JP4886811B2 - Steel plate for containers excellent in organic film performance and method for producing the same - Google Patents

Steel plate for containers excellent in organic film performance and method for producing the same Download PDF

Info

Publication number
JP4886811B2
JP4886811B2 JP2009108187A JP2009108187A JP4886811B2 JP 4886811 B2 JP4886811 B2 JP 4886811B2 JP 2009108187 A JP2009108187 A JP 2009108187A JP 2009108187 A JP2009108187 A JP 2009108187A JP 4886811 B2 JP4886811 B2 JP 4886811B2
Authority
JP
Japan
Prior art keywords
film
amount
adhesion
steel plate
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009108187A
Other languages
Japanese (ja)
Other versions
JP2010013728A (en
Inventor
茂 平野
光 立木
博一 横矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009108187A priority Critical patent/JP4886811B2/en
Publication of JP2010013728A publication Critical patent/JP2010013728A/en
Application granted granted Critical
Publication of JP4886811B2 publication Critical patent/JP4886811B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Wrappers (AREA)

Description

本発明は製缶加工用素材として、特に、絞りしごき加工、溶接性、耐食性、塗料密着性、フィルム密着性に優れた容器用鋼板およびその製造方法に関するものである。   In particular, the present invention relates to a steel plate for containers excellent in drawing ironing, weldability, corrosion resistance, paint adhesion, and film adhesion as a material for can manufacturing, and a method for producing the same.

飲料や食品に用いられる金属容器は、2ピース缶と3ピース缶に大別される。DI缶に代表される2ピース缶は、絞りしごき加工が行われた後、缶内面側に塗装が、缶外面側には塗装及び印刷が行われる。3ピース缶は、缶内面に相当する面に塗装が、缶外面側に相当する面に印刷が行われた後、缶胴部の溶接が行われる。   Metal containers used for beverages and foods are roughly classified into two-piece cans and three-piece cans. A two-piece can represented by a DI can is squeezed and ironed, then painted on the inner surface of the can and painted and printed on the outer surface of the can. The three-piece can is coated on the surface corresponding to the inner surface of the can and printed on the surface corresponding to the outer surface of the can, and then the can body is welded.

何れの缶種においても、製缶前後に塗装工程が不可欠な工程である。塗装には、溶剤系もしくは水系の塗料が使用され、その後、焼付けが行われるが、この塗装工程において、塗料に起因する廃棄物(廃溶剤等)が産業廃棄物として排出され、排ガス(主に炭酸ガス)が大気に放出されている。近年、地球環境保全を目的とし、これら産業廃棄物や排ガスを低減しようとする取組みが行われている。この中で、塗装に代わるものとしてフィルムをラミネートする技術が注目され、急速に広まってきた。   In any type of can, a coating process is indispensable before and after canning. Solvent-based or water-based paints are used for painting, followed by baking. In this painting process, waste (such as waste solvents) resulting from the paint is discharged as industrial waste, and exhaust gas (mainly Carbon dioxide) is released to the atmosphere. In recent years, efforts have been made to reduce these industrial waste and exhaust gas for the purpose of protecting the global environment. Among these, the technique of laminating films as an alternative to painting has attracted attention and has spread rapidly.

これまでに、2ピース缶においては、フィルムをラミネートし製缶する缶の製造方法やこれに関連する発明が多数提供されている。例えば、「絞りしごき罐の製造方法(特許文献1)」、「絞りしごき罐(特許文献2)」、「薄肉化深絞り缶の製造方法(特許文献3)」、「絞りしごき罐用被覆鋼板(特許文献4)」が挙げられる。   So far, in the two-piece can, there have been provided a large number of methods for producing a can in which a film is laminated and made, and related inventions. For example, “a method for producing a drawn iron cake (Patent Document 1)”, “a drawn iron cake (Patent Document 2)”, “a method for producing a thinned deep drawn can (Patent Document 3)”, “coated steel sheet for drawn iron cake” (Patent Document 4) ".

また、3ピース缶においては、「スリーピース缶用フィルム積層鋼帯およびその製造方法(特許文献5)」、「缶外面に多層有機皮膜を有するスリーピース缶用(特許文献6)」、「ストライプ状の多層有機皮膜を有すスリーピース缶用鋼板(特許文献7)」、「3ピース缶ストライプラミネート鋼板の製造方法(特許文献8)」が挙げられる。   Further, in the three-piece can, “film laminated steel strip for three-piece can and manufacturing method thereof (Patent Document 5)”, “for three-piece can having a multilayer organic film on the outer surface of the can (Patent Document 6)”, “stripe-shaped can And “three-piece can steel sheet having a multilayer organic coating (Patent Document 7)” and “three-piece can striped laminated steel sheet manufacturing method (Patent Document 8)”.

一方、ラミネートフィルムの下地に用いられる鋼板には、多くの場合、電解クロメート処理を施したクロメート皮膜が用いられている。クロメート皮膜は、2層構造を有し、金属Cr層の上層に水和酸化Cr層が存在している。従って、ラミネートフィルム(接着剤付きのフィルムであれば接着層)はクロメート皮膜の水和酸化Cr層を介して鋼板との密着性を確保している。この密着発現の機構について、詳細は明らかにされていないが、水和酸化Crの水酸基とラミネートフィルムのカルボニル基あるいはエステル基などの官能基との水素結合であると言われている。   On the other hand, in many cases, a chromate film subjected to electrolytic chromate treatment is used for a steel sheet used as a base of a laminate film. The chromate film has a two-layer structure, and a hydrated Cr oxide layer is present on the metal Cr layer. Therefore, the laminate film (adhesive layer in the case of a film with an adhesive) ensures adhesion to the steel sheet through the hydrated Cr oxide layer of the chromate film. Although the details of the mechanism of this adhesion development are not clarified, it is said to be a hydrogen bond between a hydroxyl group of hydrated Cr oxide and a functional group such as a carbonyl group or an ester group of a laminate film.

特許第1571783号公報Japanese Patent No. 1571783 特許第1670957号公報Japanese Patent No. 1670957 特開平2−263523号公報JP-A-2-263523 特許第1601937号公報Japanese Patent No. 1601937 特開平3−236954号公報Japanese Patent Laid-Open No. 3-236554 特開平05−124648号公報Japanese Patent Laid-Open No. 05-124648 特開平5−111979号公報JP-A-5-111979 特開平5−147181号公報JP-A-5-147181

上記の発明は、確かに、地球環境の保全を大きく前進せしめる効果が得られるが、その一方で、近年、飲料容器市場では、PETボトル、瓶、紙等の素材とのコスト並びに品質競争が激化しており、上記のラミネート容器用鋼板に対しても、従来技術である塗装用途に対して、優れた密着性、耐食性を確保した上で、より優れた製缶加工性、特に、フィルム密着性、加工フィルム密着性、耐食性などが求められるようになった。   Although the above-mentioned invention certainly has the effect of greatly advancing the conservation of the global environment, on the other hand, in the beverage container market, cost and quality competition with materials such as PET bottles, bottles and paper have intensified in recent years. In addition, for the above-mentioned steel sheet for laminated containers, it is possible to achieve superior can-making processability, especially film adhesion, while ensuring excellent adhesion and corrosion resistance for the conventional coating application. , Processed film adhesion, corrosion resistance, etc. have come to be required.

