WO2006067923A1 - メモリコントローラ、不揮発性記憶装置、不揮発性記憶システム及びメモリ制御方法 - Google Patents

メモリコントローラ、不揮発性記憶装置、不揮発性記憶システム及びメモリ制御方法 Download PDF

Info

Publication number
WO2006067923A1
WO2006067923A1 PCT/JP2005/021119 JP2005021119W WO2006067923A1 WO 2006067923 A1 WO2006067923 A1 WO 2006067923A1 JP 2005021119 W JP2005021119 W JP 2005021119W WO 2006067923 A1 WO2006067923 A1 WO 2006067923A1
Authority
WO
WIPO (PCT)
Prior art keywords
memory
physical
logical
main
address
Prior art date
Application number
PCT/JP2005/021119
Other languages
English (en)
French (fr)
Inventor
Masahiro Nakanishi
Tomoaki Izumi
Tetsushi Kasahara
Kazuaki Tamura
Kiminori Matsuno
Manabu Inoue
Masayuki Toyama
Kunihiro Maki
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US11/722,362 priority Critical patent/US20080250188A1/en
Priority to JP2006548724A priority patent/JPWO2006067923A1/ja
Publication of WO2006067923A1 publication Critical patent/WO2006067923A1/ja

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/14Error detection or correction of the data by redundancy in operation
    • G06F11/1402Saving, restoring, recovering or retrying
    • G06F11/1415Saving, restoring, recovering or retrying at system level
    • G06F11/1441Resetting or repowering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/0223User address space allocation, e.g. contiguous or non contiguous base addressing
    • G06F12/023Free address space management
    • G06F12/0238Memory management in non-volatile memory, e.g. resistive RAM or ferroelectric memory
    • G06F12/0246Memory management in non-volatile memory, e.g. resistive RAM or ferroelectric memory in block erasable memory, e.g. flash memory
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/72Details relating to flash memory management
    • G06F2212/7201Logical to physical mapping or translation of blocks or pages

