WO2006068302A1 - Solid electrolytic capacitor element, solid electrolytic capacitor and method for manufacturing same - Google Patents

Solid electrolytic capacitor element, solid electrolytic capacitor and method for manufacturing same Download PDF

Info

Publication number
WO2006068302A1
WO2006068302A1 PCT/JP2005/024155 JP2005024155W WO2006068302A1 WO 2006068302 A1 WO2006068302 A1 WO 2006068302A1 JP 2005024155 W JP2005024155 W JP 2005024155W WO 2006068302 A1 WO2006068302 A1 WO 2006068302A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolytic capacitor
solid electrolytic
capacitor element
conductor
dopant
Prior art date
Application number
PCT/JP2005/024155
Other languages
French (fr)
Japanese (ja)
Inventor
Kazumi Naito
Katutoshi Tamura
Original Assignee
Showa Denko K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko K.K. filed Critical Showa Denko K.K.
Publication of WO2006068302A1 publication Critical patent/WO2006068302A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0036Formation of the solid electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Definitions

  • the present invention relates to a method for manufacturing a solid electrolytic capacitor element having a low equivalent series resistance (ESR) value and a high capacity.
  • ESR equivalent series resistance
  • Aluminum capacitors and tantalum solid electrolytic capacitors are known as high-capacitance and low-ESR capacitors used in various electronic devices.
  • the solid electrolytic capacitor was formed on the surface layer of an aluminum foil having fine pores on the surface layer and a sintered body of tantalum powder having fine pores inside as one electrode (conductor). It is produced by sealing a solid electrolytic capacitor element composed of a dielectric layer and the other electrode (usually a semiconductor layer) provided on the dielectric layer and an electrode layer laminated on the other electrode. ing.
  • an organic compound or an inorganic compound is used, but a conductive polymer is preferably used in consideration of the heat resistance and low ESR characteristics of the produced capacitor.
  • This conductive polymer is a polymer having a high conductivity of 10 to 2 to 10 3 S ⁇ cm, and a polymer having a planar conjugated double bond (usually an insulator) High conductivity is exhibited by adding an electron donating compound called a dopant to a polymer having extremely low conductivity.
  • a single molecule (monomer) that can become a conductive polymer in the pores of a conductor is used in the presence of a dopant, or an appropriate oxidizing agent or The method of superposing
  • a dopant is taken in to obtain a conductive polymer.
  • Patent No. 1 9 4 5 3 5 8 and Patent No. 2 8 1 1 6 4 8 a semiconductor is formed by laminating an electropolymerization layer by an energization method after forming a chemical polymerization layer using an oxidizing agent. A method of forming a layer is described. Disclosure of the invention
  • an object of the present invention is to provide a method for producing a high-capacity solid electrolytic capacitor having a good ESR value.
  • the present inventors have supplied a sufficient amount of dopant to the conductor by forming a semiconductor layer by a current application method on the conductor impregnated with the dopant after forming the dielectric layer.
  • the semiconductor layer can be formed to a desired level, and it has been found that a high-capacity solid electrolytic capacitor element exhibiting a lower ESR value can be obtained, thereby completing the present invention. That is, the present invention provides the following method for producing a solid electrolytic capacitor element and a solid electrolytic capacitor produced using the method.
  • a method for manufacturing a solid electrolytic capacitor element in which a semiconductor layer containing a conductive polymer is formed on a conductor having a dielectric layer on the surface, the conductor having a dielectric layer on the surface is impregnated with a dopant, A method for producing a solid electrolytic capacitor element, characterized in that a semiconductor layer is formed by an energization method. 2. dopant, the manufacture of the solid electrolytic capacitor element of the 1, wherein electric conductivity of an electron-donating compound providing 10 one 1 ⁇ 1 0 3 S ⁇ cm one first conductive polymer upon doping during electropolymerization Method.
  • the semiconductor layer has the following general formula (1) or (2)
  • a solid electrolytic capacitor element according to 1 above which is at least one layer selected from a semiconductor mainly composed of a conductive polymer in which a dopant is added to a polymer containing a repeating unit represented by formula (1).
  • a polymer containing a repeating unit represented by the general formula (1) is represented by the following general formula (3)
  • each of 16 and 17 is independently a hydrogen atom, a linear or branched saturated or unsaturated alkyl group having 1 to 6 carbon atoms, or an alkyl group thereof. And a substituent which forms a cyclic structure of at least one 5- to 7-membered saturated hydrocarbon containing two oxygen atoms and is substituted with the cyclic structure. Those having a good vinylene bond and those having a phenylene structure which may be substituted are also included.
  • the conductive polymer is described in 5 above, wherein the conductive polymer is selected from polyaniline, polyoxyphenylene, polyphenylene sulfide, polythiophene, polyfuran, polypyrrole, polymethylpyrrole, and substituted derivatives and copolymers thereof. Manufacturing method of the solid electrolytic capacitor element.
  • Semiconductors conductivity is 1 0 2-1 0 3 manufacturing method of a solid electrolytic capacitor element of the mounting serial in S ⁇ cm- the 5 1 by weight.
  • a solid electrolytic capacitor element obtained by the production method according to any one of 1 to 9 above.
  • the present invention provides a method for producing a solid electrolytic capacitor element in which a conductor layer impregnated with a dopant after formation of a dielectric layer is formed by a current application method, and a solid electrolytic capacitor in which the capacitor element obtained by the method is sealed Therefore, according to the present invention, a solid electrolytic capacitor having a low initial ESR value and a high capacity can be produced.
  • a method for producing a solid electrolytic capacitor element of the present invention and one embodiment of a solid electrolytic capacitor using the solid electrolytic capacitor element will be described.
  • Examples of the conductor used in the present invention include a metal containing at least one selected from tantalum, niobium, titanium and aluminum as a main component (a component of 50% by mass or more), niobium monoxide, or a mixture thereof. Is mentioned.
  • the metal may be an alloy.
  • a part of the metal may be used after at least one treatment selected from carbonization, phosphation, boronation, nitridation, and sulfidation.
  • the shape of the conductor is not particularly limited, and may be a foil shape, a plate shape, or a rod shape.
  • the conductor is obtained by molding a powdered conductor material or sintering after molding. You may sinter by attaching a powdery conductor to a part of foil-like or plate-like metal.
  • the surface of the conductor may be processed by etching or the like to have fine pores. In the molded body or the sintered body, fine pores can be provided inside the molded or sintered body by appropriately selecting the pressure during molding.
  • the lead can be directly connected to the conductor.
  • the conductor is a molded or sintered body, a part of the lead wire (or lead foil) prepared separately at the time of molding together with the conductor.
  • the part outside the molded lead wire (or lead foil) can be used as a lead for one electrode of the solid electrolytic capacitor element.
  • a semiconductor layer is not formed on a part of the conductor and left as an anode part. You can also.
  • An insulating resin may be adhered and cured in a headband shape at the boundary between the anode part and the semiconductor layer forming part in order to prevent the semiconductor layer from creeping up.
  • the conductor of the present invention include tantalum powder, niobium powder, alloy powder containing tantalum as a main component, alloy powder containing niobium as a main component, powder such as niobium monoxide powder, and the like.
  • examples thereof include a sintered body having a large number of pores and an aluminum foil whose surface is etched.
  • the CV value product of capacity and formation voltage described later
  • the mass can be 4 O mg or more.
  • the dielectric layer formed on the conductor surface of the present invention includes at least one selected from metal oxides such as T a 2 0 5 , A 1 2 O 3 , T i 0 2 , and N b 2 0 5. Examples thereof include a dielectric layer as a main component. These dielectric layers are formed in an electrolyte containing an organic acid or organic acid salt such as acetic acid, adipic acid, or benzoic acid, or a mineral acid or mineral acid salt such as phosphoric acid, sulfuric acid, boric acid, or silicic acid. It is formed by applying a voltage between the anode side of the conductor and the cathode plate separately arranged in the electrolyte (referred to as “chemical conversion”).
  • an organic acid or organic acid salt such as acetic acid, adipic acid, or benzoic acid
  • a mineral acid or mineral acid salt such as phosphoric acid, sulfuric acid, boric acid, or silicic acid. It is formed by applying a voltage between the anode
  • the formation temperature, formation time, current density during formation, etc. are determined in consideration of the type, mass and size of the conductor, the capacity and operating voltage of the target solid electrolytic capacitor element, and the like.
  • the formation temperature is usually from room temperature to 10 ° C or less, and the formation time is usually from several hours to several hours.
  • the electrolytic solution adhering to the conductor is washed with water or an appropriate organic solvent such as alcohol and then dried.
  • the conductor before providing a semiconductor layer on a conductor formed with a dielectric layer by an energization method, the conductor is impregnated with a dopant so that a dopant is contained in the pores inside the conductor. Is essential. Conductor with finer pores than before The reason is not clear by impregnating with a dopant after forming a dielectric layer on the semiconductor layer, but it is possible to provide a semiconductor layer uniformly deep inside the pores and supply sufficient dopant to the semiconductor layer. be able to.
  • the solid electrolytic capacitor fabricated in this way has a lower ESR and a larger capacity than conventional capacitors with the same volume of conductor.
  • a conventionally known dopant is used as a dopant to be impregnated in a conductor.
  • pyrrole or 3,4-ethylenedioxythiophene is used as a representative monomer, and conductivity is 1 when doped simultaneously with polymerization by electrolytic polymerization.
  • 0 - 1 to 0 3 gives the S ⁇ cm- 1 conductive polymer de one dopant is preferable.
  • a compound having a sulfonic acid group as a dopant and a boron compound in which a rubonic acid is coordinated to a boron atom can be mentioned.
  • Such compounds include benzene sulphonic acid, tonole senophonic acid, xylene sulphonic acid, ethenole benzene sulphonic acid, naphthalene / lefonic acid, anthracene sulphonic acid, benzoquinone sulphonic acid, naphthoquinone sulphonic acid and anthraquinone sulphonic acid
  • Various oligomers or polymers such as sulfonic acid having an aryl group such as sulfonic acid having an alkyl group such as butyl sulfonic acid, hexeno sulfonic acid, and hexyl sulfonic acid, and polybulu sulfonic acid (degree of polymerization: 2 to
  • sulfonic acids and salts of these sulfonic acids (ammonium salts, alkali metal salts, alkaline earth metal salts, transition metal salts such as iron,
  • These compounds may have various substituents, and a plurality of sulfonic acid groups may exist. Examples thereof include 2,6-naphthalenedisulfonic acid, 1,2-ethanedisulfonic acid, and the like. Examples of boron compounds include ammonium borodisalicylate and its hydrate, boro-1,2-carboxybenzene ammonium, and the like. In addition, a dopant may be used in combination with a plurality of dopants.
  • One example of a method for impregnating a conductor with a dopant is to dissolve or partially suspend the dopant in at least one solvent selected from water or an organic solvent.
  • a method of immersing the conductor in the solution and drying the solvent after pulling up can be mentioned. Part of the solvent used may remain in the conductor.
  • the dopant is liquid at room temperature, the conductor may be directly dipped in the dopant without using a solvent and pulled up. After pulling up, drying at a temperature higher than normal temperature or rinsing the conductor surface layer with an appropriate solvent to remove the dopant on the conductor surface and then forming the semiconductor layer in the next step Good. It is preferable to impregnate the conductor with the dopant and remove the solvent in multiple steps, since the dopant is uniformly introduced deep into the conductor.
  • Re-formation may be performed to repair minute defects in the dielectric layer caused by impregnation with the dopant.
  • the re-chemical conversion method can be carried out in the same manner as chemical conversion using the reagent used for the chemical conversion described above. It is also possible to use the dopant used for the dopant impregnation of the conductor in the re-forming reagent. If a dopant is used in the re-formation reagent, the exudation of the dopant from the conductor due to the formation may be mitigated.
  • examples of the other electrode formed on the dielectric layer of the conductor impregnated with the dopant include at least one organic semiconductor selected from conductive polymers described later.
  • these conductive polymers may be included in the first layer, and at least one compound selected from organic semiconductors and inorganic semiconductors may be included as the second layer, or both may be included as a mixture. Good.
  • the organic semiconductor include an organic semiconductor composed of a benzopyrroline tetramer and chloranil, an organic semiconductor composed mainly of tetrathiotetracene, an organic semiconductor composed mainly of tetracyanoquinodimethane, the following general formula (1) or ( Examples thereof include organic semiconductors mainly composed of a conductive polymer obtained by doping a polymer containing a repeating unit represented by 2) with a dopant.
  • R to R 4 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or an alkoxy group having 1 to 6 carbon atoms
  • X represents oxygen, io or nitrogen
  • R 5 is present only when X is a nitrogen atom and represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • R 1 and R 2 and R 3 and R 4 are bonded to each other. It may be annular.
  • the polymer containing the repeating unit represented by the general formula (1) is preferably a polymer containing a structural unit represented by the following general formula (3) as a repeating unit.
  • each of 16 and 17 is independently a hydrogen atom, a linear or branched saturated or unsaturated alkyl group having 1 to 6 carbon atoms, or an alkyl group thereof. It represents a substituent that is bonded at a position to form a cyclic structure of at least one 5- to 7-membered saturated hydrocarbon containing two oxygen atoms.
  • the cyclic structure includes those having a vinylene bond which may be substituted and those having a phenylene structure which may be substituted.
  • a conductive polymer containing such a chemical structure is charged and doped with a dopant.
