WO2006062037A1 - Composition for metal surface treatment, treating liquid for surface treatment, method of surface treatment, and surface-treated metallic material - Google Patents

Composition for metal surface treatment, treating liquid for surface treatment, method of surface treatment, and surface-treated metallic material Download PDF

Info

Publication number
WO2006062037A1
WO2006062037A1 PCT/JP2005/022176 JP2005022176W WO2006062037A1 WO 2006062037 A1 WO2006062037 A1 WO 2006062037A1 JP 2005022176 W JP2005022176 W JP 2005022176W WO 2006062037 A1 WO2006062037 A1 WO 2006062037A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface treatment
acid
component
zinc
treatment
Prior art date
Application number
PCT/JP2005/022176
Other languages
French (fr)
Japanese (ja)
Inventor
Masayuki Yoshida
Katsuyuki Kawakami
Original Assignee
Henkel Kommanditgesellschaft Auf Aktien
Nihon Parkerizing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Kommanditgesellschaft Auf Aktien, Nihon Parkerizing Co., Ltd. filed Critical Henkel Kommanditgesellschaft Auf Aktien
Priority to AU2005312758A priority Critical patent/AU2005312758B2/en
Priority to CN2005800423772A priority patent/CN101076615B/en
Priority to PL05811597T priority patent/PL2302097T3/en
Priority to EP05811597.3A priority patent/EP2302097B1/en
Priority to MX2007006729A priority patent/MX2007006729A/en
Priority to ES05811597.3T priority patent/ES2529318T3/en
Priority to BRPI0518423-1A priority patent/BRPI0518423B1/en
Priority to CA2591214A priority patent/CA2591214C/en
Publication of WO2006062037A1 publication Critical patent/WO2006062037A1/en
Priority to US11/756,851 priority patent/US20070272900A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/50Treatment of iron or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/53Treatment of zinc or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • C25D9/10Electrolytic coating other than with metals with inorganic materials by cathodic processes on iron or steel

Definitions

  • Metal surface treatment composition Metal surface treatment composition, surface treatment liquid, surface treatment method, and surface-treated metal material
  • the present invention relates to a surface treatment composition capable of depositing a surface treatment film excellent in corrosion resistance after coating or bare corrosion resistance on the surface of a metal material represented by building materials and home appliances, etc.
  • the present invention relates to a treatment liquid for treatment, a surface treatment method, and a metal material obtained by the treatment method.
  • a zinc phosphate treatment method and a chromate treatment method are currently generally used.
  • the zinc phosphate treatment method can deposit a film having excellent corrosion resistance on steel such as hot-rolled steel sheet or cold-rolled steel sheet or zinc-plated steel sheet.
  • Patent Document 1 describes a compound containing a nitrogen atom having a lone electron pair, and a non-chromium coating agent for a metal surface containing the compound and a zirconium compound.
  • the purpose of this method is to obtain a surface-treated film excellent in corrosion resistance and adhesion after coating without applying hexavalent chromium, which is a harmful component, by applying the composition. .
  • the target metal material is limited to the aluminum alloy, and Since the surface treatment film is formed by drying the cloth, it is difficult to apply it to complicated structures.
  • Patent Document 2 discloses a surface treatment agent using cerium, zirconium, phosphoric acid, a fluorinated compound, And the treatment bath is described.
  • this method is also limited to the target metal material being aluminum or an aluminum alloy that is excellent in the corrosion resistance of the material itself. It was impossible to deposit a surface treatment film on the surface of a zinc-based material or a zinc-based material.
  • Patent Document 3 describes a surface treatment composition comprising a metal acetylacetonate and a water-soluble inorganic titanium compound or a water-soluble inorganic zirconium compound, and is excellent in corrosion resistance and adhesion after coating.
  • a method for depositing a surface treatment film is described. By using this method, the metal materials applied were expanded to magnesium, magnesium alloys, zinc, and zinc-plated alloys in addition to aluminum alloys.
  • Patent Document 4 describes a metal surface treatment method using a chromium-free coating-type acidic composition.
  • the metal surface treatment method an aqueous solution of a component capable of forming a film having excellent corrosion resistance is applied to the metal surface, and then the film is fixed by baking and drying without performing a water washing step. Therefore, since no chemical reaction is involved in the formation of the coating, it is possible to perform coating treatment on metal surfaces such as hot-rolled steel sheets, cold-rolled steel sheets, zinc-plated steel sheets, and aluminum alloys.
  • Patent Document 5 discloses a metal chemical conversion treatment method containing zirconium ions, Z or titanium ions, and fluorine ions in a treatment bath. By using this method, the target metal materials can be applied to iron, aluminum and zinc. However, there is a constraint that the iron ion concentration in the chemical conversion treatment agent must be controlled by the oxidizing agent during the treatment.
  • the conventional technology does not contain components harmful to the environment! /, And is excellent in corrosion resistance and adhesion for processing liquids and metal materials such as iron-based metal materials and zinc-based metal materials. In addition, it was impossible to perform surface treatment with excellent operability.
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-204485
  • Patent Document 2 JP-A-2-25579
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2000-199077
  • Patent Document 4 JP-A-5-195244
  • Patent Document 5 Japanese Unexamined Patent Application Publication No. 2004-43913
  • the present invention is a treatment liquid that does not contain a component harmful to the environment, which has been difficult with the prior art, and is a hot-rolled steel sheet such as a hot-rolled steel sheet and a cold-rolled steel sheet used in home appliances and the like.
  • Surface treatment composition that makes it possible to deposit a surface-treated film with excellent corrosion resistance after coating or bare corrosion resistance on the surface of metallic materials such as metallic materials and zinc-based metallic materials such as galvanized steel sheets.
  • the object is to provide a product, a surface treatment liquid, a surface treatment method, and a surface-treated metal material.
  • a composition for surface treatment of a metal containing iron and iron or zinc is provided.
  • composition for surface treatment comprising:
  • Kl BZA, which is the ratio of the total mass concentration B of the Y and Z or lanthanoid elements in the component (B) to the total mass concentration A of the elements in the component (A) is 0.05.
  • ⁇ K1 ⁇ 50 which is the ratio of the total mass concentration C in terms of NO of the nitrogen atom in the component (C) to the total mass concentration
  • K K2 CZA force 0.01 ⁇ K2 ⁇ 200,
  • At least one selected from the group consisting of MoO and salts thereof contains 10 to 20000 ppm.
  • the surface of the metal material containing iron contains the element of the component (A) formed by the surface treatment method according to any one of (10) to (15), and A metal material containing iron having a surface-treated film layer having an adhesion amount in terms of element of not less than 0 mg / m 2 .
  • a metal material containing zinc comprising a surface treatment film layer containing the element of the component (A) and having an adhesion amount of the element conversion of 15 mg / m 2 or more, formed by a method.
  • the metal surface treatment composition, surface treatment solution, surface treatment method, and surface treatment metal material of the present invention are treatments that do not contain components harmful to the environment, which are difficult in the prior art. This is an epoch-making technology that allows a surface treatment film with excellent corrosion resistance after coating to be deposited on the surface of a metal material in a bath.
  • the metal surface treatment composition of the present invention (hereinafter also simply referred to as “the composition of the present invention”), the metal surface treatment solution of the present invention (hereinafter simply referred to as “the treatment liquid of the present invention”).
  • the metal surface treatment method of the present invention (hereinafter also simply referred to as “the treatment method of the present invention”) and the metal material containing iron and Z or zinc of the present invention (hereinafter also simply referred to as “the metal material of the present invention”). ) Will be explained in detail. First, the composition and the treatment liquid of the present invention will be described.
  • composition of the present invention is diluted with water or dissolved in water to obtain the treatment liquid of the present invention.
  • the object of the surface treatment with the treatment liquid of the present invention is an iron-based metal material or a zinc-based metal material.
  • the iron-based metal material is not particularly limited as long as it contains iron, and examples thereof include steel plates such as cold rolled steel plates and hot rolled steel plates, pig iron, and sintered materials.
  • the zinc-based metal material is not particularly limited as long as it contains zinc.
  • a zinc die-cast material or a zinc-containing material is shown.
  • a zinc-containing metal plating is zinc or an alloy of zinc and other metals such as nickel, iron, aluminum, manganese, chromium, magnesium, cobalt, lead, and antimony, and unavoidable. This is due to impurities, and there are no restrictions on the method of plating, for example, electric plating, melting plating, or vapor deposition.
  • the metal materials to be treated can be surface-treated alone or at least two kinds at the same time. Where two or more gold When processing metal materials at the same time, if at least one of the metal materials is iron or zinc-based metal material, other metal materials such as aluminum, magnesium, nickel and their alloys It does not matter. Further, the dissimilar metals may not be in contact with each other, or the dissimilar metals may be in contact with each other by a joining method such as welding, adhesion, or riveting.
  • composition of the present invention contains the following component (A), component (B), and component (C).
  • Component (A) is a compound containing at least one element selected from the group force of Ti, Zr, Hf, and Si force.
  • Examples of such compounds include TiCl, Ti (SO), TiOSO, Ti (NO)
  • TiO NO
  • Ti OH
  • TiO OC O H TiF
  • H TiF salt TiO, TiO, Ti O, TiF, Zr
  • H Zr (OH) (SO) salt ZrO, ZrOBr, ZrF, HfCl, HKSO
  • H HIF H HIF
  • the component is a compound containing Y and Z or a lanthanoid element.
  • it is a compound containing at least one selected from the group forces such as Y, La L Ce ⁇ Pr ⁇ Nd, Pm ⁇ Sm ⁇ Eu ⁇ Gd, Tb ⁇ Dy ⁇ Ho, Er ⁇ Tm ⁇ Yb ⁇ and Lu force. is there.
  • Such compounds include oxides, sulfates, nitrates, and salts of these elements.
  • Component (C) is nitric acid and Z or a nitric acid compound.
  • nitric acid and metal nitrates examples include iron nitrate, manganese nitrate, nickel nitrate, cobalt nitrate, silver nitrate, sodium nitrate, potassium nitrate, magnesium nitrate, and calcium nitrate. Two or more of these may be used in combination.
  • the composition of the present invention is used by diluting with water or dissolving in water for the surface treatment of metal. That is, a metal surface treatment solution is prepared and used. To prepare the metal surface treatment solution, water is added to the surface treatment composition, and the total mass concentration A of the elements (Ti, Zr, Hf, and Si) in the component (A) is from lOppm. Try to be in the lOOOOppm range.
  • total mass concentration A of the elements in the component (A) means “the elements in the component (A) in the composition of the present invention (in some cases, a treatment liquid)". Concentration ". The same applies to “total mass concentration B” and “total mass concentration C”.
  • the present invention provides the surface treatment composition and the surface treatment solution and the Y and Z or lanthanoid in the component (B) relative to the total mass concentration A of the element in the component (A).
  • K1 BZA force 0.05 ⁇ K1 ⁇ 50, and the total mass concentration C of nitrogen atoms in the component (C) with respect to the total mass concentration ⁇
  • component (i) is a substance having excellent acid resistance and alkali resistance! And is a main component of the surface treatment film of the present invention.
  • component) has an effect of promoting film deposition of component (ii). Furthermore, the component) can also be contained in the surface treatment film, which can be expected to improve the corrosion resistance after coating and the bare corrosion resistance.
  • component (C) has a function of maintaining the stability of the treatment liquid by increasing the solubility of component (A) and component (B) in the treatment liquid for surface treatment. Furthermore, component (C) has the effect of assisting the film deposition of component (A), as is the case with component (B).
  • K1 is too large, the reaction starting point of the component (v) on the surface of the metal material to be treated is reduced, and although it has an accelerating effect due to the component), it is a main component of the film and imparts corrosion resistance to the film. Because the amount of coating of the component ( ⁇ ) decreases, it may not only exhibit excellent corrosion resistance but may also adversely affect adhesion.
  • K2 CZA is within the range of 0.01 ⁇ K2 ⁇ 200. Corrosion resistance is not improved even if ⁇ 2 is too large. It is just disadvantageous.
  • the total mass concentration ⁇ of the component ( ⁇ ) used in the treatment liquid of the present invention is preferably adjusted to lOppm force lOOOOppm, more preferably from 50ppm to 5000ppm. If the total mass concentration A is too small, even if the Kl and ⁇ ⁇ ⁇ 2 are within the specified range, the concentration of the main component of the film is low, so that a sufficient amount of adhesion can be obtained in a practical treatment time to obtain corrosion resistance. It becomes difficult to obtain. On the other hand, if the total mass concentration ⁇ ⁇ is too large, a sufficient amount of adhesion can be obtained, but the effect of further improving the corrosion resistance is only economically disadvantageous.
  • composition and the treatment liquid of the present invention preferably further contain at least one fluorine-containing compound as component (D).
  • fluorine-containing compound for example, hydrofluoric acid, H TiF, H TiF salt,
  • Two or more fluorine-containing compounds may be used in combination.
  • component (D) When component (D) is added to the treatment liquid of the present invention, at least one fluorine-containing compound of component (D) is adjusted so that the free fluorine ion concentration D is from 0.001 ppm to 300 ppm. More preferably, it is preferable to adjust it to be from 0.1 ppm to 10 ppm.
  • the free fluorine ion concentration D mentioned here indicates the fluorine ion concentration measured using a commercially available ion electrode. If the free fluorine ion concentration D is too large, the etching reaction on the surface of the material by HF becomes excessive, and it tends to be difficult to deposit a coating amount sufficient to obtain corrosion resistance on the surface of the metal material to be treated.
  • the corrosion resistance of the metal material to be treated can be obtained even if the free fluorine ion concentration D due to the fluorine-containing compound of component (D) is too small, but the stability of the treatment liquid of the surface treatment liquid may be impaired. There is a possibility of hindering continuous operation.
  • the treatment liquid of the present invention preferably deposits a film by a chemical conversion reaction involving etching of the material metal. Therefore, it is preferable to use at pH 6.0 or lower, which is a pH range where etching reaction can generally occur, more preferably at pH 5.0 or lower, and even more preferably at pH 4.0 or lower. Is preferred.
  • the agent to be used there is no particular limitation on the agent to be used, and any of them may be used.
  • acids such as hydrochloric acid, sulfuric acid, boric acid, and organic acids, lithium hydroxide, potassium hydroxide, sodium hydroxide, calcium hydroxide, magnesium hydroxide, barium hydroxide, alkali metal salts, ammonia, ammonia Salts and amines such as amines are available.
  • metals contained in the material eluted by the etching reaction of the material, metals and compounds contained in tap water, and industrial water may be mixed into the treatment liquid. . This is because component (B) accelerates film deposition of component (A), and film deposition of component (A) is not affected by other metal elements or compounds.
  • an anion component is preferably added to the treatment liquid of the present invention in order to further accelerate the film formation reaction.
  • HC1, HSO, HCIO, HBrO, HNO, HMnO, HVO, HO, HW can be used as the ion component that can be used in the surface treatment solution of the present invention.
  • a chelating agent capable of chelating metal ions eluted by the etching reaction.
  • chelating agents include ethylenediamin tetraacetic acid (EDTA), darconic acid, heptogluconic acid, glycolic acid, thaenoic acid, succinic acid, fumaric acid, aspartic acid, tartaric acid, malonic acid. , Malic acid, salicylic acid, and salts of these chelating agents.
  • the content of these chelating agents is not particularly limited, but a sufficient effect can be obtained with an additive amount of about 1 ppm to 10,000 ppm.
  • a water-soluble polymer compound having an ionic reactive group in the molecule and Z or a water-dispersible polymer compound to the treatment liquid of the present invention.
  • examples of such compounds include polybutyl alcohol, poly (meth) acrylic acid, copolymers of acrylic acid and methacrylic acid, acrylic monomers such as ethylene and (meth) acrylic acid and (meth) acrylate.
  • examples include amine derivatives, polyvinylamine, polybulamine derivatives, tannin and tannic acid and salts thereof, and phytic acid.
  • concentration of the above compound added is preferably about 1 ppm to 10,000 ppm, and such an added amount exhibits a sufficient effect.
  • At least one surfactant selected from the group consisting of a nonionic surfactant, an anionic surfactant, and a force thione surfactant is added to the treatment liquid of the present invention.
  • a surfactant selected from the group consisting of a nonionic surfactant, an anionic surfactant, and a force thione surfactant.
  • a good film can be formed without degreasing the treated metal material in advance and cleaning it as described later.
  • this surface treatment solution can be used as a degreasing chemical treatment surface treatment agent.
  • the treatment method of the present invention includes a treatment liquid contact step of bringing the treatment liquid of the present invention into contact with a metal material containing iron and Z or zinc, and the surface of the metal containing iron and / or zinc. It is a processing method.
  • the surface treatment method of the present invention it is only necessary to bring the treatment liquid of the present invention into contact with the metal material containing iron and Z or zinc. As a result, a film made of the oxide of element (A) and Z or hydroxide is deposited on the surface of the metal material, and a surface-treated film layer having excellent adhesion and corrosion resistance is formed.
  • the structure of the surface treatment film layer in the present invention is such that when it is dried at room temperature or low temperature after being subjected to surface treatment, it is in a state in which oxides and hydroxides are mixed, and when it is dried at high temperature after surface treatment, It is thought that there is only a lot of food or acid.
  • the metal material containing iron and Z or zinc is preferably cleaned by degreasing.
  • the method of degreasing treatment is not particularly limited, and a conventionally known method can be used.
  • the metal material containing iron and Z or zinc may be degreased in advance, cleaned, and removed. A good film can be formed. That is, in this case, the degreasing treatment and film conversion treatment of the metal material containing iron and Z or zinc are simultaneously performed in the treatment liquid contact step.
  • the conditions for using the treatment liquid of the present invention are not particularly limited.
  • the component (D) fluorine-containing compounds when at least one of the component (D) fluorine-containing compounds is used, it can be controlled by changing the free fluorine ion concentration D. Therefore processing temperature The degree and processing time can be changed to V, etc., in combination with the reactivity of the processing bath.
  • the metal material containing iron and / or zinc may be subjected to electrolytic treatment in the state of contact with the treatment liquid of the present invention.
  • a hydrogen reduction reaction occurs at the interface between the metal material containing iron and Z or zinc as the cathode, and the pH rises.
  • the stability of the compound containing the component (A) element at the cathode interface decreases, and the surface treatment film is deposited as an acid or water-containing hydroxide.
  • the treatment liquid of the present invention is brought into contact with the metal material containing iron and Z or zinc, or after being subjected to electrolytic treatment, cobalt, nickel, tin, copper, titanium, and zirconium-umuka It can be contacted with an acidic aqueous solution containing at least one selected from the group consisting of these, or a treatment solution containing at least one of a water-soluble polymer compound and a water-dispersible polymer compound. Thereby, the effect of the present invention can be further enhanced.
  • At least one source from which the group force consisting of cobalt, nickel, tin, copper, titanium, and zirconium is also selected but it is easy to obtain the metal element.
  • Oxides, hydroxides, fluorides, complex fluorides, chlorides, nitrates, oxynitrates, sulfates, oxysulfates, carbonates, oxycarbonates, phosphates, oxyphosphates, oxalates, An oxyshinonate, an organometallic compound, and the like can be used.
  • the acidic aqueous solution containing the metal element has a pH of 2 to 6.
  • Acids such as phosphoric acid, nitric acid, sulfuric acid, hydrofluoric acid, hydrochloric acid, and organic acids, sodium hydroxide, Potassium hydroxide, lithium hydroxide, alkali metal salts, ammonia, ammonia salts, amines, etc. It can be adjusted with Lucari.
  • At least one polymer compound selected from the water-soluble polymer compound and the water-dispersible polymer compound may be, for example, polybulal alcohol, poly (meth) acrylic acid, acrylic acid and methacrylic acid. Copolymers with acids, copolymers of ethylene and acrylic monomers such as (meth) acrylic acid and (meth) acrylate, copolymers of ethylene and vinyl acetate
  • Polyurethane amino-modified phenolic resin, polyester resin, epoxy resin, polyamineamine, polyamine, polyamine derivative, polyallylamine, polyallylamine derivative, polyamidoamine derivative, polybulamine, polybulamine amine, tannin and tannic acid and its salts, and phytin An acid or the like can be used.
  • the present invention provides an oxide layer of component (A) and a coating layer having Z or hydroxide strength on the surface of the metal material to be treated, or component (A). It is possible to drastically improve the corrosion resistance of metal materials by providing a coating layer that is a mixture of the above-mentioned coating layer and an oxide layer of the metal element of component (B) and a coating layer of Z or hydroxide. It is what.
  • the film made of the acid compound and Z or hydroxide compound of the component (A) has a chemically stable property and is hardly affected by acid or alkali.
  • the pH decreases in the anode portion where the metal elution occurs, and the pH increases in the force sword portion where the reduction reaction occurs. Therefore, a surface-treated film that is inferior in acid resistance and alkali resistance dissolves in a corrosive environment and loses its effect.
  • the oxide (A) and Z or hydroxide films of the component (A) are difficult to be attacked by acid and alkali, and the present invention is a uniform surface treatment film on the surface of the metal to be treated. Therefore, the excellent effect is maintained even in a corrosive environment.
  • the oxides and hydroxides of the metal elements contained in the film form a network structure through the metal and oxygen, so that they are very good noble films. Corrosion of metal materials varies depending on the environment in which it is used. Generally, it is oxygen demand type corrosion in the presence of water and oxygen, and the corrosion speed is accelerated by the presence of components such as chloride. Here, since the coating layer of the present invention has a barrier effect against water, oxygen and corrosion promoting components, it can exhibit excellent corrosion resistance. [0071] In addition to the component (A) and the component (B), the composition of the present invention and the treatment liquid of the present invention contain the component (C), and the quantitative ratio thereof is A specific range. For this reason, a chemical conversion reaction is accompanied when the surface treatment film is deposited. With the chemical reaction, the adhesion of the film becomes extremely high.
  • the surface treatment film layer is attached.
  • the amount is preferably 20 mg / m 2 or more, more preferably 30 mg / m 2 or more, more preferably 40 mg / m 2 or more, in terms of element of component (A).
  • the amount of the surface treatment coating layer applied is 15 mg in terms of element of component (A). / m 2 or more is preferable 20 mg / m 2 or more is more preferable.
  • the adhesion amount of both iron-based material and zinc-based material is preferably lg / m 2 or less, more preferably 800 mg / m 2 or less, in terms of element of component (A).
  • Example 6 the surface treatment was performed in the following treatment steps.
  • Example 7 surface treatment was performed by the following treatment steps.
  • Comparative Example 4 was processed in the following processing steps.
  • the drying was performed by leaving it in a room temperature room.
  • the surface treatment composition was diluted with ion-exchanged water so that the mass concentration of the elemental zirconium was 8000 ppm, and a surface treatment solution having a pH of 3.2 was prepared using sodium hydroxide.
  • the test plate that had been degreased and washed with water was immersed in the surface treatment solution heated to 50 ° C. for 180 seconds for surface treatment.
  • the surface treatment composition is diluted with ion-exchanged water so that the mass concentration of the elemental zirconium is lOOppm, and the free fluorine ion concentration is 25 ppm using hydrofluoric acid and ammonia (Fluorine ion meter: Toa Denki Kogyo Co., Ltd.) Company IM-55G), pH is 3
  • a surface treatment solution of 6 was prepared. The test plate that had been degreased and washed with water was immersed in the surface treatment solution heated to 45 ° C. for 150 seconds for surface treatment.
  • a surface treatment solution having a free fluorine ion concentration of 20 ppm (fluorine ion meter: IM-55G manufactured by Toa Denpa Kogyo Co., Ltd.) and a pH of 4.0 was prepared using lithium hydroxide.
  • the test plate that had been degreased and washed with water was immersed in the above surface treatment solution heated to 60 ° C for 120 seconds to perform surface treatment o
  • the composition was adjusted.
  • the surface treatment composition is diluted with ion-exchanged water so that the total mass concentration of the titanium element mass concentration and the silicon element mass concentration is 2500 ppm, and the free fluorine ion concentration is further increased by using ammonium fluoride and ammonia.
  • the composition for preparation was prepared.
  • the surface treatment composition is diluted with ion-exchanged water so that the total mass concentration of the zirconium element mass concentration and the titanium element mass concentration is 200 ppm.
  • free fluorine is used using ammonium fluoride and potassium hydroxide hydroxide.
  • a surface treatment solution having an ion concentration of 50 ppm (fluorine ion meter: IM-55G manufactured by Toa Denpa Kogyo Co., Ltd.) and pH of 4.2 was prepared.
  • the test plate that had been degreased and washed with water was immersed in the surface treatment solution heated to 60 ° C. for 200 seconds for surface treatment, and then washed with water and post-treated.
  • the post-treatment liquid used at this time was an aqueous solution having a titanium mass concentration of 200 ppm and a nickel mass concentration of 50 ppm as a metal element using a hexafluorotitanium aqueous solution and nickel nitrate. After heating to ° C, a solution adjusted to pH 4.5 with sodium hydroxide was used.
  • the surface treatment composition was diluted with ion-exchanged water so that the mass concentration of zirconium element was lOOppm, and a surface treatment solution having a pH of 3.0 was prepared using sodium hydroxide.
  • the test plate that had been degreased and washed with water was immersed in the surface treatment solution heated to 55 ° C. for 180 seconds for surface treatment.
  • the surface treatment composition is diluted with ion-exchanged water so that the mass concentration of titanium element is 50 ppm, and further, the concentration of free fluorine ions is 400 ppm using ammonium fluoride and ammonia (fluorine ion meter:
  • Toa A treatment liquid for surface treatment having a pH of 2.8 was prepared.
  • the test plate that had been degreased and washed with water was subjected to surface treatment by spraying for 150 seconds with the above-mentioned surface treatment solution heated to 50 ° C.
  • test plate after the surface treatment of the examples and comparative examples was visually evaluated, and the amount of the surface treatment film layer deposited was measured using a fluorescent X-ray analyzer (System 3270; manufactured by Rigaku Denki Kogyo Co., Ltd.). Measured.
  • Cationic electrodeposition coating Epoxy-based cationic electrodeposition coating (Electron 9400: manufactured by Kansai Paint Co., Ltd.), voltage 200V, film thickness 20 / ⁇ ⁇ , 175 ° C 20 minutes baking
  • Top coat Aminoalkyd paint (Amirac TM-13 White: manufactured by Kansai Paint Co., Ltd.), spray coating, film thickness 35 / ⁇ ⁇ , baking at 140 ° C for 20 minutes
  • the coating performance of the examples and comparative examples was evaluated according to JIS standards. The evaluation items are shown below.
  • the coating film at the completion of electrodeposition coating is referred to as an electrodeposition coating film, and the coating film at the time of completion of top coating is referred to as a 3c 0ats coating film.
  • Tables 1 and 2 show the appearance evaluation results of the surface treatment films obtained in Examples and Comparative Examples, and the amount of adhesion of the surface treatment film.
  • a uniform film could be obtained for both the SPC material and the EG material, and the target film adhesion amount could be obtained.
  • Comparative Example 1 since the total concentration ratio K1 was small, the SPC material and the EG material were both unable to deposit the surface treatment film.
  • Comparative Example 2 since the content of component (A) was small, both the SPC material and EG material were unable to deposit the surface treatment film.
  • Comparative Example 3 since the total mass concentration ratio K1 was large and the free fluorine ion concentration D was high, the SPC material and the EG material were both unable to deposit the surface treatment film. Since Comparative Example 4 was a conventional zinc phosphate treatment, it was possible to form a surface treatment film on both the SPC material and the EG material.
  • Comparative Example 3 since the total mass concentration ratio K1 is large and K1 is high and the free fluorine ion concentration D is high, the targeted coating amount cannot be obtained for both the SPC material and the EG material, and the corrosion resistance is poor.
  • Comparative Example 4 is a zinc phosphate treatment that is currently commonly used as a base for cationic electrodeposition coating. The examples showed excellent coating performance at all levels compared to Comparative Example 4! /.
  • Table 4 shows the evaluation results of the adhesion of the 3c 0a ts plate. The examples showed good adhesion to all the test plates. As for the comparative examples, the level showing good adhesion to the test plate was strong in all the comparative examples except Comparative Example 4 as well as the corrosion resistance of the electrodeposition coated plate. [0105] From the above results, the surface treatment film having excellent adhesion and corrosion resistance is obtained by using the surface treatment composition, the surface treatment solution, the surface treatment method, and the surface treatment metal material which are the products of the present invention. It is clear that can be deposited.
  • Total amount of component (A) (mg / in 2 )
  • Example 1 60 41 Male example 2 100 78 Difficult example 3 65 41 Example 4 20 16 Male example 5 45 32 Male example 6 90 75 Difficult example 7 50 42 Comparison 1 6 3 Comparison 2 4 2 Comparison 3 5 3 Hiei 4 2.0 (g / m 2 )

