 can be guaranteed to be unlimited. Online upgrade.
  • FIG. 1 A schematic diagram of the internal composition of a source stripped cross-packet optical channel shared protection according to a preferred embodiment of the present invention is shown in FIG.
  • the service node comprises: 6 wavelength blockers 10 (represented by 10-71, 10-72, 10-73, 10-74, 10-75, and 10-76, respectively) and 4 The optical add/drop multiplexer 20 (represented by 20-71, 20-72, 20-73, and 20-74, respectively).
  • the input of the wavelength blocker 10-71 is connected to the output of the optical add/drop multiplexer 20-74, and the output is connected to the input of the optical add/drop multiplexer 20-73; the input of the wavelength occluder 10-72 and the optical splitter
  • the outputs of the add-drop multiplexers 20-73 are connected, the outputs are connected to the inputs of the optical add/drop multiplexers 20-71; the inputs of the wavelength occluder 10-73 are connected to the outputs of the optical add/drop multiplexers 20-72.
  • the output is connected to the input of the optical add/drop multiplexer 20-74; the input of the wavelength occluder 10-74 is connected to the output of the optical add/drop multiplexer 20-71, and the output and the optical add/drop multiplexer 20-
  • the input of the wavelength blocker 10-75 is connected to the output of the optical add/drop multiplexer 20-73, and the output i is connected to the output of the optical add/drop multiplexer 20-72; the wavelength blocker 10
  • the input of the -76 is connected to the output of the optical add/drop multiplexer 20-72, and the output is connected to the output of the optical add/drop multiplexer 20-73; the optical add/drop multiplexer 20-71 receives the service from the westward optical fiber.
  • optical add-drop multiplexing The 20-72 outputs the traffic from the eastbound fiber; the optical add/drop multiplexer 20-73 outputs traffic from the west down fiber; and the optical add/drop multiplexer 20-74 receives traffic from the east down fiber.
  • the Copy function is performed by the wavelength blocker 10-72, the wavelength blocker 10-73, the wavelength blocker 10-75, the wavelength blocker 10-76 assumes the Steer function, the wavelength blocker 10-71 and The wavelength blocker 10-74 assumes the Pass through and source Strip functions.
  • the wavelength blocker 10-76 if the east adjacent fiber segment of the node shown in FIG. 7 fails, the wavelength blocker 10-76 turns on the wavelength channel corresponding to the local eastbound service, allowing it to directly pass through the WB6. Loopback to the node west down fiber transmission completes the Steer function.
  • the local east-down traffic is switched to the upper fiber ring at its source node and returned to the node.
  • the wavelength blocker 10-74 and the wavelength blocker 10-73 both open the local wavelength channels to be terminated, thereby Loop back these wavelengths to the lower fiber to complete the Copy function.
  • the wavelength blocker 10-71 of this node blocks the optical signal of the local uplink through the wavelength blocker 10-76 to avoid self-excitation of the wavelength, and performs the source strip function.
  • the wavelength blocker 10-74 and the wavelength blocker 10-71 respectively switch the source node to the protection optical channel of the upper and lower fibers to pass through them to reach the destination node, at this time the intermediate node
  • the wavelength occluder 10-71 and the wavelength occluder 10-74 perform a pass through function.
  • FIG. 1 A schematic diagram of the internal composition of the node of the sink-split cross-packet optical channel shared protection according to a preferred embodiment of the present invention is shown in FIG.
  • the service node comprises: 6 wavelength blockers 10 (represented by 10-81, 10-82, 10-83, 10-84, 10-85, and 10-86, respectively) and 4 The optical add/drop multiplexer 20 (represented by 20-81, 20-82, 20-83, and 20-84, respectively).
  • the input of the wavelength blocker 10-81 is connected to the output of the optical add/drop multiplexer 20-84, and the output is connected to the input of the optical add/drop multiplexer 20-83; the input of the wavelength occluder 10-82 and the optical splitter
  • the input terminals of the add-drop multiplexers 20-84 are connected, the output terminals are connected to the inputs of the optical add/drop multiplexers 20-81; the inputs of the wavelength occluder 10-83 are connected to the inputs of the optical add/drop multiplexers 20-81.
  • the output is connected to the input of the optical add/drop multiplexer 20-84; the input of the wavelength occluder 10-84 is connected to the output of the optical add/drop multiplexer 20-81, and the output and the optical add/drop multiplexer 20-
  • the input of the wavelength blocker 10-85 is connected to the output of the optical add/drop multiplexer 20-83, and the output is connected to the output of the optical add/drop multiplexer 20-82; the wavelength occluder 10- 86 loss
  • the input terminal is connected to the output end of the optical add/drop multiplexer 20-82, and the output terminal is connected to the output end of the optical add/drop multiplexer 20-83; the optical add/drop multiplexer 20-81 receives the service from the westward optical fiber;
  • the add multiplexer 20-82 outputs traffic from the eastbound fiber; the optical add/drop multiplexer 20-83 outputs traffic from the west down fiber; and the optical add/drop multiplexer 20-84 receives traffic from the east down fiber.
  • the strip function can be implemented at the sink node.
  • the eastbound adjacent fiber segment of the node fails, the eastbound traffic of the node will be switched from the lower fiber to the upper fiber loop to the upper fiber to the local source node.
  • the node at this time, the wavelength blocker 10-83 turns on the optical wavelength channel corresponding to the service, so that the optical wavelength service is switched back from the upper fiber backup channel to the lower fiber working channel, and the wavelength blocker 10-84 pairs the optical wavelength channels. Blocking is performed to implement the node culling or stripping, that is, the strip function.
  • the wavelength blocker 10-84 If the wavelength blocker 10-84 is not blocked, and the wavelength blocker 10-84 of the source node corresponding to the service is still blocked, it becomes a source strip function, that is, the preferred embodiment shown in FIG. 8 can also The source strip function in the preferred embodiment embodiment shown in FIG. 7 is implemented.
  • FIG. 1 A schematic diagram of the internal composition of a sink-removed loopback packet optical channel shared protection according to a preferred embodiment of the present invention is shown in FIG.
  • the service node comprises: 6 wavelength blockers 10 (represented by 10-91, 10-92, 10-93, 10-94, 10-95, and 10-96, respectively) and 4 The optical add/drop multiplexer 20 (represented by 20-91, 20-92, 20-93, and 20-94, respectively).
  • the input of the wavelength blocker 10-91 is connected to the output of the optical add/drop multiplexer 20-94, and the output is connected to the input of the optical add/drop multiplexer 20-93; the input of the wavelength occluder 10-92 and the optical splitter
  • the outputs of the add-drop multiplexers 20-93 are connected, the outputs are connected to the inputs of the optical add/drop multiplexers 20-91; the inputs of the wavelength occluder 10-93 are connected to the outputs of the optical add/drop multiplexers 20-92.
  • the output is connected to the input of the optical add/drop multiplexer 20-94; the input of the wavelength occluder 10-94 is connected to the output of the optical add/drop multiplexer 20-91, and the output and the optical add/drop multiplexer 20-
  • the input of the wavelength blocker 10-95 is connected to the output of the optical add/drop multiplexer 20-92, and the output is output from the east optical fiber; the input of the wavelength blocker 10-96 and the optical add/drop multiplexing
  • the outputs of the devices 20-93 are connected to output the service from the west down fiber; the optical add/drop multiplexer 20-91 receives the traffic from the westward optical fiber; and the optical add/drop multiplexer 20-94 receives the traffic from the east down fiber.
  • the pass through function can be carried by the wavelength blocker 10-91, the wavelength blocker 10-94, or the wavelength blocker 10-95, the wavelength blocker 10-96, and the stripping function is performed by the wavelength blocker 10-95. bear.
  • At least two opposite-direction optical wavelength occluders 10 are connected between the upper optical fiber and the lower optical fiber in the service node, and the upper optical fiber and the lower optical fiber are connected.
  • At least one optical add/drop multiplexer 20 and one optical wavelength occluder 10 are disposed on each other; Steer, Copy, Pass through, and Stip are processed by setting a plurality of optical wavelength occluder 10 states, and optical splitting is performed.
  • the device completes the uplink and the downlink of the service; the optical wavelength blocker connected between the upper fiber and the lower fiber implements Steer and Copy processing, and the light wavelength blocker 10 on the upper and lower fibers completes Pass through and Strip processing.
  • the input end and the output end of the optical add/drop multiplexer 20 may be directly connected, that is, equivalent to adding a power split interface at the input end of the optical add/drop multiplexer 20.
  • a portion of the power is output directly to the output of the optical add/drop multiplexer 20, which is equivalent to the Express in the prior art, as will be understood by those of ordinary skill in the art, as such does not affect the implementation of the present invention.
  • FIG. 11 The transmission path of the service connection before the fault is identified by a thick solid line in FIG. 11 , and the transmission path of the service connection after the fault is indicated by a thick broken line in FIG. 11 , and the implementation of FIG. 11 can be easily understood by those skilled in the art.
  • the banding multiplex section protection can be realized by any action.
  • 10-33 in the B node switches all the east optical wavelength signals of the node to the lower optical fiber, and on the opposite side.
  • 10-32 of the C node switches all the westward optical wavelength signals of the node to the upper optical fiber, that is, the band multiplexing multiplex section protection is completed.
  • 10-31 and 10-34 are self-excited on the backup channel when preventing unidirectional fiber failure.
  • FIG. 1 A flow of a method of packet optical channel sharing protection according to a preferred embodiment of the present invention is shown in FIG.
  • step 110 proceed to step 110 to determine whether the service has received the impact of the fault, and if so, proceed to step 120, otherwise it ends.
  • step 120 proceeds to step 120, otherwise it ends.
  • the purpose is to find the affected service for subsequent protection processing.
  • each node combines the source optical nodes of the working optical fiber into a set of converted optical wavelengths of the local node to the backup optical fiber.
  • a node may be a source node of a plurality of wavelengths of the affected light.
  • the wavelengths of the affected light are combined into a unified Steer process.
  • the pair of optical wavelengths of the standby node in the backup fiber are combined into a working optical fiber.
  • the so-called copy operation the reason for this copy operation is that the service can only be carried out on the working fiber, and when the switch is invented, the wavelength of the light carrying the service is transmitted to the sink node through the backup fiber. In order to be able to get the service down, these wavelengths must be switched from the backup fiber to the working fiber.
  • the optical wavelengths of the backup fibers in the backup fiber are not combined with the optical wavelengths of the local node. It is also called Pass through operation.
  • a node performing blocking or stripping may be a sink node of a service or a source node of a service.
  • any node between the sink node and the source node can block or strip the service, but since there may be no intermediate node between the sink node and the source node in actual application, the blocking or stripping of the service is selected at the sink node or The source node is better.
  • processing in the above steps can be performed at the service node. It is implemented by a wavelength selective device in combination with OADM.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Small-Scale Networks (AREA)

