WO2006061297A1 - Method for controlling an internal combustion engine having at least two valve lifting curve progressions - Google Patents

Method for controlling an internal combustion engine having at least two valve lifting curve progressions Download PDF

Info

Publication number
WO2006061297A1
WO2006061297A1 PCT/EP2005/055801 EP2005055801W WO2006061297A1 WO 2006061297 A1 WO2006061297 A1 WO 2006061297A1 EP 2005055801 W EP2005055801 W EP 2005055801W WO 2006061297 A1 WO2006061297 A1 WO 2006061297A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve lift
control
injection control
internal combustion
combustion engine
Prior art date
Application number
PCT/EP2005/055801
Other languages
German (de)
French (fr)
Inventor
Bernhard Klingseis
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2006061297A1 publication Critical patent/WO2006061297A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • F02D13/0226Variable control of the intake valves only changing valve lift or valve lift and timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0269Controlling the valves to perform a Miller-Atkinson cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0082Controlling each cylinder individually per groups or banks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • F02D41/2445Methods of calibrating or learning characterised by the learning conditions characterised by a plurality of learning conditions or ranges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2477Methods of calibrating or learning characterised by the method used for learning
    • F02D41/248Methods of calibrating or learning characterised by the method used for learning using a plurality of learned values
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to a method for controlling an internal combustion engine having at least two valve lift progressions.
  • the inventive method is used to control a
  • the internal combustion engine is provided with a lambda control, an injection control and a control for a camshaft phase position.
  • the method according to the invention adapts the injection control in the case of a first valve lift course, in order to achieve a minimum lambda control deviation.
  • the internal combustion engine operates in a stationary operating state.
  • the injection control operates in the steady-state operating state with the adapted parameters for the injection control.
  • the camshaft phasing is adapted to achieve a minimum lambda control deviation.
  • the injection control is adapted during the less sensitive valve filling, while the camshaft phase position is adapted to the more sensitive profile.
  • the adaptation of the injection control is repeated for a plurality of stationary operating states.
  • a separate set of control parameters for the injection control is then expediently created for each operating state, and the camshaft phase position is adapted in each case for the different operating states.
  • This method step is based on the finding that, with adapted injection control, the parameters for the operating state respectively accurately reflect the supplied fuel quantity in this operating state.
  • the camshaft phase position can then be adapted in each case for a number of operating states with the corresponding injection control.
  • each separate sets of control parameters are stored in the injection control.
  • the control parameters can be adapted individually for injection control on cylinders.
  • FIG. 1 shows a flow chart for the main method steps
  • FIG. 2 shows the air mass flow through the inlet valve at different rotational speeds and valve lift characteristics
  • FIG. 3 shows the exemplary course of a valve lift and FIG. 4 shows, by way of example, the sequence of the method according to the invention in a block diagram.
  • FIG. 1 shows schematically the essential procedural steps.
  • a first step 10 the prerequisites for carrying out the method according to the invention are checked and an initialization of the data used in the method takes place.
  • the query is whether the internal combustion engine is in a predetermined stationary operation.
  • the predetermined operating condition it is important that it be kept stationary with both a large valve lift curve and a small valve lift curve. With reference to the rotational speed, this means that the predetermined operating state must not be too high a rotational speed, so that it can still be reached by both valve lift curves.
  • the more sensitive valve lift range is the valve lift range where the intake valve closes earlier.
  • step 16 an adaptation of the fuel system takes place, during which adaptation the internal combustion engine operates with the less sensitive valve lift. With the adapted fuel system 16, the adaptation of the camshaft phase position takes place in a subsequent step 18.
  • FIG. 2 illustrates the different recorded air mass per cycle with large valve lift (WL_H) and small valve lift (WL L).
  • the large valve lift 20 shows depending on the speed of the recorded air mass in the cylinder. It can clearly be seen from FIG. 2 that in the lower speed range the air mass supplied to the combustion increases with the rotational speed and runs approximately constant starting from an average rotational speed range. In contrast, the air mass taken per cycle decreases with increasing speed with a small valve lift curve. The course of the air mass in the small valve lift curve is shown by way of example with a curve 22. With the early closing of the intake valve, the amount of air flowing into the cylinder decreases as the engine speed increases.
  • the change in the air mass per cycle ( ⁇ MAF CYL) to the change in the actual value of the camshaft phase position ( ⁇ CAM_IN_AV) can be considered as a measure of the sensitivity of the system during adaptation. If the quotient is large, so a small change in the camshaft phase position leads to a large change in the recorded air, so there is a particularly sensitive area.
  • FIG. 3 shows, by way of example, the valve lift for the outlet valve and the inlet valve.
  • the valve lift 24 of the exhaust valve extends essentially over the first region, so that the exhaust valve already has a valve lift at bottom dead center 26, which increases in the first region and approaches zero after the load change at top dead center 28.
  • the valve lift 30 shows the maximum lift for the intake valve.
  • Curve 32 exemplifies a valve lift curve for the intake valve with a lower valve lift. In curve 32, the closing of the intake valve is approximately to bottom dead center 36.
  • FIG. 4 shows the implementation of the method according to the invention in a block diagram.
  • a bank-selective lambda setpoint value (LAMB_SP_FIL_HOM) is applied, from which a bank-selective actual lambda value 38 is subtracted.
  • the bank-selective lambda control variable thus formed is connected to a lambda
  • Controller 40 on.
  • the determined by the lambda controller 40 correction value FAC_LAM_COR for the considered valve bank is present a controller 44, which filters out substantially short-term fluctuations of the signal.
  • the lambda correction value FAC_LAM_COR 42 is converted in the controller 44 into a change of the camshaft phase position CAM OFS LAM AD LOAD 46 in order to make the control intervention visible.
  • the camshaft phase position is calculated additively.
  • the actual values for the air mass per working cycle (MAF) 50, the rotational speed (N) 52 and an acknowledgment flag (NR_CYL_VLL_H_ACK) 54 are applied to a central controller 48 as to whether an operating mode with increased valve lift has been confirmed. Furthermore, quantities for the injection control (CILC_DATA) 56 are applied to the central controller 48.
  • the data 56 contains the variables cylinder-selective injection time TI CYL LAM 58, cylinder-selective lambda correction factor LAM_CYL_SEL_ADJ_FAC 60 and a logical variable LV LAM CYL ACT 62, whether the cylinder-selective lambda or injection correction is active.
  • the central controller then calculates an activation signal LV_LAM_AD_LOAD_ACT 64, which is applied to a switching unit 66. If the signal is applied to the switching unit 66, which is to take place an adaptation of the camshaft phase position, the output signal of the controller 44 is forwarded as shown in FIG. 4 and the actual value 68 for the camshaft phase position is added thereto. The sum of both values gives the actual value for the camshaft phase position
  • the method according to the invention makes use of the fact that the change in the air mass per working cycle is much lower with a change of the camshaft phase position at a late time for the closing of the intake valve than with a valve lift curve with an early closing time for the intake valve.
  • initially inaccuracies in the injection are adapted.
  • the knowledge about the filling accuracy of the cylinders with fuel thus obtained is retained when the internal combustion engine is operated at the same operating point and a more sensitive valve lift curve is present. If the operating point is as identical as possible, the camshaft phase position is then adapted, the operating point also being stationary here.
  • Non-linearities of the injector are not significant in this method, and also influences of fuel pressure and temperature can be neglected to a great extent since they are constant or can be assumed to be constant in the approximately 20-30 seconds that the adaptation algorithm lasts.
  • the essential advantage of the invention is to realize a much more exact positioning of the camshaft drive without an additional expenditure of sensor technology.