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

A surface-treating composition which is a treating liquid containing no ingredients harmful to the environment; such a treating liquid has been difficult to obtain with any conventional technique. The composition enables a coating film having excellent corrosion resistance after coating to be deposited through surface treatment on a surface of a metallic material, e.g., an iron-based metallic material. The composition, which is for the surface treatment of a metal comprising iron and/or zinc, comprises the following ingredients (A), (B), and (C): (A) a compound containing at least one element selected from the group consisting of titanium, zirconium, hafnium, and silicon; (B) a compound containing yttrium and/or a lanthanide element; and (C) nitric acid and/or a nitric acid compound. In the composition, the ratio of the total mass concentration B of the yttrium and/or lanthanide element in the ingredient (B) to the total mass concentration A of the element(s) in the ingredient (A), K1=B/A, is 0.05≤K1≤50 and the ratio of the total mass concentration C of nitrogen atoms in the ingredient (C) in terms of NO3 concentration to the total mass concentration A, K2=C/A, is 0.01≤K2≤200.

Description

明 細 書  Specification
金属の表面処理用組成物、表面処理用処理液、表面処理方法、及び表 面処理金属材料  Metal surface treatment composition, surface treatment liquid, surface treatment method, and surface-treated metal material
技術分野  Technical field
[0001] 本発明は、建材及び家電等に代表される様な金属材料表面に、塗装後の耐食性、 もしくは裸耐食性に優れる表面処理皮膜を析出させることを可能とする表面処理組 成物、表面処理用処理液、及び表面処理方法、並びに該処理方法で得られる金属 材料に関するものである。  [0001] The present invention relates to a surface treatment composition capable of depositing a surface treatment film excellent in corrosion resistance after coating or bare corrosion resistance on the surface of a metal material represented by building materials and home appliances, etc. The present invention relates to a treatment liquid for treatment, a surface treatment method, and a metal material obtained by the treatment method.
背景技術  Background art
[0002] 金属表面に塗装後の耐食性に優れる表面処理皮膜を析出させる手法としては、り ん酸亜鉛処理法やクロメート処理法が現在一般に用いられて ヽる。りん酸亜鉛処理 法は、熱延鋼板ゃ冷延鋼板等の鋼や、亜鉛めつき鋼板に耐食性に優れる皮膜を析 出させることができる。  [0002] As a method for depositing a surface treatment film having excellent corrosion resistance after coating on a metal surface, a zinc phosphate treatment method and a chromate treatment method are currently generally used. The zinc phosphate treatment method can deposit a film having excellent corrosion resistance on steel such as hot-rolled steel sheet or cold-rolled steel sheet or zinc-plated steel sheet.
[0003] し力しながら、りん酸亜鉛処理を行う際には、反応の副生成物であるスラッジの発生 が避けられない。また、クロメート処理を施すことによつても十分な塗装後の性能を確 保することが可能である力 昨今の環境規制から処理液中に有害な 6価クロムを含む クロメート処理は敬遠される方向にある。  [0003] However, when zinc phosphate treatment is performed, the generation of sludge as a by-product of the reaction is inevitable. In addition, the ability to ensure sufficient post-painting performance by applying chromate treatment. In view of the recent environmental regulations, chromate treatment containing harmful hexavalent chromium in the treatment liquid tends to be avoided. It is in.
[0004] そこで、最近の技術として、素材表面をジルコニウムのような金属薄膜で被覆するこ とによって耐食性を付与し、さらに処理液中に有害成分を含まず、スラッジの発生を 抑制した技術が開発されてきている。それら表面処理方法として、以下に示す方法 が提案されている。  [0004] Therefore, as a recent technology, a technology has been developed in which the surface of the material is coated with a metal thin film such as zirconium to provide corrosion resistance, and the processing liquid does not contain harmful components and suppresses the generation of sludge. Has been. As these surface treatment methods, the following methods have been proposed.
[0005] 例えば特許文献 1には、孤立電子対を持つ窒素原子を含有する化合物、及び前記 化合物とジルコニウム化合物を含有する金属表面用ノンクロムコーティング剤が記載 されている。この方法は、前記組成物を塗布することによって、有害成分である 6価ク ロムを含まずに、塗装後の耐食性、及び密着性に優れた表面処理皮膜を得ることを 目的とするものである。  [0005] For example, Patent Document 1 describes a compound containing a nitrogen atom having a lone electron pair, and a non-chromium coating agent for a metal surface containing the compound and a zirconium compound. The purpose of this method is to obtain a surface-treated film excellent in corrosion resistance and adhesion after coating without applying hexavalent chromium, which is a harmful component, by applying the composition. .
[0006] し力しながら、対象とされる金属素材がアルミニウム合金に限られており、且つ、塗 布乾燥によって表面処理皮膜を形成せしめるため、複雑な構造物に塗布することは 困難である。 [0006] However, the target metal material is limited to the aluminum alloy, and Since the surface treatment film is formed by drying the cloth, it is difficult to apply it to complicated structures.
[0007] そこで、化成反応によって塗装後の密着性、及び耐食性に優れる表面処理皮膜を 析出させる方法として、特許文献 2には、セリウム、ジルコニウム、りん酸、フッ素化合 物を用いた表面処理剤、及び処理浴が記載されて ヽる。  [0007] Therefore, as a method for depositing a surface treatment film having excellent adhesion and corrosion resistance after coating by a chemical conversion reaction, Patent Document 2 discloses a surface treatment agent using cerium, zirconium, phosphoric acid, a fluorinated compound, And the treatment bath is described.
[0008] しカゝしながら、この方法も、特許文献 1に記載された発明と同様に、対象とされる金 属材料が素材そのものの耐食性に優れるアルミニウムまたはアルミニウム合金に限定 されており、鉄系材料や亜鉛系材料表面に表面処理皮膜を析出させることは不可能 であった。  However, as with the invention described in Patent Document 1, this method is also limited to the target metal material being aluminum or an aluminum alloy that is excellent in the corrosion resistance of the material itself. It was impossible to deposit a surface treatment film on the surface of a zinc-based material or a zinc-based material.
[0009] 特許文献 3には、金属ァセチルァセトネートと、水溶性無機チタンィ匕合物、または水 溶性無機ジルコニウム化合物とからなる表面処理組成物で、塗装後の耐食性、及び 密着性に優れる表面処理皮膜を析出せしめる手法が記載されて 、る。この方法を用 いることによって、適用される金属材料がアルミニウム合金以外にマグネシウム、マグ ネシゥム合金、亜鉛、及び亜鉛めつき合金にまで拡大された。  [0009] Patent Document 3 describes a surface treatment composition comprising a metal acetylacetonate and a water-soluble inorganic titanium compound or a water-soluble inorganic zirconium compound, and is excellent in corrosion resistance and adhesion after coating. A method for depositing a surface treatment film is described. By using this method, the metal materials applied were expanded to magnesium, magnesium alloys, zinc, and zinc-plated alloys in addition to aluminum alloys.
[0010] し力しながら、この方法では熱延鋼板ゃ冷延鋼板等の鉄系金属材料表面に表面処 理皮膜を析出させることは不可能であった。  However, with this method, it has been impossible to deposit a surface treatment film on the surface of an iron-based metal material such as a hot-rolled steel sheet or a cold-rolled steel sheet.
[0011] 更に、特許文献 4には、クロムフリー塗布型酸性組成物による金属表面処理方法が 記載されている。前記金属表面処理方法は、耐食性に優れる皮膜となり得る成分の 水溶液を金属表面に塗布した後、水洗工程を行わずに焼き付け乾燥することによつ て皮膜を固定ィ匕するものである。従って、皮膜の生成に化学反応を伴わないため、 熱延鋼板、冷延鋼板、亜鉛めつき鋼板及びアルミニウム合金等の金属表面に皮膜処 理を施すことが可能である。  Furthermore, Patent Document 4 describes a metal surface treatment method using a chromium-free coating-type acidic composition. In the metal surface treatment method, an aqueous solution of a component capable of forming a film having excellent corrosion resistance is applied to the metal surface, and then the film is fixed by baking and drying without performing a water washing step. Therefore, since no chemical reaction is involved in the formation of the coating, it is possible to perform coating treatment on metal surfaces such as hot-rolled steel sheets, cold-rolled steel sheets, zinc-plated steel sheets, and aluminum alloys.
[0012] し力しながら、特許文献 1に記載された発明と同様に、塗布乾燥によって皮膜を生 成させるため、複雑な構造物に均一な皮膜処理を施すことは困難である。  However, as in the invention described in Patent Document 1, since a film is formed by coating and drying, it is difficult to perform a uniform film treatment on a complicated structure.
[0013] 更に、特許文献 5には、ジルコニウムイオン及び Z又はチタニウムイオン、並びに、 フッ素イオンを処理浴に含有した金属化成処理方法が開示されて 、る。この方法を 用いることによって対象となる金属材料は鉄系、アルミニウム、亜鉛まで適用が可能 である。 [0014] しカゝしながら、処理中に化成処理剤中の鉄イオン濃度を酸化剤により制御しなけれ ばならな 、との制約条件がある。 [0013] Furthermore, Patent Document 5 discloses a metal chemical conversion treatment method containing zirconium ions, Z or titanium ions, and fluorine ions in a treatment bath. By using this method, the target metal materials can be applied to iron, aluminum and zinc. However, there is a constraint that the iron ion concentration in the chemical conversion treatment agent must be controlled by the oxidizing agent during the treatment.
[0015] 従って、従来技術では環境に有害な成分を含まな!/、処理液で、且つ、鉄系金属材 料、亜鉛系金属材料等の金属材料を対象とした、耐食性と密着性に優れ、更に操業 性にも優れた表面処理を行うことは不可能であった。 [0015] Therefore, the conventional technology does not contain components harmful to the environment! /, And is excellent in corrosion resistance and adhesion for processing liquids and metal materials such as iron-based metal materials and zinc-based metal materials. In addition, it was impossible to perform surface treatment with excellent operability.
特許文献 1:特開 2000— 204485号公報  Patent Document 1: Japanese Patent Laid-Open No. 2000-204485
特許文献 2:特開平 2— 25579号公報  Patent Document 2: JP-A-2-25579
特許文献 3:特開 2000— 199077号公報  Patent Document 3: Japanese Unexamined Patent Publication No. 2000-199077
特許文献 4:特開平 5 - 195244号公報  Patent Document 4: JP-A-5-195244
特許文献 5 :特開 2004— 43913号公報  Patent Document 5: Japanese Unexamined Patent Application Publication No. 2004-43913
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0016] 本発明は、従来技術では困難であった、環境に有害な成分を含まない処理液で、 建材、及び家電等に使用されているような熱延鋼板ゃ冷延鋼板等の鉄系金属材料、 亜鉛めつき鋼板等の亜鉛系金属材料などの金属材料等の金属材料表面に、塗装後 の耐食性、もしくは裸耐食性に優れる表面処理皮膜を析出させることを可能とする表 面処理用組成物、表面処理用処理液、表面処理方法、及び表面処理金属材料を提 供することを目的とするものである。 [0016] The present invention is a treatment liquid that does not contain a component harmful to the environment, which has been difficult with the prior art, and is a hot-rolled steel sheet such as a hot-rolled steel sheet and a cold-rolled steel sheet used in home appliances and the like. Surface treatment composition that makes it possible to deposit a surface-treated film with excellent corrosion resistance after coating or bare corrosion resistance on the surface of metallic materials such as metallic materials and zinc-based metallic materials such as galvanized steel sheets. The object is to provide a product, a surface treatment liquid, a surface treatment method, and a surface-treated metal material.
課題を解決するための手段  Means for solving the problem
[0017] 本発明者らは前記課題を解決するための手段について鋭意検討した結果、従来 技術にはない表面処理用組成物、表面処理用処理液、表面処理方法、及び表面処 理金属材料を完成するに至った。 [0017] As a result of intensive investigations on means for solving the above problems, the present inventors have found a surface treatment composition, a surface treatment solution, a surface treatment method, and a surface treatment metal material that are not present in the prior art. It came to be completed.
[0018] このような課題は、下記(1)〜(17)の本発明により達成される。 [0018] Such problems are achieved by the present inventions (1) to (17) below.
[0019] (1)次の成分 (A)、成分 (B)、及び成分 (C): [0019] (1) The following components (A), (B), and (C):
(A) Ti、 Zr、 Hf、及び Si力 なる群力 選ばれる少なくとも 1種の元素を含む化合物 (A) Group force consisting of Ti, Zr, Hf, and Si forces A compound containing at least one element selected
(B) Y及び Z又はランタノイド元素を含む化合物 (B) Compounds containing Y and Z or lanthanoid elements
(C)硝酸及び Z又は硝酸化合物  (C) Nitric acid and Z or nitrate compounds
を含有し、前記成分 (A)中の前記元素の合計質量濃度 Aに対する前記成分 (B)中 の前記 Y及び Z又はランタノイド元素の合計質量濃度 Bの比である Kl = BZAが、 0 . 05≤K1≤50であり、前記合計質量濃度 Αに対する前記成分 (C)中の窒素原子の NO換算した合計質量濃度 Cの比である K2 = CZA力 0. 01≤K2≤200である、In the component (B) with respect to the total mass concentration A of the elements in the component (A) Kl = BZA, which is the ratio of the total mass concentration B of Y and Z or lanthanoid elements, is 0.05≤K1≤50, and NO conversion of nitrogen atoms in the component (C) with respect to the total mass concentration Α Is the ratio of the total mass concentration C K2 = CZA force 0.01≤K2≤200,
3 Three
鉄及び Ζ又は亜鉛を含む金属の表面処理用組成物。  A composition for surface treatment of a metal containing iron and iron or zinc.
[0020] (2)更に、次の成分 (D):  [0020] (2) Further, the following component (D):
(D)フッ素含有ィ匕合物の少なくとも 1種  (D) At least one fluorine-containing compound
を含有する、上記(1)に記載の表面処理用組成物。  The composition for surface treatment according to the above (1), comprising:
[0021] (3)次の成分 (Α)、成分 (Β)、及び成分 (C): [0021] (3) The following component (Α), component (Β), and component (C):
(A) Ti、 Zr、 Hf、及び Si力 なる群力 選ばれる少なくとも 1種の元素を含む化合物 (A) Group force consisting of Ti, Zr, Hf, and Si forces A compound containing at least one element selected
(B) Y及び Z又はランタノイド元素を含む化合物 (B) Compounds containing Y and Z or lanthanoid elements
(C)硝酸及び Z又は硝酸化合物  (C) Nitric acid and Z or nitrate compounds
を含有し、前記成分 (A)中の前記元素の合計質量濃度 Aに対する前記成分 (B)中 の前記 Y及び Z又はランタノイド元素の合計質量濃度 Bの比である Kl = BZAが、 0 . 05≤K1≤50であり、前記合計質量濃度 Αに対する前記成分 (C)中の窒素原子の NO換算した合計質量濃度 Cの比である K2 = CZA力 0. 01≤K2≤200であり、 Kl = BZA, which is the ratio of the total mass concentration B of the Y and Z or lanthanoid elements in the component (B) to the total mass concentration A of the elements in the component (A) is 0.05. ≤K1≤50, which is the ratio of the total mass concentration C in terms of NO of the nitrogen atom in the component (C) to the total mass concentration K K2 = CZA force 0.01≤K2≤200,
3 Three
前記合計質量濃度 Αが、 10ppm≤A≤10000ppmである、鉄及び Z又は亜鉛を含 む金属の表面処理用処理液。  A treatment liquid for surface treatment of a metal containing iron and Z or zinc, wherein the total mass concentration Α is 10 ppm≤A≤10000 ppm.
[0022] (4)更に、次の成分 (D): [0022] (4) Further, the following component (D):
(D)フッ素含有ィ匕合物の少なくとも 1種  (D) At least one fluorine-containing compound
を含有し、遊離フッ素イオン濃度 Dが 0. 001ppm≤D≤300ppmである、上記(3)に 記載の表面処理用処理液。  The surface treatment solution according to (3) above, wherein the free fluorine ion concentration D is 0.001 ppm≤D≤300 ppm.
[0023] (5) pHが 6. 0以下である、上記(3)または (4)に記載の表面処理用処理液。 [0023] (5) The treatment liquid for surface treatment according to (3) or (4), wherein the pH is 6.0 or less.
[0024] (6)更に、 HC1、 H SO、 HCIO、 HBrO、 HNO、 HMnO、 HVO、 H O、 H WO、 H [0024] (6) Further, HC1, HSO, HCIO, HBrO, HNO, HMnO, HVO, H2O, HWO, H
2 4 3 3 2 4 3 2 2 2 4 2 2 4 3 3 2 4 3 2 2 2 4 2
MoO及びこれらの塩類からなる群から選ばれる少なくとも 1種を、 10〜20000ppm含At least one selected from the group consisting of MoO and salts thereof contains 10 to 20000 ppm.
4 Four
有する、上記(3)〜(5)の 、ずれかに記載の表面処理用処理液。  The treatment liquid for surface treatment according to any one of (3) to (5) above.
[0025] (7)更に、エチレンジァミン四酢酸、ダルコン酸、ヘプトグルコン酸、グリコール酸、 クェン酸、コハク酸、フマル酸、ァスパラギン酸、酒石酸、マロン酸、リンゴ酸、サリチ ル酸、及びこれらの塩類からなる群力 選ばれる少なくとも 1種を、 1〜: LOOOOppm含 有する、上記(3)〜(6)の 、ずれかに記載の表面処理用処理液。 [7] (7) Further, from ethylenediamine tetraacetic acid, darconic acid, heptogluconic acid, glycolic acid, succinic acid, succinic acid, fumaric acid, aspartic acid, tartaric acid, malonic acid, malic acid, salicylic acid, and salts thereof Group power of at least one selected from 1 to: LOOOOppm included The treatment liquid for surface treatment according to any one of (3) to (6) above.
[0026] (8)更に、水溶性高分子化合物及び Z又は水分散性高分子化合物を含有する、 上記(3)〜(7)の 、ずれかに記載の表面処理用処理液。 [0026] (8) The treatment liquid for surface treatment according to any one of (3) to (7), further comprising a water-soluble polymer compound and Z or a water-dispersible polymer compound.
[0027] (9)更に、ノ-オン系界面活性剤、ァ-オン系界面活性剤及びカチオン系界面活 性剤からなる群力も選ばれる少なくとも 1種を含有する、上記(3)〜(8)のいずれかに 記載の表面処理用処理液。 [0027] (9) The above (3) to (8) further comprising at least one selected from the group force consisting of a non-ionic surfactant, a ionic surfactant and a cationic surfactant. ) The surface treatment treatment liquid according to any one of the above.
[0028] (10)鉄及び Z又は亜鉛を含む金属材料に、上記(3)〜(8)のいずれかに記載の 表面処理用処理液を接触させる処理液接触工程を有する、鉄及び Z又は亜鉛を含 む金属の表面処理方法。 [0028] (10) Iron and Z or a metal having a treatment liquid contact step in which the surface treatment liquid according to any one of (3) to (8) is brought into contact with a metal material containing iron and Z or zinc. Surface treatment method for metals containing zinc.
[0029] (11)鉄及び Z又は亜鉛を含む金属材料に、上記(9)に記載の表面処理用処理液 を接触させ、前記金属材料の脱脂処理と被膜化成処理とを同時に行う処理液接触 工程を有する、鉄及び Z又は亜鉛を含む金属の表面処理方法。 [0029] (11) A treatment liquid contact in which the metal composition containing iron and Z or zinc is contacted with the treatment liquid for surface treatment according to (9) above, and the degreasing treatment and film forming treatment of the metal material are performed simultaneously. A method for treating a surface of a metal containing iron and Z or zinc, comprising a step.