  • the dopant is not particularly limited, and the conductor is formed before the semiconductor layer is formed.
  • the same materials as mentioned as the dopant to be impregnated can be used.
  • the dopant used in the present invention is described as an uncharged compound, but when it actually acts as a dopant, it is partially charged and ionized (mainly anion).
  • benzenesulfonic acid also includes benzenesulfonic acid anion.
  • the polymer containing repeating units represented by the formulas (1) to (3) include polyaniline, polyoxyfurene, polyphenylene sulfide, polythiophene, polyfuran, polypyrrole, polymethylvillol, And substituted derivatives and copolymers thereof. Of these, polypyrrole, polythiophene, and substituted derivatives thereof (for example, poly (3,4-ethylenedioxythiophene)) are preferable.
  • the semiconductor layer described above is formed in a layered form by chemical polymerization (solution reaction, gas phase reaction, solid-liquid reaction and a combination thereof), electrolytic polymerization, or a combination of these methods. If at least the first layer of the semiconductor layer (the first layer) is prepared using the electrolytic polymerization method, the conductive polymer chain is not branched, or the semiconductor layer thickness on the outer surface of the conductor is uniform. Therefore, it is preferable because the initial ESR value of the capacitor is lower than that of other methods.
  • the inorganic semiconductor include at least one compound selected from molybdenum dioxide, tungsten dioxide, diacid oxide, manganese diacid manganese, and the like.
  • the conductive polymer of the first layer of the semiconductor layer (the entire semiconductor layer if there are no remaining layers) is formed by an energization technique called electrolytic polymerization.
  • An electropolymerization method is known in which an external electrode placed near the outer periphery of a conductor is used as an anode.
  • electricity is applied using the anode portion or anode lead of the conductor as the anode and the cathode plate disposed in the semiconductor layer forming solution in which the conductor is immersed as the cathode.
  • polymerization starts from the inside of the conductor, even a conductor having fine pores is preferably uniformly polymerized, and semiconductor deposition is improved.
  • re-formation may be performed to repair a minute defect in the dielectric layer caused by the formation of the semiconductor layer.
  • the energization and re-formation for forming the semiconductor layer may be repeated a plurality of times, or the energization conditions at the time of repetition may be changed. Normally, when stopping the energization, the conductor is pulled up from the semiconductor layer forming solution to perform cleaning / drying, but the energization / energization stop / cleaning / drying process is repeated several times before entering the re-forming process. Also good. The reason for this is not clear, but the mass of the semiconductor layer may increase if the total energization time is set to the same value, followed by energization, de-energization, cleaning, and drying.
  • Re-chemical conversion can be performed in the same manner as the above-described dielectric layer forming method.
  • the re-forming voltage shall be below the forming voltage.
  • a semiconductor layer may be formed by a method.
  • re-formation may be performed any number of times at any time during the formation of the semiconductor layer, but it is desirable to perform re-formation after the final semiconductor layer is formed.
  • an electrode layer is provided on the semiconductor layer formed by the above-described method or the like.
  • the electrode layer can be formed, for example, by solidifying a conductive paste, plating, metal vapor deposition, adhesion of a heat-resistant conductive resin film, or the like.
  • a conductive paste a silver paste, a copper paste, an ano-reminium paste, a carbon paste, a nickel paste, etc. are preferable, but these may be used alone or in combination of two or more. If two or more types are used, they may be mixed or stacked as separate layers. After applying conductive paste, leave in air or heat to solidify.
  • the main component of the conductive paste is conductive powder such as resin and metal, but a solvent for dissolving the resin and a curing agent for the resin are also used if desired.
  • the solvent will scatter during the heat solidification.
  • the resin various known resins such as alkyd resin, acrylic resin, epoxy resin, phenol resin, imide resin, fluororesin, ester resin, imidoamide resin, amide resin, and styrene resin are used.
  • the conductive powder powders of silver, copper, aluminum, gold, rikibon, nickel, alloys containing these metals as main components, and mixed powders thereof are used.
  • the conductive powder is usually contained in 40 to 97% by mass.
  • the conductive paste may be used by mixing the aforementioned conductive polymer or metal oxide powder forming the semiconductor layer.
  • plating examples include nickel plating, copper plating, silver plating, gold plating, aluminum plating, and the like.
  • Examples of the deposited metal include aluminum, nickel, copper, gold, and silver.
  • an electrode layer is formed by sequentially laminating a carbon paste and a silver paste on the formed semiconductor layer.
  • a solid electrolytic capacitor element is fabricated by stacking the conductor up to the electrode layer.
  • the solid electrolytic capacitor element of the present invention configured as described above is, for example, a resin module.
  • Solid electrolytic capacitor products for various applications can be packaged with metal foil, resin case, metallic outer case, resin dating, and laminating film.
  • a chip-shaped solid electrolytic capacitor with a resin mold is particularly preferable because it can be easily reduced in size and cost.
  • the capacitor according to the present invention will be described in detail.
  • the capacitor according to the present invention has a lead frame (a tip portion disposed so as to be opposed to a gap) with a part of the electrode layer of the capacitor element prepared separately. And a part of the conductor is placed on the other tip of the lead frame. In this case, if the conductor has a structure with an anode lead, the anode You can cut the tip of the card.
  • the cathode and anode of the capacitor element are electrically and mechanically joined to the respective leading ends of the lead frame by solidifying or welding the conductive paste, and a part of the leading end of the lead frame is left. Seal the resin and cut and bend the lead frame at a predetermined part outside the resin seal to fabricate the capacitor chip. (Note that the lead frame is on the bottom surface of the resin seal and only the bottom surface or bottom and side surfaces of the lead frame. If it is sealed with leaving, it may be cut only).
  • the lead frame is finally cut and becomes the external terminals of the capacitor.
  • the shape of the lead frame is foil or flat plate, and the material is mainly iron, copper, aluminum or these metals.
  • the alloy used as a component is used.
  • At least one plating layer of solder, tin, titanium, gold, silver, nickel, palladium, copper, or the like may be applied to a part or all of the lead frame.
  • the lead frame has a pair of opposed tip portions, and the gap between the tip portions insulates the anode portion and the electrode layer portion of each capacitor element.
  • resins used for sealing capacitors such as epoxy resins, phenol resins, alkyd resins, ester resins, and aryl ester resins can be employed.
  • a low-stress resin for example, a resin that usually contains 70% by volume or more of filler and has a thermal expansion coefficient ⁇ of 3 X 10 5 ° or less
  • a transfer machine is preferably used for sealing the resin.
  • the solid electrolytic capacitor thus fabricated may be subjected to an aging treatment to repair the deterioration of the thermal and / or physical dielectric layer during electrode layer formation and exterior.
  • the aging method is performed by applying a predetermined voltage (usually within twice the rated voltage) to the capacitor.
  • Aging time and temperature are determined in advance by experiment because optimum values differ depending on the type, capacity, and rated voltage of the capacitor. Normally, the time is from several minutes to several 3, and the temperature is determined in consideration of the thermal deterioration of the voltage application jig. Performed at 300 ° C or lower.
  • the aging atmosphere may be performed under any conditions of reduced pressure, normal pressure, and increased pressure. Further, the aging atmosphere may be air, a gas such as argon, nitrogen, or helium, but is preferably water vapor. Aging may be performed in an atmosphere containing water vapor, and then in a gas such as air, argon, nitrogen, or helium, and stabilization of the dielectric layer may proceed. After supplying water vapor, return to normal pressure and room temperature, or after supplying water vapor, leave it at a high temperature of 15 to 25 ° C. for several minutes to several hours to remove excess water and perform the above aging Is also possible.
  • a water vapor supply method is a method of supplying water vapor by heat from a water reservoir placed in an aging furnace.
  • the voltage application method can be designed to allow direct current, alternating current with an arbitrary waveform, alternating current superimposed on direct current, and pulsed current. It is also possible to stop the voltage application in the middle of aging and apply the voltage again. Aging may be performed while increasing the voltage in order from the low voltage to the high voltage.
  • the solid electrolytic capacitor manufactured by the present invention can be preferably used for a circuit using a high-capacitance capacitor such as a central processing circuit and a power supply circuit, and these circuits include a personal computer, a server, a camera, a game machine, It can be used for various digital devices such as DVDs, AV devices and mobile phones, and electronic devices such as various power supplies.
  • the solid electrolytic capacitor manufactured by the present invention has a large capacity and a good initial ESR value. By using this solid electrolytic capacitor, a highly reliable electronic circuit and electronic device that generates little heat even when a large current flows are obtained. Can do. Example Hereinafter, specific examples of the present invention will be described in more detail. However, the present invention is not limited to the following examples.
  • Niobium primary powder (average particle size 0.30 ⁇ ) pulverized using the hydrogen embrittlement of niobium ingot is granulated, and niobium powder with an average particle size of 1 30 ⁇ Oxygen is present at 105000 ppm).
  • niobium powder with an average particle size of 1 30 ⁇ Oxygen is present at 105000 ppm.
  • it is left in a nitrogen atmosphere at 45 ° C. and then in argon at 70 ° C., so that it is partially nitrided niobium powder (C V297000 // F- V / g).
  • This niobium powder was formed with a 0.48mm diameter niobium wire and sintered at 1270 ° C to produce multiple sintered bodies (conductors) of size 4.1 X 3.5 X 1.0mm (each mass 0.06 g The tube leads are 3.7 mm inside the sintered body and 8 mm outside.
  • a dielectric mainly composed of niobium pentoxide is formed on the sintered body surface and part of the lead wire.
  • a body layer was formed.
  • the sintered body was subsequently immersed in an alcohol solution in which the compound described in Table 1 as a dopant was dissolved, and then dried to remove the alcohol. Such dopant impregnation and alcohol removal were repeated 10 times. Next, the surface of the conductor was washed with alcohol and dried.
  • the sintered body was prepared in a tank containing a mixed solution of 30% by mass ethylene glycol and water in which a small amount of pyrrole monomer and 4% anthraquinone-2-sulfonic acid were separately prepared. Electrode polymerization at 100 A for 60 minutes with the lead wire of the sintered body as the anode and the external electrode as the cathode for 60 minutes, withdrawn from the tank, and washed with water After alcohol washing and drying, re-formation was performed in 1% by weight phosphoric acid aqueous solution at 70 ° C and 13 V for 15 minutes. This electrolytic polymerization and re-formation were repeated 6 times to form a semiconductor layer made of polypyrrole on the dielectric layer.
  • a carbon paste is laminated on the semiconductor layer and dried to form a carbon layer.
  • a silver paste mainly composed of 90% by mass of silver powder and 10% by mass of acrylic resin was laminated and then dried to form an electrode layer, thereby producing a plurality of solid electrolytic capacitor elements.
  • the lead wire on the sintered body side and the electrode layer side on a pair of both ends of a lead frame (10 ⁇ semi-bright nickel plating on both sides of the copper alloy), which is a separately prepared external terminal The former was spot welded, and the latter was connected electrically and mechanically with the same silver paste used for the electrode layer.
  • a chip-shaped solid electrolytic capacitor was produced in the same manner as in Example 1 except that the conductor in which the dielectric layer was formed in Example 1 was not impregnated with the dopant.
  • Example 4
  • Example 2 The electrolytic polymerization in Example 1, carried out at a bath 4% naphthalene one 2-sulfonic acid containing 3 0 mass 0/0 mixed solution of ethylene da recall and water dissolved in place of 4% anthraquinone one 2- sulfonic acid A chip-shaped solid electrolytic capacitor was produced in the same manner as in Example 1 except that. Comparative Example 2:
  • a chip-shaped solid electrolytic capacitor was produced in the same manner as in Example 4 except that the conductor in which the dielectric layer was formed in Example 4 was not impregnated with the dopant.
  • a chip-shaped solid electrolytic capacitor was produced in the same manner as in Example 5 except that the conductor in which the dielectric layer was formed in Example 5 was not impregnated with the dopant.
  • Example 9 the conductor in which the dielectric layer was formed in Example 5 was not impregnated with the dopant.
  • the capacitor was set in the same manner as in Example 5 except that the size of the sintered body was 4.4X3.0X3.0mm, the mass was 245 mg, and the size of the chip-shaped solid electrical square capacitor was 7.3X4.3X3.8mm. Produced. Comparative Example 4:
  • a chip-shaped solid electrolytic capacitor was produced in the same manner as in Example 9 except that the conductor on which the dielectric layer was formed in Example 9 was not impregnated with the dopant.
  • the performances of the chip-shaped solid electrolytic capacitors produced in Examples 1 to 9 and Comparative Examples 1 to 4 were measured by the following method, and are summarized in Table 2.
  • the data in Table 2 is the average value of 30 capacitors.
  • Capacity Measured at 12 OHz at room temperature using an LCR measuring instrument manufactured by Huylet Packard.
  • E S R The equivalent series resistance of the capacitor was measured at 100 kHz.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

Disclosed is a method for manufacturing a solid electrolytic capacitor element wherein a conductor having a dielectric layer in the surface is provided with a semiconductor layer containing a conductive polymer. Specifically, a solid electrolytic capacitor element is manufactured by impregnating a conductor having a dielectric layer in the surface with a dopant and then applying current thereto for forming a semiconductor layer. By using the thus-manufactured solid electrolytic capacitor element, there can be obtained a high-capacity solid electrolytic capacitor having good ESR.