また、近年、欧米を中心に、鉛やカドミウムなどの有害物質の使用制限や製造工場の労働環境への配慮が叫ばれ始め、クロメートを使用しない、かつ、製缶加工性を損ねない皮膜が求められるようになった。   In recent years, mainly in Europe and the United States, restrictions on the use of hazardous substances such as lead and cadmium and consideration of the working environment of manufacturing plants have begun to be sought, and there is a demand for a film that does not use chromate and does not impair can manufacturing. It came to be able to.

そこで、本発明は、このような問題に鑑みてなされたもので、その目的は、優れた製缶加工性を有するとともに、優れた絞りしごき加工、溶接性、耐食性、塗料密着性、フィルム密着性を有する容器用鋼板およびその製造方法を提供することにある。   Therefore, the present invention has been made in view of such problems, and its purpose is to have excellent canning processability and excellent drawing ironing, weldability, corrosion resistance, paint adhesion, and film adhesion. It is providing the steel plate for containers which has these, and its manufacturing method.

本発明者等は、クロメート皮膜に代わる新たな皮膜として、Zr化合物皮膜の活用を鋭意検討した結果、Zr化合物皮膜あるいはZr化合物皮膜にリン酸皮膜やフェノール樹脂皮膜が複合されたZr皮膜が塗装あるいはラミネートフィルムと非常に強力な共有結合を形成し、従来のクロメート皮膜以上の優れた製缶加工性が得られるとともに、優れた絞りしごき加工、溶接性、耐食性、塗料密着性、フィルム密着性をも得られることを知見し、本発明に至ったものである。   As a result of intensive studies on the use of a Zr compound film as a new film to replace the chromate film, the present inventors have applied a Zr compound film or a Zr film obtained by combining a Zr compound film with a phosphate film or a phenol resin film. Forms a very strong covalent bond with the laminate film, resulting in superior can processability over conventional chromate coatings, as well as excellent drawing and ironing, weldability, corrosion resistance, paint adhesion, and film adhesion It has been found that it is obtained, and the present invention has been achieved.

即ち本発明は、
(1)Zrイオン、Fイオン、アンモニウムイオン、硝酸イオンを含む溶液中で、浸漬又は電解処理を行うことにより鋼板上に形成されたZr化合物皮膜を有し、前記Zr化合物皮膜の付着量が、金属Zr量で1〜100mg/m、F量で0.1mg/m以下である事を特徴とする、容器用鋼板。
(2)前記溶液中にさらにリン酸イオンを含み、前記Zr化合物皮膜の付着量が、さらにP量で0.1〜50mg/mであることを特徴とする、(1)に記載の容器用鋼板。
(3)前記溶液中にさらにフェノール樹脂を含み、
前記Zr化合物皮膜にフェノール樹脂皮膜をさらに有し、
前記フェノール樹脂皮膜の付着量が、C量で0.1〜50mg/mであることを特徴とする、(2)に記載の容器用鋼板。
(4)前記鋼板は、少なくとも片面に、Niを10〜1000mg/mまたはSnを100〜15000mg/mを含む表面処理層を有する表面処理鋼板である事を特徴とする、(1)〜(3)のいずれか1項に記載の容器用鋼板。
(5)(1)〜(3)のいずれか1項に記載の溶液中で、前記Zr化合物皮膜を形成した後、40℃以上の温水で0.5秒以上の浸漬処理あるいはスプレー処理による洗浄処理を行うことを特徴とする、容器用鋼板の製造方法。
である。
That is, the present invention
(1) It has a Zr compound film formed on a steel plate by performing immersion or electrolytic treatment in a solution containing Zr ions, F ions, ammonium ions, and nitrate ions, and the adhesion amount of the Zr compound film is A steel plate for containers, characterized in that the amount of metal Zr is 1 to 100 mg / m 2 and the amount of F is 0.1 mg / m 2 or less.
(2) The container according to (1), wherein the solution further contains phosphate ions, and the adhesion amount of the Zr compound film is 0.1 to 50 mg / m 2 in terms of P amount. Steel plate.
(3) The solution further contains a phenol resin,
The Zr compound film further has a phenol resin film,
The steel plate for containers according to (2), wherein the adhesion amount of the phenol resin film is 0.1 to 50 mg / m 2 in terms of C amount.
(4) The steel sheet is a surface-treated steel sheet having a surface treatment layer containing Ni of 10 to 1000 mg / m 2 or Sn of 100 to 15000 mg / m 2 on at least one side. The steel plate for containers according to any one of (3).
(5) After forming the Zr compound film in the solution according to any one of (1) to (3) , washing with warm water at 40 ° C. or higher for 0.5 seconds or longer is performed by immersion treatment or spray treatment. The manufacturing method of the steel plate for containers characterized by performing a process.
It is.

本発明により製造された製缶加工性に優れたラミネート容器用鋼板は、優れた絞りしごき加工、溶接性、耐食性、塗料密着性、フィルム密着性を有する。   The steel sheet for laminated containers excellent in can manufacturing process produced by the present invention has excellent drawing ironing, weldability, corrosion resistance, paint adhesion, and film adhesion.

以下に本発明を実施するための最良の形態としての製缶加工性に優れた容器用鋼板について詳細に説明する。   Hereinafter, a steel plate for containers excellent in can manufacturing processability as the best mode for carrying out the present invention will be described in detail.

本発明で用いられる原板は特に規制されるものではなく、通常、容器材料として使用される鋼板を用いる。この原板の製造法、材質なども特に規制されるものではなく、通常の鋼片製造工程から熱間圧延、酸洗、冷間圧延、焼鈍、調質圧延等の工程を経て製造される。この原板にNi、Snのうちの1種以上を含む表面処理層が付与されるが、付与する方法については特に規制するものでは無い。例えば、電気めっき法や真空蒸着法やスパッタリング法などの公知技術を用いれば良く、拡散層を付与するため、めっき後に加熱処理を組み合わせても良い。また、NiはFe−Ni合金めっきを行っても本発明の本質は不変である。   The original plate used in the present invention is not particularly restricted, and usually a steel plate used as a container material is used. There are no particular restrictions on the manufacturing method and material of the original plate, and the original plate is manufactured through normal steel slab manufacturing processes such as hot rolling, pickling, cold rolling, annealing, and temper rolling. A surface treatment layer containing one or more of Ni and Sn is applied to the original plate, but the method of applying is not particularly limited. For example, a known technique such as an electroplating method, a vacuum deposition method, or a sputtering method may be used, and a heat treatment may be combined after plating in order to provide a diffusion layer. Further, even if Ni is plated with Fe—Ni alloy, the essence of the present invention is not changed.

こうして付与されたNi、Snのうちの1種以上を含む表面処理層において、Niは金属Niとして10〜1000mg/m、Snは金属Snとして100〜15000mg/mの範囲であることが好ましい。 In the surface treatment layer containing one or more of Ni and Sn thus applied, Ni is preferably in the range of 10 to 1000 mg / m 2 as metal Ni and Sn is in the range of 100 to 15000 mg / m 2 as metal Sn. .