Abstract

The invention relates to a method for controlling an internal combustion engine having at least two valve lifting curve progressions, during which the internal combustion engine has a lambda control, an injection control and a control for a camshaft phase position. In order to compensate for the inaccuracies occurring during the recording of the camshaft position, the recording is adapted in the following manner: in a stationary operating state during a first valve lifting curve progression, the injection control is adapted in order to achieve a minimum lambda controller deviation. In a second valve lifting curve progression, the injection control in the pre-specified stationary operating state operates with the adapted parameters, and the camshaft phase position is adapted in order to achieve a minimum Lambda controller deviation.

Description

Beschreibungdescription
Verfahren zur Steuerung einer Brennkraftmaschine mit mindestens zwei VentilerhebungsverläufenMethod for controlling an internal combustion engine with at least two valve lift progressions
Die Erfindung betrifft ein Verfahren zur Steuerung einer Brennkraftmaschine mit mindestens zwei Ventilerhebungsverläufen.The invention relates to a method for controlling an internal combustion engine having at least two valve lift progressions.
Bei der Berechnung der in die Zylinder einströmenden Luftmasse während des Betriebs einer Brennkraftmaschine mit mehreren unterschiedlichen Ventilerhebungsverläufen können sich besonders große Abweichungen ergeben. Bei einem niedrigen Ventilerhebungsverlauf erfolgt ein frühes Schließen des Einlassven- tils, woraufhin sich die in den Zylindern befindliche Luft durch die weitere Bewegung des Kolbens expandiert. Der frühe Zeitpunkt zum Schließen des Einlassventils erfolgt dann, wenn sich der Luftmassenstrom nahe seiner maximalen Geschwindigkeit in dem Zylinder bewegt. Eine geringe Verschiebung des Zeitpunkts bedeutet hierbei eine große Änderung in der Luftmasse, sodass bei einem niedrigen Signalerhebungsverlauf die berechnete Größe für die Luftmasse besonders sensitiv auf Änderungen der Parameter ist.When calculating the air mass flowing into the cylinders during the operation of an internal combustion engine having a plurality of different valve lift characteristics, particularly large deviations may result. With a low valve lift course, the inlet valve closes early, whereupon the air in the cylinders expands due to the further movement of the piston. The early time to close the intake valve occurs when the air mass flow is near its maximum velocity in the cylinder. A small shift in the time means here a large change in the air mass, so that at a low signal acquisition curve, the calculated size for the air mass is particularly sensitive to changes in the parameters.
Diese Abweichungen der aufgenommenen Luftmasse treten insbesondere bei Brennkraftmaschinen mit zwei Zylinderbänken auf. Eine Lambda-bezogene Gleichstellung der Zylinderbänke führt hier nicht zu hinreichend genauen Ergebnissen, da mit der Lambda-bezogenen Gleichstellung lediglich die Auswirkung der Füllungsunterschiede mit Kraftstoff ausgeglichen werden. Die durch Unterschiede in der Luftfüllung entstehenden Abweichungen können bei dem Lambda-bezogenen Ansatz nicht ausgeglichen werden. Wenn die Brennkraftmaschine bei einem niedrigen Signalerhebungsverlauf arbeitet, kann es hier zu deutlichen Ab- weichungen in der Luftmasse im Zylinder kommen, da das Einlassventil früher schließt. Vor diesem Hintergrund besteht das Bedürfnis, ein Verfahren zur Steuerung einer Brennkraftmaschine bereitzustellen, das auch unterschiedliches Lufteinlassverhalten einzelner Zylinder und/oder Zylinderbänke adaptieren kann.These deviations of the absorbed air mass occur in particular in internal combustion engines with two cylinder banks. A lambda-related equality of the cylinder banks does not lead to sufficiently accurate results here, because with the lambda-related equality only the effect of filling differences are compensated with fuel. The differences resulting from differences in the air filling can not be compensated in the lambda-related approach. If the internal combustion engine is operating at a low signal acquisition curve, it can lead to significant deviations in the air mass in the cylinder because the inlet valve closes earlier. Against this background, there is a need to provide a method for controlling an internal combustion engine, which can also adapt different air intake behavior of individual cylinders and / or cylinder banks.
Erfindungsgemäß wird die Aufgabe durch ein Verfahren mit den Merkmalen aus Anspruch 1 gelöst. Vorteilhafte Ausgestaltung bilden die Gegenstände der Unteransprüche.According to the invention the object is achieved by a method having the features of claim 1. Advantageous embodiment form the subject of the dependent claims.
Das erfindungsgemäße Verfahren dient zur Steuerung einerThe inventive method is used to control a