[0030] (12)前記鉄及び Z又は亜鉛を含む金属材料が、脱脂処理により清浄化された金 属材料である、上記(10)または(11)に記載の表面処理方法。 [0030] (12) The surface treatment method according to (10) or (11) above, wherein the metal material containing iron and Z or zinc is a metal material cleaned by a degreasing treatment.
[0031] (13)前記処理液接触工程にお!ヽて、前記鉄及び Z又は亜鉛を含む金属材料を 陰極として電解処理する、上記(10)〜(12)のいずれかに記載の表面処理方法。 [0031] (13) The surface treatment according to any one of (10) to (12), wherein in the treatment liquid contact step, electrolytic treatment is performed using the metal material containing iron and Z or zinc as a cathode. Method.
[0032] (14)更に、前記処理液接触工程後に、 (14) Further, after the treatment liquid contact step,
前記鉄及び Z又は亜鉛を含む金属材料に、コバルト、ニッケル、すず、銅、チタ- ゥム、及びジルコニウムカゝらなる群カゝら選ばれる少なくとも 1種を含む水溶液を接触さ せる工程を有する、上記(10)〜(13)のいずれかに記載の表面処理方法。  Contacting the metal material containing iron and Z or zinc with an aqueous solution containing at least one selected from the group consisting of cobalt, nickel, tin, copper, titanium, and zirconium. The surface treatment method according to any one of (10) to (13) above.
[0033] (15)更に、前記処理液接触工程後に、 (15) Furthermore, after the treatment liquid contact step,
前記鉄及び Z又は亜鉛を含む金属材料に、水溶性高分子化合物及び Z又は水 分散性高分子化合物を含む水溶液を接触させる工程を有する、上記(10)〜(13) の!、ずれかに記載の表面処理方法。  The above (10) to (13), comprising the step of bringing the metal material containing iron and Z or zinc into contact with an aqueous solution containing a water-soluble polymer compound and Z or a water-dispersible polymer compound. The surface treatment method as described.
[0034] (16)鉄を含む金属材料表面に、上記(10)〜(15)のいずれかに記載の表面処理 方法によって形成された、前記成分 (A)の前記元素を含有し、かつ、前記元素換算 の付着量力 ¾0mg/m2以上である表面処理被膜層を有する、鉄を含む金属材料。 (16) The surface of the metal material containing iron contains the element of the component (A) formed by the surface treatment method according to any one of (10) to (15), and A metal material containing iron having a surface-treated film layer having an adhesion amount in terms of element of not less than 0 mg / m 2 .
[0035] (17)亜鉛を含む金属材料表面に、上記(10)〜(15)のいずれかに記載の表面処 理方法によって形成された、前記成分 (A)の前記元素を含有し、かつ、前記元素換 算の付着量が 15mg/m2以上である表面処理被膜層を有する、亜鉛を含む金属材料 発明の効果 [0035] (17) The surface treatment according to any one of (10) to (15) above is performed on the surface of the metal material containing zinc. A metal material containing zinc, comprising a surface treatment film layer containing the element of the component (A) and having an adhesion amount of the element conversion of 15 mg / m 2 or more, formed by a method. effect
[0036] 本発明の金属の表面処理用組成物、表面処理用処理液、表面処理方法、及び表 面処理金属材料は、従来技術では困難であった、環境に有害な成分を含まない処 理浴で、金属材料表面に、塗装後の耐食性に優れる表面処理皮膜を析出させること を可能とする画期的な技術である。  The metal surface treatment composition, surface treatment solution, surface treatment method, and surface treatment metal material of the present invention are treatments that do not contain components harmful to the environment, which are difficult in the prior art. This is an epoch-making technology that allows a surface treatment film with excellent corrosion resistance after coating to be deposited on the surface of a metal material in a bath.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0037] 以下、本発明の金属表面処理用組成物(以下、単に「本発明の組成物」ともいう)、 本発明の金属表面処理用処理液 (以下、単に「本発明の処理液」ともいう)、本発明 の金属表面処理方法 (以下、単に「本発明の処理方法」ともいう)および本発明の鉄 及び Z又は亜鉛を含む金属材料 (以下、単に「本発明の金属材料」ともいう)につい て詳細に説明する。初めに、本発明の組成物および処理液について説明する。  [0037] Hereinafter, the metal surface treatment composition of the present invention (hereinafter also simply referred to as "the composition of the present invention"), the metal surface treatment solution of the present invention (hereinafter simply referred to as "the treatment liquid of the present invention"). The metal surface treatment method of the present invention (hereinafter also simply referred to as “the treatment method of the present invention”) and the metal material containing iron and Z or zinc of the present invention (hereinafter also simply referred to as “the metal material of the present invention”). ) Will be explained in detail. First, the composition and the treatment liquid of the present invention will be described.
[0038] 本発明の組成物は、使用時に、水で希釈され、または水に溶解されて本発明の処 理液とされる。  [0038] At the time of use, the composition of the present invention is diluted with water or dissolved in water to obtain the treatment liquid of the present invention.
本発明の処理液による表面処理の対象は、鉄系金属材料又は亜鉛系金属材料で ある。  The object of the surface treatment with the treatment liquid of the present invention is an iron-based metal material or a zinc-based metal material.
鉄系金属材料とは、鉄を含有していれば特に限定されないが、例えば、冷間圧延 鋼板、及び熱間圧延鋼板等の鋼板や、铸鉄、及び焼結材等を示す。  The iron-based metal material is not particularly limited as long as it contains iron, and examples thereof include steel plates such as cold rolled steel plates and hot rolled steel plates, pig iron, and sintered materials.
亜鉛系金属材料とは、亜鉛を含有していれば特に限定されないが、例えば、亜鉛 ダイキャストや亜鉛含有めつきを施した材料等を示す。更に、亜鉛含有めつきとは、 亜鉛、又は亜鉛と他の金属、例えばニッケル、鉄、アルミニウム、マンガン、クロム、マ グネシゥム、コバルト、鉛、及びアンチモン等の少なくとも 1種との合金、及び、不可避 不純物によるものであり、そのめつき方法、例えば電気めつき、溶融めつき、蒸着めつ き等の制限はない。  The zinc-based metal material is not particularly limited as long as it contains zinc. For example, a zinc die-cast material or a zinc-containing material is shown. Furthermore, a zinc-containing metal plating is zinc or an alloy of zinc and other metals such as nickel, iron, aluminum, manganese, chromium, magnesium, cobalt, lead, and antimony, and unavoidable. This is due to impurities, and there are no restrictions on the method of plating, for example, electric plating, melting plating, or vapor deposition.
[0039] 本発明は、このような金属材料の表面に表面処理を行う。また、被処理金属材料は 単独、もしくは 2種以上を同時に表面処理をすることが出来る。ここで、 2種以上の金 属材料を同時に処理する場合は、その内の少なくとも 1種の金属材料が鉄、もしくは 亜鉛系金属材料であれば他の金属材料は、アルミニウム、マグネシウム、ニッケル及 びそれら合金など、いかようなものであっても構わない。また、異種金属同士が接触し ない状態であっても構わないし、溶接、接着、リベット止め等の接合方法によって異 種金属同士が接合接触した状態でも構わない。 [0039] In the present invention, surface treatment is performed on the surface of such a metal material. In addition, the metal materials to be treated can be surface-treated alone or at least two kinds at the same time. Where two or more gold When processing metal materials at the same time, if at least one of the metal materials is iron or zinc-based metal material, other metal materials such as aluminum, magnesium, nickel and their alloys It does not matter. Further, the dissimilar metals may not be in contact with each other, or the dissimilar metals may be in contact with each other by a joining method such as welding, adhesion, or riveting.
以下に本発明の作用を詳細に説明する。  The operation of the present invention will be described in detail below.
[0040] 本発明の組成物は、次の成分 (A)、成分 (B)、及び成分 (C)を含有する。  [0040] The composition of the present invention contains the following component (A), component (B), and component (C).
成分 (A)は Ti、 Zr、 Hf、及び Si力 なる群力 選ばれる少なくとも 1種の元素を含む 化合物である。このような化合物としては、例えば、 TiCl、 Ti(SO )、 TiOSO、 Ti(NO )  Component (A) is a compound containing at least one element selected from the group force of Ti, Zr, Hf, and Si force. Examples of such compounds include TiCl, Ti (SO), TiOSO, Ti (NO)
4 4 2 4 3 4 4 4 2 4 3 4
、 TiO(NO )、 Ti(OH)、 TiO OC O、 H TiF、 H TiFの塩、 TiO、 TiO、 Ti O、 TiF、 Zr , TiO (NO), Ti (OH), TiO OC O, H TiF, H TiF salt, TiO, TiO, Ti O, TiF, Zr
3 2 4 2 2 4 2 6 2 6 2 2 3 4 3 2 4 2 2 4 2 6 2 6 2 2 3 4
CI、 ZrOCl、 Zr(OH) CI、 Zr(OH) Cl、 Zr(SO )、 ZrOSO、 Zr(NO )、 ZrO(NO )、 Zr(0CI, ZrOCl, Zr (OH) CI, Zr (OH) Cl, Zr (SO), ZrOSO, Zr (NO), ZrO (NO), Zr (0
4 2 2 2 3 4 2 4 3 4 3 2 4 2 2 2 3 4 2 4 3 4 3 2
H)、 H ZrF、 H ZrFの塩、 H (Zr(CO ) (OH) )、 H (Zr(CO ) (OH) )の塩、 H Zr(OH) (S H), H ZrF, H ZrF salt, H (Zr (CO) (OH)), H (Zr (CO) (OH)) salt, H Zr (OH) (S
4 2 6 2 6 2 3 2 2 2 3 2 2 2 24 2 6 2 6 2 3 2 2 2 3 2 2 2 2
O )、 H Zr(OH) (SO )の塩、 ZrO、 ZrOBr、 ZrF、 HfCl、 HKSO )、 H HIF、 H HIFのO), H Zr (OH) (SO) salt, ZrO, ZrOBr, ZrF, HfCl, HKSO), H HIF, H HIF
4 2 2 2 4 2 2 2 4 4 4 2 2 6 2 6 塩、 ΗίΌ、 HIF、 H SiF、 H SiFの塩、及び Al O (SiO )が挙げられる。これらは 2種以4 2 2 2 4 2 2 2 4 4 4 2 2 6 2 6 salt, salt, HIF, H SiF, H SiF salt, and Al 2 O 3 (SiO 2). These are two or more
2 4 2 6 2 6 2 3 2 3 2 4 2 6 2 6 2 3 2 3
上を併用してもよい。  The above may be used together.
[0041] また、成分 )は、 Y及び Z又はランタノイド元素を含む化合物である。つまり、 Y、 L aゝ Ceゝ Prゝ Nd、 Pmゝ Smゝ Euゝ Gd、 Tbゝ Dyゝ Ho, Erゝ Tmゝ Ybゝ及び Lu力らなる群力ら選 ばれる少なくとも 1種を含む化合物である。このような化合物としては、これらの元素の 酸化物、硫酸塩、硝酸塩、及び塩ィ匕物などが挙げられる。具体的には、例えば、塩 ィ匕イットリウム、塩化ランタン、塩ィ匕セリウム、塩ィ匕プラセオジム、塩ィ匕ネオジム、塩ィ匕 プロメチウム、塩ィ匕サマリウム、塩ィ匕ユウ口ピウム、塩ィ匕ガドリニウム、塩ィ匕テルビウム、 塩化ジスプロシウム、塩化ホルミウム、塩化エルビウム、塩化ツリウム、塩化イツテルビ ゥム、塩化ルテチウム、硫酸イットリウム、硫酸ランタン、硫酸セリウム、硫酸プラセォジ ム、硫酸ネオジム、硫酸プロメチウム、硫酸サマリウム、硫酸ユウ口ピウム、硫酸ガドリ ユウム、硫酸テルビウム、硫酸ジスプロシウム、硫酸ホルミウム、硫酸エルビウム、硫酸 ツリウム、硫酸イッテルビウム、硫酸ルテチウム、硝酸イットリウム、硝酸ランタン、硝酸 セリウム、硝酸プラセオジム、硝酸ネオジム、硝酸プロメチウム、硝酸サマリウム、硝酸 ユウ口ピウム、硝酸ガドリニウム、硝酸テルビウム、硝酸ジスプロシウム、硝酸ホルミゥ ム、硝酸エルビウム、硝酸ツリウム、硝酸イッテルビウム、硝酸ルテチウム、酸化イツトリ ゥム、酸ィ匕ランタン、酸ィ匕セリウム、酸ィ匕プラセオジム、酸ィ匕ネオジム、酸化プロメチウ ム、酸ィヒサマリウム、酸ィヒュウ口ピウム、酸ィヒガドリニウム、酸ィヒテルビウム、酸化ジス プロシゥム、酸化ホルミウム、酸化エルビウム、酸化ツリウム、酸化イッテルビウム、酸 ィ匕ルテチウムが挙げられる。また、これらは 2種以上を併用してもよい。 [0041] The component) is a compound containing Y and Z or a lanthanoid element. In other words, it is a compound containing at least one selected from the group forces such as Y, La L Ce ゝ Pr ゝ Nd, Pm ゝ Sm ゝ Eu ゝ Gd, Tb ゝ Dy ゝ Ho, Er ゝ Tm ゝ Yb ゝ and Lu force. is there. Such compounds include oxides, sulfates, nitrates, and salts of these elements. Specifically, for example, salt yttrium, lanthanum chloride, salt cerium, salt 匕 praseodymium, salt 匕 neodymium, salt 匕 promethium, salt 匕 samarium, salt 匕 samarium, salt 匕Gadolinium, terbium chloride, dysprosium chloride, holmium chloride, erbium chloride, thulium chloride, ytterbium chloride, lutetium chloride, yttrium sulfate, lanthanum sulfate, cerium sulfate, prasedium sulfate, neodymium sulfate, promethium sulfate, samarium sulfate, sulfuric acid Pitium, gadolinium sulfate, terbium sulfate, dysprosium sulfate, holmium sulfate, erbium sulfate, thulium sulfate, ytterbium sulfate, lutetium sulfate, yttrium nitrate, lanthanum nitrate, cerium nitrate, praseodymium nitrate, neodymium nitrate, promethy nitrate Beam, samarium nitrate, nitric acid Yu opening Piumu, nitric acid gadolinium, terbium nitrate, dysprosium nitrate, nitric acid Horumiu , Erbium nitrate, thulium nitrate, ytterbium nitrate, lutetium nitrate, yttrium oxide, acid lanthanum, acid cerium, acid praseodymium, acid neodymium, promethium oxide, acid samarium, acid , Ytterbium oxide, ytterbium oxide, dysprosium oxide, holmium oxide, erbium oxide, thulium oxide, ytterbium oxide, and yttrium oxide. Two or more of these may be used in combination.
[0042] また、成分 (C)は、硝酸及び Z又は硝酸化合物である。このようなものとして、例え ば、硝酸や金属硝酸塩などが挙げられる。金属硝酸塩としては、例えば、硝酸鉄、硝 酸マンガン、硝酸ニッケル、硝酸コバルト、硝酸銀、硝酸ナトリウム、硝酸カリウム、硝 酸マグネシウム、硝酸カルシウムが挙げられる。また、これらは 2種以上を併用しても よい。 [0042] Component (C) is nitric acid and Z or a nitric acid compound. Examples of such include nitric acid and metal nitrates. Examples of the metal nitrate include iron nitrate, manganese nitrate, nickel nitrate, cobalt nitrate, silver nitrate, sodium nitrate, potassium nitrate, magnesium nitrate, and calcium nitrate. Two or more of these may be used in combination.
[0043] 本発明の組成物は、金属の表面処理を行うに当たって、水で希釈し、或いは水に 溶解して使用される。すなわち、金属表面処理用処理液を調製して使用される。金 属表面処理用処理液を調製するには、表面処理用組成物に水を加え、前記成分 (A )中の前記元素(Ti、 Zr、 Hf、及び Si)の合計質量濃度 Aが lOppmから lOOOOppmの 範囲になるようにする。  [0043] The composition of the present invention is used by diluting with water or dissolving in water for the surface treatment of metal. That is, a metal surface treatment solution is prepared and used. To prepare the metal surface treatment solution, water is added to the surface treatment composition, and the total mass concentration A of the elements (Ti, Zr, Hf, and Si) in the component (A) is from lOppm. Try to be in the lOOOOppm range.
[0044] 尚、「前記成分 (A)中の前記元素の合計質量濃度 A」とは、「本発明の組成物 (場 合によっては処理液)中における、前記成分 (A)中の前記元素の濃度」を示す。 「合計質量濃度 B」、「合計質量濃度 C」も同様である。  [0044] The "total mass concentration A of the elements in the component (A)" means "the elements in the component (A) in the composition of the present invention (in some cases, a treatment liquid)". Concentration ". The same applies to “total mass concentration B” and “total mass concentration C”.
[0045] 本発明は、表面処理用組成物、及び表面処理用処理液中の、前記成分 (A)中の 前記元素の合計質量濃度 Aに対する前記成分 (B)中の前記 Y及び Z又はランタノィ ド元素の合計質量濃度 Bの比である K1 = BZA力 0. 05≤K1≤50であり、前記合 計質量濃度 Αに対する前記成分 (C)中の窒素原子の NO換算した合計質量濃度 C  [0045] The present invention provides the surface treatment composition and the surface treatment solution and the Y and Z or lanthanoid in the component (B) relative to the total mass concentration A of the element in the component (A). K1 = BZA force 0.05 ≤ K1 ≤ 50, and the total mass concentration C of nitrogen atoms in the component (C) with respect to the total mass concentration 換算
3  Three
の比である K2 = C/Aが、 0. 01≤K2≤200である。  The ratio of K2 = C / A is 0.01≤K2≤200.
[0046] ここで、成分 (Α)は優れた耐酸性、及び耐アルカリ性を有して!/ヽる物質であり、本発 明の表面処理皮膜の主成分となるものである。 [0046] Here, component (i) is a substance having excellent acid resistance and alkali resistance! And is a main component of the surface treatment film of the present invention.
また、成分 )は、成分 (Α)の皮膜析出を促進する効果がある。更に、成分 )は 表面処理皮膜に含有させることも可能であり、これにより塗装後の耐食性、及び裸耐 食性が向上することも期待できる。 また、成分 (C)は表面処理用処理液中にお!ヽて、成分 (A)と成分 (B)の溶解度を 高めることによって処理液の安定性を保つ働きがある。更に成分 (C)は、成分 (B)ほ どではな!/ヽが成分 (A)の皮膜析出を補助する効果も有して ヽる。 In addition, component) has an effect of promoting film deposition of component (ii). Furthermore, the component) can also be contained in the surface treatment film, which can be expected to improve the corrosion resistance after coating and the bare corrosion resistance. In addition, component (C) has a function of maintaining the stability of the treatment liquid by increasing the solubility of component (A) and component (B) in the treatment liquid for surface treatment. Furthermore, component (C) has the effect of assisting the film deposition of component (A), as is the case with component (B).
[0047] ここで、前記 Kl = BZAが小さすぎると、成分 (B)の割合が少な 、ために成分 (B) による成分 (A)の皮膜析出の促進効果が期待できな 、。そのため成分 (A)と成分 (B )の合計質量濃度の比である K1が 0. 05≤K1≤ 50であるときと比べて、成分 (Α)の 皮膜付着量が減少し、被処理金属材料の耐食性は低下する場合がある。  [0047] Here, if Kl = BZA is too small, the proportion of component (B) is small, and therefore the effect of promoting film deposition of component (A) by component (B) cannot be expected. Therefore, compared with the case where K1, which is the ratio of the total mass concentration of component (A) and component (B), is 0.05 ≤ K1 ≤ 50, the coating amount of component (Α) decreases, and the metal material to be treated Corrosion resistance may decrease.
また、前記 K1が大きすぎると被処理金属材料表面の成分 (Α)の反応起点自体が 減少してしまい、成分 )による促進効果はあるものの皮膜の主成分であり皮膜に耐 食性を付与して!/、る成分 (Α)の皮膜付着量が減少するため、優れた耐食性を示さな いばかりか密着性にも悪影響を及ぼす場合がある。  Further, if K1 is too large, the reaction starting point of the component (v) on the surface of the metal material to be treated is reduced, and although it has an accelerating effect due to the component), it is a main component of the film and imparts corrosion resistance to the film. Because the amount of coating of the component (皮膜) decreases, it may not only exhibit excellent corrosion resistance but may also adversely affect adhesion.
[0048] また、前記 K2 = CZAが小さすぎても、被処理金属材料の耐食性を得ることができ るが、表面処理用処理液の処理液安定性が損なわれる可能性があり、これより連続 操業上の支障を生じる可能性がある。更に成分 (C)の処理液中での比率が低いた め成分 (C)による成分 (A)の皮膜析出の補助効果は期待できなくなる。  [0048] Further, even if K2 = CZA is too small, the corrosion resistance of the metal material to be treated can be obtained, but the stability of the treatment liquid of the treatment liquid for surface treatment may be impaired. Operational problems may occur. Furthermore, since the ratio of component (C) in the treatment solution is low, the auxiliary effect of component (A) on film deposition of component (A) cannot be expected.
また、本発明の処理液の安定性を保っためには K2 = CZAが 0. 01≤K2≤200 の範囲内であれば十分であり、 Κ2が大きすぎても耐食性が向上することはなぐ経 済的に不利になるだけである。  Further, in order to maintain the stability of the processing solution of the present invention, it is sufficient that K2 = CZA is within the range of 0.01 ≤ K2 ≤ 200. Corrosion resistance is not improved even if Κ2 is too large. It is just disadvantageous.