Definitions

  • the present invention relates to a nonvolatile storage device such as a semiconductor memory card having a flash memory as a main storage memory, a memory controller built in the nonvolatile storage device, and a nonvolatile storage system including an access device as a component, And a memory control method describing the operation of the memory controller.
  • a nonvolatile storage device such as a semiconductor memory card having a flash memory as a main storage memory, a memory controller built in the nonvolatile storage device, and a nonvolatile storage system including an access device as a component, And a memory control method describing the operation of the memory controller.
  • Nonvolatile memory devices including a rewritable nonvolatile memory are in increasing demand, particularly for semiconductor memory cards.
  • the demand for nonvolatile memory systems using semiconductor memory cards is growing, especially in digital still cameras.
  • an SD memory card is composed of a flash memory that is a main storage unit and a memory controller that controls the flash memory.
  • the memory controller is a device that performs read / write control on the flash memory in response to read / write instructions from the access device such as a digital still camera.
  • Flash memory has a restriction that the guaranteed number of rewrites is usually 100,000 times. Therefore, a mechanism such as wear leveling has been introduced in order to avoid rewriting concentrated on a specific area. This mechanism converts the logical address given by the access device to access the flash memory into a physical address, so that rewriting is not concentrated in a specific area, and is normally converted based on the address management table in the memory controller. Is made. Normally, the address management table reads the address management information stored in the flash memory in the initialization process when the power is turned on, and is configured in a volatile memory such as SRAM based on this.
  • the address management information is not stored in units of blocks, but the entire memory area of the memory card or the entire memory area is divided into a predetermined number for each area.
  • This is a method of storing the address management table corresponding to the whole in a predetermined block. This method is hereinafter referred to as a centralized address management method.
  • the present invention is premised on a centralized address management method, and as this prior art, for example, what is described in Patent Document 1 is known.
  • an address management table is allocated to a fixed area of the flash memory.
  • the rewrite frequency of the address management table is higher than the rewrite frequency of the data, so the area to which the address management table is allocated quickly exceeds the guaranteed number of rewrites, that is, the lifetime of the entire nonvolatile storage device There was a problem that would be shortened.
  • Patent Document 2 As a technique for solving this problem, for example, one described in Patent Document 2 is known. According to Patent Document 2, information that is frequently rewritten, such as an address management table, is not guaranteed to be stored in a fixed area of the flash memory. ) And other non-volatile RAM technologies are disclosed. Specifically, both the logical-physical conversion table and the physical area management table, which are address management information, are stored in the nonvolatile RAM, and the rewriting process is performed on it.
  • the physical area management table is a table storing a valid flag indicating whether valid data is stored in the physical block and a bad block flag indicating whether the physical block is a bad block.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-142774
  • Patent Document 2 Japanese Patent Laid-Open No. 07-219720
  • non-volatile RAM such as FeRAM is very expensive compared to flash memory and SRAM, which greatly affects the price of the memory controller. For example, consider using a single flash memory as shown in Table 1 to realize a 128 MByte memory card.
  • each table is as follows.
  • the size of the address management table that is, the size of the nonvolatile RAM, is required to be approximately 18 kBytes. As a result, the memory controller becomes expensive.
  • the present invention solves the above-mentioned conventional problems, and interrupts power supply without much cost increase. It is an object of the present invention to provide a memory controller, a nonvolatile storage device, a nonvolatile storage system, and a memory control method capable of correctly dealing with a failure and realizing a long life.
  • a memory controller is a memory controller that writes data to and reads data from a nonvolatile main memory according to a command and a logical address given from an access device.
  • the memory controller includes a read / write control unit that performs read / write control on the main memory, a volatile memory that temporarily stores a logical-physical conversion table read from the main memory, and each of the main memory Based on a physical area management table for managing the state of physical addresses, a nonvolatile auxiliary storage memory for storing pointers indicating physical addresses of the logical physical conversion tables stored in the main storage memory, and the logical physical conversion tables Determine the physical address that is the storage location of data etc.
  • the address management information control means appropriately updates a physical address whose pointer is a storage position of the logical-physical conversion table so that the storage position of the logical-physical conversion table is not fixed, and the main storage memory After the data is changed, the changed physical address of the data is set to the valid state in the physical area management table.
  • the nonvolatile storage device of the present invention has a nonvolatile main storage memory and a memory controller, and uses commands and logical addresses given to the external access device. And a nonvolatile storage device for writing and reading data to and from the main storage memory, wherein the main storage memory is a nonvolatile memory having a plurality of physical block powers each including at least one sector,
  • the memory controller includes a read / write control unit that performs read / write control on the main memory, a volatile memory that temporarily stores a logical-physical conversion table read from the main memory, and each physical of the main memory.
  • Non-volatile auxiliary storage memory that stores a pointer that points to the physical address of the logical-physical conversion table stored in the memory, and a physical address that is a storage location of data in the main memory is determined based on the logical-physical conversion table
  • the address management information control means for updating the physical area management table and pointer information, and the auxiliary storage memory is a non-volatile memory having a higher number of guaranteed rewrites than the main storage memory
  • the address management information control means appropriately updates a physical address at which the pointer is a storage location of the logical-physical conversion table so that the storage location of the logical-physical conversion table is not fixed, and the main storage memory
  • the data of the data is changed in the physical area management table after the data of It is to set a can-inclusive physical address to a valid state.
  • a nonvolatile storage system of the present invention includes an access device and a nonvolatile storage device, and the nonvolatile storage device includes a nonvolatile main storage memory and a memory controller.
  • a nonvolatile storage system that writes and reads data to and from the main storage memory according to commands and logical addresses given from the access device, wherein the main storage memory includes a plurality of sectors each including at least one sector.
  • the memory controller is a volatile controller that temporarily stores a read / write control unit that performs read / write control on the main memory and a logical-physical conversion table read from the main memory. Physical memory and a physical area management table for managing the state of each physical address of the main memory.
  • nonvolatile auxiliary storage memory that stores a pointer indicating a physical address of the logical-physical conversion table stored in the main storage memory, and a storage location of data or the like in the main storage memory based on the logical-physical conversion table
  • the address management information control means prevents the storage location of the logical-physical translation table from being fixed by appropriately updating the physical address at which the pointer is the storage location of the logical-physical translation table. After the data in the main memory is changed, it is stored in the physical area management table. Have a modified physical address of the data It is set to the effective state.
  • the memory control method of the present invention is a memory control method for writing and reading data to and from a nonvolatile main memory in accordance with a command and a logical address given from the outside.
  • the physical memory that performs read / write control on the main memory temporarily stores the logical-physical conversion table read from the main memory in the volatile memory, and manages the state of each physical address of the main memory
  • a pointer indicating the physical address of the area management table and the logical-physical conversion table stored in the main storage memory is stored in the auxiliary storage memory which is nonvolatile and has a higher guaranteed number of rewrites than the main storage memory, and the logical-physical conversion Determining a physical address which is a storage location of data in the main memory based on the table, and the physical area
  • the physical table and pointer information are updated, and the storage location of the logical physical conversion table is not fixed by appropriately updating the physical address where the pointer is the storage location of the logical physical conversion table.
  • the present invention is premised on a centralized address management method, and mainly has the following features.
  • a logical physical conversion table As described above, there are two types of address management tables: a logical physical conversion table and a physical area management table.
  • the large-capacity! /, Logical-physical conversion table is stored in the main storage memory
  • the small-capacity, physical area management table is stored in the nonvolatile auxiliary storage memory.
  • a non-volatile memory device can be realized at a lower cost than the conventional technology shown. Also, since the status of each data is stored in the physical area management table, the information is retained even if the power is cut off, so it is necessary to determine whether each data is valid after the power is turned on again. This makes it possible to improve the reliability when the power is turned off.
  • FIG. 1 is a block diagram showing a nonvolatile memory device according to an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram showing a physical block according to an embodiment of the present invention.
  • FIG. 3 is an explanatory diagram showing a logical address format in the embodiment of the present invention.
  • FIG. 4 is an explanatory diagram showing a physical management area table 105 in the embodiment of the present invention.
  • FIG. 5 is an explanatory diagram showing a logical-physical conversion table 108 according to the embodiment of the present invention.
  • FIG. 6A is an explanatory diagram showing the pointer table 106 in the embodiment of the present invention.
  • FIG. 6B is an explanatory diagram showing the pointer table 106 in the embodiment of the present invention. Is a time chart showing writing for one cluster in the embodiment of the present invention.
  • FIG. 8 is a flowchart showing writing for one cluster in the embodiment of the present invention.
  • FIG. 1 is a block diagram showing a nonvolatile memory system according to an embodiment of the present invention.
  • the nonvolatile storage system includes an access device 100 and a nonvolatile storage device 120.
  • the nonvolatile storage device 120 includes a memory controller 130 and a nonvolatile main storage memory 140.
  • the access device 100 transfers user data (hereinafter simply referred to as data) read / write commands, logical addresses, and data to the nonvolatile storage device 120 via the memory controller 130 to the nonvolatile storage device 120.
  • the main memory 140 is composed of a plurality of physical blocks.
  • Reference numeral 101 denotes a host IZF, and a CPU 102 controls the entire memory controller 130 by a work RAM 103 and a ROM 104 storing a program.
  • the physical area management table 105 is a table that stores information such as the state of a physical block that is an erasing unit in the nonvolatile main memory 140, that is, whether or not valid data is stored.
  • the pointer table 106 is a pointer indicating the physical block address in which at least the latest logical physical conversion information is stored in each logical physical conversion information stored in the nonvolatile main memory 140.
  • a non-volatile auxiliary storage memory 107 stores a physical area management table 105 and a pointer table 106.
  • the logical / physical conversion table 108 is a table for converting the logical address transferred by the access device 100 into a physical address in the nonvolatile main memory 140, and the logical / physical conversion table 108 is a volatile memory 109 (for example, SRAM). Is temporarily stored.
  • the read / write control unit 111 is a control unit that performs reading and writing of the nonvolatile main memory 140. Note that the nonvolatile main memory
  • the memory 140 is a flash memory, for example, and the auxiliary storage memory 107 is a non-volatile memory such as a ferroelectric memory (FeRAM).
  • FIG. 2 is an explanatory diagram showing one physical block in the main memory 140 according to the embodiment of the present invention.
