WO2006057177A1 - Multilayer film for moisture barrier film and method for producing same - Google Patents

Multilayer film for moisture barrier film and method for producing same Download PDF

Info

Publication number
WO2006057177A1
WO2006057177A1 PCT/JP2005/020834 JP2005020834W WO2006057177A1 WO 2006057177 A1 WO2006057177 A1 WO 2006057177A1 JP 2005020834 W JP2005020834 W JP 2005020834W WO 2006057177 A1 WO2006057177 A1 WO 2006057177A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
moisture
proof
laminated
laminated film
Prior art date
Application number
PCT/JP2005/020834
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Yamazaki
Tomoyuki Hidaka
Hisaaki Terashima
Original Assignee
Kureha Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corporation filed Critical Kureha Corporation
Priority to JP2006547729A priority Critical patent/JP4765090B2/en
Publication of WO2006057177A1 publication Critical patent/WO2006057177A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/14Layered products comprising a layer of synthetic resin next to a particulate layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/552Fatigue strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/554Wear resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/56Damping, energy absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • B32B2439/46Bags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • B32B37/20Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of continuous webs only
    • B32B37/203One or more of the layers being plastic

Definitions

  • the present invention relates to a laminated film for a moisture-proof film and a method for producing the same, and more specifically, suitable for materials for precision electronic parts, and also suitable for packaging of fine chemicals such as pharmaceuticals and test drugs. More particularly, the present invention relates to a laminated film for a moisture-proof film that is useful as a moisture-proof film for an electoluminescence device that requires a stable gas barrier performance for a long period of time and requires high moisture-proof performance, and a method for producing the same.
  • a laminated film for a moisture-proof film used as a component of an electronic device has a high level of gas barrier properties including a water vapor-nozzle property (i.e., moisture-proof performance, hereinafter referred to as moisture-proof property) due to water vapor. Things are sought.
  • the moisture-proof level of the moisture-proof laminated film used as a member of such an electronic device is the level of moisture-proof property of the moisture-proof laminated film as used in ordinary filling packaging. Is not enough.
  • there is a restriction to incorporate a moisture-proof film laminated film in a limited part volume so it is not possible to use a moisture-absorbing material in the moisture-proof film laminated film.
  • a laminated film for a moisture-proof film used as a member of such an electronic device is the level of moisture-proof property of the moisture-proof laminated film as used in ordinary filling packaging. Is not enough.
  • there is a restriction to incorporate a moisture-proof film laminated film in a limited part volume so it is not possible to use a moisture-absorbing material in the moisture-proof film laminated film.
  • a vapor-deposited film is formed on a gas-free film by vacuum deposition, plasma deposition, sputtering, etc.
  • Japanese Unexamined Patent Application Publication No. 2004-42502 discloses a barrier transparent laminated film formed by forming a silicon nitride sputtering film on a transparent film substrate. ing.
  • an adhesive layer (B) is formed directly or on both sides of a hygroscopic resin layer (A) made of polybutyl alcohol, a saponified ethylene-butyl acetate copolymer, or polyamide.
  • a stretched nylon film (A) a stretched nylon film (A), a vapor-deposited film (B), a gas barrier layer (C) including at least one composite vapor-deposited film, and A laminated film in which the heat seal layer (D) is laminated via an adhesive layer is disclosed.
  • Japanese Patent Application Laid-Open No. 2004-148626 discloses a gas noria film in which a deposited film protective layer formed by applying a deposited film protective coating material on an inorganic oxide deposited film is laminated. Yes.
  • Such a gas nore film described in Japanese Patent Application Laid-Open No. 2004-148626 is transparent and has visibility and flexibility in which a vapor deposition film protective coating material such as a silane coupling agent is applied on an inorganic oxide vapor deposition film. It was a gas nolla film.
  • a vapor deposition film (B) of an inorganic material is formed on at least one surface of the polymer film substrate (A), and further, a water-resistant film is formed on the vapor deposition film (B).
  • a moisture-proof composite vapor deposition film is disclosed.
  • a polymer film substrate layer (A), an inorganic material vapor deposition layer (B), a barrier unifacial resin coating layer (C), and a relaxation layer (D) are disclosed.
  • JP-A-9-193307 discloses a composite film laminated in order.
  • a heat seal layer (D) each laminated via an adhesive layer A layer film is disclosed.
  • the moisture-proof film can exhibit gas barrier properties and moisture-proof properties at an even higher level, and the strength can be stably demonstrated over a long period of time.
  • laminated films for membranes There is a need for laminated films for membranes.
  • the present invention has been made in view of the above-described problems of the prior art, and is a moisture-proof laminated film in which inorganic layers are laminated on both sides of an organic layer, and the film thickness direction in the organic layer It is possible to sufficiently prevent the deterioration of moisture resistance due to gas micro pinholes and to achieve high level gas barrier and moisture resistance over a long period of time.
  • An object of the present invention is to provide a laminated film for a moisture-proof film capable of maintaining its high gas-nozzle property and moisture-proof property even when an external force is applied, and a method for producing the same.
  • an organic thin film in which the density of the polymer molecular structure is increased due to, for example, salt formation with a hydrophilic group or a polyvalent metal and an organic layer having two organic thin films is formed.
  • the inventors have found that the above-mentioned object can be achieved by forming a layer by laminating two or more inorganic layers, and have completed the present invention.