Description

明 細 書 固体電解コンデンサ素子、 固体電解コンデンサ及びその製造方法 技術分野  Description Solid electrolytic capacitor element, solid electrolytic capacitor and manufacturing method thereof Technical Field
本発明は、 等価直列抵抗 (E S R) 値が低く、 高容量である固体電解コン デンサ素子の製造方法に関する。 背景技術  The present invention relates to a method for manufacturing a solid electrolytic capacitor element having a low equivalent series resistance (ESR) value and a high capacity. Background art
各種電子機器に使用される高容量かつ低 E S Rであるコンデンサとして、 アルミニウム固体電解コンデンサや、 タンタル固体電解コンデンサが知られ ている。  Aluminum capacitors and tantalum solid electrolytic capacitors are known as high-capacitance and low-ESR capacitors used in various electronic devices.
固体電解コンデンサは、 表面層に微細の細孔を有するアルミニウム箔ゃ、 内部に微小な細孔を有するタンタル粉の焼結体を一方の電極 (導電体) とし て、 その電極の表層に形成した誘電体層とその誘電体層上に設けられた他方 の電極 (通常は、 半導体層) 及び他方の電極上に積層された電極層とから構 成された固体電解コンデンサ素子を封口して作製されている。  The solid electrolytic capacitor was formed on the surface layer of an aluminum foil having fine pores on the surface layer and a sintered body of tantalum powder having fine pores inside as one electrode (conductor). It is produced by sealing a solid electrolytic capacitor element composed of a dielectric layer and the other electrode (usually a semiconductor layer) provided on the dielectric layer and an electrode layer laminated on the other electrode. ing.
半導体層としては、 有機化合物や無機化合物が使用されるが作製したコン デンサの耐熱性や低 E S R特性を考慮して導電性高分子が好んで使用される。 この導電性高分子とは、 1 0一2〜 1 0 3 S · c m一1という高導電性を有する 高分子のことであり、 平面状の共役二重結合を有する高分子 (通常、 絶縁体 またはきわめて低い導電性を有する高分子) にドーパントと称する電子供与 性の化合物を添加することにより高い導電性が発現する。 半導体層として導 電性高分子を形成する方法の具体例として、 導電体の前記細孔中で導電性高 分子になりうる単分子 (モノマー) にドーパントの存在下、 適当な酸化剤も しくは電子を供給して重合する方法を挙げることができる。 単分子が重合す るときにドーパントが取り込まれて導電性高分子が得られる。 特許第 1 9 4 5 3 5 8号公報や、 特許第 2 8 1 1 6 4 8号公報には、 酸化 剤を用いて化学重合層を形成した後に通電手法による電解重合層を積層して 半導体層を形成する方法が記載されている。 発明の開示 As the semiconductor layer, an organic compound or an inorganic compound is used, but a conductive polymer is preferably used in consideration of the heat resistance and low ESR characteristics of the produced capacitor. This conductive polymer is a polymer having a high conductivity of 10 to 2 to 10 3 S · cm, and a polymer having a planar conjugated double bond (usually an insulator) High conductivity is exhibited by adding an electron donating compound called a dopant to a polymer having extremely low conductivity. As a specific example of the method for forming a conductive polymer as a semiconductor layer, a single molecule (monomer) that can become a conductive polymer in the pores of a conductor is used in the presence of a dopant, or an appropriate oxidizing agent or The method of superposing | polymerizing by supplying an electron can be mentioned. When a single molecule is polymerized, a dopant is taken in to obtain a conductive polymer. In Patent No. 1 9 4 5 3 5 8 and Patent No. 2 8 1 1 6 4 8, a semiconductor is formed by laminating an electropolymerization layer by an energization method after forming a chemical polymerization layer using an oxidizing agent. A method of forming a layer is described. Disclosure of the invention
昨今の電子機器は、 高消費電力で使用電圧を低く設定して大電流を瞬時に 流す設計傾向にあり、 このために使用する部品の固体電解コンデンサは、 よ り低 E S R値を示す大容量コンデンサを必要とする方向にある。 しかしなが ら、 大容量コンデンサに必要な導電体は、 体積が一定な場合、 導電体内部の 細孔をより微細にして内部表面積を大きくせざるを得ず、 その結果、 導電体 の誘電体層上に形成する半導体層の含浸が不十分で、 さらに作製された半導 体層の抵抗が高いという問題があった。 すなわち、 このような高消費電力、 低電圧で使用する従来の高容量コンデンサを、 さらに高容量低 E S Rにする には限界があった。  Today's electronic devices tend to be designed to flow high current instantaneously with high power consumption and low operating voltage. Solid electrolytic capacitors used for this purpose are large-capacity capacitors that exhibit lower ESR values. Is in the direction of needing. However, if the volume of the conductor required for the large-capacity capacitor is constant, the pores inside the conductor must be made finer and the internal surface area must be increased, and as a result, the conductor dielectric There was a problem that the semiconductor layer formed on the layer was not sufficiently impregnated, and the resistance of the fabricated semiconductor layer was high. In other words, there has been a limit to making the conventional high-capacitance capacitors used at such high power consumption and low voltage further high-capacity and low ESR.
従って、 本発明の課題は E S R値が良好な高容量固体電解コンデンサの製 造方法を提供することにある。  Accordingly, an object of the present invention is to provide a method for producing a high-capacity solid electrolytic capacitor having a good ESR value.
本発明者等は、 前記課題を解決するために鋭意検討した結果、 誘電体層形 成後ドーパントを含浸した導電体に通電手法により半導体層を形成すること により、 導電体に充分なドーパントを供給すると共に半導体層の形成を所望 の程度まで行うことが可能になり、 より低 E S R値を示す高容量固体電解コ ンデンサ素子が得られることを見出し、 本発明を完成させるに至った。 すなわち、 本発明は以下の固体電解コンデンサ素子の製造方法、 及びその 方法を使用して作製した固体電解コンデンサを提供するものである。  As a result of diligent studies to solve the above problems, the present inventors have supplied a sufficient amount of dopant to the conductor by forming a semiconductor layer by a current application method on the conductor impregnated with the dopant after forming the dielectric layer. At the same time, the semiconductor layer can be formed to a desired level, and it has been found that a high-capacity solid electrolytic capacitor element exhibiting a lower ESR value can be obtained, thereby completing the present invention. That is, the present invention provides the following method for producing a solid electrolytic capacitor element and a solid electrolytic capacitor produced using the method.
1 . 表面に誘電体層を有する導電体に導電性重合体を含む半導体層を形成す る固体電解コンデンサ素子の製造方法において、 表面に誘電体層を有する導 電体に、 ドーパントを含浸後、 通電手法により半導体層を形成することを特 徴とする固体電解コンデンサ素子の製造方法。 2. ドーパントが、 電解重合時にドーピングしたときに電導度が 10一1〜 1 03S · cm一1の導電性重合体を与える電子供与性化合物である前記 1記載 の固体電解コンデンサ素子の製造方法。 1. In a method for manufacturing a solid electrolytic capacitor element in which a semiconductor layer containing a conductive polymer is formed on a conductor having a dielectric layer on the surface, the conductor having a dielectric layer on the surface is impregnated with a dopant, A method for producing a solid electrolytic capacitor element, characterized in that a semiconductor layer is formed by an energization method. 2. dopant, the manufacture of the solid electrolytic capacitor element of the 1, wherein electric conductivity of an electron-donating compound providing 10 one 1 ~ 1 0 3 S · cm one first conductive polymer upon doping during electropolymerization Method.
3. ドーパントが、 スルホン酸基を有する化合物及びホウ素原子にカルボン 酸が配位したホウ素化合物から選ばれる少なくとも 1種である前記 1または 2に記載の固体電解コンデンサ素子の製造方法。  3. The method for producing a solid electrolytic capacitor element as described in 1 or 2 above, wherein the dopant is at least one selected from a compound having a sulfonic acid group and a boron compound in which a carboxylic acid is coordinated to a boron atom.
4. 導電体が、 タンタル、 ニオブ、 チタン及びアルミニウムから選ばれる少 なくとも 1種を主成分とする金属、 酸化ニオブ、 またはこれらの混合物であ る前記 1に記載の固体電解コンデンサ素子の製造方法。  4. The method for producing a solid electrolytic capacitor element as described in 1 above, wherein the conductor is a metal mainly composed of at least one selected from tantalum, niobium, titanium and aluminum, niobium oxide, or a mixture thereof. .
5. 半導体層が、 下記一般式 (1) または (2)  5. The semiconductor layer has the following general formula (1) or (2)
Figure imgf000004_0001
Figure imgf000004_0001
(1 ) (2)  (1) (2)
(式中、 1^〜1 4は、 各々独立して水素原子、 炭素数 1〜6のアルキル基ま たは炭素数 1〜6のアルコキシ基を表わし、 Xは酸素、 ィォゥまたは窒素原 子を表わし、 R 5は Xが窒素原子のときのみ存在して水素原子または炭素数 1 〜 6のアルキル基を表わし、 R1と R2及び R3と R4は、 互いに結合して環状 になっていてもよい。 ) (Wherein 1 ^ to 1 4 are each independently a hydrogen atom, was or alkyl group having 1 to 6 carbon atoms an alkoxy group having 1 to 6 carbon atoms, X is oxygen, Iou or ChissoHara child R 5 is present only when X is a nitrogen atom and represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and R 1 and R 2 and R 3 and R 4 are bonded to each other to form a ring. May be.)
で示される繰り返し単位を含む重合体にドーパントをド一プした導電性重合 体を主成分とした半導体から選択される少なくとも 1種の層である前記 1に 記載の固体電解コンデンサ素子の製造方法。 2. The method for producing a solid electrolytic capacitor element according to 1 above, which is at least one layer selected from a semiconductor mainly composed of a conductive polymer in which a dopant is added to a polymer containing a repeating unit represented by formula (1).
6. 一般式 (1) で示される繰り返し単位を含む重合体が、 下記一般式 (3)
Figure imgf000005_0001
6. A polymer containing a repeating unit represented by the general formula (1) is represented by the following general formula (3)
Figure imgf000005_0001
(式中、 1 6及び1 7は、 各々独立して水素原子、 炭素数 1〜6の直鎖状もし くは分岐状の飽和もしくは不飽和のアルキル基、 またはそのアルキル基が互 いに任意の位置で結合して、 2つの酸素原子を含む少なくとも 1つ以上の 5 〜 7員環の飽和炭化水素の環状構造を形成する置換基を表わす。 また、 前記 環状構造には置換されていてもよいビニレン結合を有するもの、 置換されて いてもよいフエ二レン構造のものも含まれる。 ) (In the formula, each of 16 and 17 is independently a hydrogen atom, a linear or branched saturated or unsaturated alkyl group having 1 to 6 carbon atoms, or an alkyl group thereof. And a substituent which forms a cyclic structure of at least one 5- to 7-membered saturated hydrocarbon containing two oxygen atoms and is substituted with the cyclic structure. Those having a good vinylene bond and those having a phenylene structure which may be substituted are also included.
で示される構造単位を繰り返し単位として含む重合体である前記 5に記載の 固体電解コンデンサ素子の製造方法。 6. The method for producing a solid electrolytic capacitor element as described in 5 above, wherein the polymer is a polymer containing a structural unit represented by
7 . 導電性重合体が、 ポリア二リン、 ポリオキシフエ二レン、 ポリフエユレ ンサルファイ ド、 ポリチォフェン、 ポリフラン、 ポリピロール、 ポリメチル ピ口一ル、 及びこれらの置換誘導体及び共重合体から選択される前記 5に記 載の固体電解コンデンサ素子の製造方法。  7. The conductive polymer is described in 5 above, wherein the conductive polymer is selected from polyaniline, polyoxyphenylene, polyphenylene sulfide, polythiophene, polyfuran, polypyrrole, polymethylpyrrole, and substituted derivatives and copolymers thereof. Manufacturing method of the solid electrolytic capacitor element.
8 . 導電性重合体が、 ポリ (3 , 4—エチレンジォキシチォフェン) である 前記 7に記載の固体電解コンデンサ素子の製造方法。  8. The method for producing a solid electrolytic capacitor element as described in 7 above, wherein the conductive polymer is poly (3,4-ethylenedioxythiophene).
9 . 半導体の電導度が、 1 0— 2〜1 0 3 S · c m— 1の範囲である前記 5に記 載の固体電解コンデンサ素子の製造方法。 9. Semiconductors conductivity is 1 0 2-1 0 3 manufacturing method of a solid electrolytic capacitor element of the mounting serial in S · cm- the 5 1 by weight.
1 0 . 前記 1〜 9のいずれかに記載の製造方法で得られた固体電解コンデン サ素子。  10. A solid electrolytic capacitor element obtained by the production method according to any one of 1 to 9 above.
1 1 . 前記 1 0に記載の固体電解コンデンサ素子を封口した固体電解コンデ ンサ。 1 1. A solid electrolytic capacitor in which the solid electrolytic capacitor element described in 10 above is sealed.
1 2 . 前記 1 1に記載の固体電解コンデンサを使用した電子回路。  1 2. An electronic circuit using the solid electrolytic capacitor described in 1 1 above.