  • the physical block consists of 32 pages, and each page consists of a data area for one sector and a management area.
  • one sector is set to 512 bytes.
  • FIG. 3 is an explanatory diagram showing the format of the logical block address LBA in the present embodiment.
  • LBA logical block address
  • a 13-bit logical block address corresponds to an address conversion target, that is, an address of the logical-physical conversion table 108. Since the sector size specified by the file system of the access device 100 is 512 bytes and the cluster size is 16 kbytes, the LSB of the cluster number corresponds to bit 5 (b5) of the logical address format.
  • FIG. 4 is an explanatory diagram showing the physical area management table 105 in the present embodiment.
  • the physical area management table 105 is a table that corresponds to each physical block address of the main storage memory 140 whose address is nonvolatile, and stores the state of each physical block with a 2-bit flag.
  • a binary value of 00 indicates a valid block that contains valid data
  • a value of 11 indicates an erased or invalid block that has been written but is unnecessary
  • a value of 10 is Indicates a defective block that cannot be used due to a solid error on the memory cell.
  • FIG. 5 is an explanatory diagram showing the logical-physical conversion table 108 in the present embodiment.
  • the address corresponds to the logical block address LSA (FIG. 3) designated by the access device 100, and the physical block address PBA is stored in the logical-physical conversion table 108.
  • FIG. 6A and FIG. 6B are explanatory diagrams showing the pointer table 106 in the present embodiment.
  • the pointer table 106 has two types of pointers 106a and 106b. One is a pointer to the physical address of the latest logical-physical conversion information in the logical-physical conversion information stored in the nonvolatile main memory 140, and the other is the old logical-physical conversion information.
  • the most significant bit of Byte 1 shown in bold is the latest flag, and the pointer with the value 1 assigned to this bit is the pointer that points to the physical address of the latest logical-physical translation information.
  • Each pointer has an area to hold a 13-bit pointer value (physical address value).
  • the pointer value is stored with b4 on Bytel as MSB and bO on ByteO as LSB. For example, when logical-physical conversion information is stored at address 5 of the main memory 140, the pointer value becomes the value 5.
  • FIG. 7 is a time chart showing writing for one cluster in the present embodiment
  • FIG. 8 is a flowchart thereof.
  • the contents of the main memory 140 and various tables immediately after shipment of the nonvolatile storage device will be described.
  • the description of the system area in the main memory 140 is omitted, and only the normal area, that is, the area where the user reads and writes data is described.
  • all good blocks in the main memory 140 are erased.
  • a good block is set to an invalid block state, that is, a binary value 11 is set, and an initial bad block is set to a bad block, that is, a binary value 10 is set.
  • Logical physical conversion information corresponding to the logical physical conversion table 108 is stored in the physical block at address 0 of the main memory 140. Further, as shown in FIG. 6A, only the latest flag of the pointer 106a in the pointer table 106 has the value 1 and the pointer value is 0, and the pointer 106b has the value 0 for both the latest flag and the pointer value. If the physical block at address 0 in the main memory 140 is a bad block, the logical-physical conversion information is stored at the next physical address at address 1, and the pointer 1 is stored with the value 1 .
  • the CPU 102 After the power is turned on, the CPU 102 performs an initialization process based on the program stored in the ROM 104.
  • the address management information control unit 110 refers to the pointer table 106.
  • the logical-physical conversion information stored in the physical block at address 0 of the main memory 140 is stored on the basis of the pointer having the latest flag value 1, that is, the pointer value of the pointer 106a. Reading is performed via the read / write control unit 111, and the logical-physical conversion table 108 is formed on the volatile memory 109. Thereafter, a command reception state such as reading / writing from the access device 100 is entered.
  • the access device 100 is a cluster unit.
  • the access device 100 issues a write instruction to an arbitrary logical address (Fig. 3), based on the logical address value, the CPU 102 searches the invalid block so that the physical block is used evenly, Writes after erasing the invalid block as the target block. You can also search for invalid blocks in descending order for address 0 in the physical area management table 105.
  • the nonvolatile storage device uses a nonvolatile RAM that has higher rewrite endurance and a smaller capacity and higher writing speed than the flash memory that is the main storage memory.
  • Nonvolatile RAM having such characteristics is a device that stores information (for example, address management information) that requires high-speed writing with high rewrite frequency in a nonvolatile storage device that uses flash memory or the like as main storage memory. In terms of performance, it is an optimal device. However, it is relatively expensive compared to flash memory and SRAM, so it has a problem that it cannot store a lot of information. For example, if both the logical-physical conversion table 108 and the physical area management table 105 are stored, it cannot be ignored in terms of cost. This is a problem that becomes more prominent as the storage capacity of the entire device increases.
  • the non-volatile RAM stores relatively small information, that is, a physical area management table 105 and a pointer table 106.
  • the physical area management table requires 2kB if the state of each physical block is stored in 2 bits, and the pointer table requires 4 bytes. Therefore, the capacity of the nonvolatile auxiliary storage memory 107 is 2052 bytes.
  • the physical area management table 105 stores only the status of each physical block as valid and invalid, and erased or defective blocks are stored together as invalid blocks, a capacity of 1 bit is sufficient. In this case, the physical area management table is lkB and the pointer table is 4 bytes.
  • the pointer must also hold the address of the physical block that stores the new and old logical physical conversion information. In this case, the old and new pointers can be 8 bytes.
  • the nonvolatile main memory 140 is configured with a plurality of physical block powers. Each physical block stores logical-physical conversion information that is a part of data or address management information. At a certain arbitrary time, the logical-physical conversion information is converted into logical-physical conversion as shown in FIG. 1, for example. It is assumed that information is stored as A, B, C.... If the logical-physical conversion information is fixedly assigned to one physical block, the update frequency is high, which causes a problem in wear leveling. For this reason, it is necessary to allocate in such a way that it is rearranged, that is, the storage area is not fixed, and logical and physical conversion information A, B, C...
  • the latest logical-physical conversion information is held in any one physical block, and the other is old logical-physical conversion information.
  • It is a force pointer table 106 that indicates in which physical block it is stored.
  • the address management information control unit 110 refers to the pointer table 106, checks the latest flag of the pointers 106a and 106b, and stores the most recent logical-physical conversion information stored in the bit whose value is set to 1. Recognize as a physical block pointer.
  • the pointer 106b is the latest pointer
  • the pointer value of the pointer 106b, that is, address 5 is the physical address of the physical block in which the latest logical-physical conversion information is stored.
  • the pointer value of the pointer 106a is the physical address of the physical block in which the old logical physical conversion information immediately before the latest logical physical conversion information is stored. It is. Then, through the read / write control unit 111, the information stored in the physical block with the physical address 5 is read from the main memory 140, that is, the latest logical-physical conversion information is read out from the volatile memory 109, as shown in FIG. A logical-physical conversion table 108 as shown is formed.
  • an invalid block is searched based on the physical area management table 105, and after the invalid block is erased, the logical-physical conversion table 108 is written back to the main memory 140.
  • the physical address of the invalid block (referred to as physical address X) is written to the pointer whose value of the latest flag in the pointer table 106 is 0, and the latest flag is set to the value 1. Then set the latest flag of the other pointer to 0. In other words, two pointers are used in order.
  • the status flag of the physical address X is updated to a binary value of 00, that is, a valid block.
  • the status flag update operation in the physical area management table 105 is performed not only in the write-back process of the logical-physical conversion table 108 but also in the data write.
  • the physical area management table 105 and the pointer table 106 are frequently rewritten, but the non-volatile auxiliary storage memory 107 that stores them has the rewrite resistance shown in Table 2. However, since it is realized with a very high nonvolatile RAM, it does not affect the rewrite life of the entire device.
  • an instruction to write data for one cluster is issued from the access device 100, and data to be written and its logical address are received (S801).
  • the host I / F 101 issues a write control request to the CPU 102.
  • the CPU 102 transfers control to the address management information control unit 110.
  • the address management information control unit 110 refers to the physical area management table 105 to search for an invalid block, and the data write destination block a and the logical physical conversion table 108
  • the write-back destination block b is determined (S802). Invalid When searching for a block, the search is performed so that the physical blocks in the main memory 140 are used evenly. Details are omitted.
  • the block a and b are erased (S804).
  • This erase time is defined as TO. Normally, it takes about 2mSec to erase one block of flash memory.
  • data for one cluster is written in block a (S805).
  • it since it takes about 300 Sec to write one page, it generally takes lOmSec to write data for one cluster, that is, 32 pages ( Figure 7).
  • the address management information control unit 110 has 32 pages based on the RZ B signal (ready Z busy signal) and the write size value fed back from the nonvolatile main memory 140 via the read / write control unit 111. It is determined whether or not all the writing has been completed (S806).
  • the logical-physical conversion table 108 on the volatile memory 109 is written to the block b (S807).
  • the address management information control unit 110 determines whether or not the write-back processing for all the logical-physical conversion tables 108, that is, 32 pages has been completed (S808). As shown in Fig. 7, the writing time to blocks a and b is T1. If completed, the physical address corresponding to block b is written on the pointer table 106 of the auxiliary memory 107 (S809). This writing time is T2-1. Next, in the physical area management table 105, the status flags corresponding to the blocks a and b are set to valid blocks, and the process is terminated (S810). These writing times are T2-2 and T2-3, respectively.
  • the power described for the data writing process for one cluster with reference to FIG. 8 and FIG. 7, for example, the data rewriting process for one cluster can be performed by the same process.
  • FeRAM ferroelectric memory
  • MRAM magnetic recording type arbitrary write / read memory
  • OUM OUM
  • RRAM resistance RAM
  • logical / physical conversion information corresponding to the logical / physical conversion table 108 is realized by a relatively low-cost flash memory in addition to information for address management of the nonvolatile main memory 140.
  • the physical area management table 105 is stored in the auxiliary storage memory 107 realized by a relatively high cost non-volatile RAM, and the auxiliary storage memory 107 has a pointer of about several bytes.
  • the table 106 was memorized. It is possible to rationalize the capacity of the nonvolatile RAM compared to the conventional device in which both the logical-physical conversion table 108 and the physical area management table 105 are stored in the nonvolatile RAM. wear. That is, the cost of the entire apparatus can be kept low.
  • the address management information control unit 110 rearranges the write-back processing for the nonvolatile main memory 140 of the logical-physical conversion table 108 based on the pointer table 106 and the physical area management table 105. I did it. That is, since logical-physical conversion information is not allocated to a fixed area of the main storage memory 140, wear leveling can be realized with a simple circuit configuration.
  • the physical area management table 105 is stored in the auxiliary storage memory 107 capable of high-speed writing, and the address management information control unit 110 writes the data and the logical physical conversion table 108 into the nonvolatile main storage memory 140. After that, the corresponding status flag in the physical area management table 105 is set to a valid block, so that even if the power is cut off, there will be no problem causing logical contradiction.
  • the non-volatile storage device uses a non-volatile memory as a main storage memory, and in a device using a non-volatile auxiliary storage memory, low cost and high reliability without impairing high-speed processing performance.
  • This technology is useful as a recording medium for portable AV devices such as still image recording / playback devices and video recording / playback devices, and portable communication devices such as mobile phones.