  • the moisture-proof film laminate film of the present invention is a moisture-proof film laminate film comprising an organic layer and inorganic layers laminated on both sides of the organic layer,
  • the organic layer comprises two organic thin films
  • Each of the two organic thin films contains at least a polyvalent metal salt of the polycarboxylic acid polymer (A), and an infrared absorption spectrum area ratio ⁇ [peak area S (3700-2500 cm
  • Peak area S (1800-1500 cm _1 )] is 2.5 or less and an infrared absorption spectrum
  • Tuttle peak ratio j8 [Peak A (1560cm- 1 ) / Peak A (1700cm- 1 )] is 1.2 or more
  • the method for producing a laminated film for a moisture-proof film of the present invention comprises a polycarboxylic acid polymer (A), a polyvalent metal compound (B), a volatile base (C) or an acid (D). Either one and the solvent.
  • each of the two organic thin films contains at least a polyvalent metal salt of the polycarboxylic acid-based polymer (A).
  • A polycarboxylic acid-based polymer
  • Peak ratio of yield spectrum j8 [Peak A (1560cm- 1) / Peak A (1700cm _1)] is 1 - 2
  • the organic layer is formed by directly facing and adhering two organic thin films.
  • the organic layer is preferably formed by laminating two organic thin films via an adhesive layer.
  • the other surfaces of the two organic thin films are directly opposed to each other.
  • the laminated film for a moisture-proof film is obtained by close contact.
  • the other surfaces of the two organic thin films are laminated via an adhesive layer. It is preferable to obtain the laminated film for moisture-proof film.
  • the polyvalent metal that can be used in the present invention is preferably at least one metal that can select a group force including zinc, zirconium, copper, and nickel.
  • the polyvalent metal according to the present invention is zinc and has at least one peak between 96 to 498 eV of binding energy force by the Auger electron spectrum analysis of zinc.
  • the inorganic oxide which is preferably made of an inorganic oxide vapor deposition film, is more preferably a silicate oxide.
  • an adhesive formed using at least one adhesive selected from the group consisting of urethane adhesives, acrylic adhesives, polyester adhesives, and epoxy adhesives.
  • the adhesive's Vicat soft spot is preferably 50 ° C. More preferably, it is ⁇ 140 ° C.
  • the laminated film for a moisture-proof film of the present invention has a water vapor transmission rate of 0 at 40 ° C and 90% relative humidity after standing for 250 hours under prehumidification conditions at 60 ° C and 90% relative humidity. It is preferably maintained at 02 gZ (m 2 'day) or less.
  • the laminated film force for moisture-proof film of the present invention is preferably a moisture-proof film for an electoluminescence element.
  • the moisture-proof film laminated film of the present invention has the above-described configuration. That is, first, due to the salt formation between the hydrophilic group of the polycarboxylic acid polymer (A) and the polyvalent metal while containing at least the polyvalent metal salt of the polycarboxylic acid polymer (A).
  • the organic layer is provided with two organic thin films, and even when a micro pinhole is formed in the thickness direction of one organic thin film in the organic layer, it is still more.
  • the laminated film for moisture-proof film makes it possible to stably maintain a high gas noria property and moisture-proof property.
  • the laminated film for a moisture-proof film of the present invention can exhibit higher moisture-proof and gas-nozzle properties by laminating an inorganic layer having a high moisture-proof property on both sides of the organic layer. Since the soft organic layer is covered with a relatively hard inorganic layer, the gas resistance and moisture resistance of the laminated film for moisture-proof film will be reduced even when an external force such as bending or impact is applied. There is no.
  • FIG. 1 is a schematic view showing an embodiment of an apparatus for producing a laminated film for a moisture-proof film of the present invention.
  • FIG. 2 is a schematic view showing an embodiment of an apparatus for producing an organic-inorganic laminated film used for a moisture-proof laminated film of the present invention.
  • FIG. 3 is a schematic view showing an embodiment of an apparatus for producing a laminated film for a moisture-proof film of the present invention using an organic-inorganic laminated film produced in advance.
  • FIG. 4 is a schematic view showing an embodiment of an apparatus for producing a laminated film for a moisture-proof film of the present invention.
  • FIG. 5 is a schematic view showing an embodiment of an apparatus for producing an adhesive layer-formed laminated film used for the moisture-proof laminated film of the present invention.
  • FIG. 6 is a schematic view showing an embodiment of an apparatus for producing a moisture-proof laminated film of the present invention using an adhesive layer-formed laminated film produced in advance.
  • FIG. 7 A graph showing the relationship between the distance of the surface force of an organic thin film and the composition distribution of elements in the organic thin film.
  • FIG. 8 is a graph showing the relationship between the binding energy of zinc and the intensity that is positively correlated with the amount of emitted Auge electrons, as determined by Auger electron spectrum analysis.
  • the moisture-proof film laminate film of the present invention is a moisture-proof film laminate film comprising an organic layer and inorganic layers laminated on both sides of the organic layer,
  • the organic layer comprises two organic thin films
  • Each of the two organic thin films contains at least a polyvalent metal salt of the polycarboxylic acid polymer (A), and an infrared absorption spectrum area ratio ⁇ [peak area S (3700-2500 cm
  • the two organic thin films forming the organic layer according to the present invention each contain at least a polyvalent metal salt of the polycarboxylic acid polymer (A), and the area ratio ⁇ [peak area S (3700 ⁇ 2500cm _1) Z peak area S (1800 ⁇ 1500cm _ 1)] force. 5 below
  • the above-mentioned area ratio is simplified and expressed as the area ratio a of the infrared absorption spectrum, or simply as the area ratio a, or the peak ratio is simplified to reduce the infrared absorption spectrum. It may be expressed as peak ratio ⁇ or simply as peak ratio ⁇ .
  • the gas nolia property in the present invention means having a low oxygen permeability under high humidity conditions. Unless otherwise noted, oxygen permeability at a temperature of 30 ° C and a relative humidity (RH) of 80%.