Snは、優れた加工性、溶接性、耐食性を発揮し、この効果が発現するのは金属Snとして100mg/m以上必要である。十分な溶接性を確保するためには200mg/m以上、十分な加工性を確保するためには、1000mg/m以上付与する事が望ましい。Sn付着量の増加に伴い、Snの優れた加工性、溶接性の向上効果は増加するが、15000mg/m以上では耐食性の向上効果が飽和するため経済的に不利である。従って、Snの付着量は金属Snとして15000mg/m以下にすることが好ましい。また、Snめっき後にリフロー処理を行うことによりSn合金層が形成され、耐食性がより一層向上する。 Sn exhibits excellent workability, weldability, and corrosion resistance, and it is necessary that 100 mg / m 2 or more of metal Sn is exhibited as the effect. In order to ensure sufficient weldability, it is desirable to apply 200 mg / m 2 or more, and in order to ensure sufficient workability, it is desirable to apply 1000 mg / m 2 or more. As the Sn adhesion amount increases, the excellent workability and weldability improvement effects of Sn increase, but at 15000 mg / m 2 or more, the corrosion resistance improvement effect is saturated, which is economically disadvantageous. Therefore, it is preferable that the adhesion amount of Sn is 15000 mg / m 2 or less as metal Sn. Moreover, a Sn alloy layer is formed by performing a reflow process after Sn plating, and corrosion resistance further improves.

Niは、塗料密着性、フィルム密着性、耐食性、溶接性にその効果を発揮し、その為には、金属Niとして、10mg/m以上のNiが必要である。Niの付着量の増加に伴い、Niの優れたフィルム密着性、耐食性、溶接性の向上効果は増加するが、1000mg/m以上ではその向上効果が飽和するため経済的に不利である。従って、Niの付着量は金属Niとして10mg/m以上、1000mg/m以下にすることが好ましい。 Ni exerts its effects on paint adhesion, film adhesion, corrosion resistance, and weldability. For this purpose, Ni of 10 mg / m 2 or more is necessary as metal Ni. With an increase in the amount of Ni deposited, the improvement effect of excellent film adhesion, corrosion resistance, and weldability of Ni increases. However, if it is 1000 mg / m 2 or more, the improvement effect is saturated, which is economically disadvantageous. Therefore, the adhesion amount of Ni is preferably 10 mg / m 2 or more and 1000 mg / m 2 or less as metal Ni.

ここで、上記表面処理層中の金属Ni量および金属Sn量は、例えば、蛍光X線法によって測定することができる。この場合、金属Ni量既知のNi付着量サンプルを用いて、金属Ni量に関する検量線をあらかじめ特定しておき、この検量線を用いて相対的に金属Ni量を特定する。金属Sn量の場合も同様にして、金属Sn量既知のSn付着量サンプルを用いて、金属Sn量に関する検量線をあらかじめ特定しておき、この検量線を用いて相対的に金属Sn量を特定する。   Here, the amount of metallic Ni and the amount of metallic Sn in the surface treatment layer can be measured by, for example, a fluorescent X-ray method. In this case, a calibration curve related to the amount of metal Ni is specified in advance using a sample of the amount of deposited Ni that has a known amount of metal Ni, and the amount of metal Ni is relatively specified using this calibration curve. Similarly, in the case of the amount of metal Sn, a calibration curve related to the amount of metal Sn is specified in advance using a sample of the amount of Sn deposited with a known amount of metal Sn, and the amount of metal Sn is specified relatively using this calibration curve. To do.

これらのNi、Snの1種以上を含む表面処理層の上層に、本発明の本質とする処である、Zr化合物皮膜、またはZr化合物とフェノール樹脂の複合皮膜が付与される。これらの皮膜を付与する方法は、Zrイオン、リン酸イオン、Fイオン、低分子のフェノール樹脂を溶解させた酸性溶液に鋼板を浸漬する方法や陰極電解処理により行う方法がある。ただし、浸漬処理では、下地をエッチングして各種の皮膜が形成される為、付着が不均一になり、また、処理時間も長くなる為、工業生産的には不利である。一方、陰極電解処理では、強制的な電荷移動および鋼板界面での水素発生による表面清浄化とpH上昇による付着促進効果も相俟って、均一な皮膜を得る事が出来る。更に、この陰極電解処理において、処理液中に硝酸イオンとアンモニウムイオンが共存することに依り、数秒から数十秒程度の短時間処理と耐食性や密着性の向上効果に優れたZr酸化物、Zrリン酸化物を含むZr化合物皮膜の析出を促進する事が可能である事から、工業的には極めて有利である。従って、本発明のZr皮膜の付与には陰極電解処理が望ましく、特に硝酸イオンとアンモニウムイオンを共存させた処理液での陰極電解処理が必要となる。   A Zr compound film or a composite film of a Zr compound and a phenol resin, which is the essence of the present invention, is applied to the upper layer of the surface treatment layer containing one or more of these Ni and Sn. Methods for applying these films include a method of immersing a steel sheet in an acidic solution in which Zr ions, phosphate ions, F ions, and low molecular phenol resins are dissolved, and a method of performing cathodic electrolysis. However, the immersion treatment is disadvantageous in industrial production because the base is etched to form various films, resulting in non-uniform adhesion and a longer treatment time. On the other hand, in the cathodic electrolysis treatment, a uniform film can be obtained in combination with forced charge transfer, surface cleaning by hydrogen generation at the steel plate interface, and adhesion promoting effect by pH increase. Further, in this cathodic electrolysis treatment, a Zr oxide, Zr excellent in the effect of improving the corrosion resistance and adhesion for a short time of about several seconds to several tens of seconds due to the coexistence of nitrate ions and ammonium ions in the treatment liquid. Since it is possible to promote the precipitation of the Zr compound film containing phosphorus oxide, it is extremely advantageous industrially. Therefore, cathodic electrolysis is desirable for applying the Zr film of the present invention, and in particular, cathodic electrolysis with a treatment liquid in which nitrate ions and ammonium ions coexist is necessary.

Zr皮膜は単独に使用しても優れた実用特性を有しているが、フェノール樹脂皮膜は単独に使用してもある程度の効果は認められるのみで、十分な実用性能を有していない。しかし、Zr化合物とフェノール樹脂が複合するとより一層優れた実用性能が発揮される。   The Zr film has excellent practical characteristics even when used alone, but the phenol resin film does not have sufficient practical performance because only a certain effect is recognized even when used alone. However, when the Zr compound and the phenol resin are combined, a further excellent practical performance is exhibited.