Abstract

 不揮発性の補助記憶メモリ107に物理領域管理テーブル105とポインタテーブル106を記憶させる。論理物理変換テーブル108を主記憶メモリ140に更新する(書き戻す)際、ポインタテーブルにより書き戻し先を再配置的に決定することにより、主記憶メモリ140の書き換え集中を回避する。またデータ等を主記憶メモリ140に書き込んだ直後に、物理領域管理テーブル105上の物理ブロックの状態を更新することにより、電源遮断が生じても当該データが有効であるかどうかを確実に判断することができる。

Description

明 細 書
メモリコントローラ、不揮発性記憶装置、不揮発性記憶システム及びメモリ
技術分野
[0001] 本発明は、フラッシュメモリを主記憶メモリとして具備する半導体メモリカード等の不 揮発性記憶装置及びそれに内蔵されるメモリコントローラ、さらに、アクセス装置を構 成要素に備えた不揮発性記憶システム、及びメモリコントローラの動作を記述したメ モリ制御方法に関する。
背景技術
[0002] 書き換え可能な不揮発性メモリを備えた不揮発性記憶装置は、半導体メモリカード を中心にその需要が広まっている。また半導体メモリカードを使った不揮発性記憶シ ステムは、デジタルスチルカメラ等を中心にその需要が広まっている。半導体メモリ力 一ドには様々な種類のカードがあり、例えば SDメモリカードは、主記憶部であるフラ ッシュメモリと、それを制御するメモリコントローラとから構成されている。メモリコント口 ーラは、デジタルスチルカメラ本体等のアクセス装置力 の読み書き指示に応じて、 フラッシュメモリに対する読み書き制御を行うデバイスである。
[0003] フラッシュメモリは書換保証回数が通常 10万回といった制約がある。そこで書換え が特定の領域に集中することを回避する為に、ウェアレべリングといった仕組みが導 入されている。この仕組みは、フラッシュメモリにアクセスするためにアクセス装置から 与えられる論理アドレスを物理アドレスに変換することによって、特定領域に書き換え を集中させない仕組みであり、通常メモリコントローラ内部のアドレス管理テーブルに 基づいて変換がなされる。アドレス管理テーブルは、通常、電源立ち上げ時の初期 化処理においてフラッシュメモリに記憶されたアドレス管理情報を読み出し、これに基 づ 、て SRAM等の揮発性メモリに構成されるものである。
[0004] フラッシュメモリにおけるアドレス管理情報の格納形態として、大きく 2通りの方法が ある。第 1の方法は、物理ブロックを構成している所定ページ (セクタ)にデータを書き 込む際に、管理情報、即ち当該データが有効であるかどうか等を表すステータス情 報や論理アドレスをそのページが含まれる物理ブロックの先頭ページの冗長領域に 書き込み、初期化時にぉ 、て各ブロックの先頭ページの冗長領域に書き込まれた管 理情報を読み出して、揮発性メモリにアドレス管理テーブルを構築する方法である。 以降この方法を分散型アドレス管理方法と 、う。
[0005] 第 2の方法は、アドレス管理情報を各ブロック単位毎に分散させて記憶するもので はなぐメモリカードのメモリ領域全体、あるいはメモリ領域全体を所定数に分割した 領域毎に、その領域全体に対応するアドレス管理テーブルをまとめて所定ブロックに 記憶させる方法である。以降この方法を集中型アドレス管理方法という。
[0006] 本発明は集中型アドレス管理方法を前提とするものであり、この先行技術として、例 えば、特許文献 1に記載されたものが知られて 、る。
[0007] 特許文献 1に記載された装置にあっては、アドレス管理テーブルがフラッシュメモリ の固定領域に割り付けられている。通常、データの書換頻度に対してアドレス管理テ 一ブルの書換頻度が高 、為、アドレス管理テーブルが割り付けられた領域が早く書 換保証回数を上回ってしまう、即ち不揮発性記憶装置全体としての寿命が短くなつ てしまうという課題があった。
[0008] この課題を解決する技術として、例えば、特許文献 2に記載されたものが知られて いる。特許文献 2によれば、アドレス管理テーブル等の書換頻度の高い情報はフラッ シュメモリの固定領域に記憶させるのではなぐフラッシュメモリよりも書換保証回数の 大き 、不揮発性メモリ、例えば FeRAM (強誘電体メモリ)等の不揮発性 RAMに記憶 させる技術が開示されている。具体的には、アドレス管理情報である論理物理変換テ 一ブルと物理領域管理テーブルの両者を不揮発性 RAMに記憶し、その上で書き換 え処理を行う。なお物理領域管理テーブルとは物理ブロックに有効なデータが記憶 されているどうかを表す有効フラグや、物理ブロックが不良ブロックであるかどうかを 表すバッドブロックフラグを記憶したテーブルである。
特許文献 1:特開 2001— 142774号公報
特許文献 2:特開平 07— 219720号公報
発明の開示
発明が解決しょうとする課題 [0009] し力しながら、特許文献 2によれば以下のような欠点がある。まず FeRAM等の不揮 発性 RAMはフラッシュメモリや SRAM等と比べると非常に高価であり、メモリコント口 ーラの価格に大きく影響する。例えば表 1に示すフラッシュメモリを 1個使用して 128 MByteのメモリカードを実現することを考える。
[0010] [表 1]
Figure imgf000005_0001
この場合、各テーブルのサイズは以下のようになる。
論理物理変換テーブルのサイズ
=81^個 131)辻=約161^ 6 · · · (1)
物理領域管理テーブルのサイズ
= 8k個 X 2bit = 2kByte · · · (2)
アドレス管理テーブルのサイズ
=論理物理変換テーブルのサイズ +物理領域管理テーブルのサイズ
= 16kByte + 2kByte
= 18kByte …(3)
数式(1)〜数式(3)により、アドレス管理テーブルのサイズ、即ち不揮発性 RAMのサ ィズが約 18kByte必要となる。そのためメモリコントローラが高価になってしまうという 問題点があった。
[0011] 更に、特許文献 2で開示された不揮発性記憶装置においては、データ書き込み中 に電源遮断があった場合に、そのデータの有効性を判別する方法、即ち電源遮断 時の対処方法が具体的に開示されて 、な 、。そのため信頼性が十分でな 、と 、う欠 点がめった。
[0012] 本発明は上記従来の問題点を解決するもので、さほどのコストアップなしに電源遮 断時にも正しく対処でき、且つ長寿命を実現することができるメモリコントローラ、不揮 発性記憶装置、不揮発性記憶システム及びメモリ制御方法を提供することを目的と する。
課題を解決するための手段
[0013] この課題を解決するために、本発明のメモリコントローラは、アクセス装置から与えら れるコマンドと論理アドレスに応じて不揮発性の主記憶メモリにデータを書き込み、及 び読み出すメモリコントローラであって、前記メモリコントローラは、前記主記憶メモリ に対して読み書き制御を行う読み書き制御手段と、前記主記憶メモリから読み出され た論理物理変換テーブルを一時記憶する揮発性メモリと、前記主記憶メモリの各物 理アドレスの状態を管理する物理領域管理テーブル及び前記主記憶メモリに記憶さ れた論理物理変換テーブルの物理アドレスを指し示すポインタを記憶する不揮発性 の補助記憶メモリと、前記論理物理変換テーブルに基づき前記主記憶メモリにおけ るデータ等の記憶位置である物理アドレスを決定すると共に、前記物理領域管理テ 一ブル及びポインタ情報の更新を行うアドレス管理情報制御手段とを有し、前記補助 記憶メモリは、前記主記憶メモリよりも書き換え保証回数が多い不揮発性メモリであり 、前記アドレス管理情報制御手段は、前記ポインタが前記論理物理変換テーブルの 記憶位置である物理アドレスを適宜更新することによって前記論理物理変換テープ ルの記憶位置が固定化されな 、ようにし、前記主記憶メモリのデータが変更された後 に前記物理領域管理テーブル内において当該データの変更された物理アドレスを 有効状態に設定するものである。
[0014] この課題を解決するために、本発明の不揮発性記憶装置は、不揮発性の主記憶メ モリと、メモリコントローラと、を有し、外部のアクセス装置力 与えられるコマンドと論 理アドレスに応じて前記主記憶メモリにデータを書き込み、及び読み出す不揮発性 記憶装置であって、前記主記憶メモリは、それぞれが少なくとも 1つのセクタを含む複 数の物理ブロック力 成る不揮発性のメモリであり、前記メモリコントローラは、前記主 記憶メモリに対して読み書き制御を行う読み書き制御手段と、前記主記憶メモリから 読み出された論理物理変換テーブルを一時記憶する揮発性メモリと、前記主記憶メ モリの各物理アドレスの状態を管理する物理領域管理テーブル及び前記主記憶メモ リに記憶された論理物理変換テーブルの物理アドレスを指し示すポインタを記憶する 不揮発性の補助記憶メモリと、前記論理物理変換テーブルに基づき前記主記憶メモ リにおけるデータ等の記憶位置である物理アドレスを決定すると共に、前記物理領域 管理テーブル及びポインタ情報の更新を行うアドレス管理情報制御手段とを有し、前 記補助記憶メモリは、前記主記憶メモリよりも書き換え保証回数が多い不揮発性メモ リであり、前記アドレス管理情報制御手段は、前記ポインタが前記論理物理変換テー ブルの記憶位置である物理アドレスを適宜更新することによって前記論理物理変換 テーブルの記憶位置が固定ィ匕されないようにし、前記主記憶メモリのデータが変更さ れた後に前記物理領域管理テーブル内において当該データの書き込み物理アドレ スを有効状態に設定するものである。
この課題を解決するために、本発明の不揮発性記憶システムは、アクセス装置と、 不揮発性記憶装置を有し、前記不揮発性記憶装置は不揮発性の主記憶メモリと、メ モリコントローラと、を有し、前記アクセス装置から与えられるコマンドと論理アドレスに 応じて前記主記憶メモリにデータを書き込み、及び読み出す不揮発性記憶システム であって、前記主記憶メモリは、それぞれが少なくとも 1つのセクタを含む複数の物理 ブロック力も成る不揮発性のメモリであり、前記メモリコントローラは、前記主記憶メモリ に対して読み書き制御を行う読み書き制御手段と、前記主記憶メモリから読み出され た論理物理変換テーブルを一時記憶する揮発性メモリと、前記主記憶メモリの各物 理アドレスの状態を管理する物理領域管理テーブル及び前記主記憶メモリに記憶さ れた論理物理変換テーブルの物理アドレスを指し示すポインタを記憶する不揮発性 の補助記憶メモリと、前記論理物理変換テーブルに基づき前記主記憶メモリにおけ るデータ等の記憶位置である物理アドレスを決定すると共に、前記物理領域管理テ 一ブル及びポインタ情報の更新を行うアドレス管理情報制御手段とを有し、前記補助 記憶メモリが前記主記憶メモリよりも書き換え保証回数が多い不揮発性メモリであり、 前記アドレス管理情報制御手段は、前記ポインタが前記論理物理変換テーブルの記 憶位置である物理アドレスを適宜更新することによって前記論理物理変換テーブル の記憶位置が固定ィ匕されないようにし、前記主記憶メモリのデータが変更された後に 前記物理領域管理テーブル内において当該データの変更された物理アドレスを有 効状態に設定するものである。
[0016] この課題を解決するために、本発明のメモリ制御方法は、外部から与えられるコマ ンドと論理アドレスに応じて不揮発性の主記憶メモリにデータを書き込み、及び読み 出すメモリ制御方法であって、前記主記憶メモリに対して読み書き制御を行い、前記 主記憶メモリから読み出された論理物理変換テーブルを揮発性メモリに一時記憶し、 前記主記憶メモリの各物理アドレスの状態を管理する物理領域管理テーブル及び前 記主記憶メモリに記憶された論理物理変換テーブルの物理アドレスを指し示すボイ ンタを不揮発性で前記主記憶メモリよりも書き換え保証回数が多い補助記憶メモリに 記憶し、前記論理物理変換テーブルに基づき前記主記憶メモリにおけるデータ等の 記憶位置である物理アドレスを決定すると共に、前記物理領域管理テーブル及びポ インタ情報の更新を行 、、前記ポインタが前記論理物理変換テーブルの記憶位置で ある物理アドレスを適宜更新することによって前記論理物理変換テーブルの記憶位 置が固定化されな ヽようにし、前記主記憶メモリにデータが書き込まれた後に前記物 理領域管理テーブル内において当該データの書き込み物理アドレスを有効状態に 設定するものである。