Brennkraftmaschine mit mindestens zwei Ventilerhebungsverläufen. Die Brennkraftmaschine ist mit einer Lambda-Regelung, einer Einspritzsteuerung und einer Steuerung für eine Nocken- wellenphasenlage versehen. Das erfindungsgemäße Verfahren a- daptiert in einem stationären Betriebszustand bei einem ersten Ventilerhebungsverlauf die Einspritzsteuerung, um eine minimale Lambda-Reglerabweichung zu erzielen. Es wird also bei einer feststehenden Nockenwellenphasenlage die Lambda- Reglerabweichung minimiert. Hierbei arbeitet die Brennkraft- maschine in einem stationären Betriebszustand. Bei einem zweiten Ventilerhebungsverlauf arbeitet die Einspritzsteuerung in dem stationären Betriebszustand mit den adaptierten Parametern für die Einspritzsteuerung. Hier wird die Nockenwellenphasenlage adaptiert, um eine minimale Lambda- Reglerabweichung zu erzielen. Für den Betrieb mit dem zweiten Ventilerhebungsverlauf wird also eine Adaption der Nockenwellenphasenlage vorgenommen, mit den zuvor bestimmten Parametern für die Einspritzung. Hiermit wird ein Aufschaukeln oder ein instabiles Reglerverhalten durch eine wechselseitige Be- einflussung der Regler vermieden. Auch stellt das erfindungsgemäße Verfahren sicher, dass mit einfachen Mitteln eine A- daption erfolgen kann, bei der mit einem einfachen und stabilen Adaptionsverfahren eine sehr genaue Einstellung erzielt werden kann.Internal combustion engine with at least two valve lift progressions. The internal combustion engine is provided with a lambda control, an injection control and a control for a camshaft phase position. In a stationary operating state, the method according to the invention adapts the injection control in the case of a first valve lift course, in order to achieve a minimum lambda control deviation. Thus, with a fixed camshaft phase position, the lambda control deviation is minimized. In this case, the internal combustion engine operates in a stationary operating state. In a second valve lift course, the injection control operates in the steady-state operating state with the adapted parameters for the injection control. Here, the camshaft phasing is adapted to achieve a minimum lambda control deviation. For the operation with the second valve lift course, therefore, an adaptation of the camshaft phase position is carried out, with the previously determined parameters for the injection. This prevents rocking or instable controller behavior by mutual influence of the controllers. The method according to the invention also ensures that an adaption can be carried out with simple means, in which a very precise adjustment can be achieved with a simple and stable adaptation method.
In einer bevorzugten Ausgestaltung des erfindungsgemäßen Verfahrens erfolgt bei dem ersten Ventilerhebungsverlauf ein größerer Ventilhub als bei dem zweiten Ventilerhebungsverlauf. Bei dieser Ausgestaltung des Verfahrens wird also die Einspritzsteuerung während der weniger sensitiven Ventilbe- füllung adaptiert, während die Nockenwellenphasenlage dem sensitiveren Verlauf angepasst wird.In a preferred embodiment of the method according to the invention takes place in the first valve lift course larger valve lift than in the second valve lift course. In this embodiment of the method, therefore, the injection control is adapted during the less sensitive valve filling, while the camshaft phase position is adapted to the more sensitive profile.
In einer bevorzugten Ausgestaltung wird die Adaption der Einspritzsteuerung für mehrere stationäre Betriebszustände wiederholt. Zweckmäßigerweise wird dann für jeden Betriebszu- stand ein gesonderter Satz von Steuerparametern für die Einspritzsteuerung angelegt und die Nockenwellenphasenlage jeweils für die unterschiedlichen Betriebszustände adaptiert. Diesem Verfahrensschritt liegt die Erkenntnis zugrunde, dass bei adaptierter Einspritzsteuerung die Parameter für den Be- triebszustand jeweils die zugeführte Kraftstoffmenge in diesem Betriebszustand genau wiederspiegeln. Vor diesem Hintergrund kann dann die Nockenwellenphasenlage jeweils für eine Anzahl von Betriebszuständen mit der entsprechenden Einspritzsteuerung adaptiert werden.In a preferred embodiment, the adaptation of the injection control is repeated for a plurality of stationary operating states. A separate set of control parameters for the injection control is then expediently created for each operating state, and the camshaft phase position is adapted in each case for the different operating states. This method step is based on the finding that, with adapted injection control, the parameters for the operating state respectively accurately reflect the supplied fuel quantity in this operating state. Against this background, the camshaft phase position can then be adapted in each case for a number of operating states with the corresponding injection control.