1 3 . 前記 1 1に記載の固体電解コンデンサを搭載した電子機器。 本発明は、 誘電体層形成後ドーパントを含浸した導電体に通電手法により 半導体層を形成した固体電解コンデンサ素子の製造方法、 及びその方法で得 られるコンデンサ素子を封口した固体電解コンデンサを提供したものであり、 本発明によれば、 初期の E S R値が低く、 高容量な固体電解コンデンサが作 製できる。 発明を実施するための最良の形態 1 3. Electronic equipment equipped with the solid electrolytic capacitor as described in 1 1 above. The present invention provides a method for producing a solid electrolytic capacitor element in which a conductor layer impregnated with a dopant after formation of a dielectric layer is formed by a current application method, and a solid electrolytic capacitor in which the capacitor element obtained by the method is sealed Therefore, according to the present invention, a solid electrolytic capacitor having a low initial ESR value and a high capacity can be produced. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の固体電解コンデンサ素子の製造方法及びその固体電解コンデンサ 素子を使用した固体電解コンデンサの 1形態を説明する。  A method for producing a solid electrolytic capacitor element of the present invention and one embodiment of a solid electrolytic capacitor using the solid electrolytic capacitor element will be described.
本発明に使用される導電体の例としては、 タンタル、 ニオブ、 チタン及び アルミニウムから選ばれる少なくとも 1種を主成分(5 0質量%以上の成分) とする金属、 一酸化ニオブ、 またはこれらの混合物が挙げられる。 なお、 金 属は合金であってもよい。  Examples of the conductor used in the present invention include a metal containing at least one selected from tantalum, niobium, titanium and aluminum as a main component (a component of 50% by mass or more), niobium monoxide, or a mixture thereof. Is mentioned. The metal may be an alloy.
導電体として金属を使用する場合、金属の一部を、炭化、燐化、ホウ素化、 窒化、硫化から選ばれた少なくとも 1種の処理を行ってから使用してもよい。 導電体の形状は特に限定されず、 箔状、 板状、 棒状としてもよい。 導電体 は粉状の導電体材料を成形または成形後焼結等することにより得られる。 箔 状または板状の金属の一部に粉状の導電体を付着させて焼結してもよい。 導 電体表面をエッチング等で処理して、微細な細孔を有するようにしてもよい。 前記成形体または前記焼結体には、 成形時の圧力を適当に選択することによ り、 成形または焼結後の内部に微小な細孔を設けることができる。  When a metal is used as the conductor, a part of the metal may be used after at least one treatment selected from carbonization, phosphation, boronation, nitridation, and sulfidation. The shape of the conductor is not particularly limited, and may be a foil shape, a plate shape, or a rod shape. The conductor is obtained by molding a powdered conductor material or sintering after molding. You may sinter by attaching a powdery conductor to a part of foil-like or plate-like metal. The surface of the conductor may be processed by etching or the like to have fine pores. In the molded body or the sintered body, fine pores can be provided inside the molded or sintered body by appropriately selecting the pressure during molding.
導電体には引き出しリードを直接接続することが可能であるが、 導電体が成 形体または焼結体の場合は、 成形時に別途用意した引き出しリード線 (または リード箔) の一部を導電体と共に成形し、 弓 Iき出しリード線(またはリード箔) の成形外部の箇所を、 固体電解コンデンサ素子の一方の電極の引き出しリード とすることもできる。  The lead can be directly connected to the conductor. However, if the conductor is a molded or sintered body, a part of the lead wire (or lead foil) prepared separately at the time of molding together with the conductor. The part outside the molded lead wire (or lead foil) can be used as a lead for one electrode of the solid electrolytic capacitor element.
また、 導電体の一部に半導体層を形成せずに残しておいて陽極部とするこ ともできる。 陽極部と半導体層形成部の境界には、 半導体層の這い上がりを 防ぐために絶縁性樹脂を鉢巻状に付着硬化させておいてもよい。 In addition, a semiconductor layer is not formed on a part of the conductor and left as an anode part. You can also. An insulating resin may be adhered and cured in a headband shape at the boundary between the anode part and the semiconductor layer forming part in order to prevent the semiconductor layer from creeping up.
本発明の導電体の好ましい例として、 タンタル粉、 ニオブ粉、 タンタルを 主成分とする合金粉、 ニオブを主成分とする合金粉、 一酸化ニオブ粉等の粉 を成形後焼結した内部に微細な空孔が多数存在する焼結体、 表面がエツチン グ処理されたアルミニウム箔を挙げることができる。  Preferable examples of the conductor of the present invention include tantalum powder, niobium powder, alloy powder containing tantalum as a main component, alloy powder containing niobium as a main component, powder such as niobium monoxide powder, and the like. Examples thereof include a sintered body having a large number of pores and an aluminum foil whose surface is etched.
粒径が細かい粉を使用して導電体の焼結体を作製すると、 質量あたりの比 表面積が大きな焼結体が作製できる。 本発明では、 C V値 (容量と後記する 化成電圧の積) がタンタル粉では、 8万/ F VZ g以上、 ニオブ粉または一 酸化ニオブ粉では、 1 5万 μ F VZ g以上の高比表面積を有する焼結体とし、 質量を 4 O m g以上にすることができる。 このように作製した固体電解コン デンサ素子は、 小体積で容量が大きなものになり、 好ましい。  When a sintered body of a conductor is produced using powder having a small particle size, a sintered body having a large specific surface area per mass can be produced. In the present invention, the CV value (product of capacity and formation voltage described later) is 80,000 / F VZ g or more for tantalum powder, and 150,000 μ F VZ g or more for niobium powder or niobium monoxide powder. The mass can be 4 O mg or more. The solid electrolytic capacitor element produced in this way is preferable because it has a small volume and a large capacity.
本発明の導電体表面に形成される誘電体層としては、 T a 205、 A 1 2 O 3、 T i 02、N b 205等の金属酸化物から選ばれる少なくとも 1つを主成分とす る誘電体層を挙げることができる。これらの誘電体層は、前記導電体を酢酸、 アジピン酸、 安息香酸等の有機酸または有機酸塩あるいは燐酸、 硫酸、 ホウ 酸、 珪酸等の鉱酸または鉱酸塩を含有した電解液中に漬け、 導電体側を陽極 に、 電解液中に別途配置した陰極板との間で電圧を印加すること ( 「化成」 という。 ) によって形成される。 化成温度、 化成時間、 化成時の電流密度等 は、 導電体の種類、 質量、 大きさ、 目的とする固体電解コンデンサ素子の容 量と作動電圧等を考慮して決定される。化成温度は、通常、室温から 1 0 o°c 以下、 化成時間は、 通常、 数時間から数曰である。 化成後、 導電体中に付着 している電解液を水またはアルコール等の適当な有機溶媒で洗浄後、 乾燥さ れる。 The dielectric layer formed on the conductor surface of the present invention includes at least one selected from metal oxides such as T a 2 0 5 , A 1 2 O 3 , T i 0 2 , and N b 2 0 5. Examples thereof include a dielectric layer as a main component. These dielectric layers are formed in an electrolyte containing an organic acid or organic acid salt such as acetic acid, adipic acid, or benzoic acid, or a mineral acid or mineral acid salt such as phosphoric acid, sulfuric acid, boric acid, or silicic acid. It is formed by applying a voltage between the anode side of the conductor and the cathode plate separately arranged in the electrolyte (referred to as “chemical conversion”). The formation temperature, formation time, current density during formation, etc. are determined in consideration of the type, mass and size of the conductor, the capacity and operating voltage of the target solid electrolytic capacitor element, and the like. The formation temperature is usually from room temperature to 10 ° C or less, and the formation time is usually from several hours to several hours. After the formation, the electrolytic solution adhering to the conductor is washed with water or an appropriate organic solvent such as alcohol and then dried.
本発明においては、 誘電体層が形成された導電体に通電手法によって半導 体層を設ける前に、 導電体にドーパントを含浸して導電体内部の細孔中にド 一パントを含ませることが肝要である。 従来より微細な細孔を有する導電体 に誘電体層を形成後ドーパントを含浸することによって、 理由は定かではな いが、 細孔の奥深くまで半導体層を均一に設けることが可能で、 しかも半導 体層に充分なドーパントを供給することができる。 このようにに作製した固 体電解コンデンサは、 同体積の導電体を有する従来のコンデンサに比べて E S Rは低く、 容量は大きなものとなる。 In the present invention, before providing a semiconductor layer on a conductor formed with a dielectric layer by an energization method, the conductor is impregnated with a dopant so that a dopant is contained in the pores inside the conductor. Is essential. Conductor with finer pores than before The reason is not clear by impregnating with a dopant after forming a dielectric layer on the semiconductor layer, but it is possible to provide a semiconductor layer uniformly deep inside the pores and supply sufficient dopant to the semiconductor layer. be able to. The solid electrolytic capacitor fabricated in this way has a lower ESR and a larger capacity than conventional capacitors with the same volume of conductor.
導電体に含浸されるドーパントとして従来公知のドーパントが使用される 力 とりわけ、 ピロールまたは 3 , 4—エチレンジォキシチォフェンを代表 モノマーとし、 電解重合により重合と同時にドーピングしたときに電導度が 1 0 - 1〜 1 0 3 S · c m— 1の導電性高分子を与えるド一パントが好ましい。 例えば、 ドーパントとしてスルホン酸基を有する化合物や、 ホウ素原子に力 ルボン酸が配位したホウ素化合物を挙げることができる。 そのような化合物 として、 ベンゼンスノレホン酸、 トノレエンスノレホン酸、 キシレンスルホン酸、 ェチノレベンゼンスルホン酸、 ナフタレンス/レホン酸、 アントラセンスノレホン 酸、 ベンゾキノンスルホン酸、 ナフトキノンスルホン酸及びアントラキノン スルホン酸等のァリール基を有するスルホン酸、 ブチルスルホン酸、 へキシ ノレスルホン酸及びシク口へキシルスルホン酸等のアルキル基を有するスルホ ン酸、 ポリビュルスルホン酸等の各種オリゴマーまたは重合体 (重合度 2〜 2 0 0 ) スルホン酸、 これらスルホン酸の塩 (アンモニゥム塩、 アルカリ金 属塩、 アルカリ土類金属塩、 鉄等の遷移金属塩、 その他の各種金属塩等) を 代表例として挙げることができる。 これら化合物は、 各種の置換基を有して いてもよいし、 スルホン酸基が複数個存在してもよい。 例えば、 2 , 6—ナ フタレンジスルホン酸、 1 , 2—ェタンジスルホン酸等が挙げられる。また、 ホウ素化合物として、 ボロジサリチル酸アンモニゥム及びその水和物、 ボロ — 1, 2—カルボキシベンゼンアンモニゥム等が挙げられる。 また、 ド一パ ントは、 複数のド一パントを併用してもよい。 A conventionally known dopant is used as a dopant to be impregnated in a conductor. Particularly, pyrrole or 3,4-ethylenedioxythiophene is used as a representative monomer, and conductivity is 1 when doped simultaneously with polymerization by electrolytic polymerization. 0 - 1 to 0 3 gives the S · cm- 1 conductive polymer de one dopant is preferable. For example, a compound having a sulfonic acid group as a dopant and a boron compound in which a rubonic acid is coordinated to a boron atom can be mentioned. Such compounds include benzene sulphonic acid, tonole senophonic acid, xylene sulphonic acid, ethenole benzene sulphonic acid, naphthalene / lefonic acid, anthracene sulphonic acid, benzoquinone sulphonic acid, naphthoquinone sulphonic acid and anthraquinone sulphonic acid Various oligomers or polymers such as sulfonic acid having an aryl group such as sulfonic acid having an alkyl group such as butyl sulfonic acid, hexeno sulfonic acid, and hexyl sulfonic acid, and polybulu sulfonic acid (degree of polymerization: 2 to As typical examples, sulfonic acids and salts of these sulfonic acids (ammonium salts, alkali metal salts, alkaline earth metal salts, transition metal salts such as iron, and other various metal salts) can be given. These compounds may have various substituents, and a plurality of sulfonic acid groups may exist. Examples thereof include 2,6-naphthalenedisulfonic acid, 1,2-ethanedisulfonic acid, and the like. Examples of boron compounds include ammonium borodisalicylate and its hydrate, boro-1,2-carboxybenzene ammonium, and the like. In addition, a dopant may be used in combination with a plurality of dopants.
ドーパントを導電体に含浸する方法の 1例としては、 ドーパントを水また は有機溶媒から選ばれる少なくとも 1種の溶媒に溶解または一部けん濁させ た溶液に、 導電体を浸潰し、 引き上げ後溶媒を乾燥飛散させる方法を挙げる ことができる。 使用した溶媒の一部が導電体中に残っていてもよい。 ドーパ ントが常温で液体の場合には、 溶媒を使用せずにドーパントに直接導電体を 浸漬して引き上げてもよい。 引き上げ後、 常温より高めの温度で乾燥し、 ま たは、 適当な溶媒で導電体表層をリンスすることにより、 導電体表面のドー パントを除去してから次工程の半導体層形成を行ってもよい。 導電体へのド 一パントの含浸と溶媒除去を複数回に分けて行うと導電体の内部深くまで均 —にドーパントが導入されるので好ましい。 One example of a method for impregnating a conductor with a dopant is to dissolve or partially suspend the dopant in at least one solvent selected from water or an organic solvent. A method of immersing the conductor in the solution and drying the solvent after pulling up can be mentioned. Part of the solvent used may remain in the conductor. When the dopant is liquid at room temperature, the conductor may be directly dipped in the dopant without using a solvent and pulled up. After pulling up, drying at a temperature higher than normal temperature or rinsing the conductor surface layer with an appropriate solvent to remove the dopant on the conductor surface and then forming the semiconductor layer in the next step Good. It is preferable to impregnate the conductor with the dopant and remove the solvent in multiple steps, since the dopant is uniformly introduced deep into the conductor.