[0017] 本発明は、集中型アドレス管理手法を前提としたものであって、主に以下の特徴を 有する。
( 1)アドレス管理テーブルの中の物理領域管理テーブルのみを不揮発性の補助記 憶メモリ上に記憶し、論理物理変換テーブルは主記憶メモリに記憶し、ー且揮発性メ モリに読み出して参照する。
(2)論理物理変換テーブルが主記憶メモリの固定領域上で書き換え更新されない ようにする為に、その記憶位置を示すポインタを不揮発性の補助記憶メモリに記憶さ せ、ポインタ値を逐次更新することによって、主記憶メモリ上の論理物理変換テープ ルを再配置的に書き換え更新させる。なおポインタは、書換耐性の高い不揮発性の 補助記憶メモリ上で更新するので、ポインタの書換回数にっ ヽては特に問題とならな い。
(3)主記憶メモリへのデータの書き込み後に、物理領域管理テーブル中の当該デ ータに対応する情報を更新する。電源遮断が発生した場合においても、その情報を チェックすれば各種データの有効性が判別でき論理矛盾をきたすことが無い。 発明の効果
[0018] 前述したとおり、アドレス管理テーブルには論理物理変換テーブルと物理領域管理 テーブルの 2種類がある。本発明では容量の大き!/、論理物理変換テーブルは主記 憶メモリに記憶させ、容量の小さ 、物理領域管理テーブルは不揮発性の補助記憶メ モリに記憶させるようにしたので、特許文献 2に示した従来技術よりも低コストの不揮 発性記憶装置を実現することができる。又物理領域管理テーブル上に各データの状 態が記憶されているので、電源遮断が生じても、その情報は保持しているので、電源 の再投入後に各データが有効かどうかを判別することが可能となり、電源遮断時の信 頼性を向上させることができる。
図面の簡単な説明
[0019] [図 1]図 1は本発明の実施の形態における不揮発性記憶装置を示したブロック図 [図 2]図 2は本発明の実施の形態における物理ブロックを示した説明図
[図 3]図 3は本発明の実施の形態における論理アドレスフォーマットを示した説明図 [図 4]図 4は本発明の実施の形態における物理管理領域テーブル 105を示した説明 図
[図 5]図 5は本発明の実施の形態における論理物理変換テーブル 108を示した説明 図
[図 6A]図 6Aは本発明の実施の形態におけるポインタテーブル 106を示した説明図 [図 6B]図 6Bは本発明の実施の形態におけるポインタテーブル 106を示した説明図 [図 7]図 7は本発明の実施の形態における 1クラスタ分の書き込みを示したタイムチヤ ート
[図 8]図 8は本発明の実施の形態における 1クラスタ分の書き込みを示したフローチヤ ート
符号の説明
[0020] 100 アクセス装置
102 CPU
105 物理領域管理テーブル 106 ポインタテーブル
107 補助記憶メモリ
108 揮発性メモリ
110 アドレス管理情報制御部
112 メモリコントローラ
113 主記憶メモリ
発明を実施するための最良の形態
[0021] (実施の形態)
図 1は、本発明の実施の形態における不揮発性記憶システムを示したブロック図で ある。不揮発性記憶システムはアクセス装置 100と不揮発性記憶装置 120とにより構 成される。不揮発性記憶装置 120はメモリコントローラ 130と不揮発性の主記憶メモリ 140を含んで構成されている。アクセス装置 100はこの不揮発性記憶装置 120にメ モリコントローラ 130を介して不揮発性の主記憶メモリ 140にユーザデータ(以下、単 にデータという)の読み書き命令及び論理アドレスとデータを転送するものである。主 記憶メモリ 140は複数の物理ブロックによって構成される。
[0022] 次にメモリコントローラ 130の内部構成について説明する。 101はホスト IZFであり 、 CPU102はワーク用 RAM103、プログラムを格納した ROM104によりメモリコント ローラ 130内全体の制御を行うものである。物理領域管理テーブル 105は不揮発性 の主記憶メモリ 140内において消去単位である物理ブロックの状態、即ち有効なデ ータが記憶されて 、るかどうか等の情報を記憶するテーブルである。ポインタテープ ル 106は不揮発性の主記憶メモリ 140内に記憶されている各論理物理変換情報の 中にお 、て、少なくとも最新の論理物理変換情報が記憶されて 、る物理ブロックアド レスを指し示すポインタを記憶したテーブルである。不揮発性の補助記憶メモリ 107 は物理領域管理テーブル 105とポインタテーブル 106を記憶する。論理物理変換テ 一ブル 108はアクセス装置 100が転送した論理アドレスを不揮発性の主記憶メモリ 1 40内の物理アドレスに変換するテーブルであり、論理物理変換テーブル 108は揮発 性メモリ 109 (例えば SRAM)に一時記憶されている。読み書き制御部 111は不揮発 性の主記憶メモリ 140の読み書き等を行う制御部である。なお、不揮発性の主記憶メ モリ 140は例えばフラッシュメモリであり、補助記憶メモリ 107は、例えば強誘電体メモ リ(FeRAM)等の不揮発性メモリである。
[0023] 図 2は、本発明の実施の形態における主記憶メモリ 140内の 1つの物理ブロックを 示した説明図である。図 2において物理ブロックは 32ページ力も構成され、各ページ は 1セクタ分のデータ領域と、管理領域とからなる。本実施の形態においては 1セクタ を 512Byteとする。
[0024] 図 3は、本実施の形態における論理ブロックアドレス LBAのフォーマットを示した説 明図である。図 3において下位ビットから順に、 5ビットのページアドレス、 13ビットの 論理ブロックアドレスである。 13ビット分の論理ブロックアドレスがアドレス変換の対象 、即ち論理物理変換テーブル 108のアドレスに相当する。なおアクセス装置 100のフ アイルシステムで規定されるセクタサイズを 512Byte、クラスタサイズを 16kByteとす るので、クラスタナンバーの LSBは論理アドレスフォーマットのビット 5 (b5)に対応す ることとなる。
[0025] 図 4は、本実施の形態における物理領域管理テーブル 105を示した説明図である 。物理領域管理テーブル 105は、アドレスが不揮発性の主記憶メモリ 140の各物理 ブロックアドレスに対応し、各物理ブロックの状態を 2ビットのフラグで記憶するテープ ルである。図 4において、 2進数で値 00は有効なデータが記憶されている有効ブロッ クを示し、値 11は消去済み、もしくはデータが書き込まれているが不要である無効ブ ロックを示し、値 10はメモリセル上のソリッドエラー等により使用できなくなった不良ブ ロックを示す。
[0026] 図 5は、本実施の形態における論理物理変換テーブル 108を示した説明図である 。図 5において、そのアドレスはアクセス装置 100が指定した論理ブロックアドレス LS A (図 3)に対応し、論理物理変換テーブル 108内には物理ブロックアドレス PBAが 記憶されている。
[0027] 図 6A,図 6Bは、本実施の形態におけるポインタテーブル 106を示した説明図であ る。ポインタテーブル 106には 2種類のポインタ 106a, 106b力ある。一方が不揮発 性の主記憶メモリ 140に記憶された論理物理変換情報の中の最新の論理物理変換 情報の物理アドレスを指し示すポインタであり、他方が旧い論理物理変換情報の物 理アドレスを指し示すポインタである。太枠で示した Byte 1の最上位ビットは最新フラ グであり、このビットに値 1が付与された方のポインタが、最新の論理物理変換情報の 物理アドレスを指し示すポインタである。各ポインタ毎に、 13ビット分のポインタ値 (物 理アドレス値)を保持する領域を持つ。 Bytel側の b4を MSB、 ByteO側の bOを LSB としてポインタ値が記憶される。例えば主記憶メモリ 140の 5番地に論理物理変換情 報が記憶されて 、る場合は、ポインタ値が値 5となる。
[0028] 以上のように構成された、不揮発性記憶装置の動作について説明する。図 7は、本 実施の形態における 1クラスタ分の書き込みを示したタイムチャート、図 8は、そのフロ 一チャートである。まず、不揮発性記憶装置が出荷直後における主記憶メモリ 140や 各種テーブルの内容について説明する。なお簡単の為、主記憶メモリ 140内のシス テム領域については説明を省略し、通常領域、即ちユーザがデータを読み書きする 領域についてのみ説明する。出荷直後、最初に使用される際は、主記憶メモリ 140 の良ブロックは全て消去された状態となっている。物理領域管理テーブル 105にお いて、良ブロックは無効ブロック状態、即ち 2進数の値 11が設定されており、初期不 良ブロックは不良ブロック、即ち 2進数の値 10が設定されている。論理物理変換テー ブル 108に対応する論理物理変換情報力 主記憶メモリ 140の 0番地の物理ブロック に記憶されている。又図 6Aに示すようにポインタテーブル 106内のポインタ 106aの 最新フラグのみが値 1でポインタ値が値 0、ポインタ 106bは最新フラグ、ポインタ値共 に値 0となっている。なお、主記憶メモリ 140の 0番地の物理ブロックが不良ブロックの 場合は次の 1番地の物理アドレスに論理物理変換情報が記憶され、ポインタ 0のボイ ンタ値は値 1が記憶されることとなる。
[0029] 電源オン後、 CPU102は ROM104に記憶されたプログラムに基づいて初期化処 理を行う。初期化において、アドレス管理情報制御部 110はポインタテーブル 106を 参照する。そして図 6Aに示すように最新フラグが値 1となっているポインタ、即ちボイ ンタ 106aのポインタ値に基づき、主記憶メモリ 140の 0番地の物理ブロックに記憶さ れて 、る論理物理変換情報を読み書き制御部 111を介して読み出し、揮発性メモリ 109上に論理物理変換テーブル 108を形成する。その後、アクセス装置 100からの 読み書き等のコマンド受付状態に入る。通常、アクセス装置 100はクラスタ単位での 書き込みが行われる場合が多いので、以降クラスタ単位での書き込みについて説明 する。アクセス装置 100から任意の論理アドレス(図 3)への書き込み指示がなされる と、論理アドレス値に基づいて、 CPU102は物理ブロックが満遍なく使用されるように 無効ブロックをサーチし、最初に見つ力つた無効ブロックを書き込み対象ブロックとし て、消去した後に書き込みを行う。物理領域管理テーブル 105の 0番地側力も降順 に無効ブロックをサーチしてもよ 、。
[0030] さて、本実施の形態の不揮発性記憶装置は、主記憶メモリであるフラッシュメモリよ りも書換耐性が高く且つ小容量の書き込み速度が速い不揮発性 RAMを利用してい る。
[0031] [表 2]
Figure imgf000013_0001