[0049] また、本発明の処理液に用いられる前記成分 (Α)の前記合計質量濃度 Αは lOppm 力 lOOOOppmに調整することが好ましぐより好ましくは 50ppmから 5000ppmである 。前記合計質量濃度 Aが小さすぎると、たとえ前記 Kl、及び前記 Κ2が規定範囲内 であっても皮膜主成分濃度が低 、ために耐食性を得るために十分な付着量を実用 的な処理時間で得ることが困難となる。また、前記合計質量濃度 Αが大きすぎると、 十分な付着量は得られるが、それ以上耐食性を向上させる効果はなぐ経済的に不 利なだけである。  [0049] The total mass concentration 濃度 of the component (濃度) used in the treatment liquid of the present invention is preferably adjusted to lOppm force lOOOOppm, more preferably from 50ppm to 5000ppm. If the total mass concentration A is too small, even if the Kl and っ て も 2 are within the specified range, the concentration of the main component of the film is low, so that a sufficient amount of adhesion can be obtained in a practical treatment time to obtain corrosion resistance. It becomes difficult to obtain. On the other hand, if the total mass concentration 付 着 is too large, a sufficient amount of adhesion can be obtained, but the effect of further improving the corrosion resistance is only economically disadvantageous.
[0050] また、本発明の組成物、及び処理液は、更に、成分 (D)として、フッ素含有化合物 の少なくとも 1種を含むことが好ましい。例えば、フッ化水素酸、 H TiF、 H TiFの塩、  [0050] The composition and the treatment liquid of the present invention preferably further contain at least one fluorine-containing compound as component (D). For example, hydrofluoric acid, H TiF, H TiF salt,
2 6 2 6 2 6 2 6
TiF、 H ZrF、 H ZrFの塩、 ZrF、 H H1F、 H H1Fの塩、 H1F、 H SiF、 HBF、 HBFの 塩、 NaHF、 KHF、 NH HF、 NaF、 KF、及び NH Fなどが挙げられる。また、これらのTiF, H ZrF, H ZrF salt, ZrF, H H1F, H H1F salt, H1F, H SiF, HBF, HBF Salt, NaHF, KHF, NH HF, NaF, KF, and NH F. Also these
2 2 4 2 4 2 2 4 2 4
フッ素含有ィ匕合物は 2種以上を併用してもよい。  Two or more fluorine-containing compounds may be used in combination.
[0051] また、本発明の処理液に成分 (D)を入れる場合、遊離フッ素イオン濃度 Dを 0. 00 lppmから 300ppmとなるように成分(D)のフッ素含有化合物の少なくとも 1種を調整 することが好ましぐより好ましくは 0. lppmから lOOppmとなるように調整することが好 ましい。ここで言う遊離フッ素イオン濃度 Dとは、市販のイオン電極を用いて測定され るフッ素イオン濃度を示す。遊離フッ素イオン濃度 Dが大きすぎると、 HFによる素材 表面のエッチング反応が過剰となり、被処理金属材料表面に耐食性を得るのに十分 な皮膜量を析出させることが難しくなる傾向にある。また、成分 (D)のフッ素含有化合 物による遊離フッ素イオン濃度 Dが小さすぎても被処理金属材料の耐食性を得ること はできるが、表面処理用処理液の処理液安定性が損なわれる可能性があり、連続操 業上の支障を生じる可能性がある。 [0051] When component (D) is added to the treatment liquid of the present invention, at least one fluorine-containing compound of component (D) is adjusted so that the free fluorine ion concentration D is from 0.001 ppm to 300 ppm. More preferably, it is preferable to adjust it to be from 0.1 ppm to 10 ppm. The free fluorine ion concentration D mentioned here indicates the fluorine ion concentration measured using a commercially available ion electrode. If the free fluorine ion concentration D is too large, the etching reaction on the surface of the material by HF becomes excessive, and it tends to be difficult to deposit a coating amount sufficient to obtain corrosion resistance on the surface of the metal material to be treated. In addition, the corrosion resistance of the metal material to be treated can be obtained even if the free fluorine ion concentration D due to the fluorine-containing compound of component (D) is too small, but the stability of the treatment liquid of the surface treatment liquid may be impaired. There is a possibility of hindering continuous operation.
[0052] また、本発明の処理液は、素材金属のエッチングを伴う化成反応により皮膜を析出 させることが好ましい。従って、一般的にエッチング反応が起こりうる pH領域である p H6. 0以下で用いることが好ましぐより好ましくは pH5. 0以下で用いることが好まし ぐ更に好ましくは PH4. 0以下で用いることが好ましい。  [0052] In addition, the treatment liquid of the present invention preferably deposits a film by a chemical conversion reaction involving etching of the material metal. Therefore, it is preferable to use at pH 6.0 or lower, which is a pH range where etching reaction can generally occur, more preferably at pH 5.0 or lower, and even more preferably at pH 4.0 or lower. Is preferred.
[0053] ここで、本発明の処理液の pHを調整する必要がある場合、使用する薬剤について は特に規定は無く何れを使用しても構わない。例えば、塩酸、硫酸、硼酸、及び有機 酸等の酸や、水酸化リチウム、水酸化カリウム、水酸化ナトリウム、水酸化カルシウム、 水酸化マグネシウム、水酸化バリウム、アルカリ金属塩、アンモニア、アンモ-ゥム塩 、及びアミン類等のァノレカリがある。  [0053] Here, when it is necessary to adjust the pH of the treatment liquid of the present invention, there is no particular limitation on the agent to be used, and any of them may be used. For example, acids such as hydrochloric acid, sulfuric acid, boric acid, and organic acids, lithium hydroxide, potassium hydroxide, sodium hydroxide, calcium hydroxide, magnesium hydroxide, barium hydroxide, alkali metal salts, ammonia, ammonia Salts and amines such as amines are available.
[0054] また、本発明の処理液には、素材のエッチング反応により溶出した素材に含まれる 金属や、水道水、及び工業用水に含まれる金属や化合物が処理液へ混入しても構 わない。成分 (B)が成分 (A)の皮膜析出を促進する効果により、成分 (A)の皮膜析 出が他の金属元素やィ匕合物で影響されないためである。  [0054] In the treatment liquid of the present invention, metals contained in the material eluted by the etching reaction of the material, metals and compounds contained in tap water, and industrial water may be mixed into the treatment liquid. . This is because component (B) accelerates film deposition of component (A), and film deposition of component (A) is not affected by other metal elements or compounds.
[0055] また、本発明の処理液には皮膜形成反応を更に促進するためにァニオン成分を添 加することが好ましい。本発明の表面処理用処理液に用いることのできるァ-オン成 分として、例えば、 HC1、 H SO、 HCIO、 HBrO、 HNO、 HMnO、 HVO、 H O、 H W O、 H MoO及びこれらの塩類等が挙げられる。これらのァ-オン成分の添加濃度に[0055] In addition, an anion component is preferably added to the treatment liquid of the present invention in order to further accelerate the film formation reaction. For example, HC1, HSO, HCIO, HBrO, HNO, HMnO, HVO, HO, HW can be used as the ion component that can be used in the surface treatment solution of the present invention. O, H MoO and their salts. To the concentration of these key components
4 2 4 4 2 4
は特に規定を持たな 、が、 10ppm〜20000ppm程度の添カ卩量で十分な効果を発揮 する。  Although there is no particular regulation, the effect is sufficient with an additive amount of about 10 ppm to 20000 ppm.
[0056] 更に、本発明の処理液に対する被処理金属材料の処理負荷が高い場合は、エツ チング反応によって溶出した金属イオンをキレートすることが可能なキレート剤を添カロ することが好ましい。本発明の処理液に用いることのできるキレート剤の例としては、 エチレンジァミン四酢酸(EDTA)、ダルコン酸、ヘプトグルコン酸、グリコール酸、タエ ン酸、コハク酸、フマル酸、ァスパラギン酸、酒石酸、マロン酸、リンゴ酸、サリチル酸 、及びこれらキレート剤の塩類等がある。これらのキレート剤の含有量は特に限定さ れないが、 lppm〜10000ppm程度の添カ卩量で十分な効果を発揮する。  [0056] Further, when the treatment load of the metal material to be treated on the treatment liquid of the present invention is high, it is preferable to add a chelating agent capable of chelating metal ions eluted by the etching reaction. Examples of chelating agents that can be used in the treatment liquid of the present invention include ethylenediamin tetraacetic acid (EDTA), darconic acid, heptogluconic acid, glycolic acid, thaenoic acid, succinic acid, fumaric acid, aspartic acid, tartaric acid, malonic acid. , Malic acid, salicylic acid, and salts of these chelating agents. The content of these chelating agents is not particularly limited, but a sufficient effect can be obtained with an additive amount of about 1 ppm to 10,000 ppm.
[0057] また、本発明の処理液には、分子内にイオン性の反応基を有する水溶性高分子化 合物及び Z又は水分散性高分子化合物を添加することが好まし 、。このような化合 物の例としては、ポリビュルアルコール、ポリ(メタ)アクリル酸、アクリル酸とメタクリル 酸との共重合体、エチレンと (メタ)アクリル酸や (メタ)アクリルレートなどのアクリル系 単量体との共重合体、エチレンと酢酸ビニルとの共重合体、ポリウレタン、ァミノ変性 フエノール榭脂、ポリエステル榭脂、エポキシ榭脂、ポリアミドアミン、ポリアミン、ポリア ミン誘導体、ポリアリルァミン、ポリアリルアミン誘導体、ポリアミドアミン誘導体、ポリビ -ルァミン、ポリビュルァミン誘導体、タンニン及びタンニン酸とその塩、及びフィチン 酸などが挙げられる。上記化合物の添加濃度には特に規定を持たないが、好ましく は lppm〜10000ppm程度であり、このようなの添カ卩量で十分な効果を発揮する。  [0057] In addition, it is preferable to add a water-soluble polymer compound having an ionic reactive group in the molecule and Z or a water-dispersible polymer compound to the treatment liquid of the present invention. Examples of such compounds include polybutyl alcohol, poly (meth) acrylic acid, copolymers of acrylic acid and methacrylic acid, acrylic monomers such as ethylene and (meth) acrylic acid and (meth) acrylate. Copolymer with ethylene, copolymer of ethylene and vinyl acetate, polyurethane, amino-modified phenol resin, polyester resin, epoxy resin, polyamidoamine, polyamine, polyamine derivative, polyallylamine, polyallylamine derivative, polyamide Examples include amine derivatives, polyvinylamine, polybulamine derivatives, tannin and tannic acid and salts thereof, and phytic acid. There is no particular restriction on the concentration of the above compound added, but it is preferably about 1 ppm to 10,000 ppm, and such an added amount exhibits a sufficient effect.
[0058] また、本発明の処理液に、ノニオン系界面活性剤、ァニオン系界面活性剤及び力 チオン系界面活性剤カゝらなる群カゝら選ばれる少なくとも 1種の界面活性剤を添加する ことが好ま 、。この表面処理用処理液を用いて金属素材を表面処理する場合は、 後述するような、処理金属材料を予め脱脂処理し、清浄ィ匕しなくとも良好な皮膜を形 成させることができる。すなわち、この表面処理用処理液は脱脂化成兼用表面処理 剤として使用できるものである。  [0058] In addition, at least one surfactant selected from the group consisting of a nonionic surfactant, an anionic surfactant, and a force thione surfactant is added to the treatment liquid of the present invention. I prefer that. When a metal material is surface-treated using this surface treatment solution, a good film can be formed without degreasing the treated metal material in advance and cleaning it as described later. In other words, this surface treatment solution can be used as a degreasing chemical treatment surface treatment agent.
[0059] 本発明の処理方法は、鉄及び Z又は亜鉛を含む金属材料に、上記の本発明の処 理液を接触させる処理液接触工程を有する、鉄及び,又は亜鉛を含む金属の表面 処理方法である。 [0059] The treatment method of the present invention includes a treatment liquid contact step of bringing the treatment liquid of the present invention into contact with a metal material containing iron and Z or zinc, and the surface of the metal containing iron and / or zinc. It is a processing method.
[0060] 本発明の表面処理方法は、前記鉄及び Z又は亜鉛を含む金属材料に、上記本発 明の処理液を接触させるだけでよい。これによつて、金属素材表面に前記成分 (A) の前記元素の酸化物及び Z又は水酸化物からなる皮膜が析出し、密着性及び耐食 性に優れた表面処理皮膜層が形成される。  [0060] In the surface treatment method of the present invention, it is only necessary to bring the treatment liquid of the present invention into contact with the metal material containing iron and Z or zinc. As a result, a film made of the oxide of element (A) and Z or hydroxide is deposited on the surface of the metal material, and a surface-treated film layer having excellent adhesion and corrosion resistance is formed.
この接触処理はスプレー処理、浸漬処理及び流しかけ処理などの 、かなる工法も 用いることができ、この接触方法は性能に影響を及ぼさない。  For this contact treatment, various methods such as spray treatment, immersion treatment and pouring treatment can be used, and this contact method does not affect the performance.
前記成分 (A)の皮膜に含まれる金属の水酸化物を純粋な水酸化物として得ること は化学的に困難であり、一般には、前記金属の酸ィ匕物に水和水が付いた形態も水 酸ィ匕物の範疇に入れている。従って、前記金属の水酸ィ匕物は熱をカ卩えることによつ て、最終的には酸ィ匕物となる。本発明における表面処理皮膜層の構造は、表面処理 を施した後に常温又は低温で乾燥した場合は、酸化物と水酸化物が混在した状態、 更に、表面処理後に高温で乾燥した場合は、酸ィ匕物のみ或いは酸ィ匕物が多い状態 になっていると考えられる。  It is chemically difficult to obtain a metal hydroxide contained in the coating film of component (A) as a pure hydroxide, and generally, a form in which hydrated water is attached to the metal oxide. Is also in the category of hydroxides. Therefore, the metal hydroxide is finally converted into an oxide by heating. The structure of the surface treatment film layer in the present invention is such that when it is dried at room temperature or low temperature after being subjected to surface treatment, it is in a state in which oxides and hydroxides are mixed, and when it is dried at high temperature after surface treatment, It is thought that there is only a lot of food or acid.
[0061] 前記鉄及び Z又は亜鉛を含む金属材料は、脱脂処理により清浄ィ匕されているのが 好ましい。脱脂処理の方法は、特に限定されず、従来公知の方法を用いることができ る。  [0061] The metal material containing iron and Z or zinc is preferably cleaned by degreasing. The method of degreasing treatment is not particularly limited, and a conventionally known method can be used.
尚、上述したように、本発明の処理液が上記界面活性剤を含有する場合は、前記 鉄及び Z又は亜鉛を含む金属材料を予め脱脂処理し、清浄ィ匕しておカゝなくても、良 好な皮膜を形成させることができる。即ち、この場合は、処理液接触工程において、 前記鉄及び Z又は亜鉛を含む金属材料の脱脂処理と皮膜化成処理とが同時に行 われる。  As described above, when the treatment liquid of the present invention contains the surfactant, the metal material containing iron and Z or zinc may be degreased in advance, cleaned, and removed. A good film can be formed. That is, in this case, the degreasing treatment and film conversion treatment of the metal material containing iron and Z or zinc are simultaneously performed in the treatment liquid contact step.
[0062] 本発明の処理液の使用条件には、特に限定はない。  [0062] The conditions for using the treatment liquid of the present invention are not particularly limited.
本発明の処理液の反応性は、前記合計質量濃度 Aに対する前記合計質量濃度 B の比である Kl = BZAと、前記合計質量濃度 Aに対する前記合計質量濃度 Cとの比 である K2 = CZAを変えることにより自在にコントロールできる。  The reactivity of the treatment liquid of the present invention is the ratio of Kl = BZA, which is the ratio of the total mass concentration B to the total mass concentration A, and K2 = CZA, which is the ratio of the total mass concentration C to the total mass concentration A. It can be freely controlled by changing.
更に、前記成分 (D)フッ素含有ィ匕合物の少なくとも 1種を用いた場合も、遊離フッ素 イオン濃度 Dを変えることにより、コントロールすることが可能である。そのため処理温 度及び処理時間は処理浴の反応性との組合せで、 V、かようにも変えることが可能で ある。 Further, when at least one of the component (D) fluorine-containing compounds is used, it can be controlled by changing the free fluorine ion concentration D. Therefore processing temperature The degree and processing time can be changed to V, etc., in combination with the reactivity of the processing bath.
[0063] 本発明の処理方法にお!ヽては、本発明の処理液を接触させた状態で、前記鉄及 び/又は亜鉛を含む金属材料を陰極として電解処理することもできる。  [0063] In the treatment method of the present invention, the metal material containing iron and / or zinc may be subjected to electrolytic treatment in the state of contact with the treatment liquid of the present invention.
この場合、陰極である前記鉄及び Z又は亜鉛を含む金属材料の界面で水素の還 元反応が起こり、 pHが上昇する。 pHの上昇に伴い、陰極界面での成分 (A)の元素 を含む化合物の安定性が低下し、酸ィ匕物又は水を含む水酸ィ匕物として、表面処理 皮膜が析出する。  In this case, a hydrogen reduction reaction occurs at the interface between the metal material containing iron and Z or zinc as the cathode, and the pH rises. As the pH rises, the stability of the compound containing the component (A) element at the cathode interface decreases, and the surface treatment film is deposited as an acid or water-containing hydroxide.
[0064] 本発明の処理液を前記鉄及び Z又は亜鉛を含む金属材料に接触させ、または、 接触させて電解処理した後には、コバルト、ニッケル、すず、銅、チタニウム、及びジ ルコ -ゥムカゝらなる群カゝら選ばれる少なくとも 1種を含む酸性水溶液、または、水溶性 高分子化合物及び水分散性高分子化合物のうち少なくとも 1種を含有する処理液と 接触させることができる。これにより、本発明の効果を更に高めることができる。  [0064] After the treatment liquid of the present invention is brought into contact with the metal material containing iron and Z or zinc, or after being subjected to electrolytic treatment, cobalt, nickel, tin, copper, titanium, and zirconium-umuka It can be contacted with an acidic aqueous solution containing at least one selected from the group consisting of these, or a treatment solution containing at least one of a water-soluble polymer compound and a water-dispersible polymer compound. Thereby, the effect of the present invention can be further enhanced.
[0065] 本発明によって得られた表面処理皮膜層は薄膜で優れた塗装性能を示す。仮に、 被処理金属材料の表面状態に異常がある時は、表面処理皮膜層に微細な欠陥部が 存在する可能性がある。そこで、前記、コバルト、ニッケル、すず、銅、チタニウム、及 びジルコニウムカゝらなる群カゝら選ばれる少なくとも 1種を含む酸性水溶液、又は水溶 性高分子化合物及び水分散性高分子化合物から選ばれる少なくとも 1種の高分子 化合物を含む処理液と接触させることによって、欠陥部が被覆され耐食性が更に高 まるのである。 [0065] The surface-treated film layer obtained by the present invention is a thin film and exhibits excellent coating performance. If the surface condition of the metal material to be treated is abnormal, there may be a minute defect in the surface treatment film layer. Accordingly, the acidic aqueous solution containing at least one selected from the group consisting of cobalt, nickel, tin, copper, titanium, and zirconium, or a water-soluble polymer compound and a water-dispersible polymer compound are selected. By contacting with a treatment solution containing at least one polymer compound, the defect is covered and the corrosion resistance is further enhanced.