Zr化合物の役割は、耐食性と密着性の確保である。Zr化合物は、酸化Zr、水酸化Zrで構成されているZr水和酸化物とZrリン酸化物であると考えられるが、これらのZr化合物は優れた耐食性と密着性を有している。従って、Zr皮膜が増加すると、耐食性や密着性が向上し始め、金属Zr量で、1mg/m以上になると、実用上、問題ないレベルの耐食性と密着性が確保される。更に、Zr皮膜量が増加すると耐食性、密着性の向上効果も増加するが、Zr皮膜量が金属Zr量で100mg/mを超えると、Zr皮膜が厚くなり過ぎZr皮膜自体の密着性が劣化すると共に電気抵抗が上昇し溶接性が劣化する。従って、Zr皮膜付着量は金属Zr量で1〜100mg/mにすることが好ましい。 The role of the Zr compound is to ensure corrosion resistance and adhesion. Zr compounds are thought to be Zr hydrated oxides and Zr phosphorous oxides composed of Zr oxide and Zr hydroxide, and these Zr compounds have excellent corrosion resistance and adhesion. Therefore, when the Zr film increases, the corrosion resistance and adhesion start to improve, and when the amount of metal Zr is 1 mg / m 2 or more, practically satisfactory levels of corrosion resistance and adhesion are secured. Furthermore, when the amount of Zr film increases, the effect of improving corrosion resistance and adhesion also increases, but when the amount of Zr film exceeds 100 mg / m 2 in terms of metal Zr, the Zr film becomes too thick and the adhesion of the Zr film itself deteriorates. In addition, the electrical resistance increases and the weldability deteriorates. Therefore, the Zr film adhesion amount is preferably 1 to 100 mg / m 2 in terms of metal Zr amount.

また、Zrリン酸化物が増加するとより優れた耐食性と密着性を発揮するが、その効果をはっきり認識できるのは、P量で0.1mg/m以上である。更に、リン酸皮膜量が増加すると耐食性、密着性の向上効果も増加するが、リン酸皮膜量がP量で50mg/mを超えると、リン酸皮膜が厚くなり過ぎリン酸皮膜自体の密着性が劣化すると共に電気抵抗が上昇し溶接性が劣化する。従って、リン酸皮膜付着量はP量で0.1〜50mg/mにすることが好ましい。 Moreover, although the corrosion resistance and adhesiveness which were excellent when Zr phosphorus oxide increased are exhibited, it is 0.1 mg / m < 2 > or more by P amount that can recognize the effect clearly. Furthermore, when the amount of phosphoric acid film increases, the effect of improving corrosion resistance and adhesion also increases. However, if the amount of phosphoric acid film exceeds 50 mg / m 2 in terms of P amount, the phosphoric acid film becomes too thick and the adhesion of the phosphoric acid film itself is increased. As a result, the electrical resistance increases and the weldability deteriorates. Therefore, the phosphoric acid film adhesion amount is preferably 0.1 to 50 mg / m 2 in terms of P amount.

フェノール樹脂の役割は密着性の確保である。フェノール樹脂自体が有機物であることから塗料やラミネートフィルムと非常に優れた密着性を有している。従って、フェノール樹脂皮膜が増加すると密着性が向上し始め、C量で、0.1mg/m以上になると、実用上、問題ないレベルの密着性が確保される。更に、フェノール樹脂皮膜量が増加すると密着性の向上効果も増加するが、フェノール樹脂皮膜量がC量で50mg/mを超えると、電気抵抗が上昇し溶接性が劣化する。従って、フェノール樹脂皮膜付着量はC量で0.1〜50mg/mにすることが好ましい。 The role of the phenolic resin is to ensure adhesion. Since the phenol resin itself is an organic substance, it has excellent adhesion to paints and laminate films. Therefore, when the phenol resin film increases, the adhesion begins to improve, and when the C amount is 0.1 mg / m 2 or more, a practically satisfactory level of adhesion is secured. Furthermore, when the amount of the phenol resin film increases, the effect of improving the adhesion also increases. However, when the amount of the phenol resin film exceeds 50 mg / m 2 in terms of the C amount, the electrical resistance increases and the weldability deteriorates. Therefore, the phenol resin film adhesion amount is preferably 0.1 to 50 mg / m 2 in terms of C amount.

Fは溶液中に含まれることから、Zr化合物と共に皮膜中に取り込まれる。皮膜中のFは、塗料やフィルムの通常の密着性(一次密着性)には影響を及ぼさないが、レトルト処理などの高温殺菌処理時の密着性(二次密着性)や耐錆性あるいは塗膜下腐食性を劣化させる原因となる。これは、水蒸気や腐食液に皮膜中のFが溶出し、有機皮膜との結合を分解、或いは、下地鋼板を腐食することが原因と考えられている。皮膜中のF量は0.1mg/mを超えると、これらの諸特性の劣化が顕在化し始める事から、F量は0.1mg/m以下にすることが好ましい。F量を0.1mg/m以下にするには、Zr化合物皮膜を形成した後、温水中での浸漬処理やスプレー処理により洗浄処理を行えば良く、この処理温度を高く、或いは、処理時間を長くすることによりF量を減少させる事が出来る。従って、皮膜中のF量を0.1mg/m以下にするには40℃以上の温水で0.5秒以上の浸漬処理あるいはスプレー処理をすればよい。水温が40℃を下回る、あるいは処理時間が0.5秒を下回ると皮膜中のF量を0.1mg/m以下に出来なくなり、上述の諸特性が発揮されなくなる。 Since F is contained in the solution, it is taken into the film together with the Zr compound. F in the film does not affect the normal adhesion (primary adhesion) of paints and films, but it does not affect adhesion (secondary adhesion), rust resistance or coating during high temperature sterilization treatment such as retort treatment. It causes deterioration of subfilm corrosion. It is considered that this is because F in the film is eluted into water vapor or a corrosive liquid, and the bond with the organic film is decomposed or the base steel sheet is corroded. When the amount of F in the film exceeds 0.1 mg / m 2 , the deterioration of these characteristics starts to become obvious, so the amount of F is preferably 0.1 mg / m 2 or less. In order to reduce the F amount to 0.1 mg / m 2 or less, after forming the Zr compound film, it may be washed by immersion treatment or spray treatment in warm water. The F amount can be reduced by increasing the length. Therefore, in order to reduce the F content in the film to 0.1 mg / m 2 or less, it is only necessary to perform immersion treatment or spray treatment for 0.5 seconds or more with warm water of 40 ° C. or more. If the water temperature is lower than 40 ° C. or the processing time is lower than 0.5 seconds, the F amount in the film cannot be reduced to 0.1 mg / m 2 or less, and the above-described various characteristics cannot be exhibited.

なお、本発明に係るZr化合物皮膜中に含有される金属Zr量、P量、F量は、例えば、蛍光X線分析等の定量分析法により測定することが可能である。一方、フェノール樹脂皮膜中に含有されるC量は、TOC(全有機体炭素計)を用い、鋼板中に存するC量を差し引くことにより測定することが可能である。   The amount of metal Zr, the amount of P, and the amount of F contained in the Zr compound film according to the present invention can be measured by a quantitative analysis method such as fluorescent X-ray analysis. On the other hand, the amount of C contained in the phenol resin film can be measured by subtracting the amount of C existing in the steel sheet using TOC (total organic carbon meter).

