WO2006059729A1 - Method of synthesizing higher-molecular alcohol - Google Patents

Method of synthesizing higher-molecular alcohol Download PDF

Info

Publication number
WO2006059729A1
WO2006059729A1 PCT/JP2005/022217 JP2005022217W WO2006059729A1 WO 2006059729 A1 WO2006059729 A1 WO 2006059729A1 JP 2005022217 W JP2005022217 W JP 2005022217W WO 2006059729 A1 WO2006059729 A1 WO 2006059729A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethanol
reaction
catalyst
contact time
butanol
Prior art date
Application number
PCT/JP2005/022217
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Tsuchida
Shuji Sakuma
Original Assignee
Kabushiki Kaisha Sangi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Sangi filed Critical Kabushiki Kaisha Sangi
Priority to EP05811784.7A priority Critical patent/EP1829851B1/en
Priority to CA2589125A priority patent/CA2589125C/en
Priority to KR1020087031303A priority patent/KR101113050B1/en
Priority to BRPI0515805-2A priority patent/BRPI0515805B1/en
Priority to AU2005310507A priority patent/AU2005310507B2/en
Priority to JP2006546656A priority patent/JP4903582B2/en
Publication of WO2006059729A1 publication Critical patent/WO2006059729A1/en
Priority to US11/757,588 priority patent/US8080695B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/32Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions without formation of -OH groups
    • C07C29/34Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions without formation of -OH groups by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • C07C31/12Monohydroxylic acyclic alcohols containing four carbon atoms

Definitions

  • the present invention relates to a method for producing a polymer alcohol from ethanol using a calcium phosphate catalyst.
  • High molecular alcohols such as alcohol (C H OH) are based on propylene, which is currently available in petroleum.
  • MgO catalyst Dimerisation of ethanol to butanol over solid-base catalysts AS Ndou, N. plint, NJ and oville, Applied catalysis A: General, 251, p. 337-345 ( 2003).
  • alkali metal supported zeolite Z SM-5
  • Bimolecular Condensation of Ethanol to 1-Butanol Catalyzed by Alka li Cation Zeolites “C. Yang, Z. Meng, J. of Catalysis, 142, p 37-44 (1993).
  • Patent Document 1 International Publication No. W099 / 38822
  • Non-Patent Document 2 "Bimolecular”. Special Reference 1: Dimensation of ethanol to butanol over solid-base catalysts AS N dou, N. plint, NJ Coville, Applied catalysis A: General, 251, p. 337-345 (2003). Condensation of Ethanol to 1- Butanol Catalyzed by Alk ali Cation Zeolites "C. Yang, Z. Meng, J. of Catalysis, 142, p. 37—44 (1993).
  • the present invention provides a production method for efficiently collecting high-molecular alcohols having an even number of carbon atoms such as 1-butanol, hexanol, octanol, decanol and mixtures thereof using ethanol as a raw material in an efficient and clean process.
  • the issue is to provide.
  • Ethanol which is a starting material for the present application process, is synthesized by converting sugars, such as sugar cane and beet, that are obtained with a fermentation method.
  • sugars such as sugar cane and beet
  • technology for synthesizing ethanol from biomass, which is agricultural and forestry waste has been established, and it is expected that the production of ethanol will increase dramatically in the future.
  • ethanol production costs are expected to fall to a level comparable to that of crude oil.
  • Brazil which is a developed country of ethanol
  • ethanol production costs are said to be around 10 yen Z liter, which is comparable to or cheaper than international crude oil prices. Therefore, by adopting the process of this application, we can obtain a polymer alcohol that is cheaper than the oxo method.
  • the raw material is only ethanol, and the reaction proceeds easily at normal pressure.
  • the only byproduct of the polymer alcohol synthesis reaction is water (see the following reaction formula). Therefore, this process is an atmospheric pressure reaction that does not require the use of toxic substances as in the oxo method, so it is possible to reduce plant safety management costs and plant construction costs, and to reduce the production cost of polymer alcohol. It is.
  • the oxo method generates carbon dioxide as a by-product, but this reaction is a clean process that is friendly to the global environment because the only by-product is water.
  • the main polymer alcohol synthesis reaction The reaction formula of the process is shown below.
  • the polymer alcohol synthesis reaction from ethanol with a calcium phosphate catalyst is considered to be a sequential reaction of ethanol. Therefore, when a polymer alcohol having an even number of carbon atoms such as butanol having 4 carbon atoms, hexanol having 6 carbon atoms, octanol having 8 carbon atoms, or decanol having 10 carbon atoms is synthesized from ethanol having 2 carbon atoms.
  • the reactions (3) to (5) are represented by the following formulas (6) to (8).
  • FIG. 1 is a graph showing the relationship between the contact time in Table 1 and the polymer alcohol selectivity.
  • FIG. 2 is an enlarged graph of the contact time of 0.0 to 1.0 seconds in FIG.
  • FIG. 3 is a graph showing the results of GC-MS analysis.
  • FIG. 4 is a graph showing the relationship between reaction temperature and 1-butanol selectivity.
  • Calcium phosphate catalysts include hydroxyapatite Ca (PO) (OH), phosphoric acid tricalcium
  • the amorphous calcium phosphate catalyst is a halo calcium phosphate catalyst that is halo in X-ray diffraction.
  • the present invention efficiently produces the above-mentioned polymer alcohol by using these calcium phosphate catalysts and optimizing the reaction conditions, that is, the contact time and the reaction temperature.
  • a method for producing a calcium phosphate compound used as a catalyst is not particularly limited, and includes a dry solid phase reaction method, a wet precipitation reaction method, a wet solid phase reaction method, a hydrothermal synthesis method, and the like. It can be synthesized by a known synthesis method.
  • a calcium salt solution and a phosphate solution of a predetermined concentration are dropped into a stirring aqueous solution while adjusting the pH, and the precipitated product is collected, washed, Dry, pulverize, and calcinate as necessary to obtain a catalyst raw material.
  • the calcium salt used is Ca (OH), Ca (NO 3) power.
  • the phosphate is preferably ammonium phosphate.
  • the CaZP molar ratio of hydroxyapatite can be controlled by controlling the preparation ratio of the raw material salt and the synthesis conditions.
  • the aqueous solution can be made basic with aqueous ammonia during synthesis.
  • the CaZP molar ratio increases, and when the aqueous solution is adjusted to neutral or weakly acidic with dilute acid, the CaZP molar ratio decreases. It can also be obtained by mixing a calcium phosphate catalyst with a known CaZP molar ratio and then firing in a moisture atmosphere.
  • the CaZP molar ratio is adjusted to 1.4 to 1.8, preferably 1.5 to 1.7. Select the atmosphere. At this time, the specific surface area of the catalyst is desirably 2 m 2 / g or more.
  • Control of the CaZP molar ratio in a calcium phosphate catalyst is to control the type and distribution density of solid acid points and solid base points which are active sites on the catalyst surface.
  • the strength and amount of the acid point and base point are NH-TPD (Temparature Programmed Deso
  • supporting a dehydrogenation-promoting metal typified by Ni, Zn, Cu, Pd or Pt on nodoxyapatite has the same effect as an increase in the Ca / P molar ratio, that is, a solid salt. Increased basicity.
  • supporting a dehydration-promoting metal typified by A1 has the same effect as a decrease in the CaZP molar ratio, that is, increased calorie of solid acid characteristics. Therefore, instead of changing the CaZP molar ratio, the solid acid Z basicity on the surface of the hydroxyapatite catalyst can be changed by supporting a powerful metal.
  • a plurality of metals may be co-supported for synergistic effect or durability improvement.
  • Coexisting supported metals include, for example, Zn, Co, Cr, Mo, W, Fe, Ni, Cu, Mn, Ti, V, Ga, Zr, Nb, Cd, In, Sn, Sb, Pb, La, Ce, Transition metals such as Eu and Y, or noble metals such as Pt, Pd, Rh, Au, Ir, Ru, and Ag, and alkali or alkaline earth metals such as Ba, Na, K, Li, Sr, Ca, Mg, Cs, and Rb
  • an oxide or sulfide of these metals can also be used. These substances are used in the range of 0.05 to 70 mol% with respect to calcium of the calcium phosphate catalyst.
  • the calcium phosphate catalyst used when synthesizing a polymer alcohol and a mixture thereof using ethanol as a raw material, the calcium phosphate catalyst used, the acid on the catalyst surface, Basic control (for example, calcium phosphate catalyst) (CaZP molar ratio) and reaction conditions (contact time, reaction temperature, pressure, etc.) are selected as appropriate.
  • Basic control for example, calcium phosphate catalyst
  • reaction conditions contact time, reaction temperature, pressure, etc.
  • the calcium phosphate-based catalyst prepared as described above can be used in any form such as granules and powders, and if necessary, formed into an arbitrary shape such as spheres, pellets, and honeycombs, and then dried. It can also be used after firing.
  • the calcium phosphate catalyst may be supported on a carrier such as conventional alumina, silica, alumina silica, zeolite, clay mineral, etc., which are well known to those skilled in the art. Firing is performed at 200 ° C to 1200 ° C, preferably 400 ° C to 700 ° C.
  • the reaction temperature suitable for synthesizing the polymer alcohol by bringing ethanol into contact with the calcium phosphate catalyst is usually selected from the range of 150 ° C to 450 ° C, more preferably 200 ° C. ° C to 350 ° C is desirable. Even if the temperature is below 150 ° C, there is a means to keep the selectivity of the polymer alcohol high. Since the ethanol conversion rate is low, the yield is low and the economy is poor. At 450 ° C or higher, the ethanol conversion rate increases. The polymer alcohol selectivity decreases, the number of unnecessary reaction products increases, and new disposal problems arise. It gets worse.
  • the contact time of the present application is usually 0.4 seconds or more. Preferably it is 0.6 seconds or longer. Shorter than 4 seconds, the polymer alcohol selectivity is low and the ethanol conversion rate is also low, resulting in a low synthesis yield and poor economic efficiency. If the reaction is performed at a low temperature, a batch reactor corresponding to an infinite contact time can be used to increase the ethanol conversion. At higher temperatures, longer contact times increase other reactions and lower polymer alcohol selectivity.
  • Ethanol power The reaction for synthesizing the polymer alcohol is an exothermic reaction. Therefore, when a high yield of high molecular alcohol is targeted, the temperature rise inside the reaction tower due to the heat of reaction becomes significant. As a result, problems such as a decrease in polymer alcohol selectivity due to the occurrence of another reaction such as an ethanol decomposition reaction, deterioration of the catalyst due to an increase in catalyst temperature, and a decrease in durability of the reactor occur. Therefore, in the case of a reaction for synthesizing a polymer alcohol from ethanol, it is better for the industrial industry to target the selectivity, rather than aiming at a high yield. However, this does not apply if a system for removing reaction heat is introduced inside the reaction tower.
  • Ethanol can be efficiently reacted by contacting it with a catalyst directly in the gas phase or in the presence of an inert carrier gas such as nitrogen or helium.
  • a reactive gas such as hydrogen or hydrocarbon may be accompanied in the carrier gas.
  • reaction mode in the reaction tower it can be carried out at normal pressure or under pressure by any method of batch system, continuous system, fixed bed, moving bed, fluidized bed or slurry bed.
  • carbon may be deposited on the catalyst surface over a long period of use, leading to a decrease in ethanol conversion and a heterogeneous reaction.
  • regeneration treatment is periodically performed by heating the catalyst in an oxygen atmosphere. Thereby, the activity of the catalyst can be recovered. Therefore, in the case of reaction conditions with a large amount of carbon deposition on the catalyst, a plant based on the above-described method incorporating a catalyst regeneration treatment apparatus is effective.
  • the polymer alcohol thus obtained is conventionally used! /, And is separated and purified using a separation and purification method such as rectification, microporous membrane separation, extraction, and adsorption method. be able to.
  • the catalyst was synthesized as follows.
  • the crystal structure of the obtained powder is a powder X-ray diffractometer M18XHF 22 manufactured by MatsuScience Co., Ltd., SA3100 of COLTER Co., Ltd. is used to measure the specific surface area, and Rigaku Electric Industries Co., Ltd. ) RIX 1000 fluorescent X-ray analyzer was used.
  • the reactor used was a fixed bed gas flow type catalytic reactor. 14-26 mess of powder catalyst Molded into a tablet. This tablet was filled into the reaction tube in an amount corresponding to the contact time, and as a pretreatment, a heat dehydration treatment was performed at 500 ° C. for 30 minutes in a carrier gas (l% ArZHe base; flow rate 112 ml / min) atmosphere. After completion of the pretreatment, the reaction was carried out at normal pressure under the conditions of an ethanol concentration of 16 vol% and a carrier gas flow rate of 112 ml / min (total flow rate of 134 ml / min).
  • the reaction temperature was fixed at 300 ° C., and the contact time was in the range of 0.02 seconds to 29.4 seconds.
  • the contact time was fixed at 1.0 seconds, the ethanol concentration was 8.1%, and the reaction temperature was in the range of 150 to 500 ° C.
  • GC—MS gas chromatograph mass spectrometer
  • FI gas chromatograph
  • D was used to calculate the selectivity of raw materials ethanol, butanol, hexanol, octanol, decanolole [force of 0.70, 0.85, 0.90, 0.93, 0.94, respectively]
  • a coefficient was used.
  • Ethanol conversion rate (%) (1-ethanol carbon moles Z total carbon moles) 100
  • Table 1 shows the relationship between the contact time and the polymer alcohol selectivity when an ethanol transfer test was conducted using a hydroxyapatite catalyst at an ethanol concentration of 16% and a reaction temperature of 300 ° C.
  • the 1-butanol selectivity reached its maximum value at a contact time of 1.34 seconds, and decreased when the contact time was longer.
  • the selectivity of hexanol, octanol, and decanol decreased in this order, and each contact rate increased with increasing contact time up to a contact time of 29.4 seconds.
  • the polymer alcohol selectivity is very small, 2.4% at a contact time of 0.02 seconds. Force increases rapidly with increasing contact time, and exceeds 60% at a contact time of 0.4 seconds. It was. Furthermore, when the contact time was 0.6 seconds or more, the polymer alcohol selectivity was a very high value of 70% or more, which is advantageous for industrial applications.
  • Example 3 Example of analysis by gas chromatograph mass spectrometer (GC—MS)
  • the ethanol conversion test was conducted using an idroxyapatite catalyst at an ethanol concentration of 16%, a contact time of 1.78 seconds, and a reaction temperature of 300 ° C, and analyzed by GC-MS.
  • Figure 3 shows the results.
  • the ethanol conversion test was conducted using ethanol and idroxyapatite catalyst at an ethanol concentration of 8.1% and a contact time of 1.0 seconds. For comparison, an ethanol conversion test was conducted with a contact time of only 0.3 seconds. The results are shown in Fig. 4.
  • the 1-butanol selectivity of contact time 1.0 seconds is 1-butanol selectivity of contact time 0.3 seconds.
  • the selectivity is about 12% higher, and when the contact time is 1.0 second, the contact time is about 75 ° C lower than the contact time of 0.3 second. ing.
  • the catalyst according to the present method is inexpensive and easy to manufacture and is stable to the reaction and regeneration treatment. By selecting the reaction temperature and contact time, the ethanol power can be increased efficiently. Molecular alcohols can be obtained.