  • the organic thin film has a gas barrier property such as oxygen even under high humidity. It can be used suitably as a raw material for organic thin films because it has long-term water resistance even in a natural environment such as a humid tropical region.
  • the specific requirement is that the polycarboxylic acid polymer (A) as a raw material for the organic thin film according to the present invention (A) is a drying condition for the organic thin film formed at a single temperature (temperature 30 ° C).
  • the oxygen transmission coefficient at 0% relative humidity is below a specific value.
  • the gas permeability coefficient can be adopted as a variable reflecting the structure of the polymer. Please refer to Jhon Wiley & Sons, Inc., ENCYCLOPEDIA OF POLYMER SCIENCE AND ENGINEERI NG, VOL. 2, p. 177 (1985) for the relationship between polymer molecular structure and gas permeability coefficient. .
  • the polycarboxylic acid-based polymer (A) used as a raw material for the organic thin film useful in the present invention is not particularly limited as long as it is an existing polycarboxylic acid-based polymer, but the organic according to the present invention From the viewpoint of improving the gas barrier property and moisture resistance of the thin film, the oxygen permeability coefficient measured under dry conditions (30 ° C, relative humidity 0%) of the polycarboxylic acid polymer (A) as a raw material is: 100cm 3 (STP) ⁇ / z mZ 'day MPa) or less.
  • Such an oxygen transmission coefficient can be obtained, for example, by the following method.
  • a 10% by weight aqueous solution of the polycarboxylic acid polymer (A) was prepared to produce a coating film having a 1 m-thick polycarboxylic acid polymer layer formed on a plastic substrate.
  • the oxygen permeability at 30 ° C and 0% relative humidity when the coated film is dried is measured.
  • the plastic substrate any plastic film whose oxygen permeability is known is used.
  • the oxygen permeability of the coating film of the obtained polycarboxylic acid polymer (A) is 1/10 or less than the oxygen permeability of the plastic film alone used as the substrate, the above-mentioned
  • the measured value of the oxygen permeability measured as described above can be regarded as the oxygen permeability of the layer of the polycarboxylic acid polymer (A) alone.
  • the oxygen permeability coefficient can be converted to the oxygen permeability coefficient by multiplying the measured value of oxygen permeability thus obtained by 1 ⁇ m.
  • the polycarboxylic acid polymer (A) used as a raw material for the organic thin film according to the present invention is a force capable of using an existing polycarboxylic acid polymer.
  • What is an existing polycarboxylic acid polymer? This is a general term for polymers having two or more carboxy groups in the molecule. Specifically, homopolymers that use j8-monoethylenically unsaturated carboxylic acid as the polymerizable monomer, and only a, j8-monoethylenically unsaturated carboxylic acid as the monomer component.
  • copolymers of ⁇ , ⁇ monoethylenically unsaturated carboxylic acid and other ethylenically unsaturated monomers alginic acid, carboxymethylcellulose, and pectin.
  • examples thereof include acidic polysaccharides having a carboxy group in the molecule.
  • These polycarboxylic acid polymers ( ⁇ ) can be used alone or as a mixture of at least two polycarboxylic acid polymers ( ⁇ ).
  • ⁇ monoethylenically unsaturated carboxylic acid acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid and the like are representative.
  • the ethylenically unsaturated monomer copolymerizable therewith include saturated carboxylic acid butyl esters such as ethylene, propylene, and butyl acetate, alkyl acrylates, and alkyl methacrylates.
  • Typical examples include tacrylates, alkyl itaconates, acrylonitrile, butyl chloride, vinylidene chloride, butyl fluoride, vinylidene fluoride, styrene, acrylamide, and the like.
  • the polycarboxylic acid polymer (A) is a copolymer of a, j8-monoethylenically unsaturated carboxylic acid and a saturated carboxylic acid vinyl ester such as butyl acetate, it is further saponified. As a result, it is possible to convert the saturated carboxylic acid bull ester moiety into a butyl alcohol for use.
  • the polycarboxylic acid polymer (A) used as a raw material for the organic thin film according to the present invention comprises a, j8-monoethylenically unsaturated carboxylic acid and other ethylenically unsaturated monomers.
  • the copolymer composition is a, ⁇ -monoethylenically unsaturated carboxylic acid monomer composition from the viewpoint of improving the gas barrier property of the obtained organic thin film and resistance to high-temperature steam and hot water.
  • it is preferably 60 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more, and most preferably 100 mol%.
  • the polycarboxylic acid polymer ( ⁇ ⁇ ) used as the raw material for the organic thin film according to the present invention it is preferable to use a polymer having only the power of ⁇ ,
  • the polycarboxylic acid-based polymer ( ⁇ ) is a polymer that only has ⁇ , ⁇ monoethylenically unsaturated carboxylic acid
  • preferred specific examples thereof are acrylic acid, methacrylic acid, itaconic acid, maleic acid
  • examples thereof include polymers obtained by polymerization of at least one polymerizable monomer selected from the group power consisting of fumaric acid and crotonic acid, and mixtures thereof.
  • polymers having only ⁇ , ⁇ monoethylenically unsaturated carboxylic acid a polymer obtained by polymerization of at least one polymerizable monomer selected from acrylic acid, methacrylic acid, and maleic acid And most preferably polyacrylic acid, polymethacrylic acid, polymaleic acid, and mixtures thereof, which are more preferably used.
  • the polycarboxylic acid polymer ( ⁇ ) is an acidic polysaccharide other than the polymer of a, / 3 monoethylenically unsaturated carboxylic acid monomer, for example, alginic acid can be preferably used.