ドーパントを含浸することによって生じる誘電体層の微小な欠陥を修復す るために、 再化成を行ってもよい。 再化成方法は、 前記した化成に用いた試 薬を使用し、 化成と同様の方法で行うことができる。 再化成用試薬に導電体 のドーパント含浸に使用したドーパントを使用することも可能である。 再化 成試薬にドーパントを使用すると、 化成による導電体からドーパントの染み 出しが緩和される場合がある。  Re-formation may be performed to repair minute defects in the dielectric layer caused by impregnation with the dopant. The re-chemical conversion method can be carried out in the same manner as chemical conversion using the reagent used for the chemical conversion described above. It is also possible to use the dopant used for the dopant impregnation of the conductor in the re-forming reagent. If a dopant is used in the re-formation reagent, the exudation of the dopant from the conductor due to the formation may be mitigated.
一方、 ドーパントが含浸された導電体の誘電体層上に形成される他方の電 極としては、 後記する導電性重合体から選ばれた少なくとも 1種の有機半導 体が挙げられる。 また、 これらの導電性重合体を第 1層とし、 それ以外の有 機半導体及び無機半導体から選ばれる少なくとも 1種の化合物を第 2層とし て含んでいてもよいし、 両者を混合物として含んでもよい。  On the other hand, examples of the other electrode formed on the dielectric layer of the conductor impregnated with the dopant include at least one organic semiconductor selected from conductive polymers described later. In addition, these conductive polymers may be included in the first layer, and at least one compound selected from organic semiconductors and inorganic semiconductors may be included as the second layer, or both may be included as a mixture. Good.
有機半導体の具体例としては、 ベンゾピロリン 4量体とクロラニルからな る有機半導体、 テトラチォテトラセンを主成分とする有機半導体、 テトラシ ァノキノジメタンを主成分とする有機半導体、 下記一般式 (1 ) または (2 ) で示される繰り返し単位を含む高分子にドーパントをドープした導電性重合 体を主成分とした有機半導体が挙げられる。 Specific examples of the organic semiconductor include an organic semiconductor composed of a benzopyrroline tetramer and chloranil, an organic semiconductor composed mainly of tetrathiotetracene, an organic semiconductor composed mainly of tetracyanoquinodimethane, the following general formula (1) or ( Examples thereof include organic semiconductors mainly composed of a conductive polymer obtained by doping a polymer containing a repeating unit represented by 2) with a dopant.
Figure imgf000010_0001
Figure imgf000010_0001
(1 ) (2)  (1) (2)
式 (1) 及び (2) において, R 〜R4は、 各々独立して水素原子、 炭素 数 1〜 6のアルキル基または炭素数 1〜 6のアルコキシ基を表し、 Xは酸素、 ィォゥまたは窒素原子を表し、 R 5は Xが窒素原子のときのみ存在して水素原 子または炭素数 1〜6のアルキル基を表し、 R1と R2及び R3と R4は、 互い に結合して環状になっていてもよい。 In the formulas (1) and (2), R to R 4 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or an alkoxy group having 1 to 6 carbon atoms, and X represents oxygen, io or nitrogen R 5 is present only when X is a nitrogen atom and represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and R 1 and R 2 and R 3 and R 4 are bonded to each other. It may be annular.
さらに、 本発明においては、 前記一般式 (1) で示される繰り返し単位を 含む重合体は、 好ましくは下記一般式 (3) で示される構造単位を繰り返し 単位として含む重合体が挙げられる。  Furthermore, in the present invention, the polymer containing the repeating unit represented by the general formula (1) is preferably a polymer containing a structural unit represented by the following general formula (3) as a repeating unit.
Figure imgf000010_0002
Figure imgf000010_0002
式中、 1 6及び1 7は、 各々独立して水素原子、 炭素数 1〜6の直鎖状もし くは分岐状の飽和もしくは不飽和のアルキル基、 またはそのアルキル基が互 いに任意の位置で結合して、 2つの酸素原子を含む少なくとも 1つ以上の 5 〜 7員環の飽和炭化水素の環状構造を形成する置換基を表わす。 また、 前記 環状構造には置換されていてもよいビニレン結合を有するもの、 置換されて いてもよいフエ二レン構造のものも含まれる。 In the formula, each of 16 and 17 is independently a hydrogen atom, a linear or branched saturated or unsaturated alkyl group having 1 to 6 carbon atoms, or an alkyl group thereof. It represents a substituent that is bonded at a position to form a cyclic structure of at least one 5- to 7-membered saturated hydrocarbon containing two oxygen atoms. The cyclic structure includes those having a vinylene bond which may be substituted and those having a phenylene structure which may be substituted.
このような化学構造を含む導電性重合体は、 荷電されており、 ド一パント がドープされる。 ドーパントは特に限定されず、 半導体層形成前に導電体に 含浸するドーパントとして挙げたものと同じものを使用できる。 A conductive polymer containing such a chemical structure is charged and doped with a dopant. The dopant is not particularly limited, and the conductor is formed before the semiconductor layer is formed. The same materials as mentioned as the dopant to be impregnated can be used.
本発明で使用するドーパントは、 荷電していない化合物として記載してい るが、 実際にドーパントとして作用するときには、 一部が荷電した状態、 ィ オン化(主にァニオン) した状態にあるので、 これらをも含むものとする (例 えば、 ベンゼンスルホン酸の場合、 ベンゼンスルホン酸ァニオンも含む) 。 式(1 ) 〜 (3 ) で示される操り返し単位を含む重合体としては、例えば、 ポリア二リン、 ポリオキシフエュレン、 ポリフエ二レンサルファイド、 ポリ チォフェン、 ポリフラン、 ポリピロール、 ポリメチルビロール、 及びこれら の置換誘導体や共重合体などが挙げられる。 中でもポリピロール、 ポリチォ フェン及びこれらの置換誘導体 (例えばポリ (3, 4—エチレンジォキシチ ォフェン) 等) が好ましい。  The dopant used in the present invention is described as an uncharged compound, but when it actually acts as a dopant, it is partially charged and ionized (mainly anion). (For example, in the case of benzenesulfonic acid, also includes benzenesulfonic acid anion). Examples of the polymer containing repeating units represented by the formulas (1) to (3) include polyaniline, polyoxyfurene, polyphenylene sulfide, polythiophene, polyfuran, polypyrrole, polymethylvillol, And substituted derivatives and copolymers thereof. Of these, polypyrrole, polythiophene, and substituted derivatives thereof (for example, poly (3,4-ethylenedioxythiophene)) are preferable.
前述した半導体層は、 化学重合法 (溶液反応、 気相反応、 固液反応及びそ れらの組み合わせによる重合方法) 、 電解重合法、 あるいはこれらの方法を 組み合わせて層状に形成される。 半導体層の少なくとも第 1層 (最初に作製 される層) を電解重合法を用いて作製すると、 導電性重合体鎖の分岐が無い ためか、 あるいは導電体外表層上の半導体層厚みが均一になるためか、 コン デンサの初期 E S R値が他法と比較して低くなるので好ましい。  The semiconductor layer described above is formed in a layered form by chemical polymerization (solution reaction, gas phase reaction, solid-liquid reaction and a combination thereof), electrolytic polymerization, or a combination of these methods. If at least the first layer of the semiconductor layer (the first layer) is prepared using the electrolytic polymerization method, the conductive polymer chain is not branched, or the semiconductor layer thickness on the outer surface of the conductor is uniform. Therefore, it is preferable because the initial ESR value of the capacitor is lower than that of other methods.
無機半導体の具体例として、 二酸化モリブデン、 二酸化タングステン、 二酸 化船、 二酸ィヒマンガン等から選ばれる少なくとも 1種の化合物が挙げられる。 上記有機半導体及び無機半導体として、 電導度 1 0一2〜 1 0 3 S - c m" 1 の範囲のものを使用すると、 作製した固体電解コンデンサの E S R値が小さ くなり好ましい。 Specific examples of the inorganic semiconductor include at least one compound selected from molybdenum dioxide, tungsten dioxide, diacid oxide, manganese diacid manganese, and the like. The organic semiconductor and an inorganic semiconductor, conductivity 1 0 one 2 ~ 1 0 3 S - The use of those cm "1 range, is small no longer preferred ESR values of the solid electrolytic capacitor was fabricated.
半導体層の第 1層目 (残りの層が無ければ全半導体層) の導電性重合体は、 電解重合という通電手法によって形成される。 電解重合は、 導電体外周の近 傍に置かれた外部電極を陽極にして行う方法が知られている。 し力 し、 この ような方法を用いず、 導電体の陽極部または陽極リードを陽極に、 導電体が 浸潰された半導体層形成用溶液中に配置された陰極板を陰極にして通電する と、 導電体の内部から重合が開始するために、 微細な細孔を有する導電体であ つても均一に重合が起こり、 半導体析出が良好になり好ましい。 The conductive polymer of the first layer of the semiconductor layer (the entire semiconductor layer if there are no remaining layers) is formed by an energization technique called electrolytic polymerization. An electropolymerization method is known in which an external electrode placed near the outer periphery of a conductor is used as an anode. However, without using such a method, electricity is applied using the anode portion or anode lead of the conductor as the anode and the cathode plate disposed in the semiconductor layer forming solution in which the conductor is immersed as the cathode. In addition, since polymerization starts from the inside of the conductor, even a conductor having fine pores is preferably uniformly polymerized, and semiconductor deposition is improved.
本発明においては、 半導体層が形成されたことにより生じる誘電体層の微 小な欠陥を修復するために、 再化成を行ってもよい。 また、 半導体層を形成 するための通電と再化成とを複数回繰り返してもよいし、 繰り返し時の通電 条件を変更してもよい。 通常、 前記通電を止める場合、 半導体層形成溶液か ら導電体を引き上げて洗浄 ·乾燥を行うが、 通電 ·通電停止 ·洗浄 ·乾燥ェ 程の繰り返しを複数回行ってから再化成工程に入れてもよい。 理由は定かで ないが、 続けて通電を行うよりも通電時間の合計を同じにして通電 ·通電停 止 ·洗浄 ·乾燥を行うことを操り返すほうが、 半導体層質量が上昇する場合 がある。  In the present invention, re-formation may be performed to repair a minute defect in the dielectric layer caused by the formation of the semiconductor layer. Further, the energization and re-formation for forming the semiconductor layer may be repeated a plurality of times, or the energization conditions at the time of repetition may be changed. Normally, when stopping the energization, the conductor is pulled up from the semiconductor layer forming solution to perform cleaning / drying, but the energization / energization stop / cleaning / drying process is repeated several times before entering the re-forming process. Also good. The reason for this is not clear, but the mass of the semiconductor layer may increase if the total energization time is set to the same value, followed by energization, de-energization, cleaning, and drying.
再化成は、 前述した化成による誘電体層の形成方法と同様にして行うこと ができる。 なお、 再化成電圧は、 化成電圧以下とする。  Re-chemical conversion can be performed in the same manner as the above-described dielectric layer forming method. The re-forming voltage shall be below the forming voltage.
また、 半導体層の形成割合を高めるための前処理として、 導電体層の表面 に形成された誘電体層上に微小突起物を形成して電気的な微小欠陥部を作製 した後に、 本発明の方法によって半導体層を形成してもよい。  In addition, as a pretreatment for increasing the formation ratio of the semiconductor layer, after forming a microprojection on the dielectric layer formed on the surface of the conductor layer to produce an electrical microdefect, A semiconductor layer may be formed by a method.
半導体層の形成を複数回に分けて行う場合、 再化成を半導体層形成の任意 の時に任意の回数行ってもよいが、 最終の半導体層形成後には再化成を行う ことが望ましい。  When the semiconductor layer is formed in a plurality of times, re-formation may be performed any number of times at any time during the formation of the semiconductor layer, but it is desirable to perform re-formation after the final semiconductor layer is formed.