Für eine Brennkraftmaschine mit zwei oder mehr Zylinderbänken sind jeweils getrennte Sätze von Steuerparametern in der Einspritzsteuerung abgelegt. Die Steuerparameter können für die Einspritzsteuerung auf Zylinder individuell adaptiert werden.For an internal combustion engine with two or more cylinder banks each separate sets of control parameters are stored in the injection control. The control parameters can be adapted individually for injection control on cylinders.
Das erfindungsgemäße Verfahren wird nachfolgend anhand eines Beispiels näher erläutert. Es zeigt:The method according to the invention will be explained in more detail below by means of an example. It shows:
Figur 1 ein Flussdiagramm zu den Hauptverfahrensschritten,FIG. 1 shows a flow chart for the main method steps,
Figur 2 den Luftmassenstrom durch das Einlassventil bei unterschiedlicher Drehzahl und Ventilerhebungsverläufen,FIG. 2 shows the air mass flow through the inlet valve at different rotational speeds and valve lift characteristics,
Figur 3 den beispielhaften Verlauf einer Ventilerhebung und Figur 4 beispielhaft den Ablauf des erfindungsgemäßen Verfahrens in einem Blockdiagramm.Figure 3 shows the exemplary course of a valve lift and FIG. 4 shows, by way of example, the sequence of the method according to the invention in a block diagram.
Figur 1 zeigt schematisch die wesentlichen Verfahrensschrit- te. In einem ersten Schritt 10 werden die Voraussetzungen für die Durchführung des erfindungsgemäßen Verfahrens geprüft und es erfolgt eine Initialisierung der bei dem Verfahren eingesetzten Daten. In einer ersten Abfrage 12 erfolgt die Abfrage, ob sich die Brennkraftmaschine in einem vorbestimmten stationären Betrieb befindet. Für den vorbestimmten Betriebszustand ist es wichtig, dass dieser sowohl mit großer Ventilerhebungskurve als auch mit kleiner Ventilerhebungskurve stationär gehalten wird. Bezogen auf die Drehzahl bedeutet dies, dass der vorbestimmte Betriebszustand eine nicht zu hohe Drehzahl besitzen darf, sodass dieser noch durch beide Ventilerhebungskurven erreicht werden kann. Um dies sicherzustellen, wird in Abfrage 14 noch einmal explizit überprüft, ob ein Betrieb der Brennkraftmaschine in dem Betriebszustand auch in dem empfindlicheren Ventilhubbereich möglich ist. Der empfindlichere Ventilhubbereich ist derjenige Ventilhubbereich, bei dem das Einlassventil früher schließt.FIG. 1 shows schematically the essential procedural steps. In a first step 10, the prerequisites for carrying out the method according to the invention are checked and an initialization of the data used in the method takes place. In a first query 12, the query is whether the internal combustion engine is in a predetermined stationary operation. For the predetermined operating condition, it is important that it be kept stationary with both a large valve lift curve and a small valve lift curve. With reference to the rotational speed, this means that the predetermined operating state must not be too high a rotational speed, so that it can still be reached by both valve lift curves. To ensure this, it is once again explicitly checked in query 14 whether an operation of the internal combustion engine in the operating state is also possible in the more sensitive valve lift range. The more sensitive valve lift range is the valve lift range where the intake valve closes earlier.
Wenn der Betrieb im empfindlicheren Ventilhub möglich ist, dann erfolgt in Schritt 16 eine Adaption des Kraftstoffsys- tems, wobei während dieser Adaption die Brennkraftmaschine mit dem unempfindlicheren Ventilhub arbeitet. Mit dem adaptierten KraftstoffSystem 16 erfolgt in einem nachfolgenden Schritt 18 die Adaption der Nockenwellenphasenlage.If operation is possible in the more sensitive valve lift, then in step 16 an adaptation of the fuel system takes place, during which adaptation the internal combustion engine operates with the less sensitive valve lift. With the adapted fuel system 16, the adaptation of the camshaft phase position takes place in a subsequent step 18.
Figur 2 verdeutlicht die unterschiedlich aufgenommene Luftmasse pro Arbeitsspiel bei großer Ventilerhebung (WL_H) und bei kleiner Ventilerhebung (WL L) . Die große Ventilerhebung 20 zeigt abhängig von der Drehzahl die in den Zylinder aufgenommene Luftmasse. Deutlich zu erkennen an Figur 2 ist, dass im unteren Drehzahlbereich die der Verbrennung zugeführte Luftmasse mit der Drehzahl zunimmt und ab einem mittleren Drehzahlbereich ungefähr konstant läuft. Im Gegensatz hierzu nimmt die pro Arbeitsspiel aufgenommene Luftmasse bei einer kleinen Ventilerhebungskurve mit zunehmender Drehzahl ab. Der Verlauf der Luftmasse bei der kleinen Ventilerhebungskurve ist beispielhaft mit einer Kurve 22 dargestellt. Mit dem frühen Schließen des Einlassventils nimmt die Menge an in den Zylinder strömende Luft ab, je stärker die Drehzahl sich erhöht.Figure 2 illustrates the different recorded air mass per cycle with large valve lift (WL_H) and small valve lift (WL L). The large valve lift 20 shows depending on the speed of the recorded air mass in the cylinder. It can clearly be seen from FIG. 2 that in the lower speed range the air mass supplied to the combustion increases with the rotational speed and runs approximately constant starting from an average rotational speed range. In contrast, the air mass taken per cycle decreases with increasing speed with a small valve lift curve. The course of the air mass in the small valve lift curve is shown by way of example with a curve 22. With the early closing of the intake valve, the amount of air flowing into the cylinder decreases as the engine speed increases.