  • the number average molecular weight of the polycarboxylic acid-based polymer (A) is not particularly limited, but it should be in the range of 2,000-10, 000, 000 from the viewpoint of the ability to form an organic thin film. Force S, preferably 5,000 to 1,000,000.
  • the organic thin film that is useful in the present invention is used by mixing other polymers as long as the gas thinness and moisture resistance of the organic thin film are not impaired. Although it is possible to use only the polycarboxylic acid polymer (A) alone,
  • the polyvalent metal contained as a constituent in the polyvalent metal salt of the polycarboxylic acid polymer (A) contained in the organic thin film according to the present invention has a metal ion valence of 2 or more. It is a single polyvalent metal atom.
  • Specific examples of such polyvalent metals include alkaline earth metals such as beryllium, magnesium and calcium, transition metals such as titanium, zirconium, chromium, manganese, iron, cobalt, nickel, copper and zinc, aluminum, etc. Can be mentioned.
  • the organic thin film is preferably transparent.
  • the polyvalent metal contained in such an organic thin film include zinc or zirconium. Is mentioned.
  • the organic thin film may be colored. For example, copper may be used as the polyvalent metal contained in the organic thin film. .
  • a polyvalent metal compound (B) is used as a raw material for the polyvalent metal salt contained in the organic thin film according to the present invention.
  • a polyvalent metal compound (B) include oxides, hydroxides, carbonates, organic acid salts, inorganic acid salts of polyvalent metals, ammonium complexes of polyvalent metals, and polyvalent metals. Examples include metal secondary to quaternary amine complexes and carbonates and organic acid salts of these complexes.
  • the organic acid salt include acetate, oxalate, citrate, lactate, phosphate, phosphite, hypophosphite, stearate, monoethylenically unsaturated carbonate, etc. Is mentioned.
  • the inorganic acid salt include chloride, sulfate, nitrate and the like.
  • polyvalent metal alkyl alkoxides and the like can be mentioned.
  • Such polyvalent metal compounds (B) can be used alone or in a mixture of at least two polyvalent metal compounds.
  • divalent metal compounds are preferably used from the viewpoint of improving the gas barrier properties, moisture resistance and manufacturability of the organic thin film.
  • magnesium calcium, zinc, copper, zinc oxides, hydroxides, carbonates and zirconium, copper, nickel or zinc ammonium complexes. More preferably, a carbonate of the complex is used.
  • a metal compound composed of a monovalent metal for example, a monovalent metal salt of the polycarboxylic acid polymer (A) can be used as mixed or contained.
  • a preferable addition amount of such a monovalent metal compound is 0.2 chemical equivalent with respect to the carboxy group of the polycarboxylic acid-based polymer (A) from the viewpoints of gas nature and moisture resistance of the organic thin film. It is as follows.
  • the monovalent metal compound may be partially contained in the molecule of the polyvalent metal salt of the polycarboxylic acid polymer.
  • the form of the polyvalent metal compound (B) used as the raw material for the organic thin film that is useful in the present invention is not particularly limited. However, as will be described later, in the organic thin film according to the present invention, a part or all of the polyvalent metal compound (B) forms a salt with the carboxy group of the polycarboxylic acid polymer (A) and an ionic bond. And
  • the organic thin film according to the present invention contains a polyvalent metal compound (B) that does not participate in carboxylate formation
  • the polyvalent metal compound (B) is used from the viewpoint of transparency of the organic thin film. It is preferable to be granular and have a smaller particle size.
  • the polyvalent metal compound is granular in terms of efficiency during preparation and obtaining a more uniform solution or dispersion. Its particle size is small!
  • the average particle size of the polyvalent metal compound is preferably 5 m or less, more preferably 1 m or less, and most preferably 0.1 ⁇ m or less.
  • the organic thin film according to the present invention contains at least the polyvalent metal salt of the polycarboxylic acid polymer (A) as described above, measures a specific region of the infrared absorption spectrum, and obtains the area obtained therefrom.
  • the ratio ⁇ is 2.5 or less, and the peak ratio
  • the organic thin film according to the present invention having such characteristics is satisfactory in gas barrier properties such as oxygen and moisture resistance.
  • the area ratio of the infrared absorption spectrum of the organic thin film alpha [peak area E (3700-2500 cm- 1) / peak area S (1800 ⁇ 1500cm _1)] will be described.
  • the area ratio ⁇ of the infrared absorption spectrum is substituted as an index representing the amount of water in the organic thin film.
  • the moisture in the organic thin film according to the present invention refers to the state of being adsorbed in the organic thin film, and is referred to as adsorbed water.
  • the 0— ⁇ stretching vibration caused by moisture gives a broad absorption in the infrared light wave number region of 3700-2500 cm _1 . Therefore, in the present invention, the peak area of the infrared absorption spectrum of 3700 ⁇ 2500Cm _1 was defined as the peak area S (3700 ⁇ 2500cm _ 1).
  • Peak area S (3700 ⁇ 2500cm _1;) is a straight line connecting two points of the absorbance and 2500 cm _ 1 absorbance 3700 cm _1 as the baseline, as possible out be determined by area integration ranging 3700 ⁇ 2500cm _1.
  • Such a peak attributed to a carboxy group (one COOH) and a salt of a carboxy group (one COO_) is a characteristic peak of the organic thin film according to the present invention. Therefore, the area of the infrared absorption spectrum of 1800 ⁇ 1500Cm _1 containing this peak is a characteristic peak area of force Cal organic thin film of the present invention. In the present invention, this area is defined as the peak area S (18
  • Peak area S (1800 ⁇ 1500cm _ 1) is, 1800cm "1
  • the absorbance and a straight line connecting two points of the absorbance of 1500 cm _1 as the baseline, can be determined by area integration ranging 1800 ⁇ 1500c m _1.