本発明では、 前述した方法等で形成した半導体層の上に電極層を設ける。 電極層は、 例えば、 導電ペース トの固化、 メツキ、 金属蒸着、 耐熱性の導電 榭脂フィルムの付着等により形成することができる。導電ペーストとしては、 銀ペースト、 銅ペースト、 ァノレミニゥムペースト、 カーボンペースト、 ニッ ケノレペースト等が好ましいが、 これらは 1種を用いても 2種以上を用いても よい。 2種以上を用いる場合は混合してもよく、 または別々の層として積層 してもよレ、。 導電ペース トを適用した後は空気中に放置するか、 または加熱 して固化せしめる。 導電ペーストの主成分は樹脂と金属等の導電粉であるが、 所望により樹脂 を溶解するための溶媒や樹脂の硬化剤も用いられる。 溶媒は前記の加熱固化 時に飛散する。樹脂として、アルキッド樹脂、アクリル樹脂、エポキシ樹脂、 フエノーノレ樹脂、 イミド榭脂、 フッ素樹脂、 エステル樹脂、 イミドアミド樹 脂、 アミド榭脂、 スチレン樹脂等の公知の各種樹脂が使用される。 導電粉と しては、 銀、 銅、 アルミニウム、 金、 力一ボン、 ニッケル及びこれら金属を 主成分とする合金の粉やこれらの混合物粉が使用される。 導電粉は、 通常 4 0〜9 7質量%含まれている。 4 0質量%未満であると作製した導電ペース トの導電性が小さく、 また 9 7質量%を超えると導電ペーストの接着性が不 良になるために好ましくない。 導電ペース トには、 前述した半導体層を形成 する導電性重合体や金属酸化物の粉を混合して使用してもよい。 In the present invention, an electrode layer is provided on the semiconductor layer formed by the above-described method or the like. The electrode layer can be formed, for example, by solidifying a conductive paste, plating, metal vapor deposition, adhesion of a heat-resistant conductive resin film, or the like. As the conductive paste, a silver paste, a copper paste, an ano-reminium paste, a carbon paste, a nickel paste, etc. are preferable, but these may be used alone or in combination of two or more. If two or more types are used, they may be mixed or stacked as separate layers. After applying conductive paste, leave in air or heat to solidify. The main component of the conductive paste is conductive powder such as resin and metal, but a solvent for dissolving the resin and a curing agent for the resin are also used if desired. The solvent will scatter during the heat solidification. As the resin, various known resins such as alkyd resin, acrylic resin, epoxy resin, phenol resin, imide resin, fluororesin, ester resin, imidoamide resin, amide resin, and styrene resin are used. As the conductive powder, powders of silver, copper, aluminum, gold, rikibon, nickel, alloys containing these metals as main components, and mixed powders thereof are used. The conductive powder is usually contained in 40 to 97% by mass. If it is less than 40% by mass, the conductivity of the produced conductive paste is small, and if it exceeds 97% by mass, the adhesiveness of the conductive paste becomes poor. The conductive paste may be used by mixing the aforementioned conductive polymer or metal oxide powder forming the semiconductor layer.
メツキとしては、 ニッケルメツキ、 銅メツキ、 銀メツキ、 金メッキ、 アル ミニゥムメツキ等が挙げられる。 また蒸着金属としては、 アルミニウム、 二 ッケル、 銅、 金、 銀等が挙げられる。  Examples of plating include nickel plating, copper plating, silver plating, gold plating, aluminum plating, and the like. Examples of the deposited metal include aluminum, nickel, copper, gold, and silver.
具体的には、 例えば形成した半導体層上にカーボンペースト、 銀ペースト を順次積層して電極層が形成される。 このようにして導電体に電極層まで積 層して固体電解コンデンサ素子が作製される。  Specifically, for example, an electrode layer is formed by sequentially laminating a carbon paste and a silver paste on the formed semiconductor layer. In this way, a solid electrolytic capacitor element is fabricated by stacking the conductor up to the electrode layer.
以上のような構成の本発明の固体電解コンデンサ素子は、 例えば、 榭脂モ The solid electrolytic capacitor element of the present invention configured as described above is, for example, a resin module.
—ルド、 樹脂ケース、 金属性の外装ケース、 樹脂のデイツビング、 ラミネー トフィルムなどにより外装して各種用途の固体電解コンデンサ製品とするこ とができる。 これらの中でも、 樹脂モールド外装を行ったチップ状固体電解 コンデンサが、 小型化と低コスト化が簡単に行えるのでとりわけ好ましい。 榭脂モ一ルド外装について具体的に説明すると、 本発明のコンデンサは、 前記コンデンサ素子の電極層の一部を、 別途用意したリードフレーム (空隙 を隔てて対向して配置された先端部を有する) の一方の先端部に載置し、 さ らに導電体の一部を前記リードフレームの他方の先端部に載置する。 このと き導電体が陽極リードを有する構造の場合は、 寸法を合わせるために陽極リ ードの先端を切断して用いてもよレ、。 ついで、 導電ペース トの固化または溶 接等によりコンデンサ素子の陰極及び陽極をリードフレームの各先端部に 各々電気的 ·機械的に接合した後、 前記リードフレームの先端部の一部を残 して樹脂封口し、 樹脂封口外の所定部でリ.一ドフレームを切断折り曲げ加工 してコンデンサチップを作製する (なお、 リードフレームが榭脂封口の下面 にあってリードフレームの下面または下面と側面のみを残して封口されてい る場合は、 切断加工のみでもよい) 。 —Solid electrolytic capacitor products for various applications can be packaged with metal foil, resin case, metallic outer case, resin dating, and laminating film. Among these, a chip-shaped solid electrolytic capacitor with a resin mold is particularly preferable because it can be easily reduced in size and cost. The capacitor according to the present invention will be described in detail. The capacitor according to the present invention has a lead frame (a tip portion disposed so as to be opposed to a gap) with a part of the electrode layer of the capacitor element prepared separately. And a part of the conductor is placed on the other tip of the lead frame. In this case, if the conductor has a structure with an anode lead, the anode You can cut the tip of the card. Subsequently, the cathode and anode of the capacitor element are electrically and mechanically joined to the respective leading ends of the lead frame by solidifying or welding the conductive paste, and a part of the leading end of the lead frame is left. Seal the resin and cut and bend the lead frame at a predetermined part outside the resin seal to fabricate the capacitor chip. (Note that the lead frame is on the bottom surface of the resin seal and only the bottom surface or bottom and side surfaces of the lead frame. If it is sealed with leaving, it may be cut only).
上述のようにリードフレームは、 最終的に切断カ卩ェされてコンデンサの外 部端子となるが、 その形状は、 箔または平板状で、 材質としては鉄、 銅、 ァ ルミユウムまたはこれら金属を主成分とする合金が使用される。 リードフレ ームの一部または全部に半田、錫、 チタン、金、銀、 ニッケル、パラジウム、 銅等のメツキ層を少なくとも 1つ施していてもよい。  As described above, the lead frame is finally cut and becomes the external terminals of the capacitor. The shape of the lead frame is foil or flat plate, and the material is mainly iron, copper, aluminum or these metals. The alloy used as a component is used. At least one plating layer of solder, tin, titanium, gold, silver, nickel, palladium, copper, or the like may be applied to a part or all of the lead frame.
リ一ドフレームには、 前記の切断折り曲げ加工前または加工後に各種メッ キを行うこともできる。 また、 固体電解コンデンサ素子を載置接続する前に メツキを行い、さらに封口後の任意の時に再メツキを行うことも可能である。 リードフレームは一対の対向して配置された先端部が存在し、 先端部間に 隙間があることにより各コンデンサ素子の陽極部と電極層部とが絶縁される。 樹脂モールド外装に使用される樹脂の種類としては、 エポキシ樹脂、 フエ ノール樹脂、 アルキッド樹脂、 エステル樹脂、 ァリルエステル樹脂等コンデ ンサの封止に使用される公知の樹脂が採用できる。 各榭脂とも一般に市販さ れている低応力樹脂 (例えば、 フィラーが通常 7 0体積%以上入っている、 熱膨張係数 αが 3 X 1 0 5 °〇以下の樹脂。 ) を使用すると、 封止時のコン デンサ素子への封止応力の発生を緩和することができるために好ましい。 ま た、 樹脂封口するためには、 トランスファーマシンが好適に使用される。 このように作製された固体電解コンデンサは、 電極層形成時や外装時の熱 的及び/または物理的な誘電体層の劣化を修復するために、 エージング処理 を行ってもよレ、。 エージング方法は、 コンデンサに所定の電圧 (通常、 定格電圧の 2倍以内) を印加することによって行われる。 エージング時間や温度は、 コンデンサの 種類、 容量、 定格電圧によって最適値が異なるので予め実験によって決定さ れるが、 通常、 時間は、 数分から数 3、 温度は電圧印加冶具の熱劣化を考慮 して 3 0 0 °C以下で行われる。 Various markings can be applied to the lead frame before or after the cutting and bending process. In addition, it is possible to perform the measurement before mounting and connecting the solid electrolytic capacitor element and to perform the re-measurement at any time after the sealing. The lead frame has a pair of opposed tip portions, and the gap between the tip portions insulates the anode portion and the electrode layer portion of each capacitor element. As the type of resin used for the resin mold exterior, known resins used for sealing capacitors such as epoxy resins, phenol resins, alkyd resins, ester resins, and aryl ester resins can be employed. When using a low-stress resin (for example, a resin that usually contains 70% by volume or more of filler and has a thermal expansion coefficient α of 3 X 10 5 ° or less) that is generally commercially available for each resin. This is preferable because the generation of sealing stress on the capacitor element at the time of stopping can be mitigated. In addition, a transfer machine is preferably used for sealing the resin. The solid electrolytic capacitor thus fabricated may be subjected to an aging treatment to repair the deterioration of the thermal and / or physical dielectric layer during electrode layer formation and exterior. The aging method is performed by applying a predetermined voltage (usually within twice the rated voltage) to the capacitor. Aging time and temperature are determined in advance by experiment because optimum values differ depending on the type, capacity, and rated voltage of the capacitor.Normally, the time is from several minutes to several 3, and the temperature is determined in consideration of the thermal deterioration of the voltage application jig. Performed at 300 ° C or lower.
エージングの雰囲気は、 減圧、 常圧、 加圧下のいずれの条件で行ってもよ い。 さらに、 エージングの雰囲気は空気中、 アルゴン、 窒素、 ヘリウム等の ガス中でもよいが、 好ましくは水蒸気中である。 エージングは、 水蒸気を含 む雰囲気中で行い、 次に空気中、 アルゴン、 窒素、 ヘリウム等のガス中で行 うと誘電体層の安定化が進む場合がある。 水蒸気を供給した後に常圧室温に 戻し、 あるいは、 水蒸気を供給した後に 1 5 0〜2 5 0 °Cの高温に数分〜数 時間放置し余分な水分を除去し前記ェ一ジングを行うことも可能である。 水 蒸気の供給方法の 1例として、 エージングの炉中に置いた水溜めから熱によ り水蒸気を供給する方法が挙げられる。  The aging atmosphere may be performed under any conditions of reduced pressure, normal pressure, and increased pressure. Further, the aging atmosphere may be air, a gas such as argon, nitrogen, or helium, but is preferably water vapor. Aging may be performed in an atmosphere containing water vapor, and then in a gas such as air, argon, nitrogen, or helium, and stabilization of the dielectric layer may proceed. After supplying water vapor, return to normal pressure and room temperature, or after supplying water vapor, leave it at a high temperature of 15 to 25 ° C. for several minutes to several hours to remove excess water and perform the above aging Is also possible. One example of a water vapor supply method is a method of supplying water vapor by heat from a water reservoir placed in an aging furnace.
電圧印加方法として、 直流、 任意の波形を有する交流、 直流に重畳した交 流やパルス電流等の任意の電流を流すように設計することができる。 エージ ングの途中に一旦電圧印加を止め、 再度電圧印加を行うことも可能である。 低電圧から高電圧へ順に電圧を昇圧しながらエージングを行ってもよい。 本発明によって製造される固体電解コンデンサは、 例えば、 中央演算回路 や電源回路等の高容量のコンデンサを用いる回路に好ましく用いることがで き、 これらの回路は、 パソコン、 サーバー、 カメラ、 ゲーム機、 D V D、 A V機器、 携帯電話等の各種デジタル機器や、 各種電源等の電子機器に利用可 能である。 本発明で製造された固体電解コンデンサは、 容量が大きく、 初期 の E S R値が良好で、 これを用いることにより大電流を流しても発熱が小さ い信頼性の大きな電子回路及び電子機器を得ることができる。 実施例 以下、 本発明の具体例についてさらに詳細に説明するが、 以下の例により 本発明は限定されるものではなレ、。 The voltage application method can be designed to allow direct current, alternating current with an arbitrary waveform, alternating current superimposed on direct current, and pulsed current. It is also possible to stop the voltage application in the middle of aging and apply the voltage again. Aging may be performed while increasing the voltage in order from the low voltage to the high voltage. The solid electrolytic capacitor manufactured by the present invention can be preferably used for a circuit using a high-capacitance capacitor such as a central processing circuit and a power supply circuit, and these circuits include a personal computer, a server, a camera, a game machine, It can be used for various digital devices such as DVDs, AV devices and mobile phones, and electronic devices such as various power supplies. The solid electrolytic capacitor manufactured by the present invention has a large capacity and a good initial ESR value. By using this solid electrolytic capacitor, a highly reliable electronic circuit and electronic device that generates little heat even when a large current flows are obtained. Can do. Example Hereinafter, specific examples of the present invention will be described in more detail. However, the present invention is not limited to the following examples.
実施例 1〜3 : Examples 1-3:
ニオブインゴッ トの水素脆性を利用して粉砕したニオブ一次粉 (平均粒径 0.30 πι) を造粒し平均粒径 1 3 0 μ πιのニオブ粉 (このニオブ粉は微粉で あるため自然酸ィ匕され酸素が 105000 p p m存在する。)を得た。次に 4 5 0 °C の窒素雰囲気中に放置し、 さらに 7 0 0 °Cのアルゴン中に放置することによ り、 窒化量 8000 p p mの一部窒化したニオブ粉 (C V297000 // F - V/ g ) とした。 このニオブ粉を 0.48mm φのニオブ線と共に成形した後 1270°Cで焼 結することにより、 大きさ 4.1 X 3.5 X 1.0mmの焼結体 (導電体) を複数個作 製した (各々の質量 0.06 g。 ュォブのリード線が焼結体内部に 3.7mm、 外部 に 8 mm存在する。 ) 。  Niobium primary powder (average particle size 0.30 πι) pulverized using the hydrogen embrittlement of niobium ingot is granulated, and niobium powder with an average particle size of 1 30 μπι Oxygen is present at 105000 ppm). Next, it is left in a nitrogen atmosphere at 45 ° C. and then in argon at 70 ° C., so that it is partially nitrided niobium powder (C V297000 // F- V / g). This niobium powder was formed with a 0.48mm diameter niobium wire and sintered at 1270 ° C to produce multiple sintered bodies (conductors) of size 4.1 X 3.5 X 1.0mm (each mass 0.06 g The tube leads are 3.7 mm inside the sintered body and 8 mm outside.