Description

分组光通道共享保护方法、 装置及系统
技术领域
本发明涉及光通信技术 , 特别涉及光通信中的光网络的故障保护。 背景技术
随着通信技术发展, 通信的可靠性要求越来越高。 通信的可靠性的一 个重要影响因素就是网络生存性。 所谓网络生存性, 就是指网絡在经受网 络失效和设备失效期间仍能维持可接受的业务质量等级的能力。 表征网络 生存性能的主要技术指标有: 冗余度、 恢复率和恢复时间。 冗余度定义为 网络中总空闲容量与总工作容量之比, 主要是衡量系统为提高生存性能所 需要付出的额外代价; 恢复率指在故障发生情况下, 已恢复的通道数与原 来失效的总通道数之比, 或已恢复的容量与原来的总失效容量之比; 恢复 时间指网络为恢复失效业务所需要耗费的时间。
在通信领域,不同业务对故障恢复时间的要求完全不同。一般情形下, 大型金融机构和银行的自动取款机对业务的恢复时间要求最高, 一般要求 小于 50ms; 普通通信业务对业务中断时间的忍受能力较高, 但一般也不 超过 30分钟。 这些业务是在经过交换机或路由器处理后, 经过光网絡进 行传输的。 一般而言, 当传输网络中断时间在 50 ~ 200ms之间时, 交换业 务的连接丢失概率小于 5 % , 对于 7号信令网和信元中继业务基本没有影 响。 当传输网絡中断时间增加至 200ms ~ 2s之间时, 交换业务丟失概率开 始逐步上升, 超过 2s后, 大部分的电路交换连接、 专线、 拨号业务都将 丢失。 而当传输网络中断时间到达 10s时, 所有通信会话都将丟失连接。 而如果传输网络中断时间超过 5分钟后, 将会引起交换机的严重阻塞和上 层业务的更长时间的不可恢复。
光通信技术是目前通信领域发展最快的技术领域, 尤其是光器件的进 步, 极大地推动了光通信技术的发展, 其传输速率平均每 9个月翻一番, 比摩尔定律还要快一倍。波分多路复用( Wavelength Division Multiplexing, 简称 "WDM" )技术正是实现高速大容量传输的首选技术, 现在 WDM技 术的发展已经使单根光纤可以承载的通信容量高达 Tbps。 在这种情况下, 底层光网络光纤线路故障或设备故障往往影响着大量的业务,提高光通信 网络的网络生存性日益成为运营商和设备供应商的研究热点。
WDM技术日趋成熟, 其组网方式也已从背靠背的链形连接向环形网 和网状网发展。 城域 WDM 常常以环网形式组网, 模拟同步数字体系 (Synchronous Optical Network, 筒称 "SDH" )环网提供的单向通道倒换环 ( Unidirectional Path Switching Ring, 简称 " UPSR" )、 双向通道倒换环 ( Bidirectional Path Switching Ring , 简称 "BPSR" )、 单向线路倒换环 ( Unidirectional Line Switching Ring , 简称 "ULSR" )、 双向线路倒换环 ( Bidirectional Line Switching Ring , 简称 "BLSR" )、 子网连接保护 ( Sub-Network Connection Protection , 简称 " SNCP" )等保护方式, WDM 系统提供了类似的保护方式: 光单向通道倒换环 (Optical Unidirectional Path Switching Ring , 简称 " OUPSR" )、 光双向通道倒换环 (Optical Bidirectional Path Switching Ring , 简称 "OBPSR" )、 单向线路倒换环 ( Optical Unidirectional Line Switching Ring , 简称 "OULSR" )、光双向线 路倒换环( Optical Bidirectional Line Switching Ring, 简称 "OBLSR" )、 光 子网连接保护 ( Optical Sub-Network Connection Protection , 简称 "OSNCP" )、光通道共享保护环( Optical Channel Shared Protection Ring , 简称 "OCh-SPRing" )„
所谓 "光通道共享保护" 就是在一个环上不同段上存在的双向业务连 接共用了同一对波长 λΐ和 λ2, λΐ和 λ2分别在两根不同的光纤上, 与此同 时,这两根光纤上对应的 λ2和 λΐ被用作工作波长 λΐ和 λ2的保护波长。 因 为不同跨段上的双向业务连接可以共用同一对波长作为保护波长, 这种保 护方式被称作光通道共享保护。
对于参与光通道共享保护的节点而言, 其必须支持三个操作: 业务穿 通、 业务上和业务下。 业务穿通是指其它站点的保护业务能在该站点直接 穿通, 以保证正确无误地传送到其目的节点; 业务上指当本地的业务受到 影响后, 能够正确倒换到备份通道上进行传输; 业务下则指目的地为本地 的业务在工作通道受故障影响后, 能通过备份通道传送到本地, 并能在本 地将备份通道的业务正确地弓 ]入到接收机中来。
为了在节点上实现上述三种操作, 常见的光通道共享保护方法都是先 通过光分插复用器(Optical Add Drop Multiplexer, 筒称 "OADM" )将一 对波长分离出来, 之后在光通道共享保护倒换装置中对这一对波长进行处 理。 图 1所示为现有的光通道共享保护节点的内部组成示意图。 其中, 字 母 W表示工作 (Work )波长, 字母 P表示保护 (Protect )波长, 工作波 长和保护波长在图 1中分别用实线和虚线区别标识,字母 D表示下路业务 ( Drop ), 字母 A表示上路业务(Add )。
下面结合图 1 说明光通道共享保护的一种常见的具体实现方式。在图 1所示的一个典型的现有光通道共享保护节点内,可以如下配置各个波长: 西向的外纤波长 W11采用波长 1作为工作波长, 西向的内纤波长 W21采 用波长 2作为工作波长, 东向的外纤波长 W12采用波长 1作为工作波长, 东向的内纤波长 W22采用波长 2作为工作波长; 与此同时, 西向的外纤 波长 P22采用波长 2作为 W22的保护波长, 西向的内纤波长 P12采用波 长 1作为 W12的保护波长, 东向的外纤波长 P21采用波长 2作为 W21的 保护波长, 东向内纤波长 P11采用波长 1作为 W11的保护波长。 这样, 在该节点连接的两段光纤上的双向业务就共用了一对波长实现了光通道 共享保护。 可以看出, 这种技术方案中, 不同段上存在的多个业务可以采 用相同的波长, 即一个波长在不同段上可以被多个业务共享并实现保护, 因此称为光通道共享保护。 在节点内, 先用 OADM从东西两个线路方向 上将该波长对解复用出来后, 经过光通道共享保护倒换单元处理后才能再 经 OADM复用后从东西两个线路方向发送出去, 上下路业务也通过光通 道共享保护倒换单元完成业务的上路和下路, 其中, 图 1所示的节点在完 成外纤上业务 A2的上路和业务 D1的下路,以及内纤上业务 A1的上路和 业务 D2的下路。 当环上某段光纤或节点出现故障时, 收端检测到某一方 向信号丢失后自动切换, 选择接收另一方向的信号。 例如, 图 1所示节点 西向的外纤发生故障时, OADM检测到从西向接收的外纤信号( W11 )丢 失, 则自动切换为从东向内纤接收的信号(Pll ), P11作为 W11的保护波 长, 实现业务保护。
上面所述的光通道共享保护, 是以一对波长作为基本单位, 先用 OADM从东西两个线路方向上将该波长对解复用出来,经过光通道共享保 护倒换单元处理, 再经 OADM复用后从东西两个线路方向发送出去。 该 方案的缺点是当一个环上需要同时对多个波长对进行光通道共享保护时, 就需要针对每个波长对设置对应的 OADM站点和光通道共享保护单元, 这样就大大增加了光通道共享保护的实现成本和复杂程度。
为了解决光通道共享保护实现方式上的诸多不便, 实现更高效率的保 护。 可以将多个波长捆绑成组, 对该波长组采取共享保护方式。 这种方式 因为是对一组波长进行相同处理, 因此保护倒换相对要简单很多, 但因为 要求同一波长组中的不同波长采取的保护倒换动作一致, 因此就要求不同 波长必须具有相同的源宿节点, 然而, 实际情形中, 多个波长在环上多个 跨段同时保持相同的业务连接的可能性比较小, 这种方式实用性很受限。
在分组共享保护方式之外, 还有分带复用段共享保护方式, 其保护是 针对所有波长进行的, 该保护方式借鉴了光通道共享保护中双向业务连接 分别使用不同波长的特点, 在外纤使用一个波长带比如红带, 而内纤使用 另外一个波长带如蓝带, 外纤的蓝带波长作为内纤蓝带波长的保护波长, 内纤的红带波长作为外纤红带波长的保护波长 , 这种方式显而易见具有和 光通道共享保护波长一样的波长利用效率, 而且整个环上只需要所有节点 都配置一块相同的保护倒换单元即可实现所有波长对的保护倒换,在故障 发生时只需要在故障段相邻节点执行保护倒换即可, 实现简单方便。 但是 因为分带共享保护仍然属于复用段共享保护, 在保护倒换时, 被保护波长 需要绕保护纤绕行一圈, 这意味着波长在保护倒换时经过的距离会远远超 过正常工作时所经过的距离, 虽然经过仔细的波长规划, 保护倒换时最长 距离可以小于 1.5倍的环长, 但在 WDM系统中这意味着需要为每个波长 连接预留足够的 0SNR预算。 特別是在长跨段的 WDM系统中, 这种保护方 法需要进行仔细的 0SNR预算和波长规划, 约束条件很多, 实现复杂。 发明内容