[0066] ここで、前記のコバルト、ニッケル、すず、銅、チタニウム、及びジルコニウムからなる 群力も選ばれる少なくとも 1種の供給源としては特に限定はないが、入手が容易であ る前記金属元素の酸化物、水酸化物、フッ化物、錯フッ化物、塩化物、硝酸塩、ォキ シ硝酸塩、硫酸塩、ォキシ硫酸塩、炭酸塩、ォキシ炭酸塩、りん酸塩、ォキシりん酸 塩、蓚酸塩、ォキシ篠酸塩、及び有機金属化合物等を用いることができる。また、前 記金属元素を含む酸性水溶液の pHは 2〜6であることが好ましぐりん酸、硝酸、硫 酸、フッ化水素酸、塩酸、及び、有機酸等の酸や、水酸化ナトリウム、水酸化カリウム 、水酸化リチウム、アルカリ金属塩、アンモニア、アンモ-ゥム塩、及びアミン類等のァ ルカリで調整することができる。 [0066] Here, there is no particular limitation as to at least one source from which the group force consisting of cobalt, nickel, tin, copper, titanium, and zirconium is also selected, but it is easy to obtain the metal element. Oxides, hydroxides, fluorides, complex fluorides, chlorides, nitrates, oxynitrates, sulfates, oxysulfates, carbonates, oxycarbonates, phosphates, oxyphosphates, oxalates, An oxyshinonate, an organometallic compound, and the like can be used. In addition, it is preferable that the acidic aqueous solution containing the metal element has a pH of 2 to 6. Acids such as phosphoric acid, nitric acid, sulfuric acid, hydrofluoric acid, hydrochloric acid, and organic acids, sodium hydroxide, Potassium hydroxide, lithium hydroxide, alkali metal salts, ammonia, ammonia salts, amines, etc. It can be adjusted with Lucari.
[0067] また、前記の水溶性高分子化合物及び水分散性高分子化合物から選ばれる少な くとも 1種の高分子化合物としては、例えばポリビュルアルコール、ポリ(メタ)アクリル 酸、アクリル酸とメタクリル酸との共重合体、エチレンと (メタ)アクリル酸や (メタ)アタリ ルレートなどのアクリル系単量体との共重合体、エチレンと酢酸ビニルとの共重合体 [0067] Further, at least one polymer compound selected from the water-soluble polymer compound and the water-dispersible polymer compound may be, for example, polybulal alcohol, poly (meth) acrylic acid, acrylic acid and methacrylic acid. Copolymers with acids, copolymers of ethylene and acrylic monomers such as (meth) acrylic acid and (meth) acrylate, copolymers of ethylene and vinyl acetate
、ポリウレタン、ァミノ変性フエノール榭脂、ポリエステル榭脂、エポキシ榭脂、ポリアミ ドアミン、ポリアミン、ポリアミン誘導体、ポリアリルァミン、ポリアリルアミン誘導体、ポリ アミドアミン誘導体、ポリビュルァミン、ポリビュルァミン誘導体、タンニン及びタンニン 酸とその塩、及びフィチン酸等を用いることができる。 , Polyurethane, amino-modified phenolic resin, polyester resin, epoxy resin, polyamineamine, polyamine, polyamine derivative, polyallylamine, polyallylamine derivative, polyamidoamine derivative, polybulamine, polybulamine amine, tannin and tannic acid and its salts, and phytin An acid or the like can be used.
[0068] 以上、詳細に説明したように、本発明は、被処理金属材料表面に前記成分 (A)の 酸ィ匕物及び Z又は水酸ィ匕物力 なる皮膜層、もしくは前記成分 (A)の皮膜層と前記 成分 (B)の金属元素の酸ィ匕物及び Z又は水酸ィ匕物力 なる皮膜層が混合した皮膜 層を設けることで、金属材料の耐食性を飛躍的に高めることを可能としたものである。 ここで、前記成分 (A)の酸ィ匕物及び Z又は水酸ィ匕物からなる皮膜は、酸やアルカリ に侵され難く化学的に安定な性質を有している。  [0068] As described above in detail, the present invention provides an oxide layer of component (A) and a coating layer having Z or hydroxide strength on the surface of the metal material to be treated, or component (A). It is possible to drastically improve the corrosion resistance of metal materials by providing a coating layer that is a mixture of the above-mentioned coating layer and an oxide layer of the metal element of component (B) and a coating layer of Z or hydroxide. It is what. Here, the film made of the acid compound and Z or hydroxide compound of the component (A) has a chemically stable property and is hardly affected by acid or alkali.
[0069] ここで、実際の金属の塗膜下腐食環境では、金属の溶出が起こるアノード部では p Hの低下が、また還元反応が起こる力ソード部では pHの上昇が起こる。従って、耐酸 性及び耐アルカリ性に劣る表面処理皮膜は、腐食環境下で溶解しその効果が失わ れて 、く。本発明における前記成分 (A)の酸ィ匕物及び Z又は水酸ィ匕物力 なる皮膜 は、酸やアルカリに侵されにくぐ且つ、本発明は被処理金属表面に薄膜で均一な 表面処理皮膜を形成することができるため、腐食環境下においても優れた効果が持 続する。  [0069] Here, in a corrosive environment under an actual metal coating, the pH decreases in the anode portion where the metal elution occurs, and the pH increases in the force sword portion where the reduction reaction occurs. Therefore, a surface-treated film that is inferior in acid resistance and alkali resistance dissolves in a corrosive environment and loses its effect. In the present invention, the oxide (A) and Z or hydroxide films of the component (A) are difficult to be attacked by acid and alkali, and the present invention is a uniform surface treatment film on the surface of the metal to be treated. Therefore, the excellent effect is maintained even in a corrosive environment.
[0070] また、皮膜に含まれる金属元素の酸ィ匕物及び水酸ィ匕物は、金属と酸素を介したネ ットワーク構造を作るため、非常に良好なノ リヤー皮膜となる。金属材料の腐食は、 使用される環境によっても異なる力 一般には水と酸素が存在する状況での酸素要 求型腐食であり、その腐食スピードは塩化物等の成分の存在によって促進される。こ こで、本発明の皮膜層は、水、酸素、及び腐食促進成分に対するバリヤ一効果を有 するため、優れた耐食性を発揮できる。 [0071] 本発明の組成物及び本発明の処理液にお!ヽて、前記成分 (A)、及び前記成分 (B )の他に、前記成分 (C)を含有させ、これらの量比を特定の範囲としている。このため 表面処理皮膜析出時に化成反応を伴う。化成反応を伴うことにより、皮膜の密着性が 極めて高くなる。 [0070] Further, the oxides and hydroxides of the metal elements contained in the film form a network structure through the metal and oxygen, so that they are very good noble films. Corrosion of metal materials varies depending on the environment in which it is used. Generally, it is oxygen demand type corrosion in the presence of water and oxygen, and the corrosion speed is accelerated by the presence of components such as chloride. Here, since the coating layer of the present invention has a barrier effect against water, oxygen and corrosion promoting components, it can exhibit excellent corrosion resistance. [0071] In addition to the component (A) and the component (B), the composition of the present invention and the treatment liquid of the present invention contain the component (C), and the quantitative ratio thereof is A specific range. For this reason, a chemical conversion reaction is accompanied when the surface treatment film is deposited. With the chemical reaction, the adhesion of the film becomes extremely high.
[0072] ここで、前記バリヤ一効果を利用して、冷間圧延鋼板、熱間圧延鋼板、铸鉄及び焼 結材等の鉄系金属材料の耐食性を高めるには、表面処理皮膜層の付着量が、成分 (A)の元素換算で、 20mg/m2以上であるのが好ましぐ 30mg/m2以上であるのがより 好ましぐ 40mg/m2以上であるのが更に好ましい。 [0072] Here, in order to increase the corrosion resistance of ferrous metal materials such as cold-rolled steel sheets, hot-rolled steel sheets, pig iron and sintered materials using the barrier effect, the surface treatment film layer is attached. The amount is preferably 20 mg / m 2 or more, more preferably 30 mg / m 2 or more, more preferably 40 mg / m 2 or more, in terms of element of component (A).
[0073] また、亜鉛又は亜鉛めつき鋼板、電気亜鉛めつき鋼板等の亜鉛系金属材料の耐食 性を高めるには、表面処理皮膜層の付着量が、成分 (A)の元素換算で、 15mg/m2 以上であるのが好ましぐ 20mg/m2以上であるのがより好ましい。 [0073] Further, in order to increase the corrosion resistance of zinc-based metal materials such as zinc, zinc-plated steel sheets, and electrogalvanized steel sheets, the amount of the surface treatment coating layer applied is 15 mg in terms of element of component (A). / m 2 or more is preferable 20 mg / m 2 or more is more preferable.
付着量が小さすぎると、前記バリヤ一効果が十分に発揮できなくなり、優れた耐食 性を得ることが困難となる。  If the amount of adhesion is too small, the barrier effect cannot be exhibited sufficiently, and it becomes difficult to obtain excellent corrosion resistance.
[0074] 更に、鉄系金属材料、及び亜鉛系金属材料の付着量の上限に関しては特に制限 はないが、付着量が大きすぎると、表面処理皮膜層にクラックが発生し易くなり、均一 な皮膜を得る作業が困難となる。従って、鉄系材料、亜鉛系材料ともに、付着量は、 成分 (A)の元素換算で、 lg/m2以下であるのが好ましぐ 800mg/m2以下であるのがよ り好ましい。 [0074] Furthermore, there is no particular limitation on the upper limit of the adhesion amount of the iron-based metal material and the zinc-based metal material, but if the adhesion amount is too large, cracks are likely to occur in the surface treatment film layer, and a uniform film is formed. The work to obtain becomes difficult. Therefore, the adhesion amount of both iron-based material and zinc-based material is preferably lg / m 2 or less, more preferably 800 mg / m 2 or less, in terms of element of component (A).
実施例  Example
[0075] 以下に実施例を比較例とともに挙げ、本発明の表面処理用処理液、及び表面処理 方法の効果を具体的に説明する。尚、実施例で使用した被処理素材、脱脂剤、及び 塗料は市販されている材料の中から任意に選定したものであり、本発明の表面処理 用処理液、及び表面処理方法の実際の用途を限定するものではない。  [0075] Examples are given below together with comparative examples to specifically explain the effects of the surface treatment liquid and the surface treatment method of the present invention. In addition, the to-be-treated material, the degreasing agent, and the paint used in the examples are arbitrarily selected from commercially available materials, and the actual use of the surface treatment liquid and the surface treatment method of the present invention. It is not intended to limit.
[0076] (供試板)  [0076] (Test plate)
実施例と比較例に用いた供試板の略号と内訳を以下に示す。  The abbreviations and breakdown of the test plates used in the examples and comparative examples are shown below.
• SPC (冷延鋼板: JIS— G— 3141)  • SPC (Cold rolled steel sheet: JIS—G—3141)
• EG (電気亜鉛メツキ鋼板:メツキ目付量 20g/m2) • EG (electrogalvanized steel sheet: weight per unit area 20g / m 2 )
[0077] (処理工程) 実施例 1〜5、及び比較例 1〜3は以下の処理工程で表面処理を行った。 [0077] (Processing step) In Examples 1 to 5 and Comparative Examples 1 to 3, surface treatment was performed in the following treatment steps.
アルカリ脱脂→水洗→皮膜化成処理→水洗→純水洗→乾燥。  Alkaline degreasing → Washing → Chemical conversion treatment → Washing → Pure water washing → Drying.
[0078] 実施例 6は、以下の処理工程で表面処理を行った。 [0078] In Example 6, the surface treatment was performed in the following treatment steps.
アルカリ脱脂→水洗→皮膜化成処理→水洗→後処理→純水洗→乾燥。  Alkaline degreasing → Washing → Chemical conversion treatment → Washing → Post treatment → Pure water washing → Drying.
[0079] 実施例 7は、以下の処理工程で表面処理を行った。 [0079] In Example 7, surface treatment was performed by the following treatment steps.
アルカリ脱脂→水洗→電解化成処理→水洗→純水洗→乾燥。  Alkaline degreasing → water washing → electrochemical conversion treatment → water washing → pure water washing → drying.
[0080] また、比較例 4は以下の処理工程で処理を行った。 [0080] Further, Comparative Example 4 was processed in the following processing steps.
アルカリ脱脂→水洗→表面調整→りん酸亜鉛処理→水洗→純水洗→乾燥。  Alkaline degreasing → Washing → Surface conditioning → Zinc phosphate treatment → Washing → Pure water washing → Drying.
[0081] アルカリ脱脂は、実施例、比較例ともにファインクリーナー L4460A (登録商標:日 本パーカライジング (株)製)を 2%、ファインクリーナー L4460B (登録商標:日本パ 一力ライジング (株)製)を 1. 4%に水道水で希釈し、 40°C、 120秒間、被処理板にス プレーして使用した。 [0081] Alkaline degreasing was performed using 2% Fine Cleaner L4460A (registered trademark: manufactured by Nihon Parkerizing Co., Ltd.) and Fine Cleaner L4460B (registered trademark: manufactured by Nippon Paishiro Rising Co., Ltd.) in both Examples and Comparative Examples. 1. Dilute to 4% with tap water and spray on treated plate for 40 seconds at 40 ° C.
[0082] 皮膜処理後の水洗、及び純水洗は、実施例、比較例ともに室温で 30秒間、被処理 板にスプレーした。  [0082] The washing with water and the washing with pure water after the film treatment were sprayed on the plate to be treated for 30 seconds at room temperature in both Examples and Comparative Examples.
また、乾燥は、常温の室内で放置することで行った。  The drying was performed by leaving it in a room temperature room.
[0083] <実施例 1 >  [0083] <Example 1>
硫酸ジルコニウム水溶液と硫酸ランタンと硝酸を用いて、合計質量濃度比 K1 = B ZA=0. 1、合計質量濃度比 K2 = CZA=0. 01である表面処理用組成物を調整 した。前記表面処理用組成物をイオン交換水で希釈し、ジルコニウム元素の質量濃 度を 8000ppmとし、更に水酸ィ匕ナトリウムを用いて pHが 3. 2である表面処理用処理 液を調整した。脱脂後に水洗を施した供試板を、 50°Cに加温した上記表面処理用 処理液に 180秒間浸漬して表面処理を行った。  Using a zirconium sulfate aqueous solution, lanthanum sulfate, and nitric acid, a surface treatment composition having a total mass concentration ratio K1 = BZA = 0.1, and a total mass concentration ratio K2 = CZA = 0.01 was prepared. The surface treatment composition was diluted with ion-exchanged water so that the mass concentration of the elemental zirconium was 8000 ppm, and a surface treatment solution having a pH of 3.2 was prepared using sodium hydroxide. The test plate that had been degreased and washed with water was immersed in the surface treatment solution heated to 50 ° C. for 180 seconds for surface treatment.
[0084] <実施例 2>  <Example 2>
へキサフルォロジルコニウム水溶液と硝酸サマリウムと硝酸を用いて、合計質量濃 度比 K1 = BZA=2. 0、合計質量濃度比 K2 = CZA=50である表面処理用組成 物を調整した。前記表面処理用組成物をイオン交換水で希釈し、ジルコニウム元素 の質量濃度を lOOppmとし、更にフッ化水素酸、アンモニアを用いて遊離フッ素ィォ ン濃度が 25ppm (フッ素イオンメーター:東亜電波工業株式会社製 IM-55G)、 pHが 3 . 6である表面処理用処理液を調整した。脱脂後に水洗を施した供試板を、 45°Cに 加温した上記表面処理用処理液に 150秒間浸漬して表面処理を行った。 Using a hexafluorozirconium aqueous solution, samarium nitrate and nitric acid, a surface treatment composition having a total mass concentration ratio K1 = BZA = 2.0 and a total mass concentration ratio K2 = CZA = 50 was prepared. The surface treatment composition is diluted with ion-exchanged water so that the mass concentration of the elemental zirconium is lOOppm, and the free fluorine ion concentration is 25 ppm using hydrofluoric acid and ammonia (Fluorine ion meter: Toa Denki Kogyo Co., Ltd.) Company IM-55G), pH is 3 A surface treatment solution of 6 was prepared. The test plate that had been degreased and washed with water was immersed in the surface treatment solution heated to 45 ° C. for 150 seconds for surface treatment.
[0085] <実施例 3> <Example 3>
硝酸ジルコニウム水溶液と酸ィ匕ハフニウムと酸ィ匕ガドリニウムと硝酸カリウムを用い て、合計質量濃度比 K1 = BZA=5. 0、合計質量濃度比 K2 = CZA=20である表 面処理用組成物を調整した。前記表面処理用組成物をイオン交換水で希釈し、ジル コニゥム元素の質量濃度とハフニウム元素の質量濃度の合計質量濃度を 50ppmとし 、この液にコハク酸を lOOppm添カ卩し、更にフッ化カリウム、水酸化リチウムを用いて 遊離フッ素イオン濃度が 20ppm (フッ素イオンメーター:東亜電波工業株式会社製 IM - 55G)、 pHが 4. 0である表面処理用処理液を調整した。脱脂後に水洗を施した供 試板を、 60°Cに加温した上記表面処理用処理液に 120秒間浸漬して表面処理を行 つた o  Preparation of surface treatment composition with total mass concentration ratio K1 = BZA = 5.0 and total mass concentration ratio K2 = CZA = 20 using zirconium nitrate aqueous solution, acid 匕 hafnium, acid 匕 gadolinium and potassium nitrate did. The surface treatment composition is diluted with ion-exchanged water so that the total mass concentration of the zirconium element and hafnium elements is 50 ppm. To this solution, succinic acid is added at 100 ppm, and potassium fluoride is added. Then, a surface treatment solution having a free fluorine ion concentration of 20 ppm (fluorine ion meter: IM-55G manufactured by Toa Denpa Kogyo Co., Ltd.) and a pH of 4.0 was prepared using lithium hydroxide. The test plate that had been degreased and washed with water was immersed in the above surface treatment solution heated to 60 ° C for 120 seconds to perform surface treatment o
[0086] <実施例 4 >  [0086] <Example 4>
硝酸ジルコニウム水溶液と塩ィ匕ランタン水溶液と酸ィ匕エルビウムと硝酸ナトリウムと 硝酸ソーダを用いて、合計質量濃度比 K1 = BZA=35、合計質量濃度比 K2 = C /A= 100である表面処理用組成物を調整した。前記表面処理用組成物をイオン交 換水で希釈しジルコニウム元素の質量濃度を 20ppmとし、更にフッ化水素酸、水酸 化カルシウムを用いて遊離フッ素イオン濃度が 15ppm (フッ素イオンメーター:東亜電 波工業株式会社製 IM-55G)、 pHが 3. 0である表面処理用処理液を調整した。脱脂 後に水洗を施した供試板を、 55°Cに加温した上記表面処理用処理液で 120秒間ス プレー噴霧して表面処理を行った。  For surface treatment with total mass concentration ratio K1 = BZA = 35 and total mass concentration ratio K2 = C / A = 100 using zirconium nitrate aqueous solution, salt-lanthanum aqueous solution, acid erbium, sodium nitrate and sodium nitrate The composition was adjusted. The surface treatment composition is diluted with ion-exchanged water so that the mass concentration of zirconium element is 20 ppm, and the concentration of free fluorine ions is 15 ppm using hydrofluoric acid and calcium hydroxide (fluorine ion meter: Toa Denki Kogyo) IM-55G manufactured by Co., Ltd.), a surface treatment solution having a pH of 3.0 was prepared. The test plate that had been degreased and washed with water was subjected to surface treatment by spraying for 120 seconds with the above surface treatment solution heated to 55 ° C.
[0087] <実施例 5 >  <Example 5>
硝酸チタン水溶液とへキサフルォロ珪酸水溶液と酸ィ匕プラセォジゥムと硝酸力リウ ムを用いて、合計質量濃度比 K1 = BZA=0. 4、合計質量濃度比 K2 = CZA=8 . 0である表面処理用組成物を調整した。前記表面処理用組成物をイオン交換水で 希釈し、チタニウム元素の質量濃度と珪素元素の質量濃度の合計質量濃度を 2500 ppmとし、更にフッ化アンモ-ゥム、アンモニアを用いて遊離フッ素イオン濃度が 100 ppm (フッ素イオンメーター:東亜電波工業株式会社製 IM- 55G)、 pHが 2. 9である表 面処理用処理液を調整した。脱脂後に水洗を施した供試板を、 65°Cに加温した上 記表面処理用処理液で 300秒間スプレー噴霧して表面処理を行った。 For surface treatment with total mass concentration ratio K1 = BZA = 0.4, total mass concentration ratio K2 = CZA = 8.0 using titanium nitrate aqueous solution, hexafluorosilicic acid aqueous solution, acid-sodium prasedium and nitric acid power lithium The composition was adjusted. The surface treatment composition is diluted with ion-exchanged water so that the total mass concentration of the titanium element mass concentration and the silicon element mass concentration is 2500 ppm, and the free fluorine ion concentration is further increased by using ammonium fluoride and ammonia. Is 100 ppm (fluorine ion meter: IM-55G manufactured by Toa Denpa Kogyo Co., Ltd.), pH is 2.9 A surface treatment solution was prepared. The surface treatment was carried out by spraying the test plate that had been degreased and washed with water with the above surface treatment solution heated to 65 ° C for 300 seconds.
[0088] <実施例 6 >  <Example 6>