  • the area ratio was defined as O and was used as an index representing the amount of water in the organic thin film.
  • the area ratio ⁇ of the infrared absorption spectrum is 2.5 or less, preferably 0.01 or less. Above, 2.3 or less, more preferably 0.01 or more and 2.0 or less. If the area ratio ⁇ exceeds 2.5, the moisture resistance is insufficient.
  • the infrared absorption spectrum is measured by transmission method, ATR method (total reflection attenuation method), KBr pellet method, diffuse reflection method, photoacoustic method (PAS method), etc. Then, the peak area S and peak area S of the infrared absorption spectrum are calculated, and the ratio between the two is obtained.
  • a laminate in which an organic thin film according to the present invention is formed on a substrate is used as a sample, the ATR method is used, and KRS-5 (Thallium Bromide —Iodide) is used as an ATR prism. It can be measured at an angle of incidence of 45 degrees, a resolution of 4 cm _ 1 and an integration count of 30 times.
  • the peak ratio of the infrared absorption spectrum of the organic thin film j8 [Peak A (156 Ocm _1) Z peak A (1700cm- 1)] is the polycarboxylic acid polymer in the organic thin film and (A)
  • the straight line connecting two points of the absorbance peak A (1560cm "1) ⁇ 1600cm absorbance and 1500 cm _1 _1 as baseline, peak areas from the area integral of the range of 1600 ⁇ 1500cm_ 1, absorption maximum in the range of 1600 ⁇ 1500Cm _1
  • the peak height can also be obtained for the height force.
  • the peak A (1700 cm “ 1 ) constituting the peak ratio 13 is the peak A (1560 cm" 1
  • the peak ratio j8 of the infrared absorption spectrum of the organic thin film useful in the present invention is 1.2 or more and 1000 or less, but from the viewpoint of moisture resistance of the organic thin film, the peak ratio j8 is 2.0 or more and 10,000 or less. Preferably it is 4.0 or more and 10,000 or less.
  • the absorbance baseline of the infrared absorption vector has a slight fluctuation related to the measurement limit.
  • the infrared absorption spectrum for obtaining the peak ratio ⁇ can be measured using, for example, FT-IR2000 manufactured by PERKIN-EL MER.
  • the infrared absorption spectrum of the organic thin film according to the present invention is measured by the transmission method, ATR method.
  • Total reflection attenuation method KBr pellet method, diffuse reflection method, photoacoustic method (PAS method), etc.
  • PAS method photoacoustic method
  • the inorganic layer is peeled off so as to expose the organic thin film surface such as the laminated film for a moisture-proof film of the present invention in which the inorganic layer is laminated on both sides of the organic layer, the face is the test sample of organic thin film, in the ATR method, the ATR prism KRS - 5 (Thallium Bromid e- Iodide ) used, degree incidence angle 45, be mentioned measurements with a resolution 4 cm _1, number of integration 30 times Can do.
  • FT-IR For the infrared absorption spectrum measurement method using FT-IR, refer to, for example, Ms. Mitsuo Tasumi, “Basics and Practice of FT-IR”.
  • the polyvalent metal is zinc and that the binding energy by the Auger electron spectrum analysis of zinc has at least one peak between 496 and 498 eV. Better ,.
  • Auger electron spectrum analysis is also called X-ray photoelectron analysis (XPS) when the excitation energy source of atoms is X-rays.
  • XPS X-ray photoelectron analysis
  • the stoichiometric or non-stoichiometric binding state of zinc can be known from the value of the binding energy. It is also possible to know the bonding state of complex formation.
  • the L inner-shell electrons of zinc are ionized by the irradiated X-rays and become the L shell.
  • a vacancy is created, and the M-shell electron in the upper orbital transitions to the L-shell, and this induces another N-shell electron in the upper orbital transition to the M-shell.
  • the present inventors have found that there is a positive correlation between the amount of auger electrons emitted in the Zn-LMN transition process corresponding to the process of such electron transition and the moisture resistance of the organic thin film. It was.
  • the Auger electron energy of the Zn-LMN transition process is 496 to 498 eV. Having at least one peak between the energies directly correlates with the moisture resistance of the organic thin film.
  • the measuring device used for such analysis is not particularly limited, and a known measuring device can be used as appropriate. Specifically, the product name Quanter a SXM manufactured by PHI can be used. .
  • the organic thin film (hereinafter simply referred to as an organic thin film) of the laminated film for moisture-proof film according to the present invention is excellent in gas barrier properties such as oxygen even under high humidity.
  • the organic thin film that is useful in the present invention is characterized in that it is excellent in moisture resistance as well as gas-nore properties such as oxygen. That is, the moisture resistance of the organic thin film referred to in the present invention, the temperature 40 ° C, in an atmosphere of 90% RH, a water vapor permeability 15gZ (m 2 'day) or less, preferably 3gZ (m 2' d ay ) The following (the relative humidity on the steam supply side is 90%). When this value exceeds 15 gZ (m 2 -day), a laminated film for a moisture-proof film that is excellent in both the gas noria property and moisture-proof property, which is the object of the present invention, cannot be obtained.
  • the density of the organic thin film according to the present invention is preferably 1.80 gZcm 3 or more, more preferably 1.80-2.89 g / cm 3 , more preferably force S, 1.85-2. A force of 89 g / cm 3 ⁇ is more preferable.