Abstract

A clean process for efficiently producing, from ethanol as a raw material, higher-molecular alcohols having an even number of carbon atoms, such as 1-butanol, hexanol, octanol, and decanol and a mixture of these. The higher-molecular alcohols are yielded from ethanol as a starting material with the aid of a calcium phosphate compound, e.g., hydroxyapatite Ca10(PO4)6(OH)2, tricalcium phosphate Ca3(PO4)2, calcium monohydrogen phosphate CaHPO4·(0-2)H2O, calcium diphosphate Ca2P2O7, octacalcium phosphate Ca8H2(PO4)6·5H2O, tetracalcium phosphate Ca4(PO4)2O, or amorphous calcium phosphate Ca3(PO4)2·nH2O, preferably hydroxyapatite, as a catalyst, the contact time being 0.4 seconds or longer.

Description

高分子アルコールの合成法  Synthesis method of polymer alcohol
技術分野  Technical field
[0001] 本発明は、リン酸カルシウム系触媒を使用し、エタノールから高分子アルコールを 製造する方法に関するものである。  The present invention relates to a method for producing a polymer alcohol from ethanol using a calcium phosphate catalyst.
背景技術  Background art
[0002] ブタノール(C H OH)、へキサノール(C H OH)、ォクタノール(C H OH)、デカノ  [0002] Butanol (C H OH), Hexanol (C H OH), Octanol (C H OH), Decano
4 9 6 13 8 17  4 9 6 13 8 17
ール(C H OH)などの高分子アルコールは、現在石油力 得られるプロピレンを原 High molecular alcohols such as alcohol (C H OH) are based on propylene, which is currently available in petroleum.
10 21 10 21
料としたォキソ法で合成されている。し力し、 2004年には原油価格が 50ドル Zバレル を超え、原料のプロピレンの高騰により高分子アルコールの製造コスト高を招き、収 益性が悪ィ匕している。  It is synthesized by the oxo method. In 2004, however, the price of crude oil exceeded $ 50 per barrel, and soaring propylene as a raw material led to high production costs for polymer alcohol, resulting in poor profitability.
[0003] また、ォキソ法の場合、原料にプロピレンの他に有害な一酸ィ匕炭素を使用しなくて はならず、しかも高圧反応であり、プロセスも複雑であるので、製造コストを高くする要 因となっている。さらに、ォキソ法では、例えばブタノール合成反応の場合、ブタノー ル 1モルあたり、副生品として 2モルの地球温暖化物質である二酸ィ匕炭素を発生し、 地球環境保全の観点からも好ましくな 、。  [0003] Further, in the case of the oxo method, harmful monoxide and carbon must be used as a raw material in addition to propylene, and since it is a high-pressure reaction and the process is complicated, the production cost is increased. It is a factor. Furthermore, in the oxo method, for example, in the case of butanol synthesis reaction, 2 moles of carbon dioxide, a global warming substance, is generated as a by-product per mole of butanol, which is also preferable from the viewpoint of global environmental conservation. ,.
CH CH = CH (プロピレン) + 3CO (—酸化炭素) + 2H 0 (水)→ C H OH (ブタノ CH CH = CH (propylene) + 3CO (—carbon oxide) + 2H 0 (water) → C H OH (butano
3 2 2 4 9 ール) + 2CO (二酸化炭素)……(1) 3 2 2 4 9)) + 2CO (carbon dioxide) …… (1)
2  2
エタノールから 1—ブタノールの合成法として、 MgO触媒( "Dimerisation of ethanol to butanol over solid— base catalysts A. S. Ndou, N. plint, N. J. し oville, Applied ca talysis A: General, 251, p. 337-345 (2003). )やアルカリ金属を担持したゼォライト(Z SM- 5)触媒、 Bimolecular Condensation of Ethanol to 1- Butanol Catalyzed by Alka li Cation Zeolites" C. Yang, Z. Meng, J. of Catalysis, 142, p. 37—44 (1993). )の文 献があるが、選択率が低ぐ工業的に適さない。  As a method for synthesizing 1-butanol from ethanol, MgO catalyst ("Dimerisation of ethanol to butanol over solid-base catalysts AS Ndou, N. plint, NJ and oville, Applied catalysis A: General, 251, p. 337-345 ( 2003).) And alkali metal supported zeolite (Z SM-5), Bimolecular Condensation of Ethanol to 1-Butanol Catalyzed by Alka li Cation Zeolites "C. Yang, Z. Meng, J. of Catalysis, 142, p 37-44 (1993).), But is not industrially suitable due to low selectivity.
[0004] また、リン酸カルシウム系触媒を用いて 1ーブタノールを合成する方法(国際公開 W 099/38822)が、既に開示されている力 この合成方法は、反応温度が 350〜450°C と高い為に、 1ーブタノールの選択率が低い、触媒の特性劣化が早ぐ再生処理を頻 繁に行わなくてはならない、装置の耐久性の低下、反応温度維持に要する燃料費が 高くなるなどの問題点があった。 [0004] In addition, a method for synthesizing 1-butanol using a calcium phosphate catalyst (International Publication W 099/38822) is already disclosed. This synthesis method has a high reaction temperature of 350 to 450 ° C. , 1-butanol selectivity is low, catalyst characteristics deteriorate quickly There were problems that had to be done frequently, reduced durability of the equipment, and increased fuel costs for maintaining the reaction temperature.
[0005] 特許文献 1:国際公開 W099/38822号公報  [0005] Patent Document 1: International Publication No. W099 / 38822
特干文献 1: Dimensation of ethanol to butanol over solid-base catalysts A.S. N dou, N. plint, N. J. Coville, Applied catalysis A: General, 251, p. 337—345 (2003). 非特許文献 2: "Bimolecular Condensation of Ethanol to 1- Butanol Catalyzed by Alk ali Cation Zeolites" C. Yang, Z. Meng, J. of Catalysis, 142, p. 37—44 (1993).  Non-Patent Document 2: "Bimolecular". Special Reference 1: Dimensation of ethanol to butanol over solid-base catalysts AS N dou, N. plint, NJ Coville, Applied catalysis A: General, 251, p. 337-345 (2003). Condensation of Ethanol to 1- Butanol Catalyzed by Alk ali Cation Zeolites "C. Yang, Z. Meng, J. of Catalysis, 142, p. 37—44 (1993).
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 本発明は、エタノールを原料として、 1ーブタノール、へキサノール、ォクタノール、 デカノールなどの炭素数が偶数の高分子アルコールおよびそれらの混合物を、効率 よくクリーンなプロセスで採取するための製造法を提供することを課題としている。 課題を解決するための手段 [0006] The present invention provides a production method for efficiently collecting high-molecular alcohols having an even number of carbon atoms such as 1-butanol, hexanol, octanol, decanol and mixtures thereof using ethanol as a raw material in an efficient and clean process. The issue is to provide. Means for solving the problem
[0007] 本願プロセスの出発原料であるエタノールは、現在サトウキビやビートなど力 得ら れる糖を、発酵法により変換して合成される。近年、農林廃棄物であるバイオマスか らエタノールを合成する技術も確立され、将来エタノールの生産量が飛躍的に増大 することが期待できる。その結果、エタノールの製造コストが原油に匹敵するレベルに まで下がることが予想される。実際、エタノールの先進国であるブラジルでは、ェタノ ール製造原価が 10円 Zリットル程度と言われており、国際原油価格に匹敵、あるい はそれより安い価格となっている。従って、本願プロセスの採用で、ォキソ法より安価 な高分子アルコールが得られると考える。 [0007] Ethanol, which is a starting material for the present application process, is synthesized by converting sugars, such as sugar cane and beet, that are obtained with a fermentation method. In recent years, technology for synthesizing ethanol from biomass, which is agricultural and forestry waste, has been established, and it is expected that the production of ethanol will increase dramatically in the future. As a result, ethanol production costs are expected to fall to a level comparable to that of crude oil. In fact, in Brazil, which is a developed country of ethanol, ethanol production costs are said to be around 10 yen Z liter, which is comparable to or cheaper than international crude oil prices. Therefore, by adopting the process of this application, we can obtain a polymer alcohol that is cheaper than the oxo method.
[0008] 本願の高分子アルコール合成法は、原料がエタノールのみであり、反応は常圧で 容易に進行する。また、高分子アルコール合成反応の副生品は水のみである(下記 反応式参照)。従って、本プロセスは、ォキソ法のように有害物質の使用がなぐ常圧 反応であるので、プラントの安全管理費およびプラント建設費を安くすることができ、 高分子アルコールの製造コストの低減が可能である。また、ォキソ法では、副生品と して二酸ィ匕炭素が発生するが、本反応では副生品は水のみであるので、地球環境 に優しい、クリーンなプロセスである。主な高分子アルコール合成反応のオーバーォ ールの反応式を下記する。 [0008] In the polymer alcohol synthesis method of the present application, the raw material is only ethanol, and the reaction proceeds easily at normal pressure. The only byproduct of the polymer alcohol synthesis reaction is water (see the following reaction formula). Therefore, this process is an atmospheric pressure reaction that does not require the use of toxic substances as in the oxo method, so it is possible to reduce plant safety management costs and plant construction costs, and to reduce the production cost of polymer alcohol. It is. The oxo method generates carbon dioxide as a by-product, but this reaction is a clean process that is friendly to the global environment because the only by-product is water. The main polymer alcohol synthesis reaction The reaction formula of the process is shown below.
2C H OH (エタノール)→ C H OH (1—ブタノール) + H 0 (水)…… (2)  2C H OH (ethanol) → C H OH (1-butanol) + H 0 (water) …… (2)
2 5 4 9 2  2 5 4 9 2
3C H OH (エタノール)→ C H OH (へキサノール) + 2H 0 (水)……(3) 3C H OH (ethanol) → C H OH (hexanol) + 2H 0 (water) …… (3)
2 5 6 13 2 2 5 6 13 2
4C H OH (エタノール)→ C H OH (ォクタノール) + 3H 0 (水)……(4) 4C H OH (ethanol) → C H OH (octanol) + 3H 0 (water) …… (4)
2 5 8 17 2 2 5 8 17 2
5C H OH (エタノール)→ C H OH (デカノール) + 4H 0 (水)……(5) 5C H OH (ethanol) → C H OH (decanol) + 4H 0 (water) …… (5)