続いて、 0.5質量%燐酸水溶液中で 7 0 °C、 2 0 V、 8時間化成することに より、 焼結体表面とリ一ド線の一部に五酸化二ニオブを主成分とする誘電体 層を形成した。 焼結体を、 引き続きドーパントとして表 1に記載した化合物 が溶解したアルコール溶液に浸漬した後乾燥してアルコールを除去した。 こ のようなドーパント含浸とアルコール除去を 1 0回繰り返した。 次に、 導電 体の表面をアルコールで洗浄し乾燥した。  Subsequently, by forming at 70 ° C., 20 V, 8 hours in a 0.5 mass% phosphoric acid aqueous solution, a dielectric mainly composed of niobium pentoxide is formed on the sintered body surface and part of the lead wire. A body layer was formed. The sintered body was subsequently immersed in an alcohol solution in which the compound described in Table 1 as a dopant was dissolved, and then dried to remove the alcohol. Such dopant impregnation and alcohol removal were repeated 10 times. Next, the surface of the conductor was washed with alcohol and dried.
さらに焼結体を、 別途用意した微量のピロールモノマーと 4 %アントラキ ノン一 2—スルホン酸が溶解した 3 0質量%エチレングリコールと水の混合 溶液が入った槽 (槽自身にタンタル箔が貼られていて外部電極になる。 ) に 浸漬し、 焼結体のリ一ド線を陽極に、 外部電極を陰極にして 1 0 0 Aで電 解重合を 6 0分行い、 槽から引き上げ、 水洗浄 ·アルコール洗浄 ·乾燥を行 つた後、 1質量%燐酸水溶液中で 7 0 °Cにて 1 3 Vで 1 5分間再化成を行つ た。 この電解重合と再化成を 6回繰り返して誘電体層上にポリピロールから なる半導体層を形成した。  Furthermore, the sintered body was prepared in a tank containing a mixed solution of 30% by mass ethylene glycol and water in which a small amount of pyrrole monomer and 4% anthraquinone-2-sulfonic acid were separately prepared. Electrode polymerization at 100 A for 60 minutes with the lead wire of the sintered body as the anode and the external electrode as the cathode for 60 minutes, withdrawn from the tank, and washed with water After alcohol washing and drying, re-formation was performed in 1% by weight phosphoric acid aqueous solution at 70 ° C and 13 V for 15 minutes. This electrolytic polymerization and re-formation were repeated 6 times to form a semiconductor layer made of polypyrrole on the dielectric layer.
ついで、 半導体層上にカーボンペーストを積層して乾燥しカーボン層を設 けた後、 銀粉 9 0質量%、 アクリル樹脂 1 0質量%を主成分とする銀ペース トを積層した後乾燥して電極層を形成し、 固体電解コンデンサ素子を複数個 作製した。 別途用意した外部端子であるリードフレーム (銅合金の両面に 1 0 μ ΐηの半光沢ニッケルメツキが施されている。 ) の一対の両先端に、 焼結 体側のリ一ド線と電極層側の銀ペースト側が載るように置き、 前者はスポッ ト溶接で、 後者は電極層に使用したものと同一の銀ペーストで電気的 ·機械 的に接続した。 その後、 リードフレームの一部を除いてエポキシ樹脂でトラ ンスファ一モールドし、 モールド外のリードフレームの所定部を切断後外装 に沿って折り曲げ加工して外部端子とした大きさ 7.3 X 4.3 X 1.8mmのチップ 状固体電解コンデンサを作製した。 続いて、 1 2 5 °C、 7 Vで 3時間エージ ングし、 さらにピ一ク温度 2 7 0 °Cで 2 3 0 °Cの領域が 3 5秒のトンネル炉 を通過させて最終的なチップ状固体電解コンデンサとした。 比較例 1 : Next, a carbon paste is laminated on the semiconductor layer and dried to form a carbon layer. Then, a silver paste mainly composed of 90% by mass of silver powder and 10% by mass of acrylic resin was laminated and then dried to form an electrode layer, thereby producing a plurality of solid electrolytic capacitor elements. The lead wire on the sintered body side and the electrode layer side on a pair of both ends of a lead frame (10 μΐη semi-bright nickel plating on both sides of the copper alloy), which is a separately prepared external terminal The former was spot welded, and the latter was connected electrically and mechanically with the same silver paste used for the electrode layer. After that, transfer mold with epoxy resin except for a part of the lead frame, cut the specified part of the lead frame outside the mold and then bend it along the exterior to make it an external terminal 7.3 X 4.3 X 1.8mm A chip-shaped solid electrolytic capacitor was fabricated. Subsequently, after aging for 3 hours at 125 ° C and 7V, the final temperature was increased by passing through a tunnel furnace with a peak temperature of 2700 ° C and 23 ° C at 35 ° C for 35 seconds. A chip-shaped solid electrolytic capacitor was obtained. Comparative Example 1:
実施例 1で誘電体層が形成された導電体にドーパント含浸をしなかった以 外は実施例 1と同様にしてチップ状固体電解コンデンサを作製した。 実施例 4 :  A chip-shaped solid electrolytic capacitor was produced in the same manner as in Example 1 except that the conductor in which the dielectric layer was formed in Example 1 was not impregnated with the dopant. Example 4:
実施例 1で電解重合を、 4 %アントラキノン一 2—スルホン酸の代わりに 4 %ナフタレン一 2—スルホン酸が溶解した 3 0質量0 /0エチレンダリコール と水の混合溶液が入った槽で行った以外は実施例 1と同様にしてチップ状固 体電解コンデンサを作製した。 比較例 2 : The electrolytic polymerization in Example 1, carried out at a bath 4% naphthalene one 2-sulfonic acid containing 3 0 mass 0/0 mixed solution of ethylene da recall and water dissolved in place of 4% anthraquinone one 2- sulfonic acid A chip-shaped solid electrolytic capacitor was produced in the same manner as in Example 1 except that. Comparative Example 2:
実施例 4で誘電体層が形成された導電体にドーパント含浸をしなかった以 外は実施例 4と同様にしてチップ状固体電解コンデンサを作製した。 実施例 5〜8 : A chip-shaped solid electrolytic capacitor was produced in the same manner as in Example 4 except that the conductor in which the dielectric layer was formed in Example 4 was not impregnated with the dopant. Examples 5-8:
C V (容量と化成電圧の積) 1 5万 μ F · VZ gのタンタル焼結体 (大き さ 4.4X 1.0 X 3.0mm、 質量 8 2 m g、 タンタル製の引き出しリード線 0.40m πι φが 1 O mm表面に出ている。 ) を導電体として使用した。 リード線に後 工程の半導体層形成時の溶液はねあがり防止のためテトラフルォロエチレン 製ワッシャーを装着させた。  CV (product of capacitance and formation voltage) 1 Tantalum sintered body of 50,000 μF · VZ g (size 4.4X 1.0 X 3.0mm, mass 8 2 mg, tantalum lead wire 0.40m πι φ is 1 O mm) The surface is used as a conductor. A tetrafluoroethylene washer was attached to the lead wire to prevent the solution from splashing when the semiconductor layer was formed in the subsequent process.
陽極となる焼結体を 1質量%アントラキノン _ 2—スルホン酸水溶液中に リード線の一部を除いて浸漬し、 陰極のタンタル板電極との間に 1 O Vを印 加し、 6 5 °Cで 7時間化成して T a 2 O 5からなる誘電体酸化皮膜層を形成し た。 この焼結体のリード線を除いて、 ドーパントとして表 1に記載した化合 物が溶解したアルコール (エタノール) 溶液に浸漬した後乾燥してアルコー ルを除去した。 このようなドーパント含浸とアルコール除去を 5回繰り返し た。 Immerse the sintered body to be the anode in 1% by mass anthraquinone_2-sulfonic acid aqueous solution, excluding a part of the lead wire, apply 1 OV between the cathode and the tantalum plate electrode, and 65 ° C A dielectric oxide film layer made of Ta 2 O 5 was formed by chemical conversion for 7 hours. Except for the lead wire of this sintered body, it was immersed in an alcohol (ethanol) solution in which the compound described in Table 1 as a dopant was dissolved, and then dried to remove the alcohol. Such dopant impregnation and alcohol removal were repeated 5 times.
次に、 焼結体のリード線を除いて別途用意した、 不溶な部分も存在するほ ど充分な量の 3, 4一エチレンジォキシチォフェンモノマーと 4 %アントラ キノン一 2—スルホン酸が溶解した 3 0質量0 /0エチレンダリコールと水の混 合溶液が入った槽 (ポリプロピレン製の槽下部にタンタル箔が貼られていて 外部電極になる。 ) に浸漬し、 焼結体のリード線を陽極に、 外部電極を陰極 にして 1 2 0 μ Aで電解重合を 6 0分行い、 槽から引き上げ、 水洗浄 'アル コール洗浄'乾燥を行った後、 1 %アントラキノン一 2—スルホン酸水溶液 中で 6 5 °〇にて7 で1 5分間再化成を行った。 この電解重合と再化成を 6 回繰り返して誘電体層上にポリチオフェン誘導体からなる半導体層を形成し た。 Next, a sufficient amount of 3,4-ethylenedioxythiophene monomer and 4% anthraquinone-2-sulfonic acid were prepared separately, except for the lead wires of the sintered body, so that insoluble portions were also present. dissolved 3 0 mass 0/0 ethylene da recall and mixed-solution vessel containing water (tantalum foil in a bath bottom of polypropylene becomes external electrodes have been attached.) immersed in, the sintered body of lead Electrolytic polymerization is conducted for 60 minutes at 120 μA with the wire as the anode and the external electrode as the cathode. After pulling out of the tank, water washing 'alcohol washing' and drying, 1% anthraquinone mono-2-sulfonic acid Re-formation was performed in an aqueous solution at 65 ° C and 7 at 15 minutes. This electrolytic polymerization and re-formation were repeated 6 times to form a semiconductor layer made of a polythiophene derivative on the dielectric layer.
続いて、 実施例 1と同様に半導体層上に電極層を形成した後、 エポキシ樹 脂封口してチップ状固体電解コンデンサを作製した。 引き続き、 1 3 5 °C、 3 Vで 3時間エージングし、 さらに 1 8 5 °Cの炉に 1 5分放置して外装樹脂 の硬化を行い最終的なチップ状固体電解コンデンサとした。 比較例 3 : Subsequently, an electrode layer was formed on the semiconductor layer in the same manner as in Example 1, and then an epoxy resin was sealed to produce a chip-shaped solid electrolytic capacitor. Subsequently, it was aged for 3 hours at 13.5 ° C. and 3 V, and was further left for 15 minutes in a furnace at 1850 ° C. to cure the exterior resin, resulting in a final chip-shaped solid electrolytic capacitor. Comparative Example 3:
実施例 5で誘電体層が形成された導電体にドーパント含浸をしなかった以 外は実施例 5と同様にしてチップ状固体電解コンデンサを作製した。 実施例 9 :  A chip-shaped solid electrolytic capacitor was produced in the same manner as in Example 5 except that the conductor in which the dielectric layer was formed in Example 5 was not impregnated with the dopant. Example 9:
焼結体の大きさを 4.4X3.0X3.0mm、 質量 245 m gとし、 チップ状固体 電角军コンデンサの大きさを 7.3X4.3X3.8mmとした以外は実施例 5と同様に してコンデンサを作製した。 比較例 4 :  The capacitor was set in the same manner as in Example 5 except that the size of the sintered body was 4.4X3.0X3.0mm, the mass was 245 mg, and the size of the chip-shaped solid electrical square capacitor was 7.3X4.3X3.8mm. Produced. Comparative Example 4:
実施例 9で誘電体層が形成された導電体にドーパント含浸をしなかった以 外は実施例 9と同様にしてチップ状固体電解コンデンサを作製した。 実施例 1〜 9及び比較例 1〜 4で作製したチップ状固体電解コンデンサの 性能を下の方法で測定し、 表 2にまとめて示した。 なお、 表 2のデータは、 コンデンサ数 30個の平均値である。  A chip-shaped solid electrolytic capacitor was produced in the same manner as in Example 9 except that the conductor on which the dielectric layer was formed in Example 9 was not impregnated with the dopant. The performances of the chip-shaped solid electrolytic capacitors produced in Examples 1 to 9 and Comparative Examples 1 to 4 were measured by the following method, and are summarized in Table 2. The data in Table 2 is the average value of 30 capacitors.
容量: ヒユーレツトパッカード社製 LCR測定器を用い室温 12 OHzで 測定した。  Capacity: Measured at 12 OHz at room temperature using an LCR measuring instrument manufactured by Huylet Packard.
E S R:コンデンサの等価直列抵抗を 100 k H zで測定した。  E S R: The equivalent series resistance of the capacitor was measured at 100 kHz.
LC :実施例 1〜4、 比較例 1〜2は、 定格電圧 4 Vで、 実施例 5〜9、 比較例 3〜 4は、 定格電圧 2.5 Vで室温 30秒で測定した。 表 1 LC: Examples 1 to 4 and Comparative Examples 1 and 2 were measured at a rated voltage of 4 V. Examples 5 to 9 and Comparative Examples 3 to 4 were measured at a rated voltage of 2.5 V and a room temperature of 30 seconds. table 1
Figure imgf000020_0001
表 2
Figure imgf000020_0001
Table 2
Figure imgf000020_0002
実施例 1〜 9と比較例 1〜 4を比べることにより、 誘電体層形成後ドーパ ントを含浸した導電体に通電手法により半導体層を形成すると、 作製した固 体電解コンデンサが高容量で ESR値が良好であることがわかる。 特に、 導 電体の体積が大きくなつてもこれらの特性は低下することなく良好である。
Figure imgf000020_0002
By comparing Examples 1 to 9 and Comparative Examples 1 to 4, when a semiconductor layer was formed on a conductor impregnated with a dopant after forming a dielectric layer by a current application method, It can be seen that the body electrolytic capacitor has a high capacity and a good ESR value. In particular, even if the volume of the conductor is increased, these characteristics are good without deterioration.