Als Größe für die Sensitivität des Systems bei der Adaption lässt sich die Änderung der Luftmasse pro Arbeitsspiel (Δ MAF CYL) zu der Änderung des Ist-Werts der Nockenwellenpha- senlage (Δ CAM_IN_AV) betrachten. Ist der Quotient groß, führt also eine kleine Änderung in der Nockenwellenphasenlage zu einer großen Änderung der aufgenommenen Luft, so liegt ein besonders sensitiver Bereich vor.The change in the air mass per cycle (Δ MAF CYL) to the change in the actual value of the camshaft phase position (Δ CAM_IN_AV) can be considered as a measure of the sensitivity of the system during adaptation. If the quotient is large, so a small change in the camshaft phase position leads to a large change in the recorded air, so there is a particularly sensitive area.
Figur 3 zeigt beispielhaft den Ventilhub für das Auslassventil und das Einlassventil. Der Ventilhub 24 des Auslassven- tils erstreckt sich im Wesentlichen über den ersten Bereich, sodass das Auslassventil im unteren Totpunkt 26 bereits einen Ventilhub besitzt, der im ersten Bereich zunimmt und nach dem Lastwechsel im oberen Totpunkt 28 gegen null geht. In einem zweiten Bereich sind unterschiedliche Ventilhübe für das oder die Einlassventile dargestellt. Der Ventilhub 30 zeigt den maximalen Hub für das Einlassventil. Kurve 32 zeigt beispielhaft eine Ventilerhebungskurve für das Einlassventil mit einem niedrigeren Ventilhub. In Kurve 32 erfolgt das Schließen des Einlassventils ungefähr zum unteren Totpunkt 36.FIG. 3 shows, by way of example, the valve lift for the outlet valve and the inlet valve. The valve lift 24 of the exhaust valve extends essentially over the first region, so that the exhaust valve already has a valve lift at bottom dead center 26, which increases in the first region and approaches zero after the load change at top dead center 28. In a second area, different valve lifts for the intake valve or valves are shown. The valve lift 30 shows the maximum lift for the intake valve. Curve 32 exemplifies a valve lift curve for the intake valve with a lower valve lift. In curve 32, the closing of the intake valve is approximately to bottom dead center 36.
Figur 4 zeigt die Umsetzung des erfindungsgemäßen Verfahrens in einem Blockdiagramm. In dem Verfahren liegt ein bankselektiver Lambda-Sollwert (LAMB_SP_FIL_HOM) an, von dem ein bankselektiver Lambda-Istwert 38 subtrahiert wird. Die so gebil- dete bankselektive Lambda-Regelgröße liegt an einem Lambda-FIG. 4 shows the implementation of the method according to the invention in a block diagram. In the method, a bank-selective lambda setpoint value (LAMB_SP_FIL_HOM) is applied, from which a bank-selective actual lambda value 38 is subtracted. The bank-selective lambda control variable thus formed is connected to a lambda
Regler 40 an. Die von dem Lambda-Regler 40 ermittelte Korrekturgröße FAC_LAM_COR für die betrachtete Ventilbank liegt an einem Regler 44 an, der im Wesentlichen kurzfristige Schwankungen aus dem Signal herausfiltert. Der Lambda-Korrekturwert FAC_LAM_COR 42 wird in dem Regler 44 in eine Änderung der No- ckenwellenphasenlage CAM OFS LAM AD LOAD 46 umgerechnet, um den Reglereingriff sichtbar zu machen. Die Nockenwellenpha- senlage wird additiv eingerechnet.Controller 40 on. The determined by the lambda controller 40 correction value FAC_LAM_COR for the considered valve bank is present a controller 44, which filters out substantially short-term fluctuations of the signal. The lambda correction value FAC_LAM_COR 42 is converted in the controller 44 into a change of the camshaft phase position CAM OFS LAM AD LOAD 46 in order to make the control intervention visible. The camshaft phase position is calculated additively.
An einer zentralen Steuerung 48 liegen die Ist-Werte für die Luftmasse pro Arbeitsspiel (MAF) 50, die Drehzahl (N) 52 so- wie eine Bestätigungsfahne (NR_CYL_VLL_H_ACK) 54 an, ob ein Betriebsmodus mit erhöhtem Ventilhub bestätigt wurde. Ferner liegen an der zentralen Steuerung 48 Größen zur Einspritzsteuerung (CILC_DATA) 56 an. Die Daten 56 enthalten die Größen zylinderselektive Einspritzzeit TI CYL LAM 58, zylinder- selektiver Lambda-Korrekturfaktor LAM_CYL_SEL_ADJ_FAC 60 sowie eine logische Variable LV LAM CYL ACT 62, ob die zylinderselektive Lambda- bzw. Einspritzkorrektur aktiv ist.The actual values for the air mass per working cycle (MAF) 50, the rotational speed (N) 52 and an acknowledgment flag (NR_CYL_VLL_H_ACK) 54 are applied to a central controller 48 as to whether an operating mode with increased valve lift has been confirmed. Furthermore, quantities for the injection control (CILC_DATA) 56 are applied to the central controller 48. The data 56 contains the variables cylinder-selective injection time TI CYL LAM 58, cylinder-selective lambda correction factor LAM_CYL_SEL_ADJ_FAC 60 and a logical variable LV LAM CYL ACT 62, whether the cylinder-selective lambda or injection correction is active.