このような特徴を有する不揮発性 RAMは、フラッシュメモリなどを主記憶メモリした不 揮発性記憶装置において、書き換え頻度が高ぐ高速書き込みが要求される情報( 例えばアドレス管理情報)を記憶するデバイスとして、性能面にぉ 、ては最適なデバ イスと言える。但し、フラッシュメモリや SRAMと比べると、比較的コストが高い為、多く の情報を記憶させることが出来な 、と 、つた課題も有して 、る。例えば論理物理変換 テーブル 108と物理領域管理テーブル 105の両者を記憶させようとすると、コスト的 に無視できなくなってしまう。これは装置全体の記憶容量が大きくなればなる程顕著 となる課題である。そこで本実施の形態においては、コスト面の課題に対応する為に 、不揮発性 RAMには、比較的サイズの小さな情報、即ち物理領域管理テーブル 10 5とポインタテーブル 106を記憶させるようにしている。物理領域管理テーブルは図 4 に示すように各物理ブロックの状態を 2ビットで記憶するものとすれば 2kBが必要であ り、ポインタテーブルは 4バイトが必要となる。従って不揮発性補助記憶メモリ 107の 容量は 2052バイトとなる。又物理領域管理テーブル 105を各物理ブロックの状態を 有効及び無効のみで記憶するものとし、消去済みもしくは不良ブロックを無効ブロック としてまとめて記憶するものとすれば、 1ビットの容量で足りる。この場合には物理領 域管理テーブルは lkB、ポインタテーブルは 4バイトとなる。更に論理物理変換情報 力 つの物理ブロックに収まり切れない場合には、ポインタも新旧夫々 2つの論理物 理変換情報を記憶する物理ブロックのアドレスを保持する必要がある。この場合には 8バイトで新旧のポインタとすることができる。
次に、アドレス管理の方法について説明する。不揮発性の主記憶メモリ 140は複数 の物理ブロック力 構成される。各物理ブロックは、データもしくはアドレス管理情報 の一部である論理物理変換情報が記憶されることとなるが、ある任意の時刻において 、論理物理変換情報が、例えば図 1に示すように論理物理変換情報 A, B, C…のよ うに記憶されているとする。論理物理変換情報はひとつの物理ブロックに固定的に割 り付けると、その更新頻度が多いために、ウェアレべリング上問題となる。その為、再 配置的、即ち記憶領域が固定しないように割り付ける必要があり、論理物理変換情 報 A, B, C…と複数ブロックに亘つて再配置されている。この中で最新の論理物理変 換情報がいずれか 1つの物理ブロックに保持されており、他は旧い論理物理変換情 報である。それがどの物理ブロックに記憶されているかを表すもの力 ポインタテープ ル 106である。アドレス管理情報制御部 110は、ポインタテーブル 106を参照し、ボイ ンタ 106a, 106bの最新フラグをチェックし、そのビットに値 1が設定されている方を、 最新の論理物理変換情報が記憶されている物理ブロックのポインタであると認識する 。図 6Bに示した例によれば、ポインタ 106bが最新ポインタであり、ポインタ 106bのポ インタ値、即ち 5番地が最新の論理物理変換情報が記憶されている物理ブロックの 物理アドレスとなる。ポインタ 106aのポインタ値、即ち 0番地は、最新の論理物理変 換情報の 1つ前の旧い論理物理変換情報が記憶された物理ブロックの物理アドレス である。そして読み書き制御部 111を介して、主記憶メモリ 140より、物理アドレスが 5 番地の物理ブロックに記憶されて 、る情報、即ち最新の論理物理変換情報を揮発性 メモリ 109〖こ読み出し、図 5に示すような論理物理変換テーブル 108を形成する。
[0033] 電源がオフされない間は、常に論理物理変換テーブル 108を参照しながら、データ の読み書き処理を行う。なお、データの書き込み等に応じて論理物理変換テーブル 108が更新され、その都度、不揮発性の主記憶メモリ 140に書き戻される。
[0034] 次に不揮発性の主記憶メモリ 140への書き戻しについて説明する。まず物理領域 管理テーブル 105に基づいて無効ブロックを検索し、その無効ブロックを消去した後 に論理物理変換テーブル 108を主記憶メモリ 140に書き戻す。ポインタテーブル 10 6の中の最新フラグが値 0のポインタの方に、前記無効ブロックの物理アドレス(物理 アドレス Xとする)を書き込むと共に、最新フラグを値 1に設定する。そして他方のボイ ンタの最新フラグを値 0に設定する。すなわち、 2つのポインタを順繰りに使い廻すこ とになる。
[0035] 最後に物理領域管理テーブル 105において、物理アドレス Xのステータスフラグを 2進数で値 00、即ち有効ブロックに更新する。物理領域管理テーブル 105における ステータスフラグの更新操作は、論理物理変換テーブル 108の書き戻し処理の時だ けではなぐデータの書き込みにおいてもなされる。以上の処理力 解るとおり、物理 領域管理テーブル 105やポインタテーブル 106は頻繁に書き換えられるテーブルで あるが、これらを記憶している不揮発性の補助記憶メモリ 107は、表 2に示したような 書換耐性が非常に高 、不揮発性 RAMで実現して 、るので、装置全体の書き換え寿 命に影響を与えるものではない。
[0036] さて、前述した一連の書き込み処理を、図 8、図 7及び図 1を参照しつつ説明する。
まず図 8において、アクセス装置 100から 1クラスタ分のデータの書き込み指示がなさ れ、書き込むべきデータとその論理アドレスを受信する(S801)。ホスト I/F101はこ れを受けて、 CPU102に対して書き込み制御要求を発行する。 CPU102はアドレス 管理情報制御部 110に制御を移し、アドレス管理情報制御部 110は物理領域管理 テーブル 105を参照して無効ブロックを検索し、データ書き込み先のブロック aと、論 理物理変換テーブル 108の書き戻し先のブロック bを決定する(S802)。なお、無効 ブロックの検索に際しては、主記憶メモリ 140中の物理ブロックが満遍なく使用される ように検索がなされる。詳細については省略する。さて、ブロック aの物理アドレスを論 理物理変換テーブル 108の対応する論理アドレスの位置に書き込んだ後に(S803) 、ブロック a, bの消去処理を行う(S804)。この消去時間を TOとする。通常、フラッシ ュメモリの 1ブロックの消去に 2mSec程度の時間を要する。
[0037] 次に 1クラスタ分のデータをブロック aに書き込む(S805)。また 1ページ分の書き込 みに 300 Sec程度の時間を要するので、 1クラスタ、即ち 32ページ分のデータを書 き込む為に、概ね lOmSecを要する(図 7)。アドレス管理情報制御部 110は、読み書 き制御部 111を介して不揮発性の主記憶メモリ 140からフィードバックされてきた RZ B信号 (レディ Zビジー信号)及び書き込みサイズ値に基づ 、て、 32ページ分全て書 き込みが完了したカゝどうかを判断する(S806)。
[0038] 書き込みが完了した場合は、揮発性メモリ 109上の論理物理変換テーブル 108を ブロック bに書き込む(S807)。アドレス管理情報制御部 110は、論理物理変換テー ブル 108の全て、即ち 32ページ分の書き戻し処理が完了したかどうかを判断し(S80 8)。図 7に示すようにブロック a, bへの書き込み時間を T1とする。完了した場合は、 ブロック bに対応する物理アドレスを補助記憶メモリ 107のポインタテーブル 106上に 書き込む(S809)。この書き込み時間を T2—1とする。次に物理領域管理テーブル 1 05において、ブロック a, bに対応するステータスフラグを有効ブロックに設定し、処理 を終える(S810)。この書き込み時間を夫々 T2— 2, T2— 3とする。 1つの物理ブロッ クに対応するステータスフラグの更新は 2ビットの書き換えであるので、表 2に示すと おり T2— 1〜T2— 3は夫々 lOOnSec程度で済む(図 7)。なお、 S809において、ブ ロック bに対応する物理アドレスを書き込むポインタは、書き込む時点でその最新フラ グが値 0のポインタの方に書き込み、更にそのポインタの最新フラグを値 1に変更する と共に他方のポインタの最新フラグを値 0に変更する。
[0039] さて、図 7において、不揮発性の主記憶メモリ 140への消去及び書き込み期間、即 ち書き込み期間 TO及び T1の間に電源遮断が発生したとしても、ブロック a, bに対応 するステータスフラグやポインタテーブル 106の更新がなされて!/ヽな 、為、次の電源 オンの後は、書き込み期間 T1に書き込まれたデータや論理物理変換テーブル 108 は無効データとして扱われるので、論理的な矛盾は発生しない。また不揮発性 RAM を利用した不揮発性の補助記憶メモリ 107への書き込み期間、即ち書き込み期間 T 2 - 1〜T2 - 3の間に電源遮断が発生したとしても、不揮発性の補助記憶メモリ 107 への書き込み時間は全部で 300nSecと非常に速い。従って電源遮断が発生して C PU102やアドレス管理情報制御部 110等の動作が停止するまでの時間内に書き込 みを完了できるだけの設計が可能であるので、電源遮断の影響を受けることはな 、。 即ち中途半端な書き込みになって、読み出しの都度その値が変わるといった、論理 矛盾をきたすような不具合は発生しない。言い換えれば、確実に書き込めたか、ある いは書き込めないか、のいずれかの状態であり、前者であれば、書き込み期間 T1に 書き込まれたデータや論理物理変換テーブル 108は有効として扱われ、後者であれ ば、無効として扱われる。
[0040] さて、図 8及び図 7を用いて 1クラスタ分のデータの書き込み処理について説明した 力 例えば 1クラスタ分のデータの書き換え処理についても同様の処理で実施できる 。但し、書き換え処理の場合は、旧いクラスタデータが記憶されている物理ブロックの 状態を示すフラグを無効ブロックに設定する必要がある。この処理は図 8において S8 10の直後に実行させればよい。
[0041] なお、不揮発性補助記憶メモリとして強誘電体メモリ(FeRAM)を使用した例で説 明したが、 FeRAMだけでなぐ磁性記録式随時書き込み読み出しメモリ(MRAM) 、オボ-ツクユ-ファイドメモリ(OUM)、レジスタンス RAM (RRAM)等の他の不揮 発性 RAMを使用しても構わな ヽ。これらの不揮発性 RAMもほぼ表 2の特性を示す
[0042] 以上のように、不揮発性の主記憶メモリ 140のアドレス管理を行う情報にぉ 、て、論 理物理変換テーブル 108に対応する論理物理変換情報は、比較的低コストのフラッ シュメモリで実現した主記憶メモリ 140に記憶させ、一方物理領域管理テーブル 105 は、比較的高コストの不揮発性 RAMで実現した補助記憶メモリ 107に記憶させ、更 に補助記憶メモリ 107には、数 Byte程度のポインタテーブル 106を記憶させるように した。論理物理変換テーブル 108と物理領域管理テーブル 105の両者を、不揮発性 RAMに記憶させた従来の装置よりも、不揮発性 RAMの容量を合理ィ匕することがで きる。即ち装置全体のコストを低く抑えることができる。
[0043] また、アドレス管理情報制御部 110がポインタテーブル 106及び物理領域管理テ 一ブル 105に基づいて、論理物理変換テーブル 108の不揮発性の主記憶メモリ 140 に対する書き戻し処理を再配置的に行うようにした。即ち論理物理変換情報が主記 憶メモリ 140の固定領域に割り付けられないので、簡単な回路構成でウェアレベリン グを実現することができる。
[0044] また、物理領域管理テーブル 105を、高速書き込み可能な補助記憶メモリ 107〖こ 記憶させ、アドレス管理情報制御部 110が、データや論理物理変換テーブル 108を 不揮発性の主記憶メモリ 140に書き込んだ後に、物理領域管理テーブル 105の対応 するステータスフラグを有効ブロックに設定するようにしたので、電源遮断が発生して も論理矛盾をきたすような問題が発生することはな 、。
産業上の利用可能性
[0045] 本発明にかかる不揮発性記憶装置は、不揮発性メモリを主記憶メモリとして使用し 、また不揮発性の補助記憶メモリを使用した装置において、高速処理性を損なうこと なく低コスト且つ高信頼性を実現する技術を提案したものであり、静止画記録再生装 置や動画記録再生装置等のポータブル AV機器、あるいは携帯電話等のポータブ ル通信機器の記録媒体として有益である。