2 5 10 21 2 2 5 10 21 2
[0009] これら高分子アルコールの合成量の比から、リン酸カルシウム系触媒によるエタノー ルから高分子アルコール合成反応は、エタノールの逐次反応であると考えられる。従 つて炭素数 2のエタノールから、炭素数 4のブタノール、炭素数 6のへキサノール、炭 素数 8のォクタノール、炭素数 10のデカノールなど、炭素数が偶数の高分子アルコ ールが合成されると考える。上記高分子アルコールがエタノールの逐次反応の結果 合成されるとすると、上記(3)〜(5)の反応は、下記(6)〜(8)式となる。  [0009] From the ratio of the amount of these polymer alcohols synthesized, the polymer alcohol synthesis reaction from ethanol with a calcium phosphate catalyst is considered to be a sequential reaction of ethanol. Therefore, when a polymer alcohol having an even number of carbon atoms such as butanol having 4 carbon atoms, hexanol having 6 carbon atoms, octanol having 8 carbon atoms, or decanol having 10 carbon atoms is synthesized from ethanol having 2 carbon atoms. Think. Assuming that the polymer alcohol is synthesized as a result of the sequential reaction of ethanol, the reactions (3) to (5) are represented by the following formulas (6) to (8).
C H ΟΗ (1-ブタノール) + C H OH (エタノール)→ C H OH (へキサノール) + H C H ΟΗ (1-butanol) + C H OH (ethanol) → C H OH (hexanol) + H
4 9 2 5 6 13 24 9 2 5 6 13 2
。(水)…… (6) . (Wed) …… (6)
C H OH (へキサノール) + C H OH (エタノール)→ C H OH (オタタノール) + H C H OH (Hexanol) + C H OH (Ethanol) → C H OH (Otanol) + H
6 13 2 5 8 17 26 13 2 5 8 17 2
。(水)…… (7) . (Wed) …… (7)
C H OH (オタタノ一ノレ) + C H OH (エタノーノレ)→ C H OH (デカノーノレ) + H 0 C H OH (Otano no Nore) + C H OH (Etano Nore) → C H OH (Decano Nore) + H 0
8 17 2 5 10 21 28 17 2 5 10 21 2
(水)…… (8) (Wed) …… (8)
[0010] 本発明者らは、エタノール転ィ匕反応における接触時間の影響について鋭意研究を 重ねた結果、エタノールをリン酸カルシウム系触媒と、接触時間 0. 4秒以上で接触さ せることにより、上記高分子アルコールを高選択的に合成できることを見出した。通常 、触媒反応における接触時間と反応生成物選択率の関係は、接触時間が長くなるに 従い、原材料の縮重合および複数の反応の発生により、単一物質の選択率は低下 するが、本願プロセスにおいては、任意の温度にて接触時間を 0. 4秒以上と長くす ることにより、逆に高分子アルコールの選択率を高めることができた。  [0010] As a result of intensive studies on the influence of the contact time in the ethanol transfer reaction, the present inventors have made contact with ethanol with a calcium phosphate catalyst at a contact time of 0.4 seconds or longer, thereby increasing the above-mentioned high value. We found that molecular alcohols can be synthesized with high selectivity. In general, the relationship between the contact time and the reaction product selectivity in the catalytic reaction shows that the selectivity of a single substance decreases due to the polycondensation of raw materials and the occurrence of multiple reactions as the contact time increases. In contrast, by increasing the contact time at an arbitrary temperature to 0.4 seconds or longer, it was possible to increase the selectivity of the polymer alcohol.
[0011] 接触時間と高分子アルコールの存在量比の関係は、接触時間が長くなるに従いェ タノールの逐次反応が進行し、分子量の大きなアルコールが合成された。これは、こ れら高分子アルコール力 ハイドロキシアパタイト触媒によるエタノール転ィ匕反応にお ける反応中間体であるためと考えられる。 図面の簡単な説明 [0011] Regarding the relationship between the contact time and the abundance ratio of the polymer alcohol, the sequential reaction of ethanol progressed as the contact time became longer, and alcohol with a higher molecular weight was synthesized. This is considered to be a reaction intermediate in the ethanol transfer reaction using these polymer alcohol power hydroxyapatite catalysts. Brief Description of Drawings
[0012] [図 1]図 1は、表 1の接触時間と高分子アルコール選択率との関係を示すグラフ図で ある。  [0012] FIG. 1 is a graph showing the relationship between the contact time in Table 1 and the polymer alcohol selectivity.
[図 2]図 2は、図 1の接触時間 0. 0〜1. 0秒の間を拡大したグラフ図である。  [FIG. 2] FIG. 2 is an enlarged graph of the contact time of 0.0 to 1.0 seconds in FIG.
[図 3]図 3は、 GC— MSによる分析結果を示すグラフ図である。  FIG. 3 is a graph showing the results of GC-MS analysis.
[図 4]図 4は、反応温度と 1—ブタノール選択率との関係を示すグラフ図である。  FIG. 4 is a graph showing the relationship between reaction temperature and 1-butanol selectivity.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] リン酸カルシウム系触媒には、ハイドロキシアパタイト Ca (PO ) (OH)、リン酸 3カル [0013] Calcium phosphate catalysts include hydroxyapatite Ca (PO) (OH), phosphoric acid tricalcium
10 4 6 2  10 4 6 2
シゥム Ca (PO )、リン酸 1水素カルシウム CaHPO .(0〜2)H 0、 2リン酸カルシウム Ca  Sim Ca (PO), calcium monohydrogen phosphate CaHPO. (0-2) H 0, dicalcium phosphate Ca
3 4 2 4 2 2 3 4 2 4 2 2
P 0、リン酸 8カルシウム Ca H (PO ) ·5Η 0、リン酸 4カルシウム Ca (PO ) 0、非晶質P 0, 8 calcium phosphate Ca H (PO) 5PO 0, 4 calcium phosphate Ca (PO) 0, amorphous
2 7 8 2 4 6 2 4 4 2 リン酸カルシウム Ca (PO ) ·ηΗ 0等の存在が知られている。ハイドロキシアパタイトは 2 7 8 2 4 6 2 4 4 2 Presence of calcium phosphate Ca (PO) · ηΗ 0 etc. is known. Hydroxyapatite
3 4 2 2  3 4 2 2
、通常上記化学量論組成で示されるが、その特徴は、化学量論組成を満足しなくて もアパタイト構造を取りうることであり、そのような非化学量論組成のハイドロキシアバ タイトは、 Ca (HPO ) (PO ) (OH) ·ηΗ Ο {0〈Ζ≤ 1, η=0〜2.5}で示すことができる  Usually, it is shown by the above stoichiometric composition, but the characteristic is that it can take an apatite structure even if the stoichiometric composition is not satisfied. Hydroxyapatite having such a non-stoichiometric composition is Ca (HPO) (PO) (OH) · ηΗ Ο {0 <Ζ≤ 1, η = 0 ~ 2.5}
10-Ζ 4 Z 4 6-Z 2-Z 2  10-Ζ 4 Z 4 6-Z 2-Z 2
。非晶質リン酸カルシウム系触媒とは、 X線回折ではハローなリン酸カルシウム系触 媒のことである。  . The amorphous calcium phosphate catalyst is a halo calcium phosphate catalyst that is halo in X-ray diffraction.
本発明は、これらのリン酸カルシウム系触媒を使用し、反応条件即ち接触時間と反 応温度の最適化を行うことにより、前述の高分子アルコールを効率よく製造するもの である。  The present invention efficiently produces the above-mentioned polymer alcohol by using these calcium phosphate catalysts and optimizing the reaction conditions, that is, the contact time and the reaction temperature.
[0014] 本発明において、触媒として使用されるリン酸カルシウム系化合物の製造方法は、 特に限定されるものではなぐ乾式固相反応法、湿式沈殿反応法、湿式固相反応法 、水熱合成法等の公知の合成法で合成することができる。  [0014] In the present invention, a method for producing a calcium phosphate compound used as a catalyst is not particularly limited, and includes a dry solid phase reaction method, a wet precipitation reaction method, a wet solid phase reaction method, a hydrothermal synthesis method, and the like. It can be synthesized by a known synthesis method.
例えば、ハイドロキシアパタイトの合成の場合、所定の濃度のカルシウム塩溶液及 びリン酸塩溶液を、撹拌している水溶液中に pHを調整しながら滴下し、析出する生 成物を採取し、洗浄、乾燥、粉砕、必要に応じて焼成し、触媒原料とする。使用する カルシウム塩は Ca(OH)、 Ca(NO )力 リン酸塩はリン酸アンモニゥム塩が好ましい。  For example, when synthesizing hydroxyapatite, a calcium salt solution and a phosphate solution of a predetermined concentration are dropped into a stirring aqueous solution while adjusting the pH, and the precipitated product is collected, washed, Dry, pulverize, and calcinate as necessary to obtain a catalyst raw material. The calcium salt used is Ca (OH), Ca (NO 3) power. The phosphate is preferably ammonium phosphate.
2 3 2  2 3 2
ハイドロキシアパタイトの CaZPモル比の制御は、原料の塩の調合比及び合成条件 の制御にて行うことができる。例えば、合成時にアンモニア水等で水溶液を塩基性に 調整すると、 CaZPモル比が高くなり、水溶液を希酸で中性或いは弱酸性に調整す ると CaZPモル比が低くなる。また、 CaZPモル比既知のリン酸カルシウム系触媒を 混合後、水分雰囲気中で焼成しても得ることができる。 The CaZP molar ratio of hydroxyapatite can be controlled by controlling the preparation ratio of the raw material salt and the synthesis conditions. For example, the aqueous solution can be made basic with aqueous ammonia during synthesis. When adjusted, the CaZP molar ratio increases, and when the aqueous solution is adjusted to neutral or weakly acidic with dilute acid, the CaZP molar ratio decreases. It can also be obtained by mixing a calcium phosphate catalyst with a known CaZP molar ratio and then firing in a moisture atmosphere.
[0015] ノ、イドロキシアパタイトを触媒として使用する場合、 CaZPモル比は 1. 4〜1. 8、好 ましくは 1. 5〜1. 7に調整し、目的に応じて焼成温度及び焼成雰囲気を選択する。 このとき、触媒の比表面積は 2m2/g以上であることが望ま 、。 [0015] In the case of using nodyloxyapatite as a catalyst, the CaZP molar ratio is adjusted to 1.4 to 1.8, preferably 1.5 to 1.7. Select the atmosphere. At this time, the specific surface area of the catalyst is desirably 2 m 2 / g or more.
[0016] リン酸カルシウム系触媒における CaZPモル比の制御とは、触媒的には触媒表面 の活性点である固体酸点及び固体塩基点の種類と分布密度を制御することである。 ここで、酸点及び塩基点の強さと量は、 NH -TPD (Temparature Programmed Deso  [0016] Control of the CaZP molar ratio in a calcium phosphate catalyst is to control the type and distribution density of solid acid points and solid base points which are active sites on the catalyst surface. Here, the strength and amount of the acid point and base point are NH-TPD (Temparature Programmed Deso
3  Three
rption:昇温脱離法)および CO— TPD、或いはピリジン吸着法、指示薬法等で判断  (rption: thermal desorption method) and CO-TPD, pyridine adsorption method, indicator method, etc.