硝酸ジルコニウム水溶液とへキサフルォロチタニウム水溶液と塩ィ匕ランタンと硝酸 鉄を用いて、合計質量濃度比 K1 = BZA= 1. 0、合計質量濃度比 K2 = CZA=0 . 5である表面処理用組成物を調整した。前記表面処理用組成物をイオン交換水で 希釈しジルコニウム元素の質量濃度とチタニウム元素の質量濃度の合計質量濃度を 200ppmとし、更にフッ化アンモ-ゥム、水酸ィ匕カリウムを用いて遊離フッ素イオン濃 度が 50ppm (フッ素イオンメーター:東亜電波工業株式会社製 IM- 55G)、 pHが 4. 2 である表面処理用処理液を調整した。脱脂後に水洗を施した供試板を、 60°Cにカロ 温した前記表面処理用処理液で 200秒間浸漬して表面処理を行い、その後、水洗、 後処理を施した。この時用いた後処理液は、へキサフルォロチタン水溶液と硝酸ニッ ケルを用いて、チタニウム質量濃度が 200ppm、ニッケル質量濃度が金属元素として 50ppmである水溶液を調整し、更に前記水溶液を 45°Cに加温した後、水酸化ナトリ ゥムで pHを 4. 5に調整したものを使用した。  Surface treatment with total mass concentration ratio K1 = BZA = 1.0, total mass concentration ratio K2 = CZA = 0.5 using zirconium nitrate aqueous solution, hexafluorotitanium aqueous solution, lanthanum chloride and iron nitrate The composition for preparation was prepared. The surface treatment composition is diluted with ion-exchanged water so that the total mass concentration of the zirconium element mass concentration and the titanium element mass concentration is 200 ppm. Furthermore, free fluorine is used using ammonium fluoride and potassium hydroxide hydroxide. A surface treatment solution having an ion concentration of 50 ppm (fluorine ion meter: IM-55G manufactured by Toa Denpa Kogyo Co., Ltd.) and pH of 4.2 was prepared. The test plate that had been degreased and washed with water was immersed in the surface treatment solution heated to 60 ° C. for 200 seconds for surface treatment, and then washed with water and post-treated. The post-treatment liquid used at this time was an aqueous solution having a titanium mass concentration of 200 ppm and a nickel mass concentration of 50 ppm as a metal element using a hexafluorotitanium aqueous solution and nickel nitrate. After heating to ° C, a solution adjusted to pH 4.5 with sodium hydroxide was used.
[0089] <実施例 7>  <Example 7>
へキサフルォロジルコニウム水溶液と硫酸イットリウムと硝酸を用いて、合計質量濃 度比 K1 = BZA=3. 0、合計質量濃度比 K2 = CZA=3. 0である表面処理用組 成物を調整した。前記表面処理用組成物をイオン交換水で希釈しジルコニウム元素 の質量濃度を 200ppmとし、この液に EDTAを 50ppm添カ卩し、更にフッ化水素酸、水 酸ィ匕ナトリウムを用いて遊離フッ素イオン濃度が 80ppm (フッ素イオンメーター:東亜 電波工業株式会社製 IM-55G)、 pHが 2. 8である表面処理用処理液を調整した。脱 脂後に水洗を施した供試板を陰極とし、陽極にカーボン電極を用いて、室温の前記 表面処理用処理液中で 5AZdm2の電解条件で 10秒間電解して表面処理を行った Preparation of surface treatment composition with total mass concentration ratio K1 = BZA = 3.0 and total mass concentration ratio K2 = CZA = 3.0 using hexafluorozirconium aqueous solution, yttrium sulfate and nitric acid did. The surface treatment composition is diluted with ion-exchanged water so that the mass concentration of zirconium element is 200 ppm, and 50 ppm of EDTA is added to this solution, and further free fluoride ions are added using hydrofluoric acid and sodium hydroxide. A surface treatment solution having a concentration of 80 ppm (fluorine ion meter: IM-55G manufactured by Toa Denpa Kogyo Co., Ltd.) and pH of 2.8 was prepared. Using a test plate that had been degreased and washed with water as a cathode, and using a carbon electrode as the anode, surface treatment was performed by electrolysis for 10 seconds in the 5AZdm 2 electrolysis condition in the above surface treatment solution at room temperature.
[0090] <比較例 1 > [0090] <Comparative Example 1>
硝酸ジルコニウム水溶液と硝酸ホルミウムと硝酸を用いて、合計質量濃度比 K1 = B/A=0. 01、合計質量濃度比 K2 = CZA= 10である表面処理用組成物を調整 した。前記表面処理用組成物をイオン交換水で希釈し、ジルコニウム元素の質量濃 度を lOOppmとし、更に水酸ィ匕ナトリウムを用いて pHが 3. 0である表面処理用処理液 を調整した。脱脂後に水洗を施した供試板を、 55°Cに加温した上記表面処理用処 理液に 180秒間浸漬して表面処理を行った。 Using a zirconium nitrate aqueous solution, holmium nitrate and nitric acid, a surface treatment composition having a total mass concentration ratio K1 = B / A = 0.01 and a total mass concentration ratio K2 = CZA = 10 was prepared. did. The surface treatment composition was diluted with ion-exchanged water so that the mass concentration of zirconium element was lOOppm, and a surface treatment solution having a pH of 3.0 was prepared using sodium hydroxide. The test plate that had been degreased and washed with water was immersed in the surface treatment solution heated to 55 ° C. for 180 seconds for surface treatment.
[0091] <比較例 2>  [0091] <Comparative Example 2>
へキサフルォロジルコニウム水溶液と酸ィ匕ユウ口ピウムと硝酸ナトリウムを用いて、合 計質量濃度比 K1 = BZA=5. 0、合計質量濃度比 K2 = CZA=200である表面 処理用組成物を調整した。前記表面処理用組成物をイオン交換水で希釈しジルコ二 ゥム元素の質量濃度を 4ppmとし、更にフッ化カリウム、水酸化カリウムを用いて遊離 フッ素イオンが 20ppm (フッ素イオンメーター:東亜電波工業株式会社製 IM- 55G)、 p Hが 3. 8である表面処理用処理液を調整した。脱脂後に水洗を施した供試板を、 60 °Cに加温した上記表面処理用処理液に 120秒間浸漬して表面処理を行った。  Surface treatment composition with total mass concentration ratio K1 = BZA = 5.0, total mass concentration ratio K2 = CZA = 200, using hexafluorozirconium aqueous solution, acid citrus pium and sodium nitrate Adjusted. The surface treatment composition is diluted with ion-exchanged water so that the mass concentration of zirconium element is 4 ppm. Further, free fluoride ions are 20 ppm using potassium fluoride and potassium hydroxide (Fluorine ion meter: Toa Denki Kogyo Co., Ltd.) A surface treatment solution having a pH of 3.8 was prepared. The test plate that had been degreased and washed with water was immersed in the surface treatment solution heated to 60 ° C. for 120 seconds for surface treatment.
[0092] <比較例 3 >  [0092] <Comparative Example 3>
へキサフルォロチタニウム水溶液と硫酸ガリウムと硝酸カリウムと硝酸アンモンを用 いて、合計質量濃度比 K1 = BZA=70、合計質量濃度比 K2 = CZA=50である 表面処理用組成物を調整した。前記表面処理用組成物をイオン交換水で希釈しチ タ -ゥム元素の質量濃度を 50ppmとし、更にフッ化アンモ-ゥム、アンモニアを用いて 遊離フッ素イオン濃度が 400ppm (フッ素イオンメーター:東亜電波工業株式会社製 I M-55G)、 pHが 2. 8である表面処理用処理液を調整した。脱脂後に水洗を施した供 試板を、 50°Cに加温した上記表面処理用処理液で 150秒間スプレー噴霧して表面 処理を行った。  A surface treatment composition having a total mass concentration ratio K1 = BZA = 70 and a total mass concentration ratio K2 = CZA = 50 was prepared using an aqueous hexafluorotitanium solution, gallium sulfate, potassium nitrate, and ammonium nitrate. The surface treatment composition is diluted with ion-exchanged water so that the mass concentration of titanium element is 50 ppm, and further, the concentration of free fluorine ions is 400 ppm using ammonium fluoride and ammonia (fluorine ion meter: Toa A treatment liquid for surface treatment having a pH of 2.8 was prepared. The test plate that had been degreased and washed with water was subjected to surface treatment by spraying for 150 seconds with the above-mentioned surface treatment solution heated to 50 ° C.
[0093] <比較例 4>  [0093] <Comparative Example 4>
脱脂後に水洗を施した供試板に、表面調整処理剤であるプレパレン ZN (登録商標 :日本パーカライジング (株)製)を 0. 1%に水道水で希釈した液を室温で 30秒間ス プレーで噴霧した後に、パルボンド L3020 (登録商標:日本パーカライジング (株)製 )を 4. 8%に水道水で希釈し、更に、フッ化水素ナトリウム試薬をフッ素として 200pp m添加した後に、全酸度、遊離酸度をカタログ値の中心に調整した 43°Cのりん酸亜 鉛ィ匕成処理液に浸漬してりん酸亜鉛皮膜を析出させた。 [0094] (表面処理皮膜の評価、及び付着量測定) On a test plate that has been degreased and washed with water, prepare a solution prepared by diluting Preparen ZN (registered trademark: Nippon Parkerizing Co., Ltd.), a surface conditioning agent, to 0.1% with tap water at room temperature for 30 seconds. After spraying, Palbond L3020 (registered trademark: Nippon Parkerizing Co., Ltd.) was diluted to 4.8% with tap water, and after adding 200 ppm of sodium hydrogen fluoride reagent as fluorine, total acidity and free acidity Was immersed in a 43 ° C zinc phosphate phosphatization solution adjusted to the center of the catalog value to deposit a zinc phosphate coating. [0094] (Evaluation of surface treatment film and adhesion amount measurement)
実施例、及び比較例の表面処理後の供試板の外観を目視で評価し、表面処理皮 膜層の付着量を蛍光 X線分析装置 (システム 3270;理学電気工業 (株)製)を用いて 測定した。  The appearance of the test plate after the surface treatment of the examples and comparative examples was visually evaluated, and the amount of the surface treatment film layer deposited was measured using a fluorescent X-ray analyzer (System 3270; manufactured by Rigaku Denki Kogyo Co., Ltd.). Measured.
[0095] (塗装性能評価板の作製) [0095] (Preparation of coating performance evaluation board)
実施例、及び比較例の表面処理板の塗装性能を評価するため、以下に示す工程 で塗装を行った。カチオン電着塗装→純水洗→焼き付け→中塗り→焼き付け→上塗 り→焼き付け。  In order to evaluate the coating performance of the surface-treated plates of Examples and Comparative Examples, coating was performed in the following steps. Cationic electrodeposition coating → pure water washing → baking → intermediate coating → baking → top coating → baking.
[0096] カチオン電着塗装:エポキシ系カチオン電着塗料 (エレクロン 9400:関西ペイント ( 株)製)、電圧 200V、膜厚 20 /ζ πι、 175°C20分焼き付け  [0096] Cationic electrodeposition coating: Epoxy-based cationic electrodeposition coating (Electron 9400: manufactured by Kansai Paint Co., Ltd.), voltage 200V, film thickness 20 / ζ πι, 175 ° C 20 minutes baking
[0097] 中塗り塗装:アミノアルキッド系塗料 (アミラック TP— 37グレー:関西ペイント (株)製[0097] Intermediate coating: Aminoalkyd paint (Amirac TP—37 gray: manufactured by Kansai Paint Co., Ltd.)
)、スプレー塗装、膜厚 35 μ m、 140°C20分焼き付け ), Spray coating, film thickness 35 μm, baking at 140 ° C for 20 minutes
[0098] 上塗り塗装:アミノアルキッド系塗料 (アミラック TM— 13白:関西ペイント (株)製)、 スプレー塗装、膜厚 35 /ζ πι、 140°C20分焼き付け [0098] Top coat: Aminoalkyd paint (Amirac TM-13 White: manufactured by Kansai Paint Co., Ltd.), spray coating, film thickness 35 / ζ πι, baking at 140 ° C for 20 minutes
[0099] (塗装性能評価) [0099] (Coating performance evaluation)
実施例、及び比較例の塗装性能の評価を JIS規格に準じて実施した。評価項目を 以下に示す。尚、電着塗装完了時点での塗膜を電着塗膜、上塗り塗装完了時点で の塗膜を 3c0ats塗膜と称することとする。 The coating performance of the examples and comparative examples was evaluated according to JIS standards. The evaluation items are shown below. The coating film at the completion of electrodeposition coating is referred to as an electrodeposition coating film, and the coating film at the time of completion of top coating is referred to as a 3c 0ats coating film.
(0塩水噴霧試験:電着塗膜  (0 Salt spray test: electrodeposition coating
(ii)付着性試験: 3COats塗膜 (ii) Adhesion test: 3 CO ats coating
[0100] (塩水噴霧試験 (SST試験)) [0100] (Salt spray test (SST test))
鋭利なカッターでクロスカットを入れた電着塗装板に 5%塩水を 720時間噴霧 (JIS —Z— 2371に準ずる)した。噴霧終了後にクロスカット部からの両側最大膨れ幅を測 定し、以下に示す評価基準に従って評価した。  5% salt water was sprayed for 720 hours (according to JIS —Z—2371) on the electrodeposition coated plate with a crosscut cut with a sharp cutter. After spraying, the maximum swollen width on both sides from the crosscut part was measured and evaluated according to the following evaluation criteria.
<両側最大膨れ幅 >  <Maximum swollen width on both sides>
5mm未満 : ©  Less than 5mm: ©
5mm以上 7mm未满 : O  5mm or more 7mm not yet : O
8mm以上 9mm未満 : Δ 9mm以上 : X 8mm or more and less than 9mm: Δ 9mm or more: X
[0101] (付着性試験 (クロスカット法))  [0101] (Adhesion test (cross-cut method))
3coats塗膜に鋭利なカッターを用い、 2mm間隔で縦及び横方向に 6個のカットを入 れて碁盤目を 25個切った (JIS— K— 5600 - 5-6に準ずる)。碁盤目部をテープ剥 離し、前記 JIS規格に準じた評価方法により評価した。  Using a sharp cutter on the 3coats coating film, 25 cuts were made in accordance with JIS-K-5600-5-6 by making 6 cuts in the vertical and horizontal directions at 2mm intervals. The grid area was peeled off with tape and evaluated by an evaluation method according to the JIS standard.
[0102] 表 1、及び表 2に、実施例、及び比較例で得られた表面処理皮膜の外観評価結果 、及び表面処理皮膜の付着量を示す。実施例は、 SPC材、 EG材ともに均一な皮膜 を得ることができ、且つ、目標とした皮膜付着量を得ることが出来た。対して、比較例 1では合計濃質量度比 K1が小さかったため、 SPC材、 EG材ともに表面処理皮膜を 析出させることができな力つた。比較例 2では成分 (A)の含有量が少な力つたため、 SPC材、 EG材ともに表面処理皮膜を析出させることができな力つた。また、比較例 3 については合計質量濃度比 K1が大きぐ且つ遊離フッ素イオン濃度 Dが高いため、 SPC材、 EG材ともに表面処理皮膜を析出させることができな力つた。また、比較例 4 は従来のりん酸亜鉛処理であるため SPC材、 EG材ともに表面処理皮膜を形成させ ることはできた。  [0102] Tables 1 and 2 show the appearance evaluation results of the surface treatment films obtained in Examples and Comparative Examples, and the amount of adhesion of the surface treatment film. In the example, a uniform film could be obtained for both the SPC material and the EG material, and the target film adhesion amount could be obtained. On the other hand, in Comparative Example 1, since the total concentration ratio K1 was small, the SPC material and the EG material were both unable to deposit the surface treatment film. In Comparative Example 2, since the content of component (A) was small, both the SPC material and EG material were unable to deposit the surface treatment film. In Comparative Example 3, since the total mass concentration ratio K1 was large and the free fluorine ion concentration D was high, the SPC material and the EG material were both unable to deposit the surface treatment film. Since Comparative Example 4 was a conventional zinc phosphate treatment, it was possible to form a surface treatment film on both the SPC material and the EG material.
[0103] 電着塗膜の塗装性能評価結果 (塩水噴霧試験)を表 3に示す。実施例は SPC材、 EG材ともに良好な耐食性を示した。対して、比較例 1では、合計濃質量度比 K1が K 1が小さかったため、成分 (B)よる成分 (A)の皮膜促進効果が十分に得られな力つた 。これより SPC材、 EG材ともに表面処理皮膜が多く析出せず耐食性が劣っていた。 比較例 2は成分 (A)含有量が少な力 たため、 SPC材、 EG材ともに目標とした皮膜 付着量が得られず耐食性が劣っていた。また、比較例 3は合計質量濃度比 K1が K1 が大きぐ且つ遊離フッ素イオン濃度 Dが高いため、 SPC材、 EG材ともに目標とした 皮膜付着量が得られず耐食性が劣っていた。比較例 4は、現在、カチオン電着塗装 下地として一般に用いられているりん酸亜鉛処理である。実施例は比較例 4と比べて も全ての水準で優れた塗装性能を示して!/、た。  [0103] The coating performance evaluation results (salt spray test) of the electrodeposition coating film are shown in Table 3. In the examples, both SPC material and EG material showed good corrosion resistance. On the other hand, in Comparative Example 1, since the total concentrated mass ratio K1 was small and K1 was small, the film (A) was not sufficiently effective in promoting the film formation by the component (B). As a result, both the SPC and EG materials did not deposit a lot of surface treatment film, and the corrosion resistance was poor. In Comparative Example 2, since the content of component (A) was small, the target film adhesion amount could not be obtained for both SPC and EG materials, and the corrosion resistance was poor. In Comparative Example 3, since the total mass concentration ratio K1 is large and K1 is high and the free fluorine ion concentration D is high, the targeted coating amount cannot be obtained for both the SPC material and the EG material, and the corrosion resistance is poor. Comparative Example 4 is a zinc phosphate treatment that is currently commonly used as a base for cationic electrodeposition coating. The examples showed excellent coating performance at all levels compared to Comparative Example 4! /.
[0104] 3c0ats板の付着性の評価結果を表 4に示す。実施例は、全ての供試板に対して良 好な密着性を示した。比較例は、電着塗装板の耐食性と同様に比較例 4を除く全て の比較例で供試板に対して良好な密着性を示す水準はな力つた。 [0105] 以上の結果から、本発明品である表面処理用組成物、表面処理用処理液、表面処 理方法、及び表面処理金属材料を用いることによって、密着性と耐食性に優れる表 面処理皮膜を析出させることが可能であることが明らかである。 [0104] Table 4 shows the evaluation results of the adhesion of the 3c 0a ts plate. The examples showed good adhesion to all the test plates. As for the comparative examples, the level showing good adhesion to the test plate was strong in all the comparative examples except Comparative Example 4 as well as the corrosion resistance of the electrodeposition coated plate. [0105] From the above results, the surface treatment film having excellent adhesion and corrosion resistance is obtained by using the surface treatment composition, the surface treatment solution, the surface treatment method, and the surface treatment metal material which are the products of the present invention. It is clear that can be deposited.
[0106] [表 1]  [0106] [Table 1]
Figure imgf000023_0001
Figure imgf000023_0001
[0107] [表 2] [0107] [Table 2]
成分 (A) の合計付着量 (mg/in2) Total amount of component (A) (mg / in 2 )
SPC EG  SPC EG
麵例 1 60 41 雄例 2 100 78 難例 3 65 41 実施例 4 20 16 雄例 5 45 32 雄例 6 90 75 難例 7 50 42 比翻 1 6 3 比翻 2 4 2 比翻 3 5 3 比删 4 2.0(g/m2) Example 1 60 41 Male example 2 100 78 Difficult example 3 65 41 Example 4 20 16 Male example 5 45 32 Male example 6 90 75 Difficult example 7 50 42 Comparison 1 6 3 Comparison 2 4 2 Comparison 3 5 3 Hiei 4 2.0 (g / m 2 )
※り
Figure imgf000024_0001
※ Ri
Figure imgf000024_0001
板 SST纖結果 Board SST 纖 result
SPC EG SPC EG
雄例 1 © 〇 雄例 2 © 〇 実施例 3 ◎ 〇 実施例 4 ◎ 〇 実施例 5 © 〇 霞例 6 ◎ 〇 実施例 7 ◎ 〇 比翻 1 X X 比翻 2 X X 比翻 3 X X 比翻 4 © 〇 Male Example 1 © Yes Male Example 2 © Yes Example 3 ◎ ○ Example 4 ◎ ○ Example 5 © 〇 Example 6 ◎ 〇 Example 7 ◎ 〇 Comparison 1 XX Comparison 2 XX Comparison 3 XX Comparison 4 © 〇
付着性 (クロスカツ卜法) ※評価は JIS-K-5600-5-6に準ずるAdhesiveness (Cross cut bowl method) * Evaluation conforms to JIS-K-5600-5-6
SPC EG SPC EG
雄例 1 0 0 難例 2 0 0 難例 3 0 0 難例 4 0 0 雄例 5 0 0 鍾例 6 0 0 実施例 7 0 0 比翻 1 2 1 比翻 2 2 2 比翻 3 2 2 比棚 4 0 0 Male example 1 0 0 Difficult example 2 0 0 Difficult example 3 0 0 Difficult example 4 0 0 Male example 5 0 0 Example 6 0 0 Example 7 0 0 Comparison 1 2 1 Comparison 2 2 2 Comparison 3 2 2 Ratio shelf 4 0 0