また、陰極電解処理の処理液中におけるアンモニウムイオンの濃度は100〜10000ppm程度、硝酸イオンの濃度は1000〜20000ppm程度の範囲で、生産設備や生産速度(能力)に応じて、適宜調整すればよい。   Further, the concentration of ammonium ions in the treatment solution for the cathodic electrolysis treatment may be adjusted as appropriate depending on the production equipment and production rate (capacity) within the range of about 100 to 10000 ppm and the concentration of nitrate ions of about 1000 to 20000 ppm. .

以下に本発明の実施例及び比較例について述べ、その条件および結果を表1に示す。   Examples and Comparative Examples of the present invention are described below, and the conditions and results are shown in Table 1.

<鋼板上の表面処理層>
以下の処理法(0)〜(6)の方法を用いて、板厚0.17〜0.23mmの鋼板上に表面処理層を付与した。
(処理法0)冷間圧延後、焼鈍、調圧された原板に脱脂、酸洗を施した鋼板を作製した。
(処理法1)冷間圧延後、焼鈍、調圧された原板を脱脂、酸洗後、フェロスタン浴を用いてSnをメッキし、Snめっき鋼板を作製した。
(処理法2)冷間圧延後、焼鈍、調圧された原板を脱脂、酸洗後、ワット浴を用いてNiメッキを施し、Niめっき鋼板を作製した。
(処理法3)冷間圧延後、ワット浴を用いてNiメッキを施し、焼鈍時にNi拡散層を形成させ、Niめっき鋼板を作製した。
(処理法4)冷間圧延後、焼鈍、調圧された原板を脱脂、酸洗後、フェロスタン浴を用いてSnをメッキし、その後、リフロー処理を行い、Sn合金層を有するSnめっき鋼板を作製した。
(処理法5)冷間圧延後、焼鈍、調圧された原板を脱脂、酸洗後、硫酸−塩酸浴を用いてFe−Ni合金めっきを施し、引き続き、フェロスタン浴を用いてSnメッキを施し、Ni、Snめっき鋼板を作製した。
(処理法6)冷間圧延後、焼鈍、調圧された原板を脱脂、酸洗後、硫酸−塩酸浴を用いてSn−Ni合金鍍金を施し、Ni、Snメッキ鋼板を作製した。
<Surface treatment layer on steel plate>
A surface treatment layer was applied on a steel plate having a thickness of 0.17 to 0.23 mm by using the following treatment methods (0) to (6).
(Treatment method 0) After cold rolling, a steel sheet was prepared by degreasing and pickling the annealed and pressure-adjusted original sheet.
(Treatment method 1) After cold rolling, the annealed and pressure-regulated original sheet was degreased and pickled, and then Sn was plated using a ferrostan bath to prepare an Sn-plated steel sheet.
(Treatment method 2) After cold rolling, the annealed and regulated original sheet was degreased and pickled, and then Ni-plated using a Watt bath to prepare a Ni-plated steel sheet.
(Treatment method 3) After cold rolling, Ni plating was performed using a Watt bath, a Ni diffusion layer was formed during annealing, and a Ni plated steel sheet was produced.
(Treatment method 4) After cold rolling, the annealed and pressure-regulated original sheet is degreased, pickled, plated with Sn using a ferrostan bath, and then subjected to reflow treatment to obtain an Sn-plated steel sheet having an Sn alloy layer Produced.
(Treatment method 5) After cold rolling, the annealed and pressure-regulated original sheet is degreased, pickled, and then subjected to Fe-Ni alloy plating using a sulfuric acid-hydrochloric acid bath, followed by Sn plating using a ferrostan bath. , Ni and Sn plated steel sheets were prepared.
(Treatment method 6) After cold rolling, the annealed and regulated original sheet was degreased, pickled, and then subjected to Sn-Ni alloy plating using a sulfuric acid-hydrochloric acid bath to prepare Ni and Sn plated steel sheets.

<皮膜形成>
上記の処理により表面処理層を付与した後、以下の処理法(7)〜(12)でZr化合物皮膜、又は、Zr化合物−フェノール樹脂皮膜を形成した。
(処理法7)フッ化Zr1000ppm、硝酸アンモン1000ppmを溶解させた処理液に上記鋼板を浸漬、陰極電解してZr化合物皮膜を形成した。
(処理法8)フッ化Zr1500ppm、リン酸500ppm、硝酸アンモン5000ppmを溶解させた処理液に、上記鋼板を浸漬し、陰極電解してZr化合物皮膜を形成した。
(処理法9)フッ化Zr4000ppm、リン酸300ppm、フェノール樹脂700ppm、硝酸アンモン10000ppmを溶解させた処理液に、上記鋼板を浸漬し、陰極電解してZr化合物−フェノール樹脂皮膜を形成した。
(処理法10)フッ化Zr8000ppm、硝酸アンモン1000ppmを溶解させた処理液に上記鋼板を浸漬し、Zr化合物皮膜を形成した。
(処理法11)フッ化Zr2000ppm、リン酸500ppm、硝酸アンモン10000ppmを溶解させた処理液に上記鋼板を浸漬、陰極電解してZr化合物皮膜を形成した。
(処理法12)フッ化Zr1500ppm、リン酸400ppm、フェノール樹脂500ppm、硝酸アンモン5000ppmを溶解させた処理液に、上記鋼板を浸漬、陰極電解してZr化合物−フェノール樹脂皮膜を付与した。
<Film formation>
After providing the surface treatment layer by the above treatment, a Zr compound film or a Zr compound-phenol resin film was formed by the following treatment methods (7) to (12).
(Treatment method 7) The steel sheet was immersed in a treatment solution in which 1000 ppm of fluoride Zr and 1000 ppm of ammonium nitrate were dissolved, and was subjected to cathodic electrolysis to form a Zr compound film.
(Treatment Method 8) The steel sheet was immersed in a treatment solution in which 1500 ppm of Zr fluoride, 500 ppm of phosphoric acid, and 5000 ppm of ammonium nitrate were dissolved, and was subjected to cathodic electrolysis to form a Zr compound film.
(Treatment method 9) The steel sheet was immersed in a treatment solution in which 4000 ppm of Zr fluoride, 300 ppm of phosphoric acid, 700 ppm of phenol resin, and 10,000 ppm of ammonium nitrate were dissolved, and cathode electrolysis was performed to form a Zr compound-phenol resin film.
(Treatment method 10) The steel sheet was immersed in a treatment solution in which 8000 ppm of Zr fluoride and 1000 ppm of ammonium nitrate were dissolved to form a Zr compound film.
(Treatment method 11) The steel sheet was immersed in a treatment solution in which fluorinated Zr 2000 ppm, phosphoric acid 500 ppm, and ammonium nitrate 10000 ppm were dissolved, and a Zr compound film was formed by cathodic electrolysis.
(Treatment method 12) The steel sheet was immersed in a treatment solution in which 1500 ppm of fluoride Zr, 1500 ppm of phosphoric acid, 500 ppm of phenol resin, and 5000 ppm of ammonium nitrate were dissolved, and a Zr compound-phenol resin film was applied by cathodic electrolysis.