2  2
することができる。また、触媒表面の酸性度及び塩基性度を制御する方法としては、 一般的には金属を担持させることが知られている。  can do. As a method for controlling the acidity and basicity of the catalyst surface, it is generally known that metal is supported.
[0017] 例えば、 Ni、 Zn、 Cu、 Pdまたは Ptなどを代表とする脱水素反応促進金属をノ、イド ロキシアパタイトに担持させることは、 Ca/Pモル比の増加と同じ効果、即ち固体塩 基性の増加となる。またノ、イドロキシアパタイトの場合、 A1を代表とする脱水反応促進 金属を担持させることは、 CaZPモル比の低下と同じ効果、即ち固体酸的特徴の増 カロとなる。従って、 CaZPモル比を変える代わりに、力かる金属を担持させることによ つてもハイドロキシアパタイト触媒の表面の固体酸 Z塩基度を変えることができる。ま た相乗効果或いは耐久性向上のため、複数の金属を共存担持させても良い。共存 担持金属としては、例えば、 Zn、 Co、 Cr、 Mo、 W、 Fe、 Ni、 Cu、 Mn、 Ti、 V、 Ga、 Zr、 Nb、 Cd、 In、 Sn、 Sb、 Pb、 La、 Ce、 Eu、 Yなどの遷移金属或いは Pt、 Pd、 Rh 、 Au、 Ir、 Ru、 Agなどの貴金属及び Ba、 Na、 K、 Li、 Sr、 Ca、 Mg、 Cs、 Rbなどの アルカリまたはアルカリ土類金属があり、場合によりこれらの金属の酸ィ匕物または硫 化物も使用できる。これらの物質は、リン酸カルシウム系触媒のカルシウムに対し 0. 0 5〜70mol%の範囲で使用される。  [0017] For example, supporting a dehydrogenation-promoting metal typified by Ni, Zn, Cu, Pd or Pt on nodoxyapatite has the same effect as an increase in the Ca / P molar ratio, that is, a solid salt. Increased basicity. In the case of nodyloxyapatite, supporting a dehydration-promoting metal typified by A1 has the same effect as a decrease in the CaZP molar ratio, that is, increased calorie of solid acid characteristics. Therefore, instead of changing the CaZP molar ratio, the solid acid Z basicity on the surface of the hydroxyapatite catalyst can be changed by supporting a powerful metal. A plurality of metals may be co-supported for synergistic effect or durability improvement. Coexisting supported metals include, for example, Zn, Co, Cr, Mo, W, Fe, Ni, Cu, Mn, Ti, V, Ga, Zr, Nb, Cd, In, Sn, Sb, Pb, La, Ce, Transition metals such as Eu and Y, or noble metals such as Pt, Pd, Rh, Au, Ir, Ru, and Ag, and alkali or alkaline earth metals such as Ba, Na, K, Li, Sr, Ca, Mg, Cs, and Rb In some cases, an oxide or sulfide of these metals can also be used. These substances are used in the range of 0.05 to 70 mol% with respect to calcium of the calcium phosphate catalyst.
[0018] 本発明にお 、て、エタノールを原料として高分子アルコールおよびそれら混合物を 合成する際、求める高分子アルコールの選択率を高めるためには、使用するリン酸 カルシウム系触媒、触媒表面の酸塩基性の制御(例えばリン酸カルシウム系触媒の CaZPモル比)、および反応条件 (接触時間、反応温度、圧力など)を適宜選択して 実施される。 [0018] In the present invention, when synthesizing a polymer alcohol and a mixture thereof using ethanol as a raw material, the calcium phosphate catalyst used, the acid on the catalyst surface, Basic control (for example, calcium phosphate catalyst) (CaZP molar ratio) and reaction conditions (contact time, reaction temperature, pressure, etc.) are selected as appropriate.
[0019] 上記のようにして調整したリン酸カルシウム系触媒は、例えば、顆粒、粉末状など何 れの形態でも使用でき、また必要に応じて球体、ペレット、ハニカムなど任意の形に 成形後、乾燥、焼成して用いることもできる。リン酸カルシウム系触媒は、当業者に周 知である慣用のアルミナ、シリカ、アルミナ シリカ、ゼォライト、粘土鉱物などの担体 に担持させても良い。焼成は 200°C〜1200°C、好ましくは 400°C〜700°Cで行う。  [0019] The calcium phosphate-based catalyst prepared as described above can be used in any form such as granules and powders, and if necessary, formed into an arbitrary shape such as spheres, pellets, and honeycombs, and then dried. It can also be used after firing. The calcium phosphate catalyst may be supported on a carrier such as conventional alumina, silica, alumina silica, zeolite, clay mineral, etc., which are well known to those skilled in the art. Firing is performed at 200 ° C to 1200 ° C, preferably 400 ° C to 700 ° C.
[0020] エタノールをリン酸カルシウム系触媒に接触させ、高分子アルコールを合成するの に適した本願反応温度は、通常 150°C〜450°Cの範囲で選択することが好ましぐよ り好ましくは 200°C〜350°Cが望ましい。 150°C以下でも高分子アルコールの選択率 を高く保つ手段はある力 エタノールの転ィ匕率が低いので、収率が低くなり経済性が 悪くなる。また、 450°C以上では、エタノールの転ィ匕率は高くなる力 高分子アルコー ル選択率が低下し、不要な反応生成物が増え、その廃棄処分の問題が新たに発生 し、また経済性も悪化する。  [0020] The reaction temperature suitable for synthesizing the polymer alcohol by bringing ethanol into contact with the calcium phosphate catalyst is usually selected from the range of 150 ° C to 450 ° C, more preferably 200 ° C. ° C to 350 ° C is desirable. Even if the temperature is below 150 ° C, there is a means to keep the selectivity of the polymer alcohol high. Since the ethanol conversion rate is low, the yield is low and the economy is poor. At 450 ° C or higher, the ethanol conversion rate increases. The polymer alcohol selectivity decreases, the number of unnecessary reaction products increases, and new disposal problems arise. It gets worse.
[0021] 本願接触時間は、通常 0. 4秒以上である。好ましくは 0. 6秒以上が望ましい。 0. 4 秒より短!、と高分子アルコールの選択率が低ぐまたエタノール転ィヒ率も低!、ので合 成収率が低くなり、経済性が悪くなる。低温域での反応であるならば、エタノール転 化率を上げるため、接触時間無限大に相当するバッチ式反応装置も使用できる。高 温域では、接触時間が長くなると、別の反応が増え、高分子アルコールの選択率は 低下する。  [0021] The contact time of the present application is usually 0.4 seconds or more. Preferably it is 0.6 seconds or longer. Shorter than 4 seconds, the polymer alcohol selectivity is low and the ethanol conversion rate is also low, resulting in a low synthesis yield and poor economic efficiency. If the reaction is performed at a low temperature, a batch reactor corresponding to an infinite contact time can be used to increase the ethanol conversion. At higher temperatures, longer contact times increase other reactions and lower polymer alcohol selectivity.
[0022] エタノール力 高分子アルコールを合成する反応は、発熱反応である。従って、高 分子アルコールの高い収率を目標とすると、反応熱による反応塔内部の温度上昇が 顕著となる。その結果、エタノール分解反応など別の反応の発現による高分子アルコ ール選択率の低下、触媒温度の上昇による触媒の劣化、反応装置の耐久性低下な どの不具合を生じる。従って、エタノールから高分子アルコールを合成する反応の場 合、高 、収率を目指すよりは高 、選択率を目標としたほうが工業ィ匕には向 、て 、る。 但し、反応熱を除去するシステムを反応塔内部に導入するならば、その限りではない [0023] エタノールは気相で直接、または窒素或いはヘリウムのような不活性なキャリアガス の存在下で触媒と接触させることにより、効率よく反応させることができる。このとき触 媒活性の維持のために、キャリアガス中に水素や炭化水素などの反応性ガスを同伴 させても良い。 [0022] Ethanol power The reaction for synthesizing the polymer alcohol is an exothermic reaction. Therefore, when a high yield of high molecular alcohol is targeted, the temperature rise inside the reaction tower due to the heat of reaction becomes significant. As a result, problems such as a decrease in polymer alcohol selectivity due to the occurrence of another reaction such as an ethanol decomposition reaction, deterioration of the catalyst due to an increase in catalyst temperature, and a decrease in durability of the reactor occur. Therefore, in the case of a reaction for synthesizing a polymer alcohol from ethanol, it is better for the industrial industry to target the selectivity, rather than aiming at a high yield. However, this does not apply if a system for removing reaction heat is introduced inside the reaction tower. [0023] Ethanol can be efficiently reacted by contacting it with a catalyst directly in the gas phase or in the presence of an inert carrier gas such as nitrogen or helium. At this time, in order to maintain the catalyst activity, a reactive gas such as hydrogen or hydrocarbon may be accompanied in the carrier gas.
[0024] 反応塔での反応形式としては、バッチ方式、連続方式、固定床、移動床、流動床ま たはスラリー床の何れの方法によってもよぐ常圧または加圧下で行うことができる。 高分子アルコール合成反応の場合、長時間の使用で触媒表面に炭素を析出し、ェ タノール転ィ匕率の低下、および反応の異質化を招く場合がある。その場合、定期的 に触媒を酸素雰囲気下で加熱する再生処理を行う。これにより触媒の活性を回復で きる。従って、触媒に炭素析出の多い反応条件の場合、触媒再生処理装置を組み 込んだ上記記載の方式によるプラントが有効である。  [0024] As the reaction mode in the reaction tower, it can be carried out at normal pressure or under pressure by any method of batch system, continuous system, fixed bed, moving bed, fluidized bed or slurry bed. In the case of a polymer alcohol synthesis reaction, carbon may be deposited on the catalyst surface over a long period of use, leading to a decrease in ethanol conversion and a heterogeneous reaction. In that case, regeneration treatment is periodically performed by heating the catalyst in an oxygen atmosphere. Thereby, the activity of the catalyst can be recovered. Therefore, in the case of reaction conditions with a large amount of carbon deposition on the catalyst, a plant based on the above-described method incorporating a catalyst regeneration treatment apparatus is effective.
[0025] このようにして得られた高分子アルコールは、従来用いられて!/、る分離、精製法、 例えば、精溜、ミクロ孔膜分離、抽出、吸着法などを用いて分離、精製することができ る。 [0025] The polymer alcohol thus obtained is conventionally used! /, And is separated and purified using a separation and purification method such as rectification, microporous membrane separation, extraction, and adsorption method. be able to.