Claims

請求の範囲 The scope of the claims
[1] 次の成分 (A)、成分 (B)、及び成分 (C):  [1] Next component (A), component (B), and component (C):
(A) Ti、 Zr、 Hf、及び Si力 なる群力 選ばれる少なくとも 1種の元素を含む化合物 (A) Group force consisting of Ti, Zr, Hf, and Si forces A compound containing at least one element selected
(B) Y及び Z又はランタノイド元素を含む化合物 (B) Compounds containing Y and Z or lanthanoid elements
(C)硝酸及び Z又は硝酸化合物  (C) Nitric acid and Z or nitrate compounds
を含有し、  Containing
前記成分 (A)中の前記元素の合計質量濃度 Aに対する前記成分 (B)中の前記 Y 及び Z又はランタノイド元素の合計質量濃度 Bの比である K1 = BZA力 0. 05≤K 1≤50であり、  The ratio of the total mass concentration B of the Y and Z or lanthanoid elements in the component (B) to the total mass concentration A of the elements in the component (A) K1 = BZA force 0.05 ≤ K 1 ≤ 50 And
前記合計質量濃度 Αに対する前記成分 (C)中の窒素原子の NO換算した合計質  Total quality in terms of NO of nitrogen atoms in component (C) relative to total mass concentration Α
3  Three
量濃度 Cの比である K2 = CZA力 0. 01≤K2≤200である、  The ratio of quantity concentration C is K2 = CZA force 0.01≤K2≤200,
鉄及び Ζ又は亜鉛を含む金属の表面処理用組成物。  A composition for surface treatment of a metal containing iron and iron or zinc.
[2] 更に、次の成分 (D) : [2] In addition, the following component (D):
(D)フッ素含有ィ匕合物の少なくとも 1種  (D) At least one fluorine-containing compound
を含有する、請求項 1に記載の表面処理用組成物。  The composition for surface treatment according to claim 1, comprising:
[3] 次の成分 (Α)、成分 (Β)、及び成分 (C): [3] Next ingredient (Α), ingredient (Β), and ingredient (C):
(A) Ti、 Zr、 Hf、及び Si力 なる群力 選ばれる少なくとも 1種の元素を含む化合物 (A) Group force consisting of Ti, Zr, Hf, and Si forces A compound containing at least one element selected
(B) Y及び Z又はランタノイド元素を含む化合物 (B) Compounds containing Y and Z or lanthanoid elements
(C)硝酸及び Z又は硝酸化合物  (C) Nitric acid and Z or nitrate compounds
を含有し、  Containing
前記成分 (A)中の前記元素の合計質量濃度 Aに対する前記成分 (B)中の前記 Y 及び Z又はランタノイド元素の合計質量濃度 Bの比である K1 = BZA力 0. 05≤K 1≤50であり、  The ratio of the total mass concentration B of the Y and Z or lanthanoid elements in the component (B) to the total mass concentration A of the elements in the component (A) K1 = BZA force 0.05 ≤ K 1 ≤ 50 And
前記合計質量濃度 Αに対する前記成分 (C)中の窒素原子の NO換算した合計質  Total quality in terms of NO of nitrogen atoms in component (C) relative to total mass concentration Α
3  Three
量濃度 Cの比である K2 = C/Aが、 0. 01≤K2≤200であり、  The ratio of quantity concentration C is K2 = C / A, 0.01 ≤ K2 ≤ 200,
前記合計質量濃度 Αが、 10ppm≤A≤ lOOOOppmである、  The total mass concentration Α is 10ppm≤A≤lOOOOppm,
鉄及び Z又は亜鉛を含む金属の表面処理用処理液。  Treatment liquid for surface treatment of metals containing iron and Z or zinc.
[4] 更に、次の成分 (D) : (D)フッ素含有ィ匕合物の少なくとも 1種 [4] Furthermore, the following component (D): (D) At least one fluorine-containing compound
を含有し、遊離フッ素イオン濃度 Dが 0. 001ppm≤D≤300ppmである、請求項 3に 記載の表面処理用処理液。  The treatment liquid for surface treatment according to claim 3, wherein the free fluorine ion concentration D is 0.001ppm≤D≤300ppm.
[5] pHが 6. 0以下である、請求項 3または 4に記載の表面処理用処理液。 [5] The surface treatment solution according to claim 3 or 4, wherein the pH is 6.0 or less.
[6] 更に、 HC1、 H SO、 HC10、 HBrO、 HNO、 HMnO、 HVO、 H O、 H WO、 H Mo  [6] Furthermore, HC1, HSO, HC10, HBrO, HNO, HMnO, HVO, H2O, HWO, HMo
2 4 3 3 2 4 3 2 2 2 4 2 2 4 3 3 2 4 3 2 2 2 4 2
O及びこれらの塩類からなる群から選ばれる少なくとも 1種を、 10〜20000ppm含有Contains 10 to 20000 ppm of at least one selected from the group consisting of O and salts thereof
4 Four
する、請求項 3〜5のいずれかに記載の表面処理用処理液。  The treatment liquid for surface treatment according to any one of claims 3 to 5.
[7] 更に、エチレンジァミン四酢酸、ダルコン酸、ヘプトグルコン酸、ダルコール酸、タエ ン酸、コハク酸、フマル酸、ァスパラギン酸、酒石酸、マロン酸、リンゴ酸、サリチル酸[7] Further, ethylenediamine amine acetic acid, darconic acid, heptogluconic acid, dalcholic acid, thaenoic acid, succinic acid, fumaric acid, aspartic acid, tartaric acid, malonic acid, malic acid, salicylic acid
、及びこれらの塩類力 なる群力 選ばれる少なくとも 1種を、 1〜: LOOOOppm含有す る、請求項 3〜6のいずれかに記載の表面処理用処理液。 The surface treatment treatment solution according to any one of claims 3 to 6, comprising 1 to LOOOOppm of at least one selected from the group force consisting of salt power.
[8] 更に、水溶性高分子化合物及び Z又は水分散性高分子化合物を含有する、請求 項 3〜7のいずれかに記載の表面処理用処理液。 [8] The treatment liquid for surface treatment according to any one of [3] to [7], further comprising a water-soluble polymer compound and Z or a water-dispersible polymer compound.
[9] 更に、ノニオン系界面活性剤、ァニオン系界面活性剤及びカチオン系界面活性剤 力もなる群力も選ばれる少なくとも 1種を含有する、請求項 3〜8のいずれかに記載の 表面処理用処理液。 [9] The treatment for surface treatment according to any one of [3] to [8], further comprising at least one selected from nonionic surfactants, anionic surfactants and cationic surfactants. liquid.
[10] 鉄及び Z又は亜鉛を含む金属材料に、請求項 3〜8のいずれかに記載の表面処 理用処理液を接触させる処理液接触工程を有する、鉄及び,又は亜鉛を含む金属 の表面処理方法。  [10] A metal containing iron and / or zinc having a treatment liquid contact step of contacting the surface treatment liquid according to any one of claims 3 to 8 with a metal material containing iron and Z or zinc. Surface treatment method.
[11] 鉄及び Z又は亜鉛を含む金属材料に、請求項 9に記載の表面処理用処理液を接 触させ、前記金属材料の脱脂処理と被膜化成処理とを同時に行う処理液接触工程 を有する、鉄及び Z又は亜鉛を含む金属の表面処理方法。  [11] A treatment liquid contact step of bringing the metal material containing iron and Z or zinc into contact with the treatment liquid for surface treatment according to claim 9 and simultaneously performing a degreasing treatment and a film forming treatment on the metal material. Surface treatment method of metal containing iron, Z and zinc.
[12] 前記鉄及び Z又は亜鉛を含む金属材料が、脱脂処理により清浄化された金属材 料である、請求項 10または 11に記載の表面処理方法。 12. The surface treatment method according to claim 10 or 11, wherein the metal material containing iron and Z or zinc is a metal material cleaned by a degreasing treatment.
[13] 前記処理液接触工程において、前記鉄及び Z又は亜鉛を含む金属材料を陰極と して電解処理する、請求項 10〜12のいずれかに記載の表面処理方法。 13. The surface treatment method according to any one of claims 10 to 12, wherein in the treatment liquid contact step, the metal material containing iron and Z or zinc is used as a cathode.
[14] 更に、前記処理液接触工程後に、 [14] Furthermore, after the treatment liquid contact step,
前記鉄及び Z又は亜鉛を含む金属材料に、コバルト、ニッケル、すず、銅、チタ- ゥム、及びジルコニウムカゝらなる群カゝら選ばれる少なくとも 1種を含む水溶液を接触さ せる工程を有する、請求項 10〜 13の 、ずれかに記載の表面処理方法。 In the metal material containing iron and Z or zinc, cobalt, nickel, tin, copper, titanium 14. The surface treatment method according to claim 10, further comprising a step of contacting an aqueous solution containing at least one selected from the group consisting of a zirconium and a zirconium catalyst.
[15] 更に、前記処理液接触工程後に、  [15] Furthermore, after the treatment liquid contact step,
前記鉄及び Z又は亜鉛を含む金属材料に、水溶性高分子化合物及び Z又は水 分散性高分子化合物を含む水溶液を接触させる工程を有する、請求項 10〜13のい ずれかに記載の表面処理方法。  The surface treatment according to claim 10, further comprising a step of bringing the metal material containing iron and Z or zinc into contact with an aqueous solution containing a water-soluble polymer compound and Z or a water-dispersible polymer compound. Method.
[16] 鉄を含む金属材料表面に、請求項 10〜15のいずれかに記載の表面処理方法に よって形成された、前記成分 (A)の前記元素を含有し、かつ、前記元素換算の付着 量が 20mg/m2以上である表面処理被膜層を有する、鉄を含む金属材料。 [16] The surface of the metal material containing iron, which is formed by the surface treatment method according to any one of claims 10 to 15, contains the element of the component (A), and adheres in terms of the element A metal material containing iron having a surface-treated coating layer having an amount of 20 mg / m 2 or more.
[17] 亜鉛を含む金属材料表面に、請求項 10〜15のいずれかに記載の表面処理方法 によって形成された、前記成分 (A)の前記元素を含有し、かつ、前記元素換算の付 着量が 15mg/m2以上である表面処理被膜層を有する、亜鉛を含む金属材料。 [17] The element containing the element (A) formed by the surface treatment method according to any one of claims 10 to 15 on the surface of the metal material containing zinc, and the element-converted attachment A metal material containing zinc having a surface-treated coating layer having an amount of 15 mg / m 2 or more.
PCT/JP2005/022176 2004-12-08 2005-12-02 Composition for metal surface treatment, treating liquid for surface treatment, method of surface treatment, and surface-treated metallic material WO2006062037A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
AU2005312758A AU2005312758B2 (en) 2004-12-08 2005-12-02 Composition for metal surface treatment, treating liquid for surface treatment, method of surface treatment, and surface-treated metallic material
CN2005800423772A CN101076615B (en) 2004-12-08 2005-12-02 Composition for metal surface treatment, treating liquid for surface treatment, method of surface treatment, and surface-treated metal material
PL05811597T PL2302097T3 (en) 2004-12-08 2005-12-02 Method of surface treatment
EP05811597.3A EP2302097B1 (en) 2004-12-08 2005-12-02 Method of surface treatment
MX2007006729A MX2007006729A (en) 2004-12-08 2005-12-02 Composition for metal surface treatment, treating liquid for surface treatment, method of surface treatment, and surface-treated metallic material.
ES05811597.3T ES2529318T3 (en) 2004-12-08 2005-12-02 Surface treatment method
BRPI0518423-1A BRPI0518423B1 (en) 2004-12-08 2005-12-02 SURFACE TREATMENT METHOD FOR METALS CONTAINING IRON AND / OR ZINC
CA2591214A CA2591214C (en) 2004-12-08 2005-12-02 Composition for metal surface treatment, treating liquid for surface treatment, method of surface treatment, and surface-treated metal material
US11/756,851 US20070272900A1 (en) 2004-12-08 2007-06-01 Composition for Metal Surface Treatment, Treating Liquid for Surface Treatment, Method of Surface Treatment, and Surface-Treated Metal Material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-356059 2004-12-08
JP2004356059A JP4242827B2 (en) 2004-12-08 2004-12-08 Metal surface treatment composition, surface treatment liquid, surface treatment method, and surface-treated metal material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/756,851 Continuation US20070272900A1 (en) 2004-12-08 2007-06-01 Composition for Metal Surface Treatment, Treating Liquid for Surface Treatment, Method of Surface Treatment, and Surface-Treated Metal Material