有鉴于此, 本发明的主要目的在于提供一种分组光通道共享保护方 法、 装置及系统, 使得光通道共享保护的成本降 ^、 实现筒化。
为实现上述目的, 本发明提供了一种分组光通道共享保护方法, 用于 由互为工作和名分关系的两才艮光纤连接至少两个节点而组成的环网, 其中 所述节点用于完成业务信号的上路和下路, 每个所述节点在故障发生时执 行以下步骤:
将工作光纤中源节点为本节点的各受影响光波长合成一組, 倒换至备 份光纤;
将备份光纤中宿节点为本节点的各光波长合成一组, 倒换至工作光 纤;
将备份光纤中宿节点不是本节点的各光波长合成一組, 透明穿通本节 点。
更进一步, 将备份光纤中传输的各备份光波长根据其源宿信息进行阻 塞或剥离以防止形成环回。
其中 , 互为工作和备份关系的两根光纤分別使用不同的波长作为工作 波长, 并将与对方工作波长相同的波长通道作为保护波长;
所述工作和备份关系的两根光纤所分别使用的工作波长包含但不限 制于奇数波长、 偶数波长、 红带、 蓝带。 式倒换。、 ' 日 、 。 、、 、。 ' 5' 由所述备份波长的源节点或宿节点将备份光纤中传输的各备份光波 长进行阻塞或剥离。
在故障相邻节点对所述备份光波长进行阻塞或剥离。
本发明提供的分组光通道共享保护系统, 包含由互为主备关系的第一 和第二光纤连接至少两个节点而组成的环网,
每个所述节点还用于在发生故障时将工作光纤中源节点为本节点的 各受影响光波长合成一组倒换至备份光纤, 将备份光纤中宿节点为本节点 的各光波长合成一组倒换至工作光纤, 将备份光纤中宿节点不是本节点的 各光波长合成一组透明穿通本节点。
所述节点进一步将备份光纤中传输的各备份光波长根据其源宿信息 进行阻塞或剥离以防止形成环回。
根据所述各备份光波长的源宿信息进行阻塞或剥离的节 所述备 份光波长的源节点或宿节点。 所述节点进一步在故障段相邻节点对所述备份光波长进行阻塞或剥 离。
每个所述节点包含:
至少两个光分插复用器, 分别连接在所述第一和第二光纤上, 用于所 连光纤中业务信号的上路和下路;
至少四个光波长选择性器件, 其中两个光波长选择性器件分别串接在 所述第一和第二光纤中, 用于选择性地对备份光波长进行阻塞, 另两个光 波长选择性器件的两端分别连接所述第一和第二光纤, 分别用于选择性地 将第一光纤中的光波长倒换到第二光纤或将第二光紆中的光波长倒换到 第一光纤。
所述光波长选择性器件包含波长阻塞器, 或者光解复用器、 可调衰减 器和光复用器的组合, 或者光解复用器、 光开关阵列和光复用器的组合。
所述用于倒换的光波长选择性器件对源节点为本节点的, 以故障光纤 段为工作光纤的受影响光波长组设置成打开状态, 用于将所述光波长倒换 至备份光纤。
每一个所述节点的用于倒换的光波长选择性器件对备份光纤中的宿 节点为本节点的备份光波长组设置成打开状态, 用于将备份光波长组倒换 回工作光纤, 并且通过连接在工作光纤上的所述光分插复用器将所述波长 信号下路。
所述节点串接在光纤上的所述用于阻塞的光波长选择性器件对源节 点或宿节点为本节点的光波长组设置成阻断状态, 以阻止备份光波长在备 份光纤上形成环回。
所述节点串接在光纤上的用于阻塞的光波长选择性器件对备份光纤 中源节点或宿节点不是本节点的光波长组设置成打开状态, 用于将备份光 纤中源节点或宿节点不是本节点的各光波长透明穿通本节点。
所述系统包含第一、 第二、 第三和第四光分插复用器, 其中, 第一和第二光分插复用器与所述第一光纤相连, 第三和第四光分插复 用器与所述第二光纤相连;
第一光分插复用器用于第一光纤中业务信号的下路, 第二光分插复用 器用于第一光纤中业务信号的上路, 第三光分插复用器用于第二光纤中业 务信号的下路, 第四光分插复用器用于第二光纤中业务信号的上路。
本发明所述的分组光通道共享保护系统也可以包含六个光波长选择 性器件, 其中两个分别串接在所述两根光纤中, 用于选择性地对备份光波 长进行阻塞, 另外四个的两端分別连接所述第一和第二光纤, 分别用于选 择性地将第一光纤中的工作光波长倒换到第二光纤, 或将第一光纤中的备 份光波长倒换到第二光纤, 或将第二光纤中的工作光波长倒换到第一光 纤, 或将第二光纤中的备份光波长倒换到第一光纤。
每个所述节点包含:
至少两个光分插复用器, 分别连接在所述第一和第二光纤上, 用于所 连光纤中业务信号的上路和下路;
至少两个光波长选择性器件, 两个光波长选择性器件的两端分别连接 所述第一和第二光纤, 分別用于选择性地将第一光纤中的光波长倒换到第 二光纤或将第二光纤中的光波长倒换到第一光纤;
至少两个光开关, 分别串接在第一光纤和第二光纤上, 用于在所述节 点相邻光纤发生故障时, 强制东向或西向光纤同时失效。
所述用于倒换的光波长选择性器件对源节点为本节点的, 以故障光纤 段为工作光纤的受影响光波长组设置成打开状态, 用于将所述光波长倒换 至备份光纤。
每一个所述节点的用于倒换的光波长选择性器件对备份光纤中的宿 节点为本节点的备份光波长组设置成打开状态, 用于将备份光波长组倒换 回工作光纤, 并且通过连接在工作光纤上的所述光分插复用器将所述波长 信号下路。
所述光纤故障相邻段节点通过控制与故障光纤段相连接的光开关断 开, 阻塞备份光波长在备份光纤上形成环回。
所述互为工作和备份关系的两根光纤分别使用不同的波长作为工作 波长, 并将与对方工作波长相同的波长通道作为保护波长。
所述工作和备份关系的两根光纤所分别使用的工作波长包含奇数波 长、 偶数波长、 红带、 蓝带。 本发明提供的用于两根光纤、 至少两个节点组成的双纤光通道共享保 护环的光通道共享保护装置, 包含至少两个光分插复用单元, 分别用于对 第一光纤和第二光纤, 用于所述光纤中业务信号的上路和下路; 至少两个 光波长选择性器件, 所述两个光波长选择性器件的两端分别连接所述第一 和第二光纤, 分别用于选择性地将第一光纤中的光波长倒换到第二光纤或 将第二光纤中的光波长倒换到第一光纤。
所述光通道共享保护装置进一步包括: 至少两个光开关, 分别串接在 第一光纤和第二光纤上, 用于在所述节点相邻光纤发生故障时, 强制东向 或西向光纤同时失效。
所述光纤故障相邻段节点通过控制与故障光纤段相连接的光开关断 开, 阻塞备份光波长在备份光纤上形成环回。
所述光通道共享保护装置,进一步包括:至少两个光波长选择性器件, 其中两个光波长选择性器件分别串接在所述第一和第二光纤中, 用于选择 性地对备份光波长进行阻塞。
所述用于倒换的光波长选择性器件对源节点为本节点的, 以故障光纤 段为工作光纤的受影响光波长组设置成打开状态, 用于将所述光波长倒换 至备份光纤。
每一个所述节点的用于倒换的光波长选择性器件对备份光纤中的宿 节点为本节点的备份光波长组设置成打开状态, 用于将备份光波长组倒换 回工作光纤, 并且通过连接在工作光纤上的所述光分插复用器将所述波长 信号下路。
所述光波长选择性器件包含但不限制于波长阻塞器, 或者光解复用 器、 可调衰減器和光复用器的组合, 或者光解复用器、 光开关阵列和光复 用器的组合。
通过比较可以发现, 本发明的技术方案与现有技术的主要区别在于, 在发生故障时, 以光波长组而不是单一光波长为对象进行操作, 倒换时完 成 4个动作, 即将工作光纤中受影响光波长组倒换至备份光纤(Steer ), 将备份光纤中宿节点为本节点的光波长组倒换至工作光纤 (Copy ), 将备 份光纤中宿节点不是本节点的光波长组透明穿通本节点 ( Pass Through ), 将备份光纤中传输的备份光波长组进行阻塞或剥离以防止形成环回 ( Strip )。 还公开了多种实现以上 4种操作的节点结构, 其共同特点为上 下光纤之间有一对的 WB ( Wavelength Blocker, 波长阻塞器), 上下光纤 中各串接一个 WB并且各自连接一个 OADM。
这种技术方案上的区别, 带来了较为明显的有益效果, 即首先, 由于 采用了分组的倒换, 不需要为每个波长提供单独的倒换装置, 因此大大节 约了系统的成本; 其次, 由于倒换距离比较短, 可以少于一周, 因此对于 OS 等约束条件比较少, 实现比较筒单, 可以实现更大范围的组环; 第 三, 本发明方案不需要统一倒换的一组业务具有相同的源宿节点, 系统配 置更加灵活,应用范围更广; 另夕卜,本发明方案的业务节点设置比较灵活, 可以同时支持光通道保护和复用段保护两种保护方式。
附图说明
图 1是现有的光通道共享保护节点的内部组成示意图;
图 2是分组光通道共享保护的原理图;
图 3是根据本发明的一个较佳实施例的源节点终结的分组光通道共享 保护的节点内部组成示意图;
图 4是根据本发明的一个较佳实施例的同源不同宿、 同宿不同源的业 务连接和出现故障的示意图;
图 5是根据本发明的一个较佳实施例的宿节点终结的分组光通道共享 保护的节点内部组成示意图;
图 6是根据本发明的一个较佳实施例的环回式分组光通道共享保护的 节点内部组成示意图;
图 7是才艮据本发明的一个较佳实施例的源剥离的交叉式分组光通道共 享保护的节点内部组成示意图;
图 8是根据本发明的一个较佳实施例的宿剥离的交叉式分组光通道共 享保护的节点内部组成示意图;
图 9是根据本发明的一个较佳实施例的宿剥离的环回式分组光通道共 享保护的节点内部组成示意图;
图 10是才艮据本发明的一个较佳实施例的分组光通道共享保护的方法 的流程图;
图 11 是一个采用了本发明的分组光通道共享保护装置实现复用段保 护的环网以及环网出现故障后的系统示意图。
具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本 发明作进一步地详细描述。