[0026] 触媒は以下のようにして合成した。得られた粉末の結晶構造は、(株)マツクサイエ ンス社の粉末 X線回折装置 M18XHF22を、比表面積測定には COLTER (株)社の SA3100を、 CaZPモル比測定には理学電気工業 (株)社の蛍光 X線分析装置 RIX 1000を使用した。 [0026] The catalyst was synthesized as follows. The crystal structure of the obtained powder is a powder X-ray diffractometer M18XHF 22 manufactured by MatsuScience Co., Ltd., SA3100 of COLTER Co., Ltd. is used to measure the specific surface area, and Rigaku Electric Industries Co., Ltd. ) RIX 1000 fluorescent X-ray analyzer was used.
[0027] [実施例 1]触媒の調整  [Example 1] Preparation of catalyst
225. 2gの硝酸カルシウム: Ca(NO ) ·4Η Οを蒸留水 5. 0リットルに溶かした液、及  225. 2 g of calcium nitrate: Ca (NO) · 4Η に dissolved in 5.0 liters of distilled water, and
3 2 2  3 2 2
び 78. 87gのリン酸アンモ-ゥム: (ΝΗ ) ΗΡΟを蒸留水 3. 0リットルに溶力した液を、  78. 87g of ammonium phosphate: (ΝΗ) A solution of ΗΡΟ in 3.0 liters of distilled water,
4 2 4  4 2 4
pHを 9〜: L 1に調整したアンモニア水中に窒素雰囲気下で滴下し、 1日撹拌する。そ の後、濾過、水洗、乾燥させ、得られた粉末にイオン交換水をカ卩え、ボールミルで 48 時間粉砕させた。得られた泥漿は、オーブン中 140°Cで熟成および乾燥させた。こ の粉末を大気中で 600°C、 2時間焼成させて CaZPモル比が 1. 64の粉末状の触媒 組成物を得た。  Drop it in ammonia water adjusted to pH 9 to L 1 under a nitrogen atmosphere and stir for 1 day. Thereafter, filtration, washing with water and drying were carried out, and ion-exchanged water was added to the obtained powder and ground with a ball mill for 48 hours. The resulting slurry was aged and dried at 140 ° C. in an oven. This powder was calcined in the atmosphere at 600 ° C. for 2 hours to obtain a powdery catalyst composition having a CaZP molar ratio of 1.64.
[0028] [実施例 2]触媒特性の評価 [0028] [Example 2] Evaluation of catalyst characteristics
反応装置は固定床ガス流通式触媒反応装置を用いた。粉末の触媒を 14〜26メッ シュのタブレットに成形した。このタブレットを接触時間に応じた分量だけ反応管に充 填し、前処理として、キャリアガス(l%ArZHeベース;流量 112ml/min)雰囲気下で 500°C、 30分間加熱脱水処理を行った。前処理終了後、エタノール濃度 16vol%、 キャリアガス流量 112ml/min (総流量 134ml/min)の条件で常圧にて反応させた。 高分子アルコール合成試験の場合、反応温度は 300°Cに固定し、接触時間を 0. 0 2秒〜 29. 4秒の範囲で行った。 1ーブタノール合成条件の最適化試験では、接触 時間 1. 0秒で固定し、エタノール濃度 8. 1%、反応温度を 150〜500°Cの範囲で行 つた The reactor used was a fixed bed gas flow type catalytic reactor. 14-26 mess of powder catalyst Molded into a tablet. This tablet was filled into the reaction tube in an amount corresponding to the contact time, and as a pretreatment, a heat dehydration treatment was performed at 500 ° C. for 30 minutes in a carrier gas (l% ArZHe base; flow rate 112 ml / min) atmosphere. After completion of the pretreatment, the reaction was carried out at normal pressure under the conditions of an ethanol concentration of 16 vol% and a carrier gas flow rate of 112 ml / min (total flow rate of 134 ml / min). In the case of the polymer alcohol synthesis test, the reaction temperature was fixed at 300 ° C., and the contact time was in the range of 0.02 seconds to 29.4 seconds. In the optimization test of 1-butanol synthesis conditions, the contact time was fixed at 1.0 seconds, the ethanol concentration was 8.1%, and the reaction temperature was in the range of 150 to 500 ° C.
[0029] 反応ガス成分の同定にはガスクロマトグラフ質量分析計 (GC— MS)を用い、ェタノ 一ルの転ィ匕率及び合成ガスの選択率測定にはガスクロマトグラフ(GC) (検出器: FI D)を用いた。ここで、原料エタノール、ブタノール、へキサノール、ォクタノール、デカ ノーノレの選択率算出のため【こ、それぞれ 0. 70、 0. 85、 0. 90、 0. 93、 0. 94の力 一ボンモル感度補正係数を用いた。  [0029] A gas chromatograph mass spectrometer (GC—MS) was used to identify the reaction gas components, and a gas chromatograph (GC) (detector: FI) was used to measure the ethanol conversion rate and synthesis gas selectivity. D) was used. Here, to calculate the selectivity of raw materials ethanol, butanol, hexanol, octanol, decanolole [force of 0.70, 0.85, 0.90, 0.93, 0.94, respectively] A coefficient was used.
[0030] エタノール転化率 (%)=(1-エタノールカーボンモル数 Z全カーボンモル数) 100 [0030] Ethanol conversion rate (%) = (1-ethanol carbon moles Z total carbon moles) 100
1-ブタノール選択率 (%)=(1-ブタノールカーボンモル数 Z全カーボンモル数) 1001-butanol selectivity (%) = (1-butanol carbon moles Z total carbon moles) 100
※へキサノール、ォクタノール、デカノール選択率の計算は 1ーブタノールと同じ。 高分子アルコール選択率(%) = 1-ブタノール選択率 +へキサノール選択率 +ォクタ ノール選択率 +デカノール選択率 * The calculation of hexanol, octanol and decanol selectivity is the same as for 1-butanol. Polymer alcohol selectivity (%) = 1-butanol selectivity + hexanol selectivity + octanol selectivity + decanol selectivity
[0031] 試験結果を表 1、図 1及び図 2 (図 1の接触時間 0. 0〜1. 0秒の間を拡大したもの) に示す。  [0031] The test results are shown in Table 1, Fig. 1 and Fig. 2 (enlarged between contact times of 0.0 to 1.0 seconds in Fig. 1).
[0032] [表 1] [0032] [Table 1]
Figure imgf000010_0001
表 1は、ハイドロキシアパタイト触媒を用い、エタノール濃度 16%、反応温度 300°C にてエタノール転ィ匕試験を行った時の、接触時間と高分子アルコール選択率の関係 を示したものである。 [0034] 1—ブタノール選択率は、接触時間 1. 34秒で最大値をとり、接触時間がそれより長 くなると低下した。へキサノール、ォクタノール、デカノールの選択率は、この順番に 低くなり、接触時間 29. 4秒まででは、接触時間の増加と共にそれぞれの選択率は 増加した。
Figure imgf000010_0001
Table 1 shows the relationship between the contact time and the polymer alcohol selectivity when an ethanol transfer test was conducted using a hydroxyapatite catalyst at an ethanol concentration of 16% and a reaction temperature of 300 ° C. [0034] The 1-butanol selectivity reached its maximum value at a contact time of 1.34 seconds, and decreased when the contact time was longer. The selectivity of hexanol, octanol, and decanol decreased in this order, and each contact rate increased with increasing contact time up to a contact time of 29.4 seconds.
[0035] 高分子アルコール選択率は、接触時間 0. 02秒で 2. 4%と非常に小さい値である 力 接触時間の増加で急激に高くなり、接触時間 0. 4秒で 60%を越えた。さらに、接 触時間 0. 6秒以上では高分子アルコール選択率は工業ィ匕に有利な 70%以上と非 常に高い値となった。  [0035] The polymer alcohol selectivity is very small, 2.4% at a contact time of 0.02 seconds. Force increases rapidly with increasing contact time, and exceeds 60% at a contact time of 0.4 seconds. It was. Furthermore, when the contact time was 0.6 seconds or more, the polymer alcohol selectivity was a very high value of 70% or more, which is advantageous for industrial applications.
[0036] [実施例 3]ガスクロマトグラフ質量分析計 (GC— MS)による分析例  [0036] [Example 3] Example of analysis by gas chromatograph mass spectrometer (GC—MS)
ノ、イドロキシアパタイト触媒を用い、エタノール濃度 16%、接触時間 1. 78秒、反応 温度 300°Cにてエタノール転化試験を行い、 GC— MSにより分析を行った。その結 果を図 3に示す。  The ethanol conversion test was conducted using an idroxyapatite catalyst at an ethanol concentration of 16%, a contact time of 1.78 seconds, and a reaction temperature of 300 ° C, and analyzed by GC-MS. Figure 3 shows the results.
[0037] リテンションタイム 8. 5分に 1ーブタノール、同 13〜14分にへキサノール (イソとノル マルの 2種)、同 17〜18分にォクタノール (イソとノルマルの 2種)、同 20〜22分にデ 力ノール (イソとノルマルで 3種)のピークが確認できる。  [0037] Retention time 8.5-min for 1-butanol, 13-14 min for hexanol (iso and normal), 17-18 min for octanol (iso and normal), 20- At 22 minutes, a peak of depressor (iso and normal) was confirmed.
この結果より、炭素数力 以上かつ偶数である高分子アルコールが選択的に合成さ れることがゎカゝる。  From this result, it is clear that a polymer alcohol having an even number of carbon atoms and an even number is selectively synthesized.
[0038] [実施例 4]反応温度と 1 ブタノール選択率の評価  [0038] [Example 4] Evaluation of reaction temperature and 1-butanol selectivity
ノ、イドロキシアパタイト触媒を用い、エタノール濃度 8. 1%、接触時間 1. 0秒にてェ タノール転化試験を行なった。また比較として、接触時間だけを 0. 3秒にしてエタノ ール転化試験を行った。その結果を図 4に示す。  The ethanol conversion test was conducted using ethanol and idroxyapatite catalyst at an ethanol concentration of 8.1% and a contact time of 1.0 seconds. For comparison, an ethanol conversion test was conducted with a contact time of only 0.3 seconds. The results are shown in Fig. 4.
[0039] 接触時間 1. 0秒と、 0. 3秒の 1 ブタノール合成特性を比較した結果、接触時間 1 . 0秒の 1ーブタノール選択率は、接触時間 0. 3秒の 1ーブタノール選択率に比べて 、選択率が最大約 12%高くなつており、その最大値での反応温度を比較すると、接 触時間 1. 0秒では、接触時間 0. 3秒に比べて約 75°C低下している。  [0039] As a result of comparing the 1-butanol synthesis characteristics of contact time 1.0 seconds and 0.3 seconds, the 1-butanol selectivity of contact time 1.0 seconds is 1-butanol selectivity of contact time 0.3 seconds. Compared with the reaction temperature at the maximum value, the selectivity is about 12% higher, and when the contact time is 1.0 second, the contact time is about 75 ° C lower than the contact time of 0.3 second. ing.
産業上の利用可能性  Industrial applicability
[0040] 本願方法による触媒は、安価で簡単に製造できる上、反応および再生処理に対し て安定であり、反応温度と接触時間を選択することにより、効率よくエタノール力 高 分子アルコールを得ることができる。 [0040] The catalyst according to the present method is inexpensive and easy to manufacture and is stable to the reaction and regeneration treatment. By selecting the reaction temperature and contact time, the ethanol power can be increased efficiently. Molecular alcohols can be obtained.