Die zentrale Steuerung berechnet dann ein Aktivierungssignal LV_LAM_AD_LOAD_ACT 64, das an einer Schalteinheit 66 anliegt. Wenn an der Schalteinheit 66 das Signal anliegt, das eine A- daption der Nockenwellenphasenlage erfolgen soll, wird - wie in Figur 4 dargestellt - das Ausgangssignal des Reglers 44 weitergeleitet und zu diesem der Ist-Wert 68 für die Nocken- wellenphasenlage addiert. Die Summe beider Werte ergeben den Ist-Wert für die NockenwellenphasenlageThe central controller then calculates an activation signal LV_LAM_AD_LOAD_ACT 64, which is applied to a switching unit 66. If the signal is applied to the switching unit 66, which is to take place an adaptation of the camshaft phase position, the output signal of the controller 44 is forwarded as shown in FIG. 4 and the actual value 68 for the camshaft phase position is added thereto. The sum of both values gives the actual value for the camshaft phase position
(CAM_AV_IN_LAM_AD_LOAD) . Liegt kein Aktivierungssignal 64 an der Schalteinheit 66 an, so wird der Wert null aus Speicher 70 weitergeleitet und es erfolgt keine zusätzliche Adaption der Nockenwellenphasenlage.(CAM_AV_IN_LAM_AD_LOAD). If no activation signal 64 is present at the switching unit 66, then the value zero is forwarded from memory 70 and there is no additional adaptation of the camshaft phase position.
Während der Adaption der Nockenwellenphasenlage ist Signal 72 gesetzt, das eine Adaption der Kraftstoffeinspritzung sperrt. Signal 74 löst in der zentralen Betriebssteuerung der Brenn- kraftanlage ein Umschalten vom kleinen Ventilhub auf den großen Ventilhub aus . Für die Größen aus Fig. 4 ergibt sich die folgende Zuordnung:During the adaptation of the camshaft phasing signal 72 is set, which blocks an adaptation of the fuel injection. Signal 74 triggers a switchover from the small valve lift to the large valve lift in the central operating control of the combustion system. For the sizes from FIG. 4, the following assignment results:
Figure imgf000009_0001
Bei dem erfindungsgemäßen Verfahren wird die Tatsache genutzt, dass die Änderung der Luftmasse pro Arbeitsspiel bei einer Änderung der Nockenwellenphasenlage bei einem späten Zeitpunkt für das Schließen des Einlassventils sehr viel ge- ringer ist, als bei einer Ventilhubkurve mit einem frühen Schließzeitpunkt für das Einlassventil. Hiervon ausgehend werden zunächst Ungenauigkeiten bei der Einspritzung adaptiert. Die so gewonnenen Erkenntnisse über die Füllungsgenauigkeit der Zylinder mit Kraftstoff werden dann beibehalten, wenn die Brennkraftmaschine in demselben Betriebspunkt betrieben wird und eine empfindlichere Ventilerhebungskurve vorliegt. Bei möglichst identischem Betriebspunkt wird dann die Nockenwellenphasenlage adaptiert, wobei auch hier der Betriebspunkt stationär ist. Nicht-Linearitäten des Injektors fallen bei diesem Verfahren nicht ins Gewicht und auch Einflüsse von Kraftstoffdruck und Temperatur können weitgehend vernachlässigt werden, da sie in den ca. 20 - 30 Sekunden, die der Adaptionsalgorithmus dauert, konstant sind oder als konstant angenommen werden können. Der wesentliche Vorteil der Erfindung besteht darin, ohne einen Mehraufwand an Senso- rik eine wesentlich exaktere Positionierung des Nockenwellentriebs zu realisieren.
Figure imgf000009_0001
The method according to the invention makes use of the fact that the change in the air mass per working cycle is much lower with a change of the camshaft phase position at a late time for the closing of the intake valve than with a valve lift curve with an early closing time for the intake valve. On this basis, initially inaccuracies in the injection are adapted. The knowledge about the filling accuracy of the cylinders with fuel thus obtained is retained when the internal combustion engine is operated at the same operating point and a more sensitive valve lift curve is present. If the operating point is as identical as possible, the camshaft phase position is then adapted, the operating point also being stationary here. Non-linearities of the injector are not significant in this method, and also influences of fuel pressure and temperature can be neglected to a great extent since they are constant or can be assumed to be constant in the approximately 20-30 seconds that the adaptation algorithm lasts. The essential advantage of the invention is to realize a much more exact positioning of the camshaft drive without an additional expenditure of sensor technology.