Claims

請 求 の 範 囲 The scope of the claims
1 . 表面に誘電体層を有する導電体に導電性重合体を含む半導体層を形成 する固体電解コンデンサ素子の製造方法において、 表面に誘電体層を有する 導電体に、 ドーパントを含浸後、 通電手法により半導体層を形成することを 特徴とする固体電解コンデンサ素子の製造方法。 1. In a method of manufacturing a solid electrolytic capacitor element in which a semiconductor layer containing a conductive polymer is formed on a conductor having a dielectric layer on the surface, a method of conducting electricity after impregnating a dopant in a conductor having a dielectric layer on the surface A method for producing a solid electrolytic capacitor element, wherein a semiconductor layer is formed by:
2 . ドーパントが、 電解重合時にドーピングしたときに電導度が 1 0―1〜 1 0 3 S · c m—1の導電性重合体を与える電子供与性化合物である請求項 1 記載の固体電解コンデンサ素子の製造方法。 2. Dopants, electric conductivity of 1 0- 1 ~ 1 0 3 S · cm- 1 for providing a conductive polymer solid electrolytic capacitor element according to claim 1 wherein the electron donor compound when doped at the electrolytic polymerization Manufacturing method.
3 . ドーパントが、 スルホン酸基を有する化合物及びホウ素原子にカルボ ン酸が配位したホウ素化合物から選ばれる少なくとも 1種である請求項 1ま たは 2に記載の固体電解コンデンサ素子の製造方法。 3. The method for producing a solid electrolytic capacitor element according to claim 1 or 2, wherein the dopant is at least one selected from a compound having a sulfonic acid group and a boron compound in which a carboxylic acid is coordinated to a boron atom.
4 . 導電体が、 タンタル、 ニオブ、 チタン及びアルミニウムから選ばれる 少なくとも 1種を主成分とする金属、 酸化ニオブ、 またはこれらの混合物で ある請求項 1に記載の固体電解コンデンサ素子の製造方法。 半導体層が、 下記一般式 (1 ) または (2 ) 4. The method for producing a solid electrolytic capacitor element according to claim 1, wherein the conductor is a metal mainly composed of at least one selected from tantalum, niobium, titanium, and aluminum, niobium oxide, or a mixture thereof. The semiconductor layer has the following general formula (1) or (2)
Figure imgf000022_0001
Figure imgf000022_0001
( 2 ) は、 各々独立して水素原子、 炭素数 1〜 6のアルキル基ま たは炭素数 1〜6のアルコキシ基を表わし、 Xは酸素、 ィォゥまたは窒素原 子を表わし、 R 5は Xが窒素原子のときのみ存在して水素原子または炭素数 1 〜 6のアルキル基を表わし、 R 1と R 2及び R 3と R 4は、 互いに結合して環状 になっていてもよい。 ) (2) are each independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. Or an alkoxy group having 1 to 6 carbon atoms, X represents an oxygen atom, nitrogen atom or nitrogen atom, and R 5 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which is present only when X is a nitrogen atom. R 1 and R 2 and R 3 and R 4 may be bonded to each other to form a ring. )
で示される繰り返し単位を含む重合体にドーパントをドープした導電性重合 体を主成分とした半導体から選択される少なくとも 1種の層である請求項 1 に記載の固体電解コンデンサ素子の製造方法。 2. The method for producing a solid electrolytic capacitor element according to claim 1, wherein the polymer is a semiconductor containing at least one kind of a conductive polymer in which a dopant is doped in a polymer containing a repeating unit represented by formula (1).
6 . —般式(1 )で示される繰り返し単位を含む重合体力 下記一般式(3 ) 6 —Polymer Power Containing Repeating Unit Represented by General Formula (1) General Formula (3)
Figure imgf000023_0001
Figure imgf000023_0001
(式中、 1 6及び1^ 7は、 各々独立して水素原子、 炭素数 1〜6の直鎖状もし くは分岐状の飽和もしくは不飽和のアルキル基、 またはそのアルキル基が互 いに任意の位置で結合して、 2つの酸素原子を含む少なくとも 1つ以上の 5 〜 7員環の飽和炭化水素の環状構造を形成する置換基を表わす。 また、 前記 環状構造には置換されていてもよいビニレン結合を有するもの、 置換されて いてもよいフエ二レン構造のものも含まれる。 ) (In the formula, 1 6 and 1 ^ 7 are each independently a hydrogen atom, a linear or branched saturated or unsaturated alkyl group having 1 to 6 carbon atoms, or the alkyl group. It represents a substituent which is bonded at an arbitrary position to form a cyclic structure of at least one 5- to 7-membered saturated hydrocarbon containing two oxygen atoms, and the cyclic structure is substituted. Also included are those having a good vinylene bond and those having a phenylene structure which may be substituted.
で示される構造単位を繰り返し単位として含む重合体である請求項 5に記載 の固体電解コンデンサ素子の製造方法。 7 . 導電性重合体が、 ポリア二リン、 ポリオキシフエ二レン、 ポリフエ二 レンサルファイド、 ポリチォフェン、 ポリフラン、 ポリピロール、 ポリメチ ルピ口ール、 及びこれらの置換誘導体及び共重合体から選択される請求項 5 に記載の固体電解コンデンサ素子の製造方法。 The method for producing a solid electrolytic capacitor element according to claim 5, wherein the polymer comprises a structural unit represented by the formula: 7. The conductive polymer according to claim 5, wherein the conductive polymer is selected from polyaniline, polyoxyphenylene, polyphenylene sulfide, polythiophene, polyfuran, polypyrrole, polymethylpyrrole, and substituted derivatives and copolymers thereof. The manufacturing method of the solid electrolytic capacitor element of description.
8. 導電性重合体が、 ポリ (3, 4—エチレンジォキシチォフェン) であ る請求項 7に記載の固体電解コンデンサ素子の製造方法。 8. The method for producing a solid electrolytic capacitor element according to claim 7, wherein the conductive polymer is poly (3,4-ethylenedioxythiophene).
9. 半導体の電導度が、 1 0— 2〜1 03S · cm— 1の範囲である請求項 5 に記載の固体電解コンデンサ素子の製造方法。 9. The semiconductor of conductivity is 1 0 2-1 0 3 manufacturing method of a solid electrolytic capacitor element according to claim 5 is in a range of S · cm- 1.
10. 請求項 1〜9のいずれかに記載の製造方法で得られた固体電解コン デンサ素子。 10. A solid electrolytic capacitor element obtained by the manufacturing method according to claim 1.
1 1. 請求項 1 0に記載の固体電解コンデンサ素子を封口した固体電解コ ンデンサ。 1 1. A solid electrolytic capacitor in which the solid electrolytic capacitor element according to claim 10 is sealed.
1 2. 請求項 1 1に記載の固体電解コンデンサを使用した電子回路。 1 2. An electronic circuit using the solid electrolytic capacitor according to claim 1.
1 3. 請求項 1 1に記載の固体電解コンデンサを搭載した電子機器。 1 3. An electronic device on which the solid electrolytic capacitor according to claim 1 is mounted.
PCT/JP2005/024155 2004-12-24 2005-12-22 Solid electrolytic capacitor element, solid electrolytic capacitor and method for manufacturing same WO2006068302A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004373651 2004-12-24
JP2004-373651 2004-12-24

Publications (1)

Publication Number Publication Date
WO2006068302A1 true WO2006068302A1 (en) 2006-06-29

Family

ID=36601884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/024155 WO2006068302A1 (en) 2004-12-24 2005-12-22 Solid electrolytic capacitor element, solid electrolytic capacitor and method for manufacturing same

Country Status (2)

Country Link
TW (1) TWI469163B (en)
WO (1) WO2006068302A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258818A (en) * 1988-08-25 1990-02-28 Nippon Chemicon Corp Manufacture of solid electrolytic capacitor
JPH02249221A (en) * 1989-03-23 1990-10-05 Asahi Glass Co Ltd Solid electrolytic capacitor
WO2003032344A1 (en) * 2001-10-02 2003-04-17 Showa Denko K.K. Niobium powder, sintered compact thereof, chemically modified product thereof and capacitor using them

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW502266B (en) * 1999-04-06 2002-09-11 Showa Denko Kk Solid electrolytic capacitor and method for producing the same
JP4566593B2 (en) * 2003-04-14 2010-10-20 昭和電工株式会社 Sintered body electrode and solid electrolytic capacitor using the sintered body electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258818A (en) * 1988-08-25 1990-02-28 Nippon Chemicon Corp Manufacture of solid electrolytic capacitor
JPH02249221A (en) * 1989-03-23 1990-10-05 Asahi Glass Co Ltd Solid electrolytic capacitor
WO2003032344A1 (en) * 2001-10-02 2003-04-17 Showa Denko K.K. Niobium powder, sintered compact thereof, chemically modified product thereof and capacitor using them

Also Published As

Publication number Publication date
TW200636780A (en) 2006-10-16
TWI469163B (en) 2015-01-11

Similar Documents

Publication Publication Date Title
JP3974645B2 (en) Solid electrolytic capacitor element, manufacturing method thereof, and solid electrolytic capacitor
JP4701940B2 (en) Solid electrolytic capacitor element, solid electrolytic capacitor and manufacturing method thereof
JP4299297B2 (en) Capacitor and method for manufacturing the capacitor
WO2007004554A1 (en) Solid electrolytic capacitor and production method thereof
JP4793264B2 (en) Capacitor element and carbon paste
WO2006049317A1 (en) Capacitor manufacturing jig, capacitor manufacturing device, and capacitor manufacturing method
WO2006028286A1 (en) Reaction vessel for manufacturing capacitor element, method for manufacturing capacitor element, capacitor element, and capacitor
JP4827195B2 (en) Method for manufacturing solid electrolytic capacitor element
JP4689381B2 (en) Capacitor element manufacturing method
US7423862B2 (en) Solid electrolytic capacitor element, solid electrolytic capacitor and production method thereof
JP3992706B2 (en) Capacitor manufacturing method
WO2007004555A1 (en) Solid electrolytic capacitor element and production method thereof
JP4488303B2 (en) Capacitor manufacturing method
WO2006068302A1 (en) Solid electrolytic capacitor element, solid electrolytic capacitor and method for manufacturing same
JP4367752B2 (en) Method for manufacturing solid electrolytic capacitor element
JP4632134B2 (en) Manufacturing method of solid electrolytic capacitor
JP4750498B2 (en) Manufacturing method of solid electrolytic capacitor
JPWO2007074869A1 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2005109466A (en) Capacitor and method of manufacturing same
WO2007004553A1 (en) Method for producing solid electrolytic capacitor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05822666

Country of ref document: EP

Kind code of ref document: A1