Claims

請求の範囲 The scope of the claims
[1] エタノールを、リン酸カルシウムと、接触時間 0. 4秒以上で接触させることを特徴と する、炭素数力 以上かつ偶数である高分子アルコールの合成法。  [1] A method for synthesizing a polymer alcohol having an even number of carbon power and an even number, characterized in that ethanol is brought into contact with calcium phosphate at a contact time of 0.4 seconds or longer.
[2] エタノールを、リン酸カルシウムと、接触時間 0. 4秒以上かつ 200°C〜350°Cで接 触させることを特徴とする 1 ブタノールの合成法。  [2] A method for synthesizing 1-butanol, characterized by contacting ethanol with calcium phosphate at a contact time of 0.4 seconds or longer and at 200 ° C to 350 ° C.
[3] リン酸カルシウムがハイドロキシアパタイトであることを特徴とする請求項 1記載の高 分子アルコールの合成法。  [3] The method for synthesizing a high molecular alcohol according to [1], wherein the calcium phosphate is hydroxyapatite.
[4] リン酸カルシウムがハイドロキシアパタイトであることを特徴とする請求項 2記載の 1 ーブタノールの合成法。  [4] The method for synthesizing 1-butanol according to claim 2, wherein the calcium phosphate is hydroxyapatite.
PCT/JP2005/022217 2004-12-03 2005-12-02 Method of synthesizing higher-molecular alcohol WO2006059729A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP05811784.7A EP1829851B1 (en) 2004-12-03 2005-12-02 Method of synthesizing higher-molecular alcohol
CA2589125A CA2589125C (en) 2004-12-03 2005-12-02 Method of synthesizing higher-molecular alcohol
KR1020087031303A KR101113050B1 (en) 2004-12-03 2005-12-02 Method of synthesizing higher-molecular alcohol
BRPI0515805-2A BRPI0515805B1 (en) 2004-12-03 2005-12-02 Method of synthesizing high molecular weight alcohol, in particular 1-butanol
AU2005310507A AU2005310507B2 (en) 2004-12-03 2005-12-02 Method of synthesizing high molecular weight alcohol
JP2006546656A JP4903582B2 (en) 2004-12-03 2005-12-02 Synthesis method of polymer alcohol
US11/757,588 US8080695B2 (en) 2004-12-03 2007-06-04 Method of synthesizing higher-molecular alcohol