首先说明本发明的基本原理。 考虑到现有技术方案中将波长分组进行 保护时同一组中的不同波长对都在相同的源宿节点产生和终结的可能性 非常小, 为了突破这个限制对不同源宿节点的波长进行统一的保护倒换, 本发明采用波长选择性器件, 包括波长阻塞器和波长选择器, 实现在不同 节点对这些波长组进行重新拆分和组合。 本发明的每个节点将自身为源节 点和自身为宿节点的受到影响的光波长通道业务分别作为源光通道组和 宿光通道组, 可以完成倒换( Steer )、 复制 (Copy )、 穿通( Pass through ) 和剥离 (Strip ) 功能。 在一次故障发生后, 在源节点进行 Steer处理, 将 源光通道组从本地上业务中分离出来并从工作光纤倒换至备份光纤进行 传输; 在宿节点进行 Copy处理, 将宿光通道组从^分光纤中的保护通道 中分离出来并倒换至工作光纤以在宿节点终结; 同时, 源或宿节点能使用 Strip处理将源光通道组或宿光通道组从对应的备份光纤中剔除;中间节点 进行 Pass through处理, 根据信令或自身检测结果将上一节点倒换至备份 光纤传送过来的备份通道信号透传至下一节点。 需要说明的是, 这些源光 通道组的宿节点并不一定相同,同理,宿光通道组的源节点也不一定相同。 通过在环上各个节点实现上述四个功能, 就能在 WDM环中灵活的提供分 组光通道共享保护, 并且能够降低系统成本, 简化系统的实现。
需要说明的是, 工作光纤和备份光纤是相对所传输的光波长而言的, 并不是两根光纤中一根固定为工作光纤另一根固定为备份光纤。 也就是 说, 如果正常情况下某个光波长是通过光纤一传输的, 那对于这个光波长 来说光纤一是工作光纤, 光纤二是发生故障时的备份光纤。 实际上两根光 纤是互为工作和 ^分关系的, 光纤一中正常情况下传输的光波长是以光纤 二作为备份光纤, 而光纤二正常情况下传输的光波长是以光纤一作为备份 光纤。
分组光通道共享保护的系统由多个业务节点组成。 这些业务节点通过 光紆连接组成 WDM环网,每个节点都可以提供 Steer, Copy, Pass through 和 Strip功能。 相对于光波长通道业务来说, 业务节点分为源节点、 宿节 点和中间节点三类。 在本发明的一个较佳实施例中, 在一次故障发生后, 在源节点进行 Steer处理, 将源光通道组从本地上业务中分离出来并从工 作光纤倒换至备份光纤进行传输; 在宿节点进行 Copy处理, 将宿光通道 组从备份光纤中的保护通道中分离出来并倒换至工作光纤以在宿节点终 结; 同时, 源或宿节点能使用 Strip处理将源光通道组或宿光通道组从对 应的备份光纤中剔除; 中间节点进行 Pass through处理, 根据信令或自身 检测结果将上一节点倒换至备份光纤传送过来的备份通道信号透传至下 一节点。 需要说明的是, 对于一个业务节点来说, 源光通道组为以该业务 节点为源节点的所有业务的光波长通道, 宿光通道组为以该业务节点为宿 节点的所有业务的光波长通道。
需要说明的是, 本发明中 Steer特指在源节点将源光通道组从本地上 业务中分离出来并从工作光纤倒换到备份光纤, 本文为了说明方便, 可以 简译为倒换; Copy特指在宿节点将宿光通道组从备份光纤中的保护通道 中分离出来并倒换至工作光纤以在宿节点终结, 可以简译为复制。
在本发明的一个较佳实施例中, 在如图 2所示的 WDM网中 , 外纤为 实线表示的顺时针方向, 内纤为虛线表示的逆时针方向 , 业务连接都分配 在顺时针的外纤上,此时业务连接的传输路径在图 2以粗实线标识。其中, A、 B、 C、 D、 E和 F为业务节点, 业务节点八与8、 E之间各有一个业 务连接(业务 1、 4 ), A和 D之间存在两个业务连接(业务 2、 3 ), B和 E 之间存在一个业务连接 (业务 5 ), B和 F之间存在两个业务连接 (业务 6、 7 )。 需要说明的是, 图 2的数字用于标识业务连接, 不同的业务, 例如业 务 1和业务 7可以使用相同的波长。
当业务节点 B和业务节点 C之间的光纤段发生故障后, 业务节点 A、 B执行对各自原光通道组的 Steer动作, 业务节点 A、 B到业务节点 D、 E、 F的业务, 即业务 2、 3、 4、 5、 6和 7将倒换到内纤上进行传输, A到 B 的业务, 即业务 1不会发生倒换; 与之同时, 业务节点 A节点还需要将 B 节点到 E、 F节点的业务,即业务 5、 6、 7,在 A节点穿通,执行 Pass through 动作; 在业务节点 F, B节点传送过来的业务 6、 7分拆到本地已终结, 执 行 Copy动作, 并将 A、 B S'J D. E的业务, 即业务 2、 3、 4、 5继续穿通, 执行 Pass through动作。 同时, 业务节点 D、 E与业务节点 F的执行动作 类似, 在此不详细说明。 需要说明的是, 业务节点 C因为没有任何业务在 该业务节点终结, 在^ C光纤段发生故障时, 业务节点 C不承担任何动 作, 但如果是环上与业务节点 C 非相邻的跨段发生故障时, 业务节点 C 需要执行 Pass through动作。 需要说明的是, 当图 2中只有外纤发生故障, 而内纤并没有发生故障时, 环上业务节点必须能对外纤倒换至内纤的光波 长通道在宿节点之后到源节点之间的业务节点(包含宿节点和源节点)上设 置一个终结点。 在本发明的一个较佳实施例中, 将终结点设置在宿节点或 者源节点上, 之所以这样设定, 是因为宿节点和源节点可能是相邻的。 需 要说明的是, 如果终节点是设置在源节点, 意味着倒换后的光信号在内纤 上会绕行一周, 最终在源节点被剥离出去, 在图 2中就是由业务节点 A、 B执行 Strip动作;如果是设置在宿节点,则分别由 D、 E、 F节点执行 Strip 动作, 此时光信号不会在环上绕行一周。 之所以要设定终节点, 执行 Strip 动作, 是因为若没有终结点, 单向光纤故障情形下, 光信号将在备份光纤 上成环构成环回自激, 最终影响光信号质量。 此时业务连接的传输路径在 图 2以粗虚线标识。
为了更清楚的说明本发明方案, 下面结合本发明较佳实施例中业务节 点的具体实现来说明。
根据本发明的一个较佳实施例的源节点终结的分组光通道共享保护 的系统中, 业务节点的内部组成示意图如图 3所示。
在该较佳实施例中,业务节点包含: 4个波长阻塞器 10(分别用 10-31 ,
10-32, 10-33和 10-34表示 ),两个光分插复用器 20 (分别用 20-31和 20-32 表示)。
波长阻塞器 10-31接收西向从上光纤进入的业务, 输出端和光分插复 用器 20-31 的输入端连接; 波长阻塞器 10-32 的输入端和光分插复用器 20-32的输出端连接, 输出端和光分插复用器 20-32的输出端连接; 波长 阻塞器 10-33的输入端和光分插复用器 20-31的输出端连接, 输出端和光 分插复用器 20-32的输入端连接; 波长阻塞器 10-34接收东向从下光纤进 入的业务, 输出端和光分插复用器 20-32 的输入端连接; 光分插复用器 20-31从东向上光纤输出业务; 光分插复用器 20-32从西向下光纤输出业 务。
波长阻塞器 10用于通过状态的改变阻塞或允许一定波长的业务的通 过。 波长阻塞器 10的具体实现及功能为本领域技术人员公知, 在此不详 细说明。
光分插复用器 20用于完成业务的复用 /解复用, 实现客户端的业务的 上路和下路。 光分插复用器 20的具体实现及功能为本领域技术人员公知, 在 j¾不详细说明。
熟悉本领域的技术人员可以理解, 根据内外纤上的工作波长分配互补 的原则, 可以采用红蓝带分配, 也可以采用奇偶波长分配, 甚至可以是其 它分配, 只要两根光纤上的工作波长不一样, 互相利用对应的波长作为备 份, 通过设定波长阻塞器 10对特定波长通道的开启和关闭, 就可以实现 Steer、 Pass through Copy和 Strip功能。 例如, 在本发明的该较佳实施例 中, 正常工作时, 波长阻塞器 10-32、 波长阻塞器 10-33处于完全阻塞状 态, 波长阻塞器 10-31和波长阻塞器 10-34分别工作在红带阻、 蓝带通和 蓝带通、 红带阻状况下。 当东向光纤发生故障后, 上述节点中的全部东向 业务会受到影响, 此时波长阻塞器 10-33就会将东向上路业务对应的波长 管道开启, 将该节点东向上业务全部倒换至下面的光纤传输, 因为上光纤 和下光纤正常工作时的波长不会有冲突, 因此业务倒换后下光纤中也不会 发生拥塞, 该节点完成了 Steer功能。 因为光纤故障可能只影响到一才艮光 纤, 若只有上光纤受到了断路, 而下光纤依然完好, 波长阻塞器 10-34完 成这个功能, 只需要将波长阻塞器 10-33中对应开启的波长管道在波长阻 塞器 10-34中设置为阻塞状态, 就可以将上光纤倒换至下光纤的波长剔除 出环路, 从而避免下光纤中的波长环回自激问题, 该节点完成了源节点 Strip功能。 当相邻的东向上、 下光纤都发生断纤故障时, 该节点东向下路 业务也会受到影响, 对应源节点将业务从下光纤倒换至上光纤传输到本节 点时, 波长阻塞器 10-31、 波长阻塞器 10-33 同样需要对这些波长业务开 启通道, 就能将业务从上光纤再次倒换至下光纤中, 并且在光分插复用器 20中完成对应波长的解复用,完成 Copy功能。对于东向下路的业务来说, 它在故障段对侧的节点 (可能是故障段相邻也可能不是故障段相邻的)从下 光纤倒换至上光纤以逆时针方向穿过中间节点 (假设东向下路业务的源宿 节点在西向不相邻),中间节点的上光纤上设置的波长阻塞器 10-31必须能 保证下光纤倒换至上光纤中的波长透明穿过该节点,从而完成 pass through 功能。 对应的, 非源节点的波长阻塞器 10 - 34也需要保证上光纤倒换到 下光纤的备份波长也能穿通, 以完成 pass through功能。