Claims

Patentansprüche: claims:
1. Verfahren zur Steuerung einer Brennkraftmaschine mit min- destens zwei Ventilerhebungsverläufen, wobei die Brennkraftmaschine eine Lambda-Regelung, eine Einspritzsteuerung und eine Steuerung für eine Nockenwellenphasenlage aufweist, dadurch gekennzeichnet, dass die folgenden Verfahrenschritte ausgeführt werden:1. A method for controlling an internal combustion engine having at least two valve lift profiles, wherein the internal combustion engine comprises a lambda control, an injection control and a control for a camshaft phase position, characterized in that the following method steps are carried out:
• in einem stationären Betriebszustand bei einem ersten Ventilerhebungsverlauf (30) wird die Einspritzsteuerung adaptiert, um eine minimale Lambda-Reglerabweichung zu erzielen,In a stationary operating state in a first valve lift course (30), the injection control is adapted to achieve a minimum lambda control deviation,
• bei einem zweiten Ventilerhebungsverlauf (32, 34) arbeitet die Einspritzsteuerung in dem vorbestimmten stationären Betriebszustand mit den adaptierten Parametern und die Nockenwellenphasenlage wird adaptiert, um eine minimale Lambda-Reglerabweichung zu erzielen.In a second valve lift course (32, 34), the injection control operates in the predetermined steady-state operating state with the adapted parameters and the camshaft phasing is adapted to achieve a minimum lambda control deviation.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass bei dem ersten Ventilerhebungsverlauf ein größerer Ventilhub als bei dem zweiten Ventilerhebungsverlauf er- folgt.2. The method according to claim 1, characterized in that in the first valve lift course a larger valve lift than in the second valve lift curve follows.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Adaption der Einspritzsteuerung für mehrere stationäre Betriebszustände wiederholt wird.3. The method according to claim 1 or 2, characterized in that the adaptation of the injection control is repeated for a plurality of stationary operating states.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass für jeden Betriebszustand ein geänderter Satz von Steuerparametern für die Einspritzsteuerung angelegt und die Nockenwellenphasenlage jeweils für die unterschiedlichen Betriebszustände adaptiert wird. 4. The method according to claim 3, characterized in that applied for each operating state, a changed set of control parameters for the injection control and the camshaft phase position is adapted in each case for the different operating conditions.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass zwei Zylinderbänke vorgesehen sind, für die jeweils getrennte Sätze von Steuerparametern an der Einspritzsteuerung angelegt sind.5. The method according to any one of claims 1 to 4, characterized in that two cylinder banks are provided, for each of which separate sets of control parameters are applied to the injection control.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Steuerparameter für die Einspritzsteuerung der Zylinder individuell adaptiert werden. 6. The method according to any one of claims 1 to 5, characterized in that the control parameters for the injection control of the cylinder are adapted individually.
PCT/EP2005/055801 2004-12-10 2005-11-07 Method for controlling an internal combustion engine having at least two valve lifting curve progressions WO2006061297A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004059683.2 2004-12-10
DE102004059683A DE102004059683B3 (en) 2004-12-10 2004-12-10 Control process for internal combustion engine involves adapting injection control in first program to obtain minimal Lambda regulator deviation