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-351307 2004-12-03
JP2004351307 2004-12-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/757,588 Continuation-In-Part US8080695B2 (en) 2004-12-03 2007-06-04 Method of synthesizing higher-molecular alcohol

Publications (1)

Publication Number Publication Date
WO2006059729A1 true WO2006059729A1 (en) 2006-06-08

Family

ID=36565161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022217 WO2006059729A1 (en) 2004-12-03 2005-12-02 Method of synthesizing higher-molecular alcohol

Country Status (10)

Country Link
US (1) US8080695B2 (en)
EP (1) EP1829851B1 (en)
JP (1) JP4903582B2 (en)
KR (2) KR20070085516A (en)
CN (2) CN102911010B (en)
AU (1) AU2005310507B2 (en)
BR (1) BRPI0515805B1 (en)
CA (1) CA2589125C (en)
RU (1) RU2422428C2 (en)
WO (1) WO2006059729A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008090703A (en) * 2006-10-04 2008-04-17 Sangi Co Ltd Chemical industrial raw material production and sales management system
JP2008303160A (en) * 2007-06-06 2008-12-18 Mitsubishi Chemicals Corp Method for producing alcohol
WO2009028166A1 (en) 2007-08-24 2009-03-05 Kabushiki Kaisha Sangi Method for synthesis of chemical industrial raw material or fuel composition
JP2009220105A (en) * 2008-02-21 2009-10-01 Kochi Univ Catalyst and synthetic process of alcohol
US7700810B2 (en) 2007-08-22 2010-04-20 E.I. Du Pont De Nemours And Company Catalytic conversion of ethanol to a 1-butanol-containing reaction product using a thermally decomposed hydrotalcite catalyst
US7700812B2 (en) 2007-08-22 2010-04-20 E. I. Du Pont De Nemours And Company Catalytic conversion of ethanol to a 1-butanol-containing reaction product using a thermally decomposed hydrotalcite containing the anion of ethylenediaminetetraacetic acid
US7700811B2 (en) 2007-08-22 2010-04-20 E.I. Du Pont De Namours And Company Catalytic conversion of ethanol to a 1-butanol-containing reaction product using a thermally decomposed hydrotalcite/metal carbonate
WO2011021232A1 (en) * 2009-08-17 2011-02-24 株式会社サンギ Catalyst and alcohol synthesis method
WO2012035772A1 (en) * 2010-09-15 2012-03-22 Kabushiki Kaisha Sangi Method for producing alcohol by guerbet reaction
US8187347B2 (en) 2007-09-13 2012-05-29 Kabushiki Kaisha Sangi Method for producing composition using alcohol as starting material
US8318989B2 (en) 2008-12-22 2012-11-27 E I Du Pont De Nemours And Company Process for producing guerbet alcohols using water tolerant basic catalysts
JPWO2011052178A1 (en) * 2009-10-29 2013-03-14 株式会社サンギ Method for synthesizing unsaturated carboxylic acid and / or derivative thereof
US8603201B2 (en) 2007-08-24 2013-12-10 Kabushiki Kaisha Sangi Method of synthesizing chemical industry raw materials and fuel compositions
JP2014040415A (en) * 2013-08-06 2014-03-06 Sangi Co Ltd Method for synthesizing chemical industry raw material and fuel composition
WO2014100131A1 (en) 2012-12-19 2014-06-26 Celanese International Corporation Coated hydrotalcite catalysts and processes for producing butanol
WO2014100133A1 (en) 2012-12-19 2014-06-26 Celanese International Corporation Catalysts and processes for producing butanol
US9018426B1 (en) 2013-12-19 2015-04-28 Celanese International Corporation Processes for producing multi-carbon alcohols
US9024090B2 (en) 2012-12-19 2015-05-05 Celanese International Corporation Catalysts and processes for producing butanol
WO2018039609A1 (en) * 2016-08-25 2018-03-01 Rescurve, Llc Production of higher alcohols

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009064828A1 (en) * 2007-11-13 2009-05-22 E. I. Du Pont De Nemours And Company Process for making a composition comprising at least two different dialkyl ethers
US8962896B2 (en) * 2009-09-11 2015-02-24 E I Du Pont De Nemours And Company Conversion of ethanol to a reaction product comprising 1-butanol using hydroxyapatite catalysts
US9211529B2 (en) 2009-09-11 2015-12-15 E I Du Pont De Nemours And Company Conversion of ethanol to a reaction product comprising 1-butanol using hydroxyapatite catalysts
FR2951163B1 (en) * 2009-10-13 2012-09-28 Total Raffinage Marketing PROCESS FOR PRODUCTION OF DISTILLATE BY CATALYTIC OLIGOMERIZATION OF OLEFINS IN THE PRESENCE OF OXYGEN COMPOUNDS
FR2951161B1 (en) * 2009-10-13 2012-03-02 Total Raffinage Marketing PROCESS FOR PRODUCING DISTILLATE FROM A HYDROCARBONATED LOAD COMPRISING ALCOHOL CONDENSATION
US9447018B2 (en) 2009-10-20 2016-09-20 Greenyug, Llc Ethyl acetate production
CN101823938B (en) * 2010-04-23 2012-12-05 浙江大学 Method for preparing isooctyl alcohol by catalyzing and condensing butanol
DE102010024099A1 (en) 2010-06-17 2011-12-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Catalytic conversion of alcohols and aldehydes
MY175358A (en) * 2010-11-11 2020-06-22 Lucite Int Uk Ltd A process for the production of ethylenically unsaturated carboxylic acids or esters and a catalyst therefor
US8431753B2 (en) 2011-03-09 2013-04-30 E I Du Pont De Nemours And Company Conversion of butanol to a reaction product comprising 2-ethylhexanol using hydroxyapatite catalysts
FR2980791A1 (en) * 2011-10-03 2013-04-05 Rhodia Operations PROCESS FOR THE PREPARATION OF A MIXTURE OF ALCOHOLS
FR2984312A1 (en) * 2011-12-20 2013-06-21 Rhodia Operations PROCESS FOR THE PREPARATION OF A MIXTURE OF ALCOHOLS
FR2984313B1 (en) * 2011-12-20 2014-01-17 Rhodia Operations PROCESS FOR THE PREPARATION OF A MIXTURE OF ALCOHOLS
US9079851B2 (en) 2012-02-01 2015-07-14 Greenyug, Llc Ethyl acetate production
ES2855323T3 (en) 2012-06-29 2021-09-23 Abengoa Bioenergia Nuevas Tecnologias Sa Catalyst for obtaining higher alcohols
EP2679304A1 (en) 2012-06-29 2014-01-01 Abengoa Bioenergía Nuevas Tecnologías, S. A. Process for obtaining higher alcohols in the presence of a gallium containing mixed oxide
US8809594B2 (en) 2012-09-21 2014-08-19 Eastman Chemical Company Dual catalyst system for the self-condensation of alcohols
FR3001728B1 (en) 2013-02-04 2015-11-13 Adisseo France Sas PROCESS FOR PREPARING OLEFIN BY CATALYTIC CONVERSION OF AT LEAST ONE ALCOHOL
WO2014130465A1 (en) * 2013-02-19 2014-08-28 Greenyug, Llc Production of higher alcohols
US10081588B2 (en) 2013-12-04 2018-09-25 Rescurve, Llc Production of butyl acetate from ethanol
EP2889282A1 (en) 2013-12-27 2015-07-01 Abengoa Bioenergía Nuevas Tecnologías, S. A. Process for the preparation of n-butanol from ethanol and acetaldehyde
EP2889280A1 (en) 2013-12-27 2015-07-01 Abengoa Bioenergía Nuevas Tecnologías, S. A. Process for the preparation of n-butanol from ethanol and acetaldehyde
EP2889281A1 (en) 2013-12-27 2015-07-01 Abengoa Bioenergía Nuevas Tecnologías, S. A. Process for the preparation of n-butanol from ethanol and acetaldehyde
US10301241B2 (en) 2013-12-27 2019-05-28 Abengoa Bioenergia Nuevas Tecnologias, S.A. Process for the preparation of higher alcohols from lower alcohols by Guerbet condensation
EP2889283A1 (en) 2013-12-27 2015-07-01 Abengoa Bioenergía Nuevas Tecnologías, S. A. Process for the preparation of n-butanol from ethanol and acetaldehyde
WO2016075531A1 (en) 2014-11-14 2016-05-19 Abengoa Bioenergia Nuevas Tecnologias, S.A. Process for the preparation of higher alcohols from ethanol and n-hexanol by guerbet condensation
ES2570227B1 (en) * 2014-11-14 2017-04-19 Abengoa Bioenergia Nuevas Tecnologias, S.A. PROCESS FOR THE PREPARATION OF HIGHER ALCOHOLS FROM ETHANOL AND N-HEXANOL BY GUERBET CONDENSATION
ES2570231B1 (en) * 2014-11-14 2017-04-19 Abengoa Bioenergia Nuevas Tecnologias, S.A. PROCESS FOR THE PREPARATION OF HIGHER ALCOHOLS FROM ETHANOL AND N-HEXANOL BY GUERBET CONDENSATION
CA3225290A1 (en) 2015-08-19 2017-02-23 Viridis Chemical, Llc Composition of catalysts for conversion of ethanol to n-butanol and higher alcohols
US9828322B2 (en) 2016-01-28 2017-11-28 Eastman Chemical Company Efficient synthesis of methacroelin and other alpha, beta-unsaturated aldehydes over a regenerable anatase titania catalyst
US9834501B2 (en) 2016-01-28 2017-12-05 Eastman Chemical Company Efficient synthesis of methacroelin and other alpha, beta—unsaturated aldehydes from methanol and an aldehyde
CN108117480B (en) * 2016-11-26 2021-09-03 中国科学院大连化学物理研究所 Method for preparing isobutanol by catalytic conversion of mixed solution of methanol and ethanol
CN109529897B (en) * 2018-12-04 2020-07-31 西南化工研究设计院有限公司 Palladium-gallium bimetallic catalyst for producing n-butanol and preparation method and application thereof
CA3218416A1 (en) * 2021-07-12 2023-01-19 Jamal FTOUNI Process for preparing an alcohol using a surface-reacted calcium carbonate catalyst