  • an organic thin film having a density of less than 1.80 gZcm 3 there is a tendency that a moisture-proof laminated film having insufficient moisture-proof properties and a target moisture-proof performance cannot be obtained.
  • an organic thin film having a density exceeding 2.89 gZcm 3 increases the amount of polyvalent metal compound used, making it difficult to form an organic thin film after coating.
  • the density of such an organic thin film can be measured according to JIS K7112 (Method for measuring the density and specific gravity of plastic).
  • the organic layer according to the present invention includes two organic thin films.
  • the organic layer since the organic layer has the structure including the two organic thin films, even if a micro pinhole is generated in one organic thin film due to impact or the like, the other organic thin film is Because it is placed V, it is possible to prevent the micro pinholes from being connected in the organic layer.
  • Such an organic layer is formed by directly facing two organic thin films and adhering them, or by laminating two organic thin films via an adhesive layer.
  • Organic layers are preferred.
  • the material of the adhesive that forms the adhesive layer is not particularly limited, and a resin commonly used in dry lamination or the like can be used. Also, such connections Although it does not restrict
  • urethane adhesives polyester adhesives, acrylic adhesives, and epoxy adhesives
  • An adhesive having a Vicat softness point of 50 ° C to 140 ° C is preferred, and an adhesive having a temperature of 50 ° C to 98 ° C is more preferable.
  • the Vicat softening point of the adhesive is a softening temperature when the adhesive is cured. It can be measured according to Vicat soft spot WIS K-7206.
  • the inorganic layer is laminated on both sides of the organic layer.
  • Such an inorganic layer is not particularly limited, but it is preferable that the inorganic layer is an inorganic vapor deposition film.
  • the inorganic vapor deposition film is preferably composed of an inorganic oxide vapor deposition film.
  • the inorganic oxide it is particularly preferable to use a silicon oxide (SiO 2) from the viewpoint of transparency.
  • SiO 2 silicon oxide
  • the inorganic layer according to the present invention is an inorganic layer that is excellent in gas-nore property such as oxygen even under high humidity.
  • the inorganic layer used in the present invention is 40 when the thickness of the inorganic layer is 1 m.
  • C oxygen permeability measured at a relative humidity of 90% (RH), preferably 500 cm 3 (STP) / (m 2 day-MPa) or less, 100 cm 3 (STP) / (m 2 day- MPa ) It is more preferable that
  • the inorganic layer according to the present invention is characterized in that it is excellent in moisture resistance as well as gas-nore property such as oxygen.
  • the inorganic layer used in the present invention when the thickness of the inorganic layer is 1 ⁇ m, the water vapor transmission rate is 15 gZ (m 2 ′ day) or less in an atmosphere at a temperature of 40 ° C. and a relative humidity of 90%.
  • the force S is preferably 3 g / (m 2 'day) or less.
  • This value is 15g / (m 2 'da This is because if it exceeds y), there is a tendency that a laminated film for a moisture-proof film that is excellent in both the gas noria property and moisture-proof property of the present invention cannot be obtained.
  • the laminated film for moisture-proof film of the present invention is a laminated film for moisture-proof film comprising an organic layer having two organic thin films and the inorganic layer laminated on both surfaces of the organic layer.
  • the organic layer includes two organic thin films. Therefore, even if a micro pin hole is formed in the thickness direction of one organic thin film in the organic layer, since another organic thin film is provided, it is possible to prevent the micro pin holes from being connected. Deterioration of gas barrier properties and moisture resistance due to micro pinholes is prevented, and the laminated film for moisture barrier film can stably maintain high gas barrier properties and moisture resistance.
  • the laminated film for moisture-proof film of the present invention an inorganic layer having a high moisture-proof property is laminated on both surfaces of the organic layer. Therefore, the laminated film for a moisture-proof film according to the present invention can exhibit higher moisture-proof and gas-tight properties. Since the relatively soft organic layer is covered with a relatively hard inorganic layer, the laminated film for a moisture-proof film of the present invention is laminated even if an external force such as bending or impact is applied. The gas nozzle and moisture resistance of the film will not deteriorate.
  • the laminated film for a moisture-proof film of the present invention is formed by laminating two organic thin films directly facing each other and in close contact with each other and on both sides of the organic layer.
  • a laminated film for a moisture-proof film comprising the inorganic layer (i) or an organic layer formed by laminating two organic thin films via an adhesive layer, and the organic layer laminated on both sides of the organic layer.
  • a laminated film for moisture-proof membrane (ii) provided with an inorganic layer is preferred.
  • the thickness of the organic layer in the moisture-proof film laminated film (i) suitable for the present invention is not particularly limited, but from the viewpoint of moldability and handling properties when forming the moisture-proof film laminated film,
  • the force is preferably 0.001 ⁇ m to 200 ⁇ m, more preferably 0.01 ⁇ m to 100 ⁇ m, particularly preferably 0.m.
  • the organic layer thickness is 200 If it exceeds m, there is a tendency for problems to occur in the production that is difficult to coat.
  • the thickness of one organic thin film is not particularly limited. From the viewpoint of ringability, the thickness of one organic thin film is preferably 0.001 ⁇ m to 200 ⁇ m, more preferably 0.01 ⁇ m to 100 ⁇ m. 0 1 m ⁇ : Especially preferred is LO m.
  • the thickness force of one organic thin film is less than 0.001 m, it becomes difficult to form an organic thin film, and stable production tends to be impossible.
  • the thickness of the organic thin film exceeds 200 m, there is a tendency for problems to occur in the manufacture that is difficult to coat.