Publications (1)

Publication Number Publication Date
WO2006062037A1 true WO2006062037A1 (en) 2006-06-15

Family

ID=36577866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022176 WO2006062037A1 (en) 2004-12-08 2005-12-02 Composition for metal surface treatment, treating liquid for surface treatment, method of surface treatment, and surface-treated metallic material

Country Status (12)

Country Link
US (1) US20070272900A1 (en)
EP (1) EP2302097B1 (en)
JP (1) JP4242827B2 (en)
CN (1) CN101076615B (en)
AU (1) AU2005312758B2 (en)
BR (1) BRPI0518423B1 (en)
CA (1) CA2591214C (en)
ES (1) ES2529318T3 (en)
MX (1) MX2007006729A (en)
PL (1) PL2302097T3 (en)
RU (1) RU2395622C2 (en)
WO (1) WO2006062037A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080230394A1 (en) * 2006-12-20 2008-09-25 Toshio Inbe Metal surface treatment liquid for cation electrodeposition coating
US20080230395A1 (en) * 2006-12-20 2008-09-25 Toshio Inbe Metal surface treatment liquid for cation electrodeposition coating
US20080302448A1 (en) * 2005-09-12 2008-12-11 Henkel Ag & Co. Kgaa Wet on wet method and chrome-free acidic solution for the corrosion control treatment of steel surfaces
WO2009020794A2 (en) * 2007-08-03 2009-02-12 Ppg Industries Ohio, Inc. Pretreatment compositions and methods for coating a metal substrate
US9273399B2 (en) 2013-03-15 2016-03-01 Ppg Industries Ohio, Inc. Pretreatment compositions and methods for coating a battery electrode

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101663420A (en) 2006-12-20 2010-03-03 日本油漆株式会社 Surface pretreatment fluid for the metal to be coated by cationic electrodeposition
TWI354713B (en) * 2007-12-03 2011-12-21 Ya Thai Chemical Co Ltd Chrome-free corrosion inhibitors and applications
JP4886811B2 (en) * 2008-06-05 2012-02-29 新日本製鐵株式会社 Steel plate for containers excellent in organic film performance and method for producing the same
HUE034508T2 (en) * 2008-07-11 2018-02-28 Henkel Ag & Co Kgaa Chemical treatment liquid for steel material coating primer and method of treatment
EP2186928A1 (en) * 2008-11-14 2010-05-19 Enthone, Inc. Method for the post-treatment of metal layers
JP5594732B2 (en) * 2008-12-05 2014-09-24 ユケン工業株式会社 Chemical conversion composition and method for producing member having antirust coating
JP5775453B2 (en) * 2009-07-02 2015-09-09 日本パーカライジング株式会社 Chemical treatment solution for chromium and fluorine-free metal surface, metal surface treatment method and metal surface coating method
CN101665938B (en) * 2009-09-30 2011-04-27 华南理工大学 Preparation method of high anti-corrosion zinc coat titanium salt protective film
US9347134B2 (en) * 2010-06-04 2016-05-24 Prc-Desoto International, Inc. Corrosion resistant metallate compositions
JP5630692B2 (en) * 2010-07-20 2014-11-26 日本表面化学株式会社 Zinc-iron alloy plating solution
JP5544244B2 (en) * 2010-08-09 2014-07-09 株式会社フジミインコーポレーテッド Polishing composition and polishing method
US9284460B2 (en) 2010-12-07 2016-03-15 Henkel Ag & Co. Kgaa Metal pretreatment composition containing zirconium, copper, and metal chelating agents and related coatings on metal substrates
BR112013016613B1 (en) * 2010-12-07 2021-04-27 Henkel Ag & Co. Kgaa METAL PRE-TREATMENT COMPOSITION CONTAINING ZIRCONIUM, COPPER AND METAL CHEATING AGENTS, METHOD FOR IMPROVING THE PAINT ADHESION TO A METAL SUBSTRATE AND MANUFACTURING ARTICLE
JP5410466B2 (en) * 2011-03-01 2014-02-05 株式会社神戸製鋼所 Stainless steel flux cored wire
DE102011014605A1 (en) * 2011-03-22 2012-09-27 Robert Bosch Gmbh Coating method, pile tube and apparatus for carrying out the method
CN103619757B (en) 2011-06-23 2016-11-09 汉高股份有限及两合公司 Coating composition based on zirconium and coating process
US10876211B2 (en) 2011-09-16 2020-12-29 Prc-Desoto International, Inc. Compositions for application to a metal substrate
CN102433560A (en) * 2011-10-24 2012-05-02 宁波科苑鑫泰表面处理新技术有限公司 Rare earth lanthanum-containing metal treatment fluid and production method thereof
JP5712980B2 (en) * 2012-08-06 2015-05-07 信越化学工業株式会社 Metal surface treatment agent, surface treated steel material and surface treatment method thereof, and coated steel material and method for producing the same
EP2890830B1 (en) 2012-08-29 2018-06-27 PPG Industries Ohio, Inc. Zirconium pretreatment compositions containing molybdenum, associated methods for treating metal substrates, and related coated metal substrates
KR102181792B1 (en) 2012-08-29 2020-11-24 피피지 인더스트리즈 오하이오 인코포레이티드 Zirconium pretreatment compositions containing lithium, associated methods for treating metal substrates, and related coated metal substrates
CN103834939A (en) * 2012-11-27 2014-06-04 汉达精密电子(昆山)有限公司 Aluminum alloy surface passivation liquid and processing method thereof
BR112016005651B1 (en) 2013-09-20 2022-02-08 Baker Hughes Incorporated METHOD OF TREATMENT OF A SILICOSE UNDERGROUND FORMATION OR CONTAINING METAL OXIDE (M) PENETRATION THROUGH A WELL
NZ717494A (en) * 2013-09-20 2020-07-31 Baker Hughes Inc Method of inhibiting fouling on a metallic surface using a surface modifying treatment agent
BR112016005454B1 (en) 2013-09-20 2022-02-08 Baker Hughes Incorporated METHOD TO TREAT A WELL THAT PENETRATES INTO AN UNDERGROUND FORMATION
JP6961492B2 (en) * 2015-04-15 2021-11-05 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA Thin corrosion protection coating with polyamide amine polymer
CN107709630B (en) * 2015-06-23 2019-05-28 新日铁住金株式会社 The manufacturing method of steel plate for container and steel plate for container
US10435806B2 (en) 2015-10-12 2019-10-08 Prc-Desoto International, Inc. Methods for electrolytically depositing pretreatment compositions
CA3032156A1 (en) * 2016-08-12 2018-02-15 Ppg Industries Ohio, Inc. Pretreatment composition
KR20190043155A (en) 2016-08-24 2019-04-25 피피지 인더스트리즈 오하이오 인코포레이티드 Alkaline compositions for treating metal substrates
WO2019006626A1 (en) * 2017-07-03 2019-01-10 深圳市盈恒科技有限公司 Chromium-free passivator, aluminum workpiece and surface passivation process therefor
US11434573B2 (en) * 2017-12-12 2022-09-06 Chemetall Gmbh Boric acid-free composition for removing deposits containing cryolite
MX2021009612A (en) * 2019-02-11 2021-10-26 Ppg Ind Ohio Inc Systems for treating a metal substrate.
CN112752428A (en) * 2020-11-30 2021-05-04 深圳明阳电路科技股份有限公司 Surface pretreatment method of metal material and production process of PCB (printed Circuit Board)
WO2023132989A1 (en) * 2022-01-06 2023-07-13 Ppg Industries Ohio, Inc. Compositions, systems, and methods for treating a substrate
CN115745622B (en) * 2022-11-30 2023-08-22 福建华清电子材料科技有限公司 Preparation method of aluminum nitride ceramic for printer heating strip

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02282486A (en) * 1989-04-21 1990-11-20 Nippon Parkerizing Co Ltd Film forming chemical treating solution for aluminum and film forming chemical treatment
JPH1161431A (en) * 1997-08-18 1999-03-05 Nippon Steel Corp Surface treated metal material
JP2000199077A (en) 1998-10-28 2000-07-18 Nippon Parkerizing Co Ltd Composition for metallic surface treatment, surface treating solution and surface treating method
JP2000204485A (en) 1999-01-13 2000-07-25 Nippon Paint Co Ltd Nonchromium coating agent for metallic surface
JP2001158973A (en) * 1999-11-30 2001-06-12 Kobe Steel Ltd Surface treatment film for galvanized steel sheet and surface treated steel sheet
JP2002036427A (en) * 2000-07-24 2002-02-05 Nippon Steel Corp Metal material having resinous corrosion-resistant layer
JP2004043913A (en) 2002-07-12 2004-02-12 Nippon Paint Co Ltd Metal chemical conversion method

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4298404A (en) * 1979-09-06 1981-11-03 Richardson Chemical Company Chromium-free or low-chromium metal surface passivation
US4992445A (en) * 1987-06-12 1991-02-12 American Cyanamid Co. Transdermal delivery of pharmaceuticals
CA1333043C (en) * 1988-02-15 1994-11-15 Nippon Paint Co., Ltd. Surface treatment chemical and bath for aluminium and its alloy
JPH0364485A (en) * 1989-08-01 1991-03-19 Nippon Paint Co Ltd Surface treating agent and treating bath for aluminum or aluminum alloy
BR9206419A (en) * 1991-08-30 1995-04-04 Henkel Corp Process for the production of a protective conversion coating.
US5328526A (en) * 1992-04-03 1994-07-12 Nippon Paint Co., Ltd. Method for zinc-phosphating metal surface
AU684238B2 (en) * 1994-11-11 1997-12-04 Commonwealth Scientific And Industrial Research Organisation Process and solution for providing a conversion coating on a metal surface
JP3523383B2 (en) * 1995-08-21 2004-04-26 ディップソール株式会社 Liquid rust preventive film composition and method of forming rust preventive film
US6190780B1 (en) * 1996-02-05 2001-02-20 Nippon Steel Corporation Surface treated metal material and surface treating agent
US5932083A (en) * 1997-09-12 1999-08-03 The Curators Of The University Of Missouri Electrodeposition of cerium-based coatings for corrosion protection of aluminum alloys
US6361833B1 (en) * 1998-10-28 2002-03-26 Henkel Corporation Composition and process for treating metal surfaces
AUPQ633200A0 (en) * 2000-03-20 2000-04-15 Commonwealth Scientific And Industrial Research Organisation Process and solution for providing a conversion coating on a metallic surface I
JP2002364427A (en) * 2001-06-05 2002-12-18 Unisia Jecs Corp Air-fuel ratio controller for engine
JP2003171778A (en) * 2001-12-06 2003-06-20 Nippon Hyomen Kagaku Kk Method for forming protective film of metal, and protective film of metal
US7402214B2 (en) * 2002-04-29 2008-07-22 Ppg Industries Ohio, Inc. Conversion coatings including alkaline earth metal fluoride complexes

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02282486A (en) * 1989-04-21 1990-11-20 Nippon Parkerizing Co Ltd Film forming chemical treating solution for aluminum and film forming chemical treatment
JPH1161431A (en) * 1997-08-18 1999-03-05 Nippon Steel Corp Surface treated metal material
JP2000199077A (en) 1998-10-28 2000-07-18 Nippon Parkerizing Co Ltd Composition for metallic surface treatment, surface treating solution and surface treating method
JP2000204485A (en) 1999-01-13 2000-07-25 Nippon Paint Co Ltd Nonchromium coating agent for metallic surface
JP2001158973A (en) * 1999-11-30 2001-06-12 Kobe Steel Ltd Surface treatment film for galvanized steel sheet and surface treated steel sheet
JP2002036427A (en) * 2000-07-24 2002-02-05 Nippon Steel Corp Metal material having resinous corrosion-resistant layer
JP2004043913A (en) 2002-07-12 2004-02-12 Nippon Paint Co Ltd Metal chemical conversion method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FUJIO MAMIYA: "Kasei Shori no Jissai", 10 October 1993, CHIJINSHOKAN CO., LTD., pages: 33 - 47, XP002999421 *
See also references of EP2302097A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080302448A1 (en) * 2005-09-12 2008-12-11 Henkel Ag & Co. Kgaa Wet on wet method and chrome-free acidic solution for the corrosion control treatment of steel surfaces
US20080230394A1 (en) * 2006-12-20 2008-09-25 Toshio Inbe Metal surface treatment liquid for cation electrodeposition coating
US20080230395A1 (en) * 2006-12-20 2008-09-25 Toshio Inbe Metal surface treatment liquid for cation electrodeposition coating
US8221559B2 (en) * 2006-12-20 2012-07-17 Nippon Paint Co., Ltd. Metal surface treatment liquid for cation electrodeposition coating
WO2009020794A2 (en) * 2007-08-03 2009-02-12 Ppg Industries Ohio, Inc. Pretreatment compositions and methods for coating a metal substrate
WO2009020794A3 (en) * 2007-08-03 2009-03-26 Ppg Ind Ohio Inc Pretreatment compositions and methods for coating a metal substrate
RU2447193C2 (en) * 2007-08-03 2012-04-10 Ппг Индастриз Огайо, Инк. Pretreatment composition and method of applying coat on metal substrate
US8673091B2 (en) 2007-08-03 2014-03-18 Ppg Industries Ohio, Inc Pretreatment compositions and methods for coating a metal substrate
US9273399B2 (en) 2013-03-15 2016-03-01 Ppg Industries Ohio, Inc. Pretreatment compositions and methods for coating a battery electrode

Also Published As

Publication number Publication date
CA2591214A1 (en) 2006-06-15
EP2302097A4 (en) 2011-04-06
AU2005312758A1 (en) 2006-06-15
JP4242827B2 (en) 2009-03-25
MX2007006729A (en) 2007-07-25
PL2302097T3 (en) 2015-04-30
EP2302097A1 (en) 2011-03-30
BRPI0518423A2 (en) 2008-11-25
EP2302097B1 (en) 2014-11-19
JP2006161117A (en) 2006-06-22
US20070272900A1 (en) 2007-11-29
CN101076615A (en) 2007-11-21
CN101076615B (en) 2010-09-08
ES2529318T3 (en) 2015-02-19
RU2395622C2 (en) 2010-07-27
BRPI0518423B1 (en) 2018-01-23
CA2591214C (en) 2017-07-25
RU2007125572A (en) 2009-01-20
AU2005312758B2 (en) 2010-06-10

Similar Documents

Publication Publication Date Title
JP4242827B2 (en) Metal surface treatment composition, surface treatment liquid, surface treatment method, and surface-treated metal material
JP4373778B2 (en) Metal surface treatment liquid and surface treatment method
ES2730576T3 (en) Treatment fluid for metal surface treatment and surface treatment procedure
JP4402991B2 (en) Metal surface treatment composition, metal surface treatment liquid, metal surface treatment method and metal material
JP4105765B2 (en) Corrosion-resistant surface-treated metal material and surface treatment agent therefor
CA2864467C (en) Pretreating zinc surfaces prior to a passivating process
JP5215043B2 (en) Metal surface treatment liquid and surface treatment method
JP4975378B2 (en) Metal surface treatment liquid, surface treatment method, surface treatment material
KR100921116B1 (en) Surface-treated metallic material
JP3417653B2 (en) Pretreatment method for painting aluminum material

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005811597

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12007501158

Country of ref document: PH

Ref document number: 11756851

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/006729

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2591214

Country of ref document: CA

Ref document number: 200580042377.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005312758

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2007125572

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2005312758

Country of ref document: AU

Date of ref document: 20051202

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005312758

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 11756851

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0518423

Country of ref document: BR