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999038822A1 (en) 1998-01-30 1999-08-05 Kabushiki Kaisha Sangi Process for the synthesis of chemical industrial feedstock and high-octane fuel, and high-octane fuel composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2645667A (en) * 1951-10-01 1953-07-14 Phillips Petroleum Co Condensation of alcohols in the presence of calcium hydroxide
DE3236307C2 (en) * 1982-09-30 1985-11-14 IMA - Klessmann GmbH & Co KG, 4830 Gütersloh Machine for drilling and inserting fittings in plate-shaped workpieces

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999038822A1 (en) 1998-01-30 1999-08-05 Kabushiki Kaisha Sangi Process for the synthesis of chemical industrial feedstock and high-octane fuel, and high-octane fuel composition

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A. S. NDOU; N. PLINT; N. J. COVILLE: "Dimerisation of ethanol to butanol over solid-base catalysts", APPLIED CATALYSIS A: GENERAL, vol. 251, 2003, pages 337 - 345
A. S. NDOU; N. PLINT; N. J. COVILLE: "Dimerisation of ethanol to butanol over solid-basecatalysts", APPLIED CATALYSIS A: GENERAL, vol. 251, 2003, pages 337 - 345
C. YANG; Z. MENG: "Bimolecular Condensation of Ethanol to 1-Butanol Catalyzed by Alkali Cation Zeolites", J. OF CATALYSIS, vol. 142, 1993, pages 37 - 44
See also references of EP1829851A4

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008090703A (en) * 2006-10-04 2008-04-17 Sangi Co Ltd Chemical industrial raw material production and sales management system
JP2008303160A (en) * 2007-06-06 2008-12-18 Mitsubishi Chemicals Corp Method for producing alcohol
US7700810B2 (en) 2007-08-22 2010-04-20 E.I. Du Pont De Nemours And Company Catalytic conversion of ethanol to a 1-butanol-containing reaction product using a thermally decomposed hydrotalcite catalyst
US7700811B2 (en) 2007-08-22 2010-04-20 E.I. Du Pont De Namours And Company Catalytic conversion of ethanol to a 1-butanol-containing reaction product using a thermally decomposed hydrotalcite/metal carbonate
US7700812B2 (en) 2007-08-22 2010-04-20 E. I. Du Pont De Nemours And Company Catalytic conversion of ethanol to a 1-butanol-containing reaction product using a thermally decomposed hydrotalcite containing the anion of ethylenediaminetetraacetic acid
CN102887813A (en) * 2007-08-24 2013-01-23 三仪股份有限公司 Method for synthesis of chemical industrial raw material or fuel composition
RU2485087C2 (en) * 2007-08-24 2013-06-20 Кабусики Кайся Санги Method for synthesis of chemical industry raw material and fuel compositions
CN101547883A (en) * 2007-08-24 2009-09-30 三仪股份有限公司 Method for synthesis of chemical industrial raw material or fuel composition
JP2009051760A (en) * 2007-08-24 2009-03-12 Sangi Co Ltd Method for synthesizing chemical industry raw material and fuel composition
US8603201B2 (en) 2007-08-24 2013-12-10 Kabushiki Kaisha Sangi Method of synthesizing chemical industry raw materials and fuel compositions
WO2009028166A1 (en) 2007-08-24 2009-03-05 Kabushiki Kaisha Sangi Method for synthesis of chemical industrial raw material or fuel composition
KR101229331B1 (en) * 2007-08-24 2013-02-04 가부시키가이샤 상기 Method for synthesis of chemical industrial raw material or fuel composition
US8187347B2 (en) 2007-09-13 2012-05-29 Kabushiki Kaisha Sangi Method for producing composition using alcohol as starting material
JP2014210262A (en) * 2008-02-21 2014-11-13 国立大学法人高知大学 Catalyst and synthetic method of alcohol
JP2009220105A (en) * 2008-02-21 2009-10-01 Kochi Univ Catalyst and synthetic process of alcohol
US8318989B2 (en) 2008-12-22 2012-11-27 E I Du Pont De Nemours And Company Process for producing guerbet alcohols using water tolerant basic catalysts
WO2011021232A1 (en) * 2009-08-17 2011-02-24 株式会社サンギ Catalyst and alcohol synthesis method
US8232433B2 (en) 2009-08-17 2012-07-31 Kabushiki Kaisha Sangi Catalyst and alcohol synthesis method
JPWO2011052178A1 (en) * 2009-10-29 2013-03-14 株式会社サンギ Method for synthesizing unsaturated carboxylic acid and / or derivative thereof
JP5799324B2 (en) * 2009-10-29 2015-10-21 株式会社サンギ Method for synthesizing unsaturated carboxylic acid and / or derivative thereof
JP2013540690A (en) * 2010-09-15 2013-11-07 株式会社サンギ Method for producing alcohol by gelbe reaction
US9056811B2 (en) 2010-09-15 2015-06-16 Kabushiki Kaisha Sangi Method for producing alcohol by guerbet reaction
WO2012035772A1 (en) * 2010-09-15 2012-03-22 Kabushiki Kaisha Sangi Method for producing alcohol by guerbet reaction
WO2014100131A1 (en) 2012-12-19 2014-06-26 Celanese International Corporation Coated hydrotalcite catalysts and processes for producing butanol
WO2014100133A1 (en) 2012-12-19 2014-06-26 Celanese International Corporation Catalysts and processes for producing butanol
US8962897B2 (en) 2012-12-19 2015-02-24 Celanese International Corporation Catalysts and processes for producing butanol
US9024090B2 (en) 2012-12-19 2015-05-05 Celanese International Corporation Catalysts and processes for producing butanol
JP2014040415A (en) * 2013-08-06 2014-03-06 Sangi Co Ltd Method for synthesizing chemical industry raw material and fuel composition
US9018426B1 (en) 2013-12-19 2015-04-28 Celanese International Corporation Processes for producing multi-carbon alcohols
WO2018039609A1 (en) * 2016-08-25 2018-03-01 Rescurve, Llc Production of higher alcohols

Also Published As

Publication number Publication date
JP4903582B2 (en) 2012-03-28
BRPI0515805B1 (en) 2015-07-28
RU2007124714A (en) 2009-01-10
EP1829851A1 (en) 2007-09-05
EP1829851B1 (en) 2013-06-19
EP1829851A4 (en) 2009-11-25
US8080695B2 (en) 2011-12-20
KR20070085516A (en) 2007-08-27
BRPI0515805A (en) 2008-08-05
AU2005310507B2 (en) 2010-02-25
JPWO2006059729A1 (en) 2008-06-05
US20070255079A1 (en) 2007-11-01
KR101113050B1 (en) 2012-03-14
AU2005310507A1 (en) 2006-06-08
KR20090009330A (en) 2009-01-22
CN101065345A (en) 2007-10-31
CA2589125A1 (en) 2006-06-08
CA2589125C (en) 2010-10-19
CN102911010A (en) 2013-02-06
CN102911010B (en) 2016-03-02
RU2422428C2 (en) 2011-06-27

Similar Documents

Publication Publication Date Title
WO2006059729A1 (en) Method of synthesizing higher-molecular alcohol
JP4520036B2 (en) Chemical industry raw material and high-octane fuel synthesis method and high-octane fuel composition
Ogo et al. Selective synthesis of 1-butanol from ethanol over strontium phosphate hydroxyapatite catalysts
Ghantani et al. Catalytic dehydration of lactic acid to acrylic acid using calcium hydroxyapatite catalysts
US8962896B2 (en) Conversion of ethanol to a reaction product comprising 1-butanol using hydroxyapatite catalysts
CN103221372A (en) Method for producing acrylic acid from methanol and acetic acid
JP2015517905A (en) Catalytic conversion of lactic acid to acrylic acid
EP2616418B1 (en) Method for producing alcohol by guerbet reaction
US8431753B2 (en) Conversion of butanol to a reaction product comprising 2-ethylhexanol using hydroxyapatite catalysts
CN107921423B (en) Catalytic dehydration of hydroxypropionic acid and derivatives thereof
JP4846737B2 (en) Method for producing α, β-unsaturated ether
CN104024194A (en) Process for preparing mixture of alcohols
KR101633730B1 (en) Calcium-Manganase-Phosphoric acid apatite catalyst for manufacturing of 1,3-Butadiene and Methyl Ethyl Ketone from 2,3-Butanediol and Its fabrication method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006546656

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580040053.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2589125

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 4031/DELNP/2007

Country of ref document: IN

Ref document number: 1020077012087

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11757588

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005310507

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2005811784

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007124714

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2005310507

Country of ref document: AU

Date of ref document: 20051202

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005310507

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2005811784

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11757588

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0515805

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: KR

Ref document number: 1020087031303

Country of ref document: KR