  • the thickness of the adhesive layer is not particularly limited, it may be 0.1 to 100 111 from the viewpoint of preventing the deterioration of gas and moisture resistance of the resulting laminated film for moisture-proof film. It is more preferably 0.5 to 10 / ⁇ ⁇ . If the thickness of the adhesive layer is less than 0 .: L m, adhesion of organic thin film tends to be difficult, and if it exceeds 100 / zm, there will be a problem in producing a laminated film for moisture-proof film that is difficult to apply. There is a tendency.
  • the thickness of the inorganic layer in the laminated film for moisture-proof film of the present invention is not particularly limited.
  • the thickness of the inorganic layer is 0.01. It is preferable that it is ⁇ m to 100 ⁇ m, more preferably 0.l ⁇ m ⁇ lO ⁇ m.
  • the thickness of the inorganic layer is less than 0.01 m, it becomes difficult to form the inorganic layer and stable production cannot be achieved.
  • the thickness of the inorganic layer exceeds 100 / zm, vapor deposition is difficult and it tends to be difficult to produce a moisture-proof laminated film.
  • the laminated film for moisture-proof film has a water vapor permeability of 0. 0 at 40 ° C and 90% relative humidity after standing for 250 hours under pre-humidification conditions at 60 ° C and 90% relative humidity. It is preferably maintained below 02 g Z (m 2 'day).
  • a laminated film for a moisture-proof film exhibiting a high V and moisture-proof property that satisfies the above conditions can be particularly suitably used as a moisture-proof film for an electoluminescence device.
  • the laminated film for a moisture-proof film of the present invention may be a laminate in which other layers are further laminated.
  • One or more layers may be laminated for the purpose of imparting strength, imparting strength, or providing further moisture resistance.
  • the use of such a moisture-proof film laminated film is suitable as a material for precision electronic parts, and can also be used as a package for fine chemicals such as pharmaceuticals and test drugs.
  • a moisture-proof film for an electoluminescence device is particularly preferable. This is because the laminated film for a moisture-proof film of the present invention has a high level of gas barrier property and moisture-proof property stably over a long period of time, and can be suitably used as a moisture-proof film for an electoluminescence device.
  • the method for producing a moisture-proof laminated film of the present invention comprises a polycarboxylic acid polymer (A), a polyvalent metal compound (B), and either one of a volatile base (C) or an acid (D).
  • a solution or dispersion of a mixture containing a solvent is applied to each of the two inorganic layers, and the inorganic layer is laminated on one surface to obtain two organic thin films;
  • each of the two organic thin films contains at least a polyvalent metal salt of the polycarboxylic acid-based polymer (A).
  • A polycarboxylic acid-based polymer
  • Peak ratio of yield spectrum j8 [Peak A (1560cm- 1) / Peak A (1700cm _1)] is 1 - 2
  • the raw material, polycarboxylic acid polymer ( ⁇ ), and polyvalent metal compound ( ⁇ ) are as described above. Since the polycarboxylic acid polymer ( ⁇ ) and the polyvalent metal compound ( ⁇ ) react easily in an aqueous solution and may form a heterogeneous precipitate, the polycarboxylic acid polymer ( ⁇ ) and the polycarboxylic acid polymer ( ⁇ ) In order to obtain a uniform coating solution that is hydrodynamic as a valent metal compound ( ⁇ ) and a solvent, either volatile base (C) or acid (D) is mixed with water as a solvent.
  • volatile base (C) or acid (D) is mixed with water as a solvent.
  • Examples of such a volatile base (C) include ammonia, methylamine, ethylamine, and dimethyl. Luamine, jetylamine, triethylamine, morpholine, and ethanolamine are used. Among these volatile bases (C), ammonia is preferably used from the viewpoint of improving the gas barrier property and moisture resistance of the organic thin film to be formed.
  • the blending amount of the polyvalent metal compound (B) relative to the amount of the polycarboxylic acid polymer (A) depends on the gas barrier property and moisture resistance of the organic thin film. From the viewpoint, it is preferably 0.5 chemical equivalent or more with respect to all carboxy groups in the polycarboxylic acid polymer (A), more preferably 0.8 chemical equivalent or more. Further, in addition to the above viewpoint, it is preferable that the viewpoint of moldability and transparency of the organic thin film is 10 chemical equivalents or less. Particularly preferred is a range of 1 chemical equivalent or more and 5 chemical equivalents or less.
  • a polycarboxylic acid polymer (The blending amount of the polyvalent metal compound (B) with respect to the amount of A) is preferably 0.5 to 10 chemical equivalents with respect to all the carboxy groups in the polycarboxylic acid polymer (A).
  • the chemical equivalent is a certain amount of an element (a simple substance) or a compound determined based on chemical reactivity.
  • the chemical equivalent in the present invention is a chemical equivalent to the carboxy group in the polycarboxylic acid polymer (A)
  • one chemical equivalent is a base that neutralizes the amount of one equivalent carboxy group that acts as an acid.
  • the base is a polyvalent metal constituting the polyvalent metal compound (B).
  • the amount of the volatile base (C) necessary for obtaining a solution or dispersion (coating solution) of a uniform mixture is based on the carboxy group in the polycarboxylic acid polymer (A). 1 ⁇ ⁇ equivalent.
  • the polyvalent metal compound is cobalt, nickel, copper, zinc oxide, hydroxide, or carbonate, it can be added by adding one or more chemical equivalents of volatile base (C). These metals form a complex with the volatile base (C), and the polycarboxylic acid polymer (A), the polyvalent metal compound (B), the volatile base (C), and a transparent hydrodynamic solvent. A homogeneous solution is obtained.
  • a suitable addition amount of the volatile base (C) is 1 chemical equivalent or more and 60 chemical equivalents or less, and further 2 chemical equivalents or less with respect to all carboxy groups in the polycarboxylic acid polymer (A).