Publications (1)

Publication Number Publication Date
WO2006061297A1 true WO2006061297A1 (en) 2006-06-15

Family

ID=35483487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/055801 WO2006061297A1 (en) 2004-12-10 2005-11-07 Method for controlling an internal combustion engine having at least two valve lifting curve progressions

Country Status (2)

Country Link
DE (1) DE102004059683B3 (en)
WO (1) WO2006061297A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7319929B1 (en) * 2006-08-24 2008-01-15 Gm Global Technology Operations, Inc. Method for detecting steady-state and transient air flow conditions for cam-phased engines

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5377654A (en) * 1992-11-12 1995-01-03 Ford Motor Company System using time resolved air/fuel sensor to equalize cylinder to cylinder air/fuel ratios with variable valve control
EP1229230A2 (en) * 2001-02-05 2002-08-07 Toyota Jidosha Kabushiki Kaisha Control apparatus for multi-cylinder internal combustion engine and control method
EP1384872A1 (en) * 2002-07-25 2004-01-28 Nissan Motor Company, Limited Valve timing correction control apparatus and method for an internal combustion engine
DE10259846B3 (en) * 2002-12-20 2004-06-03 Bayerische Motoren Werke Ag Cylinder equalizing process for internal combustion engine involves first step of individual correction of amount of fuel injected into each cylinder

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10046221A1 (en) * 2000-09-19 2002-10-02 Bayerische Motoren Werke Ag Method and device for controlling the cylinder-selective filling in internal combustion engines with variable valve train
DE10118036A1 (en) * 2001-04-11 2002-10-17 Bosch Gmbh Robert Stroke adaptation system for internal combustion engine cylinders involves controlling inlet valve stroke based on comparison of detected cylinder fillings for early and late filling strategies

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5377654A (en) * 1992-11-12 1995-01-03 Ford Motor Company System using time resolved air/fuel sensor to equalize cylinder to cylinder air/fuel ratios with variable valve control
EP1229230A2 (en) * 2001-02-05 2002-08-07 Toyota Jidosha Kabushiki Kaisha Control apparatus for multi-cylinder internal combustion engine and control method
EP1384872A1 (en) * 2002-07-25 2004-01-28 Nissan Motor Company, Limited Valve timing correction control apparatus and method for an internal combustion engine
DE10259846B3 (en) * 2002-12-20 2004-06-03 Bayerische Motoren Werke Ag Cylinder equalizing process for internal combustion engine involves first step of individual correction of amount of fuel injected into each cylinder

Also Published As

Publication number Publication date
DE102004059683B3 (en) 2006-01-05

Similar Documents

Publication Publication Date Title
DE102008006731B4 (en) Method and apparatus for determining the pressure in an unburned cylinder
DE19630053B4 (en) Method and device for the continuous and variable control of a valve setting of an internal combustion engine
DE602005000270T2 (en) control system
EP3523529B1 (en) Method for the combined identification of the phase differences of the inlet valve stroke and the outlet valve stroke of an internal combustion engine with the aid of lines of equal phase position and amplitude
DE60304551T2 (en) Internal combustion engine with a device for varying the compression ratio and control method therefor
DE102013200495B4 (en) Method for controlling the operation of an internal combustion engine operating in an HCCI combustion mode
DE19828279A1 (en) Electronic control device for parameter which influences unsteady running of IC engine
DE102005049861A1 (en) Valve characteristic estimation device and control device for an internal combustion engine
DE19942673C2 (en) Method for operating an engine with variable valve timing
EP1775448B1 (en) Control method for engine with valve-lift switching system
DE60304067T2 (en) Fuel injection system
EP1481153B1 (en) Method for operation of an internal combustion engine
EP3507475B1 (en) Method, control device and system for detecting a deviation of an actual activation time of a gas exchange valve of an internal combustion engine from a predefined activation time
DE60302836T2 (en) Device and method for variable valve timing
DE102009045792A1 (en) Method for controlling air ratio lambda of internal combustion engine, involves determining adjustment value to map deviation of air ratios, where adjustment value is used for compensating deviation after new operation of engine
DE102008028580B4 (en) Control device for an internal combustion engine
DE102009028638A1 (en) Method for compensating gas exchange losses between combustion chambers of a gasoline engine
DE69818614T2 (en) Method and device for controlling an internal combustion engine
DE102007058227A1 (en) Method for operating an internal combustion engine and control or regulating device for an internal combustion engine
EP1611318B1 (en) Method for controlling an internal combustion engine
WO2006061297A1 (en) Method for controlling an internal combustion engine having at least two valve lifting curve progressions
WO2013087478A1 (en) Determination of a value for a valve lift of a valve of an individual cylinder of an internal combustion engine with a plurality of cylinders
DE10232942B4 (en) Method for controlling a uniform torque output of an internal combustion engine with an exhaust gas turbocharger
DE112016004781T5 (en) Device for controlling fuel injection for an engine
EP2896809B1 (en) Method for determining an injection pressure and motor vehicle

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05811163

Country of ref document: EP

Kind code of ref document: A1