需要说明的是, Strip可以在源节点可以在宿节点实现终结, 具体实现 时取决于在哪个业务节点设定波长阻塞器 10的状态实现对特定波长通道 的 Strip功能, 这并不影响本发明的实质。
熟悉本领域的技术人员可以理解, 上面描述的四种功能实现都没有区 分源光通道组的宿节点不一致和宿光通道组的源节点不一致问题。
图 4是根据本发明的一个较佳实施例的同源不同宿、 同宿不同源的业 务连接和出现故障的示意图。
下面结合图 3所述的节点结构和图 4进一步描述在本发明的一个较佳 实施例中如何实现这种分组式光通道共享保护。
图 4所示的环上四个节点 A、 8和( 、 D之间都存在波长连接, 这些 波长连接都经过8、 C光纤段, 内纤为逆时针方向, 外纤为顺时针方向, 分别对应图 3中的上光纤和下光纤。 当 8、 C光纤段发生故障后, C将本 来从外纤传给 A、 B的业务倒换至内纤进行传输, 但 C->A和 C->B对应 的光波长信号到达 A节点时, A节点的波长阻塞器 10-31将会为 C->A、 C->B两个波长都开放通道,但波长阻塞器 10-33只为 C-A波长开放通道。 在本发明的一个较佳实施例中,在源节点完成 Strip功能,因此 C->A、 C->B 对应的光波长信号在倒换到内纤传输后会绕纤一周, 需要说明的是, 如果 B、 C段内光纤也同时发生断纤故障, 此时 C->A、 C->B信号不会到达 C 节点就已经剥离出环。 当 C->A、 >8对应的光波长信号到达 B节点时, B节点中的波长阻塞器 10-31同样会对两个波长都开放通道, 但 B节点的 波长阻塞器 10-33只对 C->B对应的光波长开启,从而将 C->B对应的光波 长信号倒换至正常的工作通道完成整个保护倒换动作。 实际实现中, 也可 以在 B节点的波长阻塞器 10-31对 A节点的 >入对应的光波长信号进行 阻塞, 但这不能改变只能由 C节点对 C->B光波长信号阻塞。
熟悉本领域的一般技术人员可以理解, 当上述节点的西向相邻光纤段 发生故障时, 波长阻塞器 10-31 和波长阻塞器 10-34、 波长阻塞器 10-32 和波长阻塞器 10-33执行的功能互换就可以完成西向的保护倒换过程, 类 似图 4中的 A、 B节点角色和 C、 D节点角色更换, 在此就不再赘述。
根据本发明的一个较佳实施例的宿节点终结的分组光通道共享保护 的节点内部组成示意图如图 5所示。
在该较佳实施例中,业务节点包含: 4个波长阻塞器 10(分别用 10-51, 10-52, 10-53和 10-54表示),两个光分插复用器 20 (分别用 20-51和 20-52 表示 )。
波长阻塞器 10-51的输入端和光分插复用器 20-52的输出端连接, 从 西向下光纤输出业务; 波长阻塞器 10-52的输入端和光分插复用器 20-52 的输出端连接, 输出端和光分插复用器 20-51的输出端连接; 波长阻塞器 10-53 的输入端和光分插复用器 20-51 的输出端连接, 输出端和光分插复 用器 20-52 的输入端连接; 波长阻塞器 10-54 的输入端和光分插复用器 20-51 的输出端连接, 从东向上光纤输出业务; 光分插复用器 20-51从西 向上光纤接收业务; 光分插复用器 20-52从东向下光纤接收业务。
在本发明的该较佳实施例中, 当东向相邻段光纤故障导致东向下路业 务受影响后, 东向相邻光纤段对侧源节点(可能是邻近故障段也可能是不 邻近故障段)将业务倒换至上光纤环回至上述节点。 在波长阻塞器 10-53 为对应的业务开放通道之后, 即可将对应的下路波长从上光纤环回至下光 纤完成业务的保护倒换过程。 与图 3所示的较佳实施例不同的是, 波长阻 塞器 10-54需要对波长阻塞器 10-53开启的光通道进行阻塞,从而完成 Strip 功能。 因为该较佳实施例是在宿节点完成从保护光纤链路上剔除保护光波 长的, 因此称为宿节点终结的光通道共享保护。 其它功能如 steer、 copy 和 pass through的实现与图 3所示的实施例的实现基本类似, 本领域的技 术人员很容易对照图 3所示的实施例实现, 在此不详细说明。
根据本发明的一个较佳实施例的环回式分组光通道共享保护的节点 内部组成示意图如图 6所示。
在该较佳实施例中,业务节点包含:4个波长阻塞器 10(分别用 10-61 ,
10-62, 10-63和 10-64表示), 4个光分插复用器 20 (分别用 20-61、 20-62、 20-63和 20-64表示)和两个光开关 30 (分别用 30-61和 30-62表示)。
其中, 光开关 30用于通过闭合或断开实现光纤的通断的控制, 避免 光通道环回自激。 光开关 30的具体实现及功能为本领域技术人员公知, 在此不详细说明。
波长阻塞器 10-61的输入端和光分插复用器 20-64的输出端连接, 输 出端和光分插复用器 20-63的输入端连接; 波长阻塞器 10-62的输入端和 光分插复用器 20-63的输入端连接, 输出端和光分插复用器 20-61的输入 端连接;波长阻塞器 10-63的输入端和光分插复用器 20-62的输出端连接, 输出端和光分插复用器 20-64的输入端连接; 波长阻塞器 10-64的输入端 和光分插复用器 20-61的输出端连接, 输出端和光分插复用器 20-62的输 入端连接; 光分插复用器 20-61 从西向上光纤接收业务; 光分插复用器 20-62通过光开关 30-62从东向上光纤输出业务;光分插复用器 20-63通过 光开关 30-61从西向下光纤输出业务; 光分插复用器 20-64从东向下光纤 接收业务。
熟悉本领域的技术人员可以理解, 在图 6所示的该较佳实施例中, 结 合波长阻塞器 10-62和波长阻塞器 10-63有选择性的环回功能后, 也可以 实现分组光通道共享保护功能。 例如, 在该较佳实施例中, 在正常工作情 况下, 波长阻塞器 10-61和波长阻塞器 10-64分别工作在红带通蓝带阻、 蓝带通红带阻, 光开关 30-61和光开关 30-62都处于闭合状态下, 波长阻 塞器 10-62和波长阻塞器 10-63则分别工作完全阻塞状态下。 当东向相邻 光纤段发生断纤故障后, 因为本节点首先检测到下光纤无信号, 它可判定 下光纤发生断路事故, 即下发指令给光开关 30-61进行断路, 以模拟成光 纤双断故障模式。 在此之后, 在波长阻塞器 10-63上开启本地受到影响的 东向上路业务对应的光波长通道, 将上光纤中受到的光波长信号倒换至下 光纤环回进行传输, 波长阻塞器 10-61也需要对环回波长执行类似的开启 动作, 从而完成源光通道组的 Steer源保护倒换。 在该节点西向下游节点 的波长阻塞器 10-61对这些波长也执行开启动作, 确保备份通道能无障碍 的传递到宿节点的西向下路光解复用器, 此时这些节点的波长阻塞器 10-61执行的动作即为 Pass through。 当到了宿节点时, 宿节点的波长阻塞 器 10-62会对该目的节点时该节点的波长波长开启, 完成下光纤到上光纤 的倒换, 此时执行波长阻塞器 10-62执行了 Copy动作。 即波长阻塞器 10-62、 波长阻塞器 10-63既承担 Steer功能, 又承担 Copy功能。 Strip则 是由上述的光开关 1完成, 通过它模拟的光纤双断故障可以防止任意一根 光纤形成环回, 从而阻止了光通道环回自激的可能性。
在该较佳实施例中, 将东向和西向光分插复用器 20分离开来, 这种 模式是目前波长阻塞器 10用到最多的地方, 可以保证光分插复用器 20无 限制在线升级。
根据本发明的一个较佳实施例的源剥离的交叉式分组光通道共享保 护的节点内部组成示意图如图 7所示。
在该较佳实施例中,业务节点包含: 6个波长阻塞器 10(分别用 10-71, 10-72, 10-73、 10-74、 10-75、 和 10-76表示)和 4个光分插复用器 20 (分 別用 20-71、 20-72、 20-73和 20-74表示)。
波长阻塞器 10-71的输入端和光分插复用器 20-74的输出端连接, 输 出端和光分插复用器 20-73的输入端连接; 波长阻塞器 10-72的输入端和 光分插复用器 20-73的输出端连接, 输出端和光分插复用器 20-71的输入 端连接; 波长阻塞器 10-73的输入端和光分插复用器 20-72的输出端连接, 输出端和光分插复用器 20-74的输入端连接; 波长阻塞器 10-74的输入端 和光分插复用器 20-71的输出端连接, 输出端和光分插复用器 20-72的输 入端连接; 波长阻塞器 10-75的输入端和光分插复用器 20-73的输出端连 接, 输出端 i和光分插复用器 20-72的输出端连接; 波长阻塞器 10-76的输 入端和光分插复用器 20-72的输出端连接, 输出端和光分插复用器 20-73 的输出端连接; 光分插复用器 20-71从西向上光纤接收业务; 光分插复用 器 20-72从东向上光纤输出业务; 光分插复用器 20-73从西向下光纤输出 业务; 光分插复用器 20-74从东向下光纤接收业务。