<水洗処理>
上記の処理によりZr化合物皮膜を形成した後、以下の処理法(13)〜(14)で水洗処理を行い、皮膜中のF量を制御した。
(処理法13)40℃以上の温水に浸漬した。
(処理法14)15℃程度の常温の水に浸漬した。
<Washing treatment>
After the Zr compound film was formed by the above treatment, a water washing treatment was performed by the following treatment methods (13) to (14) to control the amount of F in the film.
(Treatment method 13) It was immersed in warm water of 40 ° C or higher.
(Treatment method 14) It was immersed in water at room temperature of about 15 ° C.

なお、本実施例において、表面処理層中の金属Ni量および金属Sn量は、蛍光X線法によって測定し、検量線を用いて特定した。また、Zr化合物皮膜中に含有される金属Zr量、P量、F量は、蛍光X線分析等の定量分析法により測定した。また、フェノール樹脂皮膜中に含有されるC量は、TOC(全有機体炭素計)を用い、鋼板中に存するC量を差し引くことにより測定した。   In this example, the amount of metallic Ni and the amount of metallic Sn in the surface treatment layer were measured by a fluorescent X-ray method and specified using a calibration curve. Further, the amount of metal Zr, the amount of P, and the amount of F contained in the Zr compound film were measured by a quantitative analysis method such as fluorescent X-ray analysis. Further, the amount of C contained in the phenol resin film was measured by subtracting the amount of C existing in the steel sheet using TOC (total organic carbon meter).

<性能評価>
上記の処理を行った試験材について、以下に示す(A)〜(F)の各項目について性能評価を行った。
<Performance evaluation>
About the test material which performed said process, performance evaluation was performed about each item of (A)-(F) shown below.

その後、以下に示す(A)〜(G)の各項目について性能評価を行った。
(A)加工性
試験材の両面に厚さ20μmのPETフィルムを200℃でラミネートし、絞り加工としごき加工による製缶加工を段階的に行い、フィルムの疵、浮き、剥離を観察しそれらの面積率から成型を4段階(◎:フィルムの疵、浮き、剥離が全くない、○:フィルムの疵、浮き、剥離の面積率が0〜0.5%、△:フィルムの疵、浮き、剥離の面積率が0.5〜15%、×:フィルムの疵、浮き、剥離の面積率が15%超または破断し加工不能)で評価した。
(B)溶接性
ワイヤーシーム溶接機を用いて、溶接ワイヤースピード80m/minの条件で、電流を変更して試験材を溶接し、十分な溶接強度が得られる最小電流値とチリ及び溶接スパッタなどの溶接欠陥が目立ち始める最大電流値からなる適正電流範囲の広さから総合的に判断し、4段階(◎:二次側の適正電流範囲:1500A以上、○:二次側の電流適正電流範囲:800A以上1500A未満、△:二次側の電流適正電流範囲:100A以上800A未満、×:二次側の電流適正電流範囲:100A未満)で溶接性を評価した。
(C)フィルム密着性
試験材の両面に厚さ20μmのPETフィルムを200℃でラミネートし、絞りしごき加工を行い、缶体を作製し、125℃、30minのレトルト処理を行い、フィルムの剥離状況を観察し、剥離面積率から、4段階(◎:剥離面積率:0%、○:剥離面積率0〜2%、△:剥離面積率:2〜10%:、×:剥離面積率:10%超)で評価した。
(D)一次塗料密着性
試験材にエポキシ−フェノール樹脂を塗布し、200℃、30minで焼付けた後、1mm間隔で地鉄に達する深さの碁盤目を入れ、テープで剥離し、剥離状況を観察し、剥離面積率から、4段階(◎:剥離面積率:0%、○:剥離面積率0〜5%、△:剥離面積率:5〜30%:、×:剥離面積率:30%超)で評価した。
(E)二次塗料密着性
試験材にエポキシ−フェノール樹脂を塗布し、200℃、30minで焼付けた後、1mm間隔で地鉄に達する深さの碁盤目を入れ、その後、125℃、30minのレトルト処理を行い、乾燥後、テープで塗膜を剥離し、剥離状況を観察し、剥離面積率から、4段階(◎:剥離面積率:0%、○:剥離面積率0〜5%、△:剥離面積率:5〜30%:、×:剥離面積率:30%超)で評価した。
(F)塗膜下耐食性
試験材にエポキシ−フェノール樹脂を塗布し、200℃、30minで焼付けた後、地鉄に達する深さのクロスカットを入れ、1.5%クエン酸−1.5%食塩混合液からなる試験液に、45℃、72時間浸漬し、洗浄、乾燥後、テープ剥離を行い、クロスカット部の塗膜下腐食状況と平板部の腐食状況を観察し、塗膜下腐食の幅及び平板部の腐食面積率の両評価から、4段階(◎:塗膜下腐食幅0.2mm未満かつ平板部の腐食面積率0%、○:塗膜下腐食幅0.2〜0.3mm未満かつ平板部の腐食面積率0%超〜1%、△:塗膜下腐食幅0.3〜0.45mm未満かつ平板部の腐食面積率1%超〜5%、×:塗膜下腐食幅0.45mm超または平板部の腐食面積率5%超)で判断して評価した。
(G)レトルト耐錆性
試験材を125℃、30minのレトルト処理し、錆の発生状況を観察し、錆発生面積率から4段階(◎:錆発生面積率0%、○:錆発生面積率0%超〜1%、△:錆発生面積率1%超〜5%、×:錆発生面積率5%超)で評価した。
Then, performance evaluation was performed about each item of (A)-(G) shown below.
(A) Workability A 20 μm thick PET film is laminated on both sides of the test material at 200 ° C., and the can making process by drawing and ironing is performed in stages, and the wrinkles, floats, and peeling of the film are observed. There are 4 stages of molding from the area ratio (◎: No film wrinkling, floating, peeling, ○: Area ratio of film wrinkling, floating, peeling is 0 to 0.5%, Δ: Film wrinkling, floating, peeling Area ratio of 0.5 to 15%, x: the area ratio of film wrinkles, floats, and peeling exceeds 15% or breaks and cannot be processed).
(B) Weldability Using a wire seam welder, the current is changed under the conditions of a welding wire speed of 80 m / min, and the test material is welded. Judging comprehensively from the width of the appropriate current range consisting of the maximum current value at which the welding defects of the steel become conspicuous, 4 stages (◎: secondary current current range: 1500 A or more, ○: secondary current proper current range : 800 A or more and less than 1500 A, Δ: secondary current appropriate current range: 100 A or more and less than 800 A, x: secondary current proper current range: less than 100 A), and the weldability was evaluated.
(C) Film adhesion A 20 μm thick PET film is laminated on both sides of the test material at 200 ° C., drawn and ironed to produce a can, and subjected to a retort treatment at 125 ° C. for 30 min. The peeled area ratio was observed in four stages (◎: peeled area ratio: 0%, ○: peeled area ratio: 0-2%, Δ: peeled area ratio: 2-10% :, x: peeled area ratio: 10 More than%).
(D) Primary paint adhesion After applying epoxy-phenol resin to the test material and baking it at 200 ° C for 30 minutes, put a grid with a depth reaching the ground iron at intervals of 1 mm, peel off with tape, Observed, peeled area ratio, 4 stages (◎: peeled area ratio: 0%, ○: peeled area ratio 0-5%, Δ: peeled area ratio: 5-30%: x: peeled area ratio: 30% Super).
(E) Adhesion of secondary paint An epoxy-phenol resin was applied to the test material, baked at 200 ° C. for 30 minutes, and then a grid having a depth reaching the ground iron at intervals of 1 mm, and then 125 ° C. for 30 minutes. After performing retort treatment, drying, the coating film is peeled off with a tape, and the peeling situation is observed. From the peeled area rate, 4 steps (◎: peeled area rate: 0%, ○: peeled area rate 0-5%, Δ : Peeling area ratio: 5 to 30%: x: peeling area ratio: more than 30%).
(F) Under-coating corrosion resistance After applying an epoxy-phenol resin to the test material and baking at 200 ° C. for 30 minutes, a cross-cut with a depth reaching the ground iron is added, 1.5% citric acid—1.5% Immerse in a test solution consisting of a salt mixture at 45 ° C for 72 hours, wash, dry, and then peel off the tape. From the evaluation of both the width of the steel plate and the corrosion area ratio of the flat plate portion, four stages (◎: Under-coating corrosion width less than 0.2 mm and flat plate portion corrosion area ratio 0%, ○: Under-coating corrosion width 0.2-0 Less than 3 mm and the corrosion area ratio of the flat plate part is more than 0% to 1%, Δ: Corrosion width under the coating film is less than 0.3 to 0.45 mm and the corrosion area ratio of the flat plate part is more than 1% to 5%, x: coating film The lower corrosion width exceeds 0.45 mm or the corrosion area ratio of the flat plate portion exceeds 5%.
(G) Retort rust resistance Retort treatment of the test material at 125 ° C. for 30 minutes, observation of rust generation, 4 stages from rust generation area rate (◎: rust generation area rate 0%, ○: rust generation area rate More than 0% to 1%, Δ: rust generation area ratio over 1% to 5%, x: rust generation area ratio over 5%).