  • the upper limit is preferably 30 chemical equivalents or less. If the addition amount is less than 1 chemical equivalent, it is difficult to obtain a uniform solution (coating solution). On the other hand, if it exceeds 60 chemical equivalents, a problem arises in film production (film formation).
  • zinc compounds are used as the polyvalent metal compound, a laminated film for a moisture-proof film is produced that has at least one peak between 496 and 498 eV in the binding energy of zinc ogee electron spectrum analysis. From the standpoint of achieving this, it is preferable to add 2 to 120 moles of volatile base (C) per mole of zinc compound, especially when the volatile base (C) is ammonia. It is preferable to add 4 to 60 mol per mol of the compound.
  • the amount of acid (D) required to obtain a uniform mixture solution or dispersion (coating solution) is determined by the amount of polycarboxylic acid polymer (A It is preferably 1 chemical equivalent or more and 60 chemical equivalents or less, and preferably 2 chemical equivalents or more and 30 chemical equivalents or less with respect to the carboxy group in (). If this amount is less than 1 chemical equivalent, it is difficult to obtain a uniform solution (coating solution). On the other hand, if it exceeds 60 chemical equivalents, there is a problem in film production (film formation).
  • As the acid (D) hydrochloric acid is preferably used.
  • the solvent to be used include water, methyl alcohol, ethyl alcohol, isopropyl alcohol, n-propyl alcohol, n-butyl alcohol, n-pentanol alcohol, dimethyl sulfoxide, dimethyl formamide, dimethylacetamide. , Toluene, hexane, heptane, cyclohexane, acetone, methyl ethyl ketone, jetyl ether, dioxane, tetrahydrofuran, ethyl acetate, butyl acetate and the like.
  • water which is a problem solution such as waste liquid treatment at the time of coating, and the possibility that the solvent may remain on the film.
  • polyacrylic acid available in the form of an aqueous solution
  • ammonia in an aqueous solution state
  • C volatile base
  • polyvalent metal in water prepared as a solvent Zinc oxide (powder) can be added in this order as compound (B) and mixed with an ultrasonic homogenizer to obtain a coating solution.
  • the amount of water as a solvent In order to suit the coating suitability of the device, it is appropriately adjusted by combining with other additives.
  • the solvent may be a single type or a mixture.
  • a resin, a softener, a stabilizer, a film forming agent, an antiblocking agent, an adhesive, and the like can be appropriately added.
  • a mixture of soluble resin in the solvent system used Preferable examples of the resin include alkyd resin, melamine resin, acrylic resin, nitrified cotton, urethane resin, polyester resin, phenol resin, amino resin, fluorine resin, epoxy resin, etc.
  • the coagulant used for the purpose is 1% to 50% by weight from the viewpoint of coating suitability. It is preferable that it is in the range.
  • the polycarboxylic acid polymer (A), the polyvalent metal compound (B), the volatile base (C), and the ammonium carbonate (E) are used as solvents.
  • a solution or dispersion obtained by mixing with water can also be used.
  • Ammonium carbonate (E) converts polyvalent metal compound (B) into a carbonic acid polyvalent metal ammonium complex state for one carboxylic group of polycarboxylic acid polymer (A). It is added to prepare a uniform solution containing a polyvalent metal in an amount equal to or greater than the equivalent amount.
  • the amount of ammonium carbonate (E) added is the molar ratio to the polyvalent metal compound (B), that is, the number of moles of ammonium carbonate (E).
  • the number ranges from 0.05 to 10, preferably from 1 to 5.
  • a coating solution using polycarboxylic acid polymer (A), polyvalent metal compound (B), volatile base (C) or acid (D) and water as a solvent will be described as an example.
  • ammonium carbonate (E) the same consideration can be made unless otherwise specified.
  • the step of obtaining the laminated film for a moisture-proof film directly causes the other surfaces of the two organic thin films to face each other and to adhere to each other.
  • the process for obtaining the laminated film for a moisture-proof film comprises A method for producing a moisture-proof film laminate film), which is a step of laminating the other surfaces of the organic thin film via an adhesive layer to obtain a moisture-proof film laminate film).
  • a specific method for producing a laminated film for moisture-proof film includes (1) a step of forming an inorganic layer on the surface of a substrate (a step of obtaining an inorganic layer-formed substrate film), (2) inorganic A step of obtaining two organic thin films in which layers are laminated (a step of obtaining an organic-inorganic laminated film), and (3) a step of obtaining a laminated film for a moisture-proof film of the present invention by adhering two organic thin films. Is the method.
  • Step of forming an inorganic layer on the surface of the base material (Step of obtaining an inorganic layer-formed base film)
  • the material of the base material used for producing the laminated film for moisture-proof film of the present invention is particularly limited Hanagu metals, glasses, plastics, etc. can be used. Even metals, glass, etc., which do not inherently allow gas to pass through, can be used as substrates for the purpose of compensating for the gas norecity of the defective portion.
  • the form of the substrate is not particularly limited, and examples thereof include a film form, a sheet form, and a container form.
  • the type of the base material is not particularly limited. Specifically, low-density polyethylene, high-density polyethylene, linear low-density polyethylene, polypropylene, Polyolefin polymers such as polymethylpentene (4-methylpentene monopolymer), cyclic olefin copolymers, and their copolymers, and their acid-modified products, polyvinyl acetate, ethylene vinyl acetate copolymer, ethylene vinyl acetate copolymer Polymer saponified products, butyl acetate copolymers such as polybutyl alcohol, aromatic polyester polymers such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