在该较佳实施例中,由波长阻塞器 10-72、波长阻塞器 10-73承担 Copy 功能, 波长阻塞器 10-75、 波长阻塞器 10-76承担 Steer功能, 波长阻塞器 10-71和波长阻塞器 10-74承担 Pass through和源 Strip功能。 例如, 在该 较佳实施例中, 若图 7所示的节点的东向相邻光纤段发生故障后, 波长阻 塞器 10-76开启本地东向上路业务对应的波长通道, 允许其通过 WB6直 接环回至节点西向下光纤传输完成 Steer功能。 对应的, 本地东向下路业 务在其源节点被倒换至上光纤环回到本节点, 此时波长阻塞器 10-74和波 长阻塞器 10-73都开子这些本地要终结的波长通道, 从而将这些波长环回 至下光纤完成 Copy功能。 本节点的波长阻塞器 10-71则对本地上路经波 长阻塞器 10-76的光信号进行阻塞,以避免波长成环自激,执行的是源 Strip 功能。 对于中间节点而言, 其波长阻塞器 10-74和波长阻塞器 10-71分别 要对源节点倒换到上、 下光纤的保护光通道开启, 以便穿过它们到达目的 节点, 此时中间节点的波长阻塞器 10-71和波长阻塞器 10-74执行了 pass through功能。
根据本发明的一个较佳实施例的宿剥离的交叉式分组光通道共享保 护的节点内部组成示意图如图 8所示。
在该较佳实施例中,业务节点包含: 6个波长阻塞器 10(分别用 10-81, 10-82, 10-83、 10-84、 10-85、 和 10-86表示)和 4个光分插复用器 20 (分 别用 20-81、 20-82、 20-83和 20-84表示)。
波长阻塞器 10-81的输入端和光分插复用器 20-84的输出端连接, 输 出端和光分插复用器 20-83的输入端连接; 波长阻塞器 10-82的输入端和 光分插复用器 20-84的输入端连接, 输出端和光分插复用器 20-81的输入 端连接;波长阻塞器 10-83的输入端和光分插复用器 20-81的输入端连接, 输出端和光分插复用器 20-84的输入端连接; 波长阻塞器 10-84的输入端 和光分插复用器 20-81的输出端连接, 输出端和光分插复用器 20-82的输 入端连接; 波长阻塞器 10-85的输入端和光分插复用器 20-83的输出端连 接, 输出端和光分插复用器 20-82的输出端连接; 波长阻塞器 10-86的输 入端和光分插复用器 20-82的输出端连接, 输出端和光分插复用器 20-83 的输出端连接; 光分插复用器 20-81从西向上光纤接收业务; 光分插复用 器 20-82从东向上光纤输出业务; 光分插复用器 20-83从西向下光纤输出 业务; 光分插复用器 20-84从东向下光纤接收业务。
在该较佳实施例中, 可以在宿节点实现 strip功能。 例如, 在该较佳实 施例中, 若节点的东向相邻光纤段发生故障, 则该节点的东向下路业务在 其源节点将会由下光纤倒换至上光纤环回至上光纤传输到本节点, 此时波 长阻塞器 10-83开启这些业务对应的光波长通道, 以将光波长业务由上光 纤备份通道倒换回下光纤工作通道上, 同时波长阻塞器 10-84对这些光波 长通道进行阻塞,从而实现宿节点剔除或剥离即 strip功能。如果波长阻塞 器 10-84不进行阻塞,而仍有这些业务所对应的源节点的波长阻塞器 10-84 进行阻塞, 则成为源 strip功能, 即是图 8所示的较佳实施例也可以实现图 7所示的较佳实施例实施例中的源 strip功能。
根据本发明的一个较佳实施例的宿剥离的环回式分组光通道共享保 护的节点内部组成示意图如图 9所示。
在该较佳实施例中,业务节点包含: 6个波长阻塞器 10(分別用 10-91, 10-92, 10-93、 10-94、 10-95、 和 10-96表示)和 4个光分插复用器 20 (分 别用 20-91、 20-92、 20-93和 20-94表示)。
波长阻塞器 10-91的输入端和光分插复用器 20-94的输出端连接, 输 出端和光分插复用器 20-93的输入端连接; 波长阻塞器 10-92的输入端和 光分插复用器 20-93的输出端连接, 输出端和光分插复用器 20-91的输入 端连接;波长阻塞器 10-93的输入端和光分插复用器 20-92的输出端连接, 输出端和光分插复用器 20-94的输入端连接; 波长阻塞器 10-94的输入端 和光分插复用器 20-91的输出端连接, 输出端和光分插复用器 20-92的输 入端连接; 波长阻塞器 10-95的输入端和光分插复用器 20-92的输出端连 接, 从东向上光纤输出业务; 波长阻塞器 10-96的输入端和光分插复用器 20-93的输出端连接, 从西向下光纤输出业务; 光分插复用器 20-91从西 向上光纤接收业务;; 光分插复用器 20-94从东向下光纤接收业务。
图 9所示的较佳实施例的具体实现与前文所述的图 5所示的较佳实施 例类似, Pass through功能可以由波长阻塞器 10-91、 波长阻塞器 10-94承 担, 也可以由波长阻塞器 10-95、 波长阻塞器 10-96 担, 剥离功能由波 长阻塞器 10-95承担。
本领域的普通技术人员可以看出, 这些实施例有一个共同点, 即业务 节点内的上光纤和下光纤之间至少连接了两个方向相反的光波长阻塞器 10, 在上光纤和下光纤上至少各有一个光分插复用器 20和一个光波长阻 塞器 10;通过设定多个光波长阻塞器 10状态实现 Steer、 Copy、 Pass through 和 Stip这几个处理, 通过光分插复用器完成了业务的上路和下路; 上光纤 和下光纤之间连接的光波长阻塞器实现 Steer和 Copy处理,在上光纤和下 光纤上的光波长阻塞器 10完成 Pass through和 Strip处理。
本领域的普通技术人员可以理解, 出于本发明同样的考虑, 可以对本 发明的具体实现和一些细节^:一些 改, 例如, 可以采用其它波长选择性 器件替代光波长阻塞器 10,也可以改变业务节点内部的各器件的连接关系 同样实现 teer、 Copy, Pass through和 Stip这几个处理, 这并不影响本发 明实质。
需要说明的是, 为了便于系统的平滑升级, 可以将光分插复用器 20 的输入端和输出端直接连接, 即相当于在光分插复用器 20的输入端增加 一个功分接口, 将一部分功率直接输出到光分插复用器 20的输出端, 相 当于现有技术中的 Express, 本领域的普通技术人员可以理解, 这样并不 影响本发明的实现。
需要说明的是, 本发明的技术方案虽然因为要实现分組光通道共享保 护而提出, 但是熟悉本领域的技术人员可以理解, 利用本发明的可以进行 Steer, Copy Pass through和 Strip处理的业务节点, 本发明的技术方案也 可以直接或稍作变化用于实现分带复用段保护。 其中, 采用了本发明的分 组光通道共享保护装置实线复用段保护的的环网以及环网出现故障后的 系统示意图如图 11所示。 其中, 故障前的业务连接的传输路径在图 11以 粗实线标识, 故障后的业务连接的传输路径在图 11 中以粗虚线标识, 熟 悉本领域的普通技术人员很容易理解图 11的实现。 当 B、 C段光紆段发生 故障时, B点将外纤的所有顺时针光波长通道环回至内纤进行传输, 而 C 任何动作, 即可实现分带复用段保护。 以图 3所示的源节点终结的分组光 通道共享保护的系统的实施例为例, B节点中的 10-33将本节点的所有东 向光波长信号倒换至下光纤, 而在对侧的 C节点的 10-32将本节点的所有 西向光波长信号倒换至上光纤, 即完成了分带复用段保护。 当然, 10-31 和 10-34是防止单向光纤故障时的备份通道上成环自激。
根据本发明的一个较佳实施例的分组光通道共享保护的方法的流程 如图 10所示。
首先, 进入步骤 110, 判断业务是否收到故障影响, 如果是则进入步 骤 120, 否则结束。 其中, 该步骤中在光纤线路出现故障时进行, 其目的 是找出受影响的业务以进行后续的保护处理。
在步骤 120中, 每个节点将工作光纤中源节点为本节点的各受影响光 波长合成一组倒换至备份光纤。 需要说明的是, 一个节点可能会是多个受 影响光波长的源节点, 在本发明中将这些受影响光波长合成一组进行统一 的 Steer处理。
接着, 进入步骤 130, 将备份光纤中宿节点为本节点的各光波长合成 一组倒换至工作光纤。 也就是所谓的 Copy操作, 之所以要进行这个 Copy 操作, 是因为只有在工作光纤上才可以进行业务的下路, 而发明倒换时, 承载业务的光波长是通过备份光纤传到宿节点的, 为了能够使业务下路, 必须把这些波长从备份光纤倒换到工作光纤。
接着, 进入步驟 140, 将备份光纤中宿节点不是本节点的各光波长合 成一组透明穿通本节点。 也就是所谓的 Pass through操作。
最后, 进入步驟 150, 将^分光纤中传输的各^分光波长根据其源宿 信息进行阻塞或剥离以防止形成环回。 也就是所谓的 Strip操作。 一般来 说, 执行阻塞或剥离的节点可以是业务的宿节点也可以是业务的源节点。 当然, 理论上可以在宿节点和源节点之间的任意节点阻塞或剥离该业务, 但由于实际应用中宿节点和源节点之间可能没有中间节点, 因此业务的阻 塞或剥离选择在宿节点或者源节点较好。
熟悉本领域的技术人员可以理解, 上述步骤中的处理可以在业务节点 上通过波长选择性器件结合 OADM实现。
需要说明的是, 本发明的技术方案虽然因为要实现分组光通道共享保 护而提出, 但是熟悉本领域的技术人员可以理解, 本发明的技术方案也可 以直接或稍作变化用于实现分带复用段保护。
虽然通过参照本发明的某些优选实施例, 已经对本发明进行了图示和 描述, 但本领域的普通技术人员应该明白, 可以在形式上和细节上对其作 各种各样的改变, 而不偏离所附权利要求书所限定的本发明的精神和范 围。