Figure 0004886811
Figure 0004886811

本発明の範囲に属する実施例1〜17はいずれも、加工性、溶接性、フィルム密着性、一次塗料密着性、二次塗料密着性、塗膜下腐食性、耐錆性に優れることがわかった。一方、本発明のいずれかの要件を満たさない比較例1〜5は、加工性、溶接性、フィルム密着性、一次塗料密着性、二次塗料密着性、塗膜下腐食性、耐錆性の少なくとも一部の特性が劣ることがわかった。   Examples 1 to 17 belonging to the scope of the present invention are all excellent in workability, weldability, film adhesion, primary paint adhesion, secondary paint adhesion, undercoat corrosion resistance, and rust resistance. It was. On the other hand, Comparative Examples 1 to 5 that do not satisfy any of the requirements of the present invention are workability, weldability, film adhesion, primary paint adhesion, secondary paint adhesion, undercoat corrosion resistance, and rust resistance. It has been found that at least some properties are inferior.

以上、本発明の好適な実施形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。

As mentioned above, although preferred embodiment of this invention was described, it cannot be overemphasized that this invention is not limited to this example. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

Claims (5)

Zrイオン、Fイオン、アンモニウムイオン、硝酸イオンを含む溶液中で、浸漬又は電解処理を行うことにより鋼板上に形成されたZr化合物皮膜を有し、
前記Zr化合物皮膜の付着量が、金属Zr量で1〜100mg/m、F量で0.1mg/m以下である事を特徴とする、容器用鋼板。
In a solution containing Zr ions, F ions, ammonium ions, nitrate ions, having a Zr compound film formed on the steel sheet by dipping or electrolytic treatment,
A steel plate for containers, wherein the amount of Zr compound film deposited is 1 to 100 mg / m 2 in terms of metal Zr and 0.1 mg / m 2 or less in terms of F.
前記溶液中にさらにリン酸イオンを含み、
前記Zr化合物皮膜の付着量が、さらにP量で0.1〜50mg/mであることを特徴とする、請求項1に記載の容器用鋼板。
The solution further contains phosphate ions,
The steel sheet for containers according to claim 1, wherein the adhesion amount of the Zr compound film is further 0.1 to 50 mg / m 2 in terms of P amount.
前記溶液中にさらにフェノール樹脂を含み、
前記Zr化合物皮膜にフェノール樹脂皮膜をさらに有し、
前記フェノール樹脂皮膜の付着量が、C量で0.1〜50mg/mであることを特徴とする、請求項2に記載の容器用鋼板。
The solution further contains a phenolic resin,
The Zr compound film further has a phenol resin film,
The steel plate for containers according to claim 2, wherein the adhesion amount of the phenol resin film is 0.1 to 50 mg / m 2 in terms of C amount.
前記鋼板は、少なくとも片面に、Niを10〜1000mg/mまたはSnを100〜15000mg/mを含む表面処理層を有する表面処理鋼板である事を特徴とする、請求項1〜3のいずれか1項に記載の容器用鋼板。 The said steel plate is a surface treatment steel plate which has a surface treatment layer containing 10 to 1000 mg / m < 2 > of Ni or 100 to 15000 mg / m < 2 > of Sn at least on one side. The container steel plate according to claim 1. 請求項1〜3のいずれか1項に記載の溶液中で、前記Zr化合物皮膜を形成した後、40℃以上の温水で0.5秒以上の浸漬処理あるいはスプレー処理による洗浄処理を行うことを特徴とする、容器用鋼板の製造方法。
In the solution according to any one of claims 1 to 3 , after forming the Zr compound film, performing a cleaning process by immersion process or spray process for 0.5 seconds or more with warm water of 40 ° C or higher. A method for producing a steel plate for containers.
JP2009108187A 2008-06-05 2009-04-27 Steel plate for containers excellent in organic film performance and method for producing the same Active JP4886811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009108187A JP4886811B2 (en) 2008-06-05 2009-04-27 Steel plate for containers excellent in organic film performance and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008148128 2008-06-05
JP2008148128 2008-06-05
JP2009108187A JP4886811B2 (en) 2008-06-05 2009-04-27 Steel plate for containers excellent in organic film performance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010013728A JP2010013728A (en) 2010-01-21
JP4886811B2 true JP4886811B2 (en) 2012-02-29

Family

ID=41700087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009108187A Active JP4886811B2 (en) 2008-06-05 2009-04-27 Steel plate for containers excellent in organic film performance and method for producing the same

Country Status (1)

Country Link
JP (1) JP4886811B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180016527A (en) 2015-06-23 2018-02-14 신닛테츠스미킨 카부시키카이샤 METHOD FOR MANUFACTURING STEEL PLANT FOR CONTAINER
KR20180019188A (en) 2015-06-23 2018-02-23 신닛테츠스미킨 카부시키카이샤 METHOD FOR MANUFACTURING STEEL PLANT FOR CONTAINER