Claims

請求の範囲
[1] アクセス装置から与えられるコマンドと論理アドレスに応じて不揮発性の主記憶メモ リにデータを書き込み、及び読み出すメモリコントローラであって、
前記メモリコントローラは、
前記主記憶メモリに対して読み書き制御を行う読み書き制御手段と、
前記主記憶メモリから読み出された論理物理変換テーブルを一時記憶する揮発性 メモリと、
前記主記憶メモリの各物理アドレスの状態を管理する物理領域管理テーブル及び 前記主記憶メモリに記憶された論理物理変換テーブルの物理アドレスを指し示すポ インタを記憶する不揮発性の補助記憶メモリと、
前記論理物理変換テーブルに基づき前記主記憶メモリにおけるデータ等の記憶位 置である物理アドレスを決定すると共に、前記物理領域管理テーブル及びポインタ 情報の更新を行うアドレス管理情報制御手段とを有し、
前記補助記憶メモリは、前記主記憶メモリよりも書き換え保証回数が多い不揮発性 メモリであり、
前記アドレス管理情報制御手段は、前記ポインタが前記論理物理変換テーブルの 記憶位置である物理アドレスを適宜更新することによって前記論理物理変換テープ ルの記憶位置が固定化されな 、ようにし、前記主記憶メモリのデータが変更された後 に前記物理領域管理テーブル内において当該データの変更された物理アドレスを 有効状態に設定するメモリコントローラ。
[2] 前記補助記憶メモリは、書き込み速度が前記主記憶メモリより速いメモリである請求 項 1記載のメモリコントローラ。
[3] 前記補助記憶メモリは、不揮発性 RAMである請求項 2記載のメモリコントローラ。
[4] 前記補助記憶メモリに保持されるポインタは、最新の主記憶メモリに記憶された論 理物理変換テーブルの物理アドレス及びその直前の主記憶メモリに記憶された物理 領域管理テーブルの物理アドレスを示す 2組のポインタを含む請求項 1記載のメモリ コントローラ。
[5] 前記補助記憶メモリは、強誘電体メモリ (FeRAM)、磁性記録式随時書き込み読 み出しメモリ(MRAM)、オボ-ツクユ-ファイドメモリ(OUM)、及びレジスタンス RA M (RRAM)のうちのいずれか 1つである請求項 3記載のメモリコントローラ。
[6] 不揮発性の主記憶メモリと、メモリコントローラと、を有し、
外部のアクセス装置から与えられるコマンドと論理アドレスに応じて前記主記憶メモ リにデータを書き込み、及び読み出す不揮発性記憶装置であって、
前記主記憶メモリは、
それぞれが少なくとも 1つのセクタを含む複数の物理ブロック力 成る不揮発性のメ モリであり、
前記メモリコントローラは、
前記主記憶メモリに対して読み書き制御を行う読み書き制御手段と、
前記主記憶メモリから読み出された論理物理変換テーブルを一時記憶する揮発性 メモリと、
前記主記憶メモリの各物理アドレスの状態を管理する物理領域管理テーブル及び 前記主記憶メモリに記憶された論理物理変換テーブルの物理アドレスを指し示すポ インタを記憶する不揮発性の補助記憶メモリと、
前記論理物理変換テーブルに基づき前記主記憶メモリにおけるデータ等の記憶位 置である物理アドレスを決定すると共に、前記物理領域管理テーブル及びポインタ 情報の更新を行うアドレス管理情報制御手段とを有し、
前記補助記憶メモリは、前記主記憶メモリよりも書き換え保証回数が多い不揮発性 メモリであり、
前記アドレス管理情報制御手段は、前記ポインタが前記論理物理変換テーブルの 記憶位置である物理アドレスを適宜更新することによって前記論理物理変換テープ ルの記憶位置が固定化されな 、ようにし、前記主記憶メモリのデータが変更された後 に前記物理領域管理テーブル内において当該データの書き込み物理アドレスを有 効状態に設定する不揮発性記憶装置。
[7] 前記補助記憶メモリは、書き込み速度が前記主記憶メモリより速いメモリである請求 項 6記載の不揮発性記憶装置。
[8] 前記補助記憶メモリは、不揮発性 RAMである請求項 7記載の不揮発性記憶装置。
[9] 前記補助記憶メモリに保持されるポインタは、最新の主記憶メモリに記憶された論 理物理変換テーブルの物理アドレス及びその直前の主記憶メモリに記憶された物理 領域管理テーブルの物理アドレスを示す 2組のポインタを含む請求項 6記載の不揮 発性記憶装置。
[10] 前記補助記憶メモリは、強誘電体メモリ (FeRAM)、磁性記録式随時書き込み読 み出しメモリ(MRAM)、オボ-ツクユ-ファイドメモリ(OUM)、及びレジスタンス RA M (RRAM)のうちの!/ヽずれか 1つである請求項 8記載の不揮発性記憶装置。
[11] アクセス装置と、不揮発性記憶装置を有し、前記不揮発性記憶装置は不揮発性の 主記憶メモリと、メモリコントローラと、を有し、
前記アクセス装置から与えられるコマンドと論理アドレスに応じて前記主記憶メモリ にデータを書き込み、及び読み出す不揮発性記憶システムであって、
前記主記憶メモリは、
それぞれが少なくとも 1つのセクタを含む複数の物理ブロック力 成る不揮発性のメ モリであり、
前記メモリコントローラは、
前記主記憶メモリに対して読み書き制御を行う読み書き制御手段と、
前記主記憶メモリから読み出された論理物理変換テーブルを一時記憶する揮発性 メモリと、
前記主記憶メモリの各物理アドレスの状態を管理する物理領域管理テーブル及び 前記主記憶メモリに記憶された論理物理変換テーブルの物理アドレスを指し示すポ インタを記憶する不揮発性の補助記憶メモリと、
前記論理物理変換テーブルに基づき前記主記憶メモリにおけるデータ等の記憶位 置である物理アドレスを決定すると共に、前記物理領域管理テーブル及びポインタ 情報の更新を行うアドレス管理情報制御手段とを有し、
前記補助記憶メモリが前記主記憶メモリよりも書き換え保証回数が多い不揮発性メ モリであり、
前記アドレス管理情報制御手段は、前記ポインタが前記論理物理変換テーブルの 記憶位置である物理アドレスを適宜更新することによって前記論理物理変換テープ ルの記憶位置が固定化されな 、ようにし、前記主記憶メモリのデータが変更された後 に前記物理領域管理テーブル内において当該データの変更された物理アドレスを 有効状態に設定する不揮発性記憶システム。
[12] 前記補助記憶メモリは、書き込み速度が前記主記憶メモリより速いメモリである請求 項 11記載の不揮発性記憶システム。
[13] 前記補助記憶メモリは、不揮発性 RAMである請求項 12記載の不揮発性記憶シス テム。
[14] 前記補助記憶メモリに保持されるポインタは、最新の主記憶メモリに記憶された論 理物理変換テーブルの物理アドレス及びその直前の主記憶メモリに記憶された物理 領域管理テーブルの物理アドレスを示す 2組のポインタを含む請求項 11記載の不揮 発性記憶システム。
[15] 前記補助記憶メモリは、強誘電体メモリ (FeRAM)、磁性記録式随時書き込み読 み出しメモリ(MRAM)、オボ-ツクユ-ファイドメモリ(OUM)、及びレジスタンス RA M (RRAM)のうちの!/、ずれ力 1つである請求項 11記載の不揮発性記憶システム。
[16] 外部力 与えられるコマンドと論理アドレスに応じて不揮発性の主記憶メモリにデー タを書き込み、及び読み出すメモリ制御方法であって、
前記主記憶メモリに対して読み書き制御を行 ヽ、前記主記憶メモリから読み出され た論理物理変換テーブルを揮発性メモリに一時記憶し、
前記主記憶メモリの各物理アドレスの状態を管理する物理領域管理テーブル及び 前記主記憶メモリに記憶された論理物理変換テーブルの物理アドレスを指し示すポ インタを不揮発性で前記主記憶メモリよりも書き換え保証回数が多い補助記憶メモリ し、
前記論理物理変換テーブルに基づき前記主記憶メモリにおけるデータ等の記憶位 置である物理アドレスを決定すると共に、前記物理領域管理テーブル及びポインタ 情報の更新を行い、
前記ポインタが前記論理物理変換テーブルの記憶位置である物理アドレスを適宜 更新することによって前記論理物理変換テーブルの記憶位置が固定ィ匕されないよう にし、 前記主記憶メモリにデータが書き込まれた後に前記物理領域管理テーブル内にお いて当該データの書き込み物理アドレスを有効状態に設定するメモリ制御方法。
[17] 前記補助記憶メモリは、書き込み速度が前記主記憶メモリより速いメモリである請求 項 16記載のメモリ制御方法。
[18] 前記補助記憶メモリは、不揮発性 RAMである請求項 17記載のメモリ制御方法。
[19] 前記補助記憶メモリに保持されるポインタは、最新の主記憶メモリに記憶された論 理物理変換テーブルの物理アドレス及びその直前の主記憶メモリに記憶された物理 領域管理テーブルの物理アドレスを示す 2組のポインタを含む請求項 16記載のメモ リ制御方法。
PCT/JP2005/021119 2004-12-22 2005-11-17 メモリコントローラ、不揮発性記憶装置、不揮発性記憶システム及びメモリ制御方法 WO2006067923A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/722,362 US20080250188A1 (en) 2004-12-22 2005-11-17 Memory Controller, Nonvolatile Storage, Nonvolatile Storage System, and Memory Control Method
JP2006548724A JPWO2006067923A1 (ja) 2004-12-22 2005-11-17 メモリコントローラ、不揮発性記憶装置、不揮発性記憶システム及びメモリ制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-371858 2004-12-22
JP2004371858 2004-12-22