Claims

权 利 要 求
1. 一种分组光通道共享保护方法, 用于由互为工作和备份关系的两 根光纤连接至少两个节点而组成的环网, 其中所述节点用于完成业务信号 的上路和下路,
其特征在于, 每个所述节点在故障发生时执行以下步骤:
将工作光纤中源节点为本节点的各受影响光波长合成一组, 倒换至备 份光纤;
将备份光纤中宿节点为本节点的各光波长合成一组, 倒换至工作光 纤;
将备份光纤中宿节点不是本节点的各光波长合成一组, 透明穿通本节 点。
2.根据所述权利要求 1所述的分组光通道共享保护方法,其特征在于 进一步包括: 将备份光纤中传输的各备份光波长根据其源宿信息进行阻塞 或剥离以防止形成环回。
3.根据权利要求 1所述的分组光通道共享保护方法, 其特征在于,互 为工作和备份关系的两根光纤分別使用不同的波长作为工作波长, 并将与 对方工作波长相同的波长通道作为保护波长;
4.根据权利要求 3所述的分组光通道共享保护方法, 其特征在于, 工 作和备份关系的两根光纤所分别使用的工作波长包含但不限制于奇数波 长、 偶数波长、 红带、 蓝带。
5. 根据权利要求 1 所述的分组光通道共享保护方法, 其特征在于, 所述工作光纤和备份光纤之间的相互倒换可以是环回式倒换或交叉式倒 换。
6. 根据权利要求 2所述的分组光通道共享保护方法, 其特征在于, 由所述备份波长的源节点或宿节点将备份光纤中传输的各备份光波长进 行阻塞或剥离。
7.根据权利要求 1所述的分组光通道共享保护方法, 其特征在于:在 故障相邻节点对所述备份光波长进行阻塞或剥离。
8. —种分组光通道共享保护系统, 包含由互为主备关系的第一和第 二光纤连接至少两个节点而组成的环网,
其特征在于, 每个所述节点还用于在发生故障时将工作光纤中源节点 为本节点的各受影响光波长合成一组倒换至备份光纤, 将备份光纤中宿节 点为本节点的各光波长合成一组倒换至工作光纤, 将备份光纤中宿节点不 是本节点的各光波长合成一组透明穿通本节点。
9.根据权利要求 8所述的分组光通道共享保护系统,其特征在于, 所 述节点进一步将备份光纤中传输的各备份光波长根据其源宿信息进行阻 塞或剥离以防止形成环回。
10.根据权利要求 9所述的分组光通道共享保护系统, 其特征在于, 根据所述各备份光波长的源宿信息进行阻塞或剥离的节点为所述备份光 波长的源节点或宿节点。
11.根据权利要求 8所述的分组光通道共享保护系统, 其特征在于, 所述节点进一步在故障段相邻节点对所述备份光波长进行阻塞或剥离。
12. 根据权利要求 8所述的分组光通道共享保护系统, 其特征在于, 每个所述节点包含:
至少两个光分插复用器, 分别连接在所述第一和第二光纤上, 用于所 连光纤中业务信号的上路和下路;
至少四个光波长选择性器件, 其中两个光波长选择性器件分别串接在 所述第一和第二光纤中, 用于选择性地对备份光波长进行阻塞, 另两个光 波长选择性器件的两端分别连接所述第一和第二光纤, 分别用于选择性地 将第一光纤中的光波长倒换到第二光纤或将第二光纤中的光波长倒换到 第一光纤。
13. 根据权利要求 12所述的分组光通道共享保护系统, 其特征在于, 所述光波长选择性器件包含波长阻塞器, 或者光解复用器、 可调衰减器和 光复用器的组合, 或者光解复用器、 光开关阵列和光复用器的组合。
14. 根据权利要求 12或 13所述的分组光通道共享保护系统, 其特征 在于, 所述用于倒换的光波长选择性器件对源节点为本节点的, 以故障光 纤段为工作光纤的受影响光波长组设置成打开状态, 用于将所述光波长倒 换至备份光纤。
15. 根据权利要求 12或 13所述的分组光通道共享保护系统, 其特征 在于, 每一个所述节点的用于倒换的光波长选择性器件对备份光纤中的宿 节点为本节点的备份光波长组设置成打开状态, 用于将备份光波长组倒换 回工作光纤, 并且通过连接在工作光纤上的所述光分插复用器将所述波长 信号下路。
16. 根据权利要求 12或 13所述的分组光通道共享保护系统, 其特征 在于, 所述节点串接在光纤上的所述用于阻塞的光波长选择性器件对源节 点或宿节点为本节点的光波长组设置成阻断状态, 以阻止备份光波长在备 份光纤上形成环回。
17. 才艮据权利要求 12或 13所述的分组光通道共享保护系统, 其特征 在于, 所述节点串接在光纤上的用于阻塞的光波长选择性器件对备份光纤 中源节点或宿节点不是本节点的光波长组设置成打开状态, 用于将备份光 纤中源节点或宿节点不是本节点的各光波长透明穿通本节点。
18.根据权利要求 12所述的分组光通道共享保护系统, 其特征在于, 所述系统包含第一、 第二、 第三和第四光分插复用器, 其中,
第一和第二光分插复用器与所述第一光纤相连, 第三和第四光分插复 用器与所述第二光纤相连;
第一光分插复用器用于第一光纤中业务信号的下路, 第二光分插复用 器用于第一光纤中业务信号的上路, 第三光分插复用器用于第二光纤中业 务信号的下路, 第四光分插复用器用于第二光纤中业务信号的上路。
19.根据权利要求 18所述的分组光通道共享保护系统, 其特征在于, 所述系统包含六个光波长选择性器件, 其中两个分别串接在所述两根光纤 中, 用于选择性地对备份光波长进行阻塞, 另外四个的两端分別连接所述 第一和第二光纤, 分别用于选择性地将第一光纤中的工作光波长倒换到第 二光纤, 或将第一光纤中的备份光波长倒换到第二光纤, 或将第二光纤中 的工作光波长倒换到第一光纤, 或将笫二光纤中的^分光波长倒换到第一 光纤。
20.根据权利要求 8所述的分组光通道共享保护系统, 其特征在于, 每个所述节点包含: 至少两个光分插复用器, 分别连接在所述第一和第二光纤上, 用于所 连光纤中业务信号的上路和下路;
至少两个光波长选择性器件, 两个光波长选择性器件的两端分别连接 所述第一和第二光纤, 分别用于选择性地将第一光纤中的光波长倒换到第 二光纤或将第二光纤中的光波长倒换到第一光纤;
至少两个光开关, 分别串接在第一光纤和第二光纤上, 用于在所述节 点相邻光纤发生故障时, 强制东向或西向光纤同时失效。
21.根据权利要求 20所述的分组光通道共享保护系统, 其特征在于, 所述用于倒换的光波长选择性器件对源节点为本节点的, 以故障光纤段为 工作光纤的受影响光波长组设置成打开状态, 用于将所述光波长倒换至备 份光纤。
22. 根据权利要求 20所述的分组光通道共享保护系统, 其特征在于, 每一个所述节点的用于倒换的光波长选择性器件对备份光纤中的宿节点 为本节点的备份光波长组设置成打开状态, 用于将备份光波长组倒换回工 作光纤, 并且通过连接在工作光纤上的所述光分插复用器将所述波长信号 下路。
23. 根据权利要求 20所述的分组光通道共享保护系统, 其特征在于, 所述光纤故障相邻段节点通过控制与故障光纤段相连接的光开关断开, 阻 塞备份光波长在备份光纤上形成环回。
24. 根据权利要求 8所述的分組光通道共享保护系统, 其特征在于, 所述互为工作和^ [分关系的两根光纤分别使用不同的波长作为工作波长, 并将与对方工作波长相同的波长通道作为保护波长。
25.根据权利要求 8所述的分组光通道共享保护系统, 其特征在于, 所述工作和备份关系的两根光纤所分别使用的工作波长包含奇数波长、偶 数波长、 红带、 蓝带。
26. 一种用于两根光纤、 至少两个节点组成的双纤光通道共享保护环 的光通道共享保护装置, 其特征在于, 所述光通道共享保护装置包含至少 两个光分插复用单元, 分别用于对第一光纤和第二光纤, 用于所述光纤中 业务信号的上路和下路; 至少两个光波长选择性器件, 所述两个光波长选 择性器件的两端分别连接所述第一和第二光纤, 分别用于选择性地将第一 光纤中的光波长倒换到第二光纤或将第二光纤中的光波长倒换到第一光 纤。
27.根据权利要求 26所述光通道共享保护装置,其特征在于进一步包 括: 至少两个光开关, 分别串接在第一光纤和第二光纤上, 用于在所述节 点相邻光纤发生故障时, 强制东向或西向光纤同时失效。
28.根据权利要求 27所述的分组光通道共享保护装置, 其特征在于, 所述光纤故障相邻段节点通过控制与故障光纤段相连接的光开关断开, 阻 塞备份光波长在备份光纤上形成环回。
29.根据权利要求 26所述光通道共享保护装置,其特征在于进一步包 括: 至少两个光波长选择性器件, 其中两个光波长选择性器件分别串接在 所述第一和第二光纤中, 用于选择性地对备份光波长进行阻塞。
30.根据权利要求 29所述的分组光通道共享保护装置, 其特征在于, 所述用于倒换的光波长选择性器件对源节点为本节点的, 以故障光纤段为 工作光纤的受影响光波长组设置成打开状态, 用于将所述光波长倒换至备 份光纤。
31. 根据权利要求 29所述的分组光通道共享保护装置, 其特征在于, 每一个所述节点的用于倒换的光波长选择性器件对备份光纤中的宿节点 为本节点的备份光波长组设置成打开状态, 用于将备份光波长组倒换回工 作光纤, 并且通过连接在工作光纤上的所述光分插复用器将所述波长信号 下路。
32.根据权利要求 26或 29所述的分组光通道共享保护装置, 其特征 在于, 所述光波长选择性器件包含但不限制于波长阻塞器, 或者光解复用 器、 可调衰减器和光复用器的组合, 或者光解复用器、 光开关阵列和光复 用器的组合。
PCT/CN2005/002428 2005-01-01 2005-12-31 Procede de protection du partage de voies de transmission optique par paquets, dispositif et systeme associes WO2006069551A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/813,143 US8103161B2 (en) 2005-01-01 2005-12-31 Method, device and system for group optical channel shared protection
EP05847861.1A EP1833180B1 (en) 2005-01-01 2005-12-31 A packet optical channel sharing protection method device and system thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNB2005100054426A CN100388708C (zh) 2005-01-01 2005-01-01 分组光通道共享保护方法及其系统
CN200510005442.6 2005-01-01