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104818474B (en) * 2010-03-23 2018-07-10 新日铁住金株式会社 The manufacturing method of steel plate for container
EP2551378B1 (en) * 2010-03-25 2015-04-29 Nippon Steel & Sumitomo Metal Corporation Steel sheet for vessel having excellent corrosion resistance
JP5786296B2 (en) 2010-03-25 2015-09-30 Jfeスチール株式会社 Surface-treated steel sheet, method for producing the same, and resin-coated steel sheet using the same
JP6168101B2 (en) * 2010-03-25 2017-07-26 Jfeスチール株式会社 Surface-treated steel sheet, method for producing the same, and resin-coated steel sheet using the same
EP2578727B1 (en) * 2010-05-28 2019-06-26 Toyo Seikan Group Holdings, Ltd. Method of manufacturing surface-treated steel plate using a surface treatment bath, and surface-treated steel plate formed with said manufacturing method
TWI449813B (en) * 2010-06-29 2014-08-21 Nippon Steel & Sumitomo Metal Corp Steel sheet for container and manufacturing method thereof
JP5093409B2 (en) * 2010-08-18 2012-12-12 新日本製鐵株式会社 Steel plate for beverage cans with excellent corrosion resistance
JP5861249B2 (en) * 2010-09-15 2016-02-16 Jfeスチール株式会社 Manufacturing method of steel plate for containers
JP5742147B2 (en) 2010-09-15 2015-07-01 Jfeスチール株式会社 Surface-treated steel sheet, method for producing the same, and resin-coated steel sheet using the same
JP5754099B2 (en) * 2010-09-15 2015-07-22 Jfeスチール株式会社 Manufacturing method of steel plate for containers
JP5845563B2 (en) * 2010-09-15 2016-01-20 Jfeスチール株式会社 Manufacturing method of steel plate for containers
MY162540A (en) * 2010-09-15 2017-06-15 Jfe Steel Corp Steel sheet for containers and manufacturing method for same
WO2012036203A1 (en) * 2010-09-15 2012-03-22 Jfeスチール株式会社 Steel plate for containers and manufacturing method for same
US20140377581A1 (en) * 2011-03-25 2014-12-25 Nippon Paint Co., Ltd. Surface treatment agent composition for tin-plated steel, and tin-plated steel subjected to surface treatment
CN103608491B (en) * 2011-03-25 2016-06-15 日涂表面处理化工有限公司 Surface treatment composition, the manufacture method of surface treated steel plate, surface treated steel plate, organic coating surface treated steel plate, cover, tank body and seamless tank
DE102012000414B4 (en) * 2012-01-12 2014-03-20 Thyssenkrupp Rasselstein Gmbh Process for passivating tinplate and tinned steel strip or sheet
JP6081224B2 (en) 2013-02-27 2017-02-15 東洋鋼鈑株式会社 Manufacturing method of surface-treated steel sheet
JP6052305B2 (en) * 2013-08-08 2016-12-27 Jfeスチール株式会社 Steel plate for containers
EP3051006B1 (en) * 2013-09-25 2019-06-19 Toyo Kohan Co., Ltd. Method for producing surface-treated steel sheet
CN107208298B (en) * 2015-02-06 2020-06-19 日本制铁株式会社 Sn-plated steel sheet, chemical conversion-treated steel sheet, and methods for producing these
WO2017204266A1 (en) 2016-05-24 2017-11-30 新日鐵住金株式会社 Sn alloy-plated steel sheet
JP6658878B2 (en) * 2016-05-24 2020-03-04 日本製鉄株式会社 Steel plate for containers
ES2847377T3 (en) 2016-05-24 2021-08-03 Nippon Steel Corp Sn-plated steel sheet
JP2018119192A (en) * 2017-01-26 2018-08-02 新日鐵住金株式会社 Steel wire for reinforcing rubber product, steel cord for reinforcing rubber product and method for manufacturing steel wire for reinforcing rubber product
US11021806B2 (en) 2017-04-13 2021-06-01 Nippon Steel Corporation Sn-plated steel sheet and method for manufacturing Sn-plated steel sheet
WO2019124416A1 (en) * 2017-12-22 2019-06-27 東洋製罐株式会社 Organic-resin-coated two-piece aluminum can
WO2019168179A1 (en) 2018-03-01 2019-09-06 日本製鉄株式会社 Sn-plated steel sheet and method for manufacturing sn-plated steel sheet
KR102599384B1 (en) 2019-12-19 2023-11-08 닛폰세이테츠 가부시키가이샤 Sn-based plated steel sheet
EP4092159A4 (en) 2020-03-26 2023-07-19 Nippon Steel Corporation Sn-based plated steel sheet

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005325403A (en) * 2004-05-13 2005-11-24 Nippon Paint Co Ltd Surface treatment method for aluminum die-cast material
JP4242827B2 (en) * 2004-12-08 2009-03-25 日本パーカライジング株式会社 Metal surface treatment composition, surface treatment liquid, surface treatment method, and surface-treated metal material
JP5186816B2 (en) * 2007-06-20 2013-04-24 新日鐵住金株式会社 Steel plate for containers and manufacturing method thereof
JP4996409B2 (en) * 2007-09-28 2012-08-08 新日本製鐵株式会社 Method for producing chemical conversion coated steel sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180016527A (en) 2015-06-23 2018-02-14 신닛테츠스미킨 카부시키카이샤 METHOD FOR MANUFACTURING STEEL PLANT FOR CONTAINER
KR20180019188A (en) 2015-06-23 2018-02-23 신닛테츠스미킨 카부시키카이샤 METHOD FOR MANUFACTURING STEEL PLANT FOR CONTAINER
US10465309B2 (en) 2015-06-23 2019-11-05 Nippon Steel Corporation Steel sheet for containers, and method for producing steel sheet for containers
US10851467B2 (en) 2015-06-23 2020-12-01 Nippon Steel Corporation Steel sheet for containers, and method for producing steel sheet for containers

Also Published As

Publication number Publication date
JP2010013728A (en) 2010-01-21

Similar Documents

Publication Publication Date Title
JP4886811B2 (en) Steel plate for containers excellent in organic film performance and method for producing the same
JP4920800B2 (en) Manufacturing method of steel plate for containers
JP5093797B2 (en) Steel plate for containers with excellent can processability
JP5304000B2 (en) Steel plate for containers with excellent weldability, appearance, and can manufacturing process adhesion
JP5196035B2 (en) Steel plate for container and method for producing the same
JP5845563B2 (en) Manufacturing method of steel plate for containers
JP5672775B2 (en) Steel plate for containers excellent in organic film performance and method for producing the same
JP5754099B2 (en) Manufacturing method of steel plate for containers
JP5861249B2 (en) Manufacturing method of steel plate for containers
JP5214437B2 (en) Steel plate for containers
JP5157487B2 (en) Steel plate for containers and manufacturing method thereof
JP5729230B2 (en) Steel plate for container and method for producing the same
JP6119930B2 (en) Steel plate for container and method for producing steel plate for container
JP4897818B2 (en) Steel plate for container and manufacturing method thereof
JP2009001854A (en) Steel sheet for vessel
JPWO2016207967A1 (en) Steel plate for container and method for producing steel plate for container
JP6119931B2 (en) Steel plate for container and method for producing steel plate for container

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4886811

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350