Publications (1)

Publication Number Publication Date
WO2006067923A1 true WO2006067923A1 (ja) 2006-06-29

Family

ID=36601528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021119 WO2006067923A1 (ja) 2004-12-22 2005-11-17 メモリコントローラ、不揮発性記憶装置、不揮発性記憶システム及びメモリ制御方法

Country Status (3)

Country Link
US (1) US20080250188A1 (ja)
JP (1) JPWO2006067923A1 (ja)
WO (1) WO2006067923A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013137771A (ja) * 2011-12-12 2013-07-11 Apple Inc データ利用についてのマウント時間の調停
JP2013200839A (ja) * 2012-03-26 2013-10-03 Toshiba Corp 半導体記憶装置、情報処理システムおよび制御方法
US8650373B2 (en) 2009-08-28 2014-02-11 Kabushiki Kaisha Toshiba Memory system, controller, and data transfer method
KR101416879B1 (ko) 2008-10-06 2014-08-07 삼성전자주식회사 비휘발성 메모리의 동작 방법
JP2016071447A (ja) * 2014-09-26 2016-05-09 ラピスセミコンダクタ株式会社 不揮発性記憶装置及び不揮発性記憶装置の制御方法
JP2017021561A (ja) * 2015-07-10 2017-01-26 ファナック株式会社 制御装置のファイルシステム

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7801015B2 (en) * 2006-02-10 2010-09-21 Pioneer Corporation Optical recording medium having physical and logical position information of buffer areas
US8169848B2 (en) * 2006-07-26 2012-05-01 Panasonic Corporation Nonvolatile memory device, nonvolatile memory system, and access device
WO2008013228A1 (fr) * 2006-07-26 2008-01-31 Panasonic Corporation Contrôleur de mémoire, dispositif de stockage non-volatile, dispositif d'accès et système de stockage non-volatile
WO2008013229A1 (fr) * 2006-07-26 2008-01-31 Panasonic Corporation dispositif de stockage non volatil, système de stockage non volatil et unité d'hôte
EP1988548B1 (fr) * 2007-05-02 2010-08-25 Stmicroelectronics Sa Mémoire non volatile à écriture rapide
KR20100013824A (ko) * 2008-08-01 2010-02-10 주식회사 하이닉스반도체 고속 동작하는 반도체 스토리지 시스템
WO2010016057A2 (en) * 2008-08-04 2010-02-11 Red Bend Ltd. Performing a pre-update on a non volatile memory
US20100115182A1 (en) * 2008-11-06 2010-05-06 Sony Corporation Flash memory operation
JP4758518B2 (ja) * 2009-06-18 2011-08-31 パナソニック株式会社 不揮発性記憶装置、アクセス装置、不揮発性記憶システム及びメモリコントローラ
US9075733B1 (en) * 2010-05-20 2015-07-07 Seagate Technology Llc Selective storage of address mapping metadata in a system having multiple memories
US20130254463A1 (en) * 2012-03-23 2013-09-26 Kabushiki Kaisha Toshiba Memory system
JP5695112B2 (ja) * 2013-03-18 2015-04-01 富士通テン株式会社 データ記憶装置、データの記憶方法および車載用制御装置
TWI584122B (zh) * 2015-11-17 2017-05-21 群聯電子股份有限公司 緩衝記憶體管理方法、記憶體控制電路單元及記憶體儲存裝置
CN106776376B (zh) * 2015-11-24 2019-08-06 群联电子股份有限公司 缓冲存储器管理方法、存储器控制电路单元及存储装置
US10896153B2 (en) * 2018-03-30 2021-01-19 EMC IP Holding Company LLC Large block misaligned deduplication
JP6708762B1 (ja) * 2019-01-29 2020-06-10 ウィンボンド エレクトロニクス コーポレーション 半導体記憶装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002163139A (ja) * 2000-11-22 2002-06-07 Sharp Corp データ管理装置およびそれを用いたデータ管理方法
JP2002175211A (ja) * 2000-12-07 2002-06-21 Sharp Corp データ管理システムおよびデータ管理方法
US20030149856A1 (en) * 2002-02-06 2003-08-07 Entire Interest Memory device with sector pointer structure
JP2004127185A (ja) * 2002-10-07 2004-04-22 Renesas Technology Corp メモリカード
JP2004151939A (ja) * 2002-10-30 2004-05-27 Matsushita Electric Ind Co Ltd 記憶装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3706167B2 (ja) * 1995-02-16 2005-10-12 株式会社ルネサステクノロジ 半導体ディスク装置
US6377500B1 (en) * 1999-11-11 2002-04-23 Kabushiki Kaisha Toshiba Memory system with a non-volatile memory, having address translating function

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002163139A (ja) * 2000-11-22 2002-06-07 Sharp Corp データ管理装置およびそれを用いたデータ管理方法
JP2002175211A (ja) * 2000-12-07 2002-06-21 Sharp Corp データ管理システムおよびデータ管理方法
US20030149856A1 (en) * 2002-02-06 2003-08-07 Entire Interest Memory device with sector pointer structure
JP2004127185A (ja) * 2002-10-07 2004-04-22 Renesas Technology Corp メモリカード
JP2004151939A (ja) * 2002-10-30 2004-05-27 Matsushita Electric Ind Co Ltd 記憶装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101416879B1 (ko) 2008-10-06 2014-08-07 삼성전자주식회사 비휘발성 메모리의 동작 방법
US8650373B2 (en) 2009-08-28 2014-02-11 Kabushiki Kaisha Toshiba Memory system, controller, and data transfer method
JP2013137771A (ja) * 2011-12-12 2013-07-11 Apple Inc データ利用についてのマウント時間の調停
JP2013200839A (ja) * 2012-03-26 2013-10-03 Toshiba Corp 半導体記憶装置、情報処理システムおよび制御方法
JP2016071447A (ja) * 2014-09-26 2016-05-09 ラピスセミコンダクタ株式会社 不揮発性記憶装置及び不揮発性記憶装置の制御方法
JP2017021561A (ja) * 2015-07-10 2017-01-26 ファナック株式会社 制御装置のファイルシステム

Also Published As

Publication number Publication date
US20080250188A1 (en) 2008-10-09
JPWO2006067923A1 (ja) 2008-06-12

Similar Documents

Publication Publication Date Title
WO2006067923A1 (ja) メモリコントローラ、不揮発性記憶装置、不揮発性記憶システム及びメモリ制御方法
US8386698B2 (en) Data accessing method for flash memory and storage system and controller using the same
US8037232B2 (en) Data protection method for power failure and controller using the same
US7487303B2 (en) Flash memory device and associated data merge method
US8055873B2 (en) Data writing method for flash memory, and controller and system using the same
JP4633802B2 (ja) 不揮発性記憶装置及びデータ読み出し方法及び管理テーブル作成方法
JP4418439B2 (ja) 不揮発性記憶装置およびそのデータ書込み方法
JP4871260B2 (ja) メモリモジュール、メモリコントローラ、不揮発性記憶装置、不揮発性記憶システム、及びメモリの読み書き方法
US20080028132A1 (en) Non-volatile storage device, data storage system, and data storage method
TWI385519B (zh) 資料寫入方法及使用此方法的快閃儲存系統與其控制器
WO2009096180A1 (ja) メモリコントローラ、不揮発性記憶装置、及び、不揮発性記憶システム
US20110231595A1 (en) Systems and methods for handling hibernation data
JPWO2005103903A1 (ja) 不揮発性記憶システム
KR20100073971A (ko) 반도체 기억 장치 및 기억 제어 방법
JPH11126488A (ja) フラッシュメモリを複数使用した外部記憶装置のデータ記憶制御方法及び装置
JP2011022657A (ja) メモリシステムおよび情報処理装置
TW201814526A (zh) 記憶體管理方法及使用所述方法的儲存控制器
JP2007199905A (ja) 半導体記憶装置の制御方法
JPWO2005083573A1 (ja) 半導体メモリ装置
JP5874525B2 (ja) 制御装置、記憶装置、記憶制御方法
WO2011118114A1 (ja) 不揮発性記憶装置及びメモリコントローラ
CN107943710B (zh) 存储器管理方法及使用所述方法的存储控制器
US20090210612A1 (en) Memory controller, nonvolatile memory device, and nonvolatile memory system
JP2009116465A (ja) 記憶装置及びメモリ制御方法
JP4308780B2 (ja) 半導体メモリ装置、メモリコントローラ及びデータ記録方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006548724

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11722362

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 05806597

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5806597

Country of ref document: EP