Publications (1)

Publication Number Publication Date
WO2006069551A1 true WO2006069551A1 (fr) 2006-07-06

Family

ID=36614514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2005/002428 WO2006069551A1 (fr) 2005-01-01 2005-12-31 Procede de protection du partage de voies de transmission optique par paquets, dispositif et systeme associes

Country Status (4)

Country Link
US (1) US8103161B2 (zh)
EP (1) EP1833180B1 (zh)
CN (1) CN100388708C (zh)
WO (1) WO2006069551A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100388708C (zh) 2005-01-01 2008-05-14 华为技术有限公司 分组光通道共享保护方法及其系统
CN100454785C (zh) * 2005-12-22 2009-01-21 华为技术有限公司 一种分组光通道共享保护的方法及装置
US8184979B2 (en) * 2008-08-28 2012-05-22 Nec Laboratories America, Inc. Optical OFDMA network with dynamic sub-carrier allocation
CN101640818B (zh) * 2009-09-08 2012-09-05 中兴通讯股份有限公司 光网络保护装置和保护方法
JP2011077808A (ja) * 2009-09-30 2011-04-14 Fujitsu Ltd 光伝送システム
US20110142438A1 (en) * 2009-12-14 2011-06-16 Electronics And Telecommunications Research Institute Protection switching method in optical transport network
CN101883008A (zh) * 2010-06-28 2010-11-10 中兴通讯股份有限公司 一种传送多协议标签交换网络的子网保护方法及装置
CN102300237B (zh) * 2011-08-23 2017-04-12 中兴通讯股份有限公司 基站链路的保护方法和基站网管系统
US8929201B2 (en) * 2011-09-22 2015-01-06 Electronics And Telecommunications Research Institute Method and apparatus of performing protection switching on networks
US9759907B2 (en) * 2015-01-28 2017-09-12 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Rapid optical shutter, chopper, modulator and deflector
US9665942B2 (en) 2015-02-11 2017-05-30 Sandia Corporation Object detection and tracking system
CN112865914B (zh) * 2021-02-24 2024-05-07 中国联合网络通信集团有限公司 光波分传送系统及方法
CN113872688A (zh) * 2021-09-28 2021-12-31 海南通信建设有限公司 一种光缆故障综合测试方法及其装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6414765B1 (en) * 2000-03-07 2002-07-02 Corning, Inc. Protection switch in a two-fiber optical channel shared protection ring
CN1416234A (zh) * 2001-10-29 2003-05-07 上海贝尔有限公司 用于波分复用光网的双纤双向通道/复用段倒换环系统
US6771852B2 (en) * 2001-04-06 2004-08-03 Corning Incorporated Two-fiber optical shared protection ring with a bi-directional 4×4 optical switch fabric
CN1529450A (zh) * 2003-09-30 2004-09-15 烽火通信科技股份有限公司 一种基于波长或波带保护的光分插复用节点装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6631018B1 (en) * 1997-08-27 2003-10-07 Nortel Networks Limited WDM optical network with passive pass-through at each node
GB9807583D0 (en) * 1998-04-08 1998-06-10 Cambrian Systems Corp Path switched shared protection
DE19828973A1 (de) 1998-06-29 1999-12-30 Siemens Ag Optisches 2-Faser-Ringnetz
US6898376B1 (en) 1998-12-14 2005-05-24 Tellabs Operations, Inc. Optical ring protection apparatus and methods
US6501877B1 (en) * 1999-11-16 2002-12-31 Network Photonics, Inc. Wavelength router
US6847607B1 (en) 2000-06-01 2005-01-25 Sirocco Systems, Inc. Automatic provisioning of protection circuits in a communications network
US6895186B2 (en) * 2000-12-27 2005-05-17 The Trustees Of Columbia University In The City Of New York System for accessing a wavelength-division-multiplexed bidirectional optical fiber ring network
CN1221099C (zh) 2001-10-31 2005-09-28 华为技术有限公司 通用分组无线业务中隧道数据包业务优先级控制方法
DE10231275A1 (de) 2002-07-10 2004-01-22 Marconi Communications Gmbh Verfahren zum Übertragen von Information in einem optischen Netzwerk und Knoten für ein solches Netzwerk
DE50303699D1 (de) 2002-03-23 2006-07-20 Marconi Comm Gmbh Optische schaltstation und vermittlungsverfahren dafür
US7437075B2 (en) 2002-08-27 2008-10-14 Lucent Technologies Inc. Integrated reconfigurable optical add/drop multiplexer
KR100506206B1 (ko) * 2002-10-16 2005-08-05 삼성전자주식회사 2-광섬유 링형 광 네트워크
CN100336327C (zh) * 2002-11-02 2007-09-05 中兴通讯股份有限公司 全光网络二纤双向环通道共享保护装置
KR100487215B1 (ko) * 2003-01-03 2005-05-04 삼성전자주식회사 파장분할다중방식 자기치유 환형 광통신망
KR100498955B1 (ko) * 2003-02-05 2005-07-04 삼성전자주식회사 파장분할다중방식 자기치유 환형 광통신망
WO2004079950A1 (ja) * 2003-03-04 2004-09-16 Fujitsu Limited リング型光ネットワークのノード装置
KR100520637B1 (ko) * 2003-04-30 2005-10-13 삼성전자주식회사 파장분할다중방식 자기치유 양방향 환형 광통신망
CN1260908C (zh) 2003-05-22 2006-06-21 上海贝尔阿尔卡特股份有限公司 波分复用线路两纤光复用段保护装置
CN100370700C (zh) 2004-04-14 2008-02-20 华为技术有限公司 波分复用系统中光通道共享保护的实现方法、系统及装置
CN100388708C (zh) 2005-01-01 2008-05-14 华为技术有限公司 分组光通道共享保护方法及其系统
US7787763B2 (en) 2005-04-04 2010-08-31 Fujitsu Limited System and method for protecting optical light-trails
CN100454785C (zh) * 2005-12-22 2009-01-21 华为技术有限公司 一种分组光通道共享保护的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6414765B1 (en) * 2000-03-07 2002-07-02 Corning, Inc. Protection switch in a two-fiber optical channel shared protection ring
US6771852B2 (en) * 2001-04-06 2004-08-03 Corning Incorporated Two-fiber optical shared protection ring with a bi-directional 4×4 optical switch fabric
CN1416234A (zh) * 2001-10-29 2003-05-07 上海贝尔有限公司 用于波分复用光网的双纤双向通道/复用段倒换环系统
CN1529450A (zh) * 2003-09-30 2004-09-15 烽火通信科技股份有限公司 一种基于波长或波带保护的光分插复用节点装置

Also Published As

Publication number Publication date
EP1833180A4 (en) 2011-05-11
US8103161B2 (en) 2012-01-24
EP1833180A1 (en) 2007-09-12
CN100388708C (zh) 2008-05-14
CN1847893A (zh) 2006-10-18
EP1833180B1 (en) 2015-09-02
US20090123146A1 (en) 2009-05-14

Similar Documents

Publication Publication Date Title
WO2006069551A1 (fr) Procede de protection du partage de voies de transmission optique par paquets, dispositif et systeme associes
US9270405B2 (en) Directionless optical architecture and highly available network and photonic resilience methods
US6597658B1 (en) Hierarchical telecommunications network with fault recovery
US7321729B2 (en) Optical ring network with selective signal regeneration and wavelength conversion
JPH11508427A (ja) 自己回復網
US6839514B1 (en) Method and apparatus for operation, protection, and restoration of heterogeneous optical communication networks
JP2005033802A (ja) 自己治癒波長分割多重方式受動型光加入者網
US9462358B2 (en) Apparatus and method for an optical network
JP2007208591A (ja) 光クロスコネクト装置
WO2008019608A1 (fr) Procédé, système et appareil pour protéger une transmission à multiplexage par répartition en longueur d'onde
WO2010006551A1 (zh) 波分复用环网中的共享保护方法及系统
EP1536583B1 (en) Optical ring network with optical subnets
WO2005022782A1 (fr) Structure d'echange et procede de configuration de connexion entre reseaux optiques
US20080292310A1 (en) Method, Apparatus And System For Optical Channel Group Shared Protection
US6968130B1 (en) System and method for fully utilizing available optical transmission spectrum in optical networks
WO2000013347A1 (fr) Commutateur optique
JP2005051774A (ja) リングネットワーク間で光トラヒックを通信するためのシステム及び方法
JP2001156821A (ja) 波長多重リングネットワークシステムとそのノード装置及び障害回復方法
JP3475756B2 (ja) 通信ネットワーク、通信ネットワーク・ノード装置、及び、障害回復方式
JP2000078176A (ja) 通信ネットワ―ク及び通信ネットワ―ク・ノ―ド装置
JP3788263B2 (ja) 通信ネットワーク、通信ネットワーク・ノード装置、及び、障害回復方式
JP2004254339A (ja) 通信ネットワーク及び通信ネットワーク・ノード装置
JP2005354592A (ja) 光伝送装置、光伝送方法および光伝送システム
Kartalopoulos et al. Network Protection and Fault Management
JP2001217776A (ja) 波長多重通信ネットワーク障害復旧システム及びその方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005847861

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11813143

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005847861

Country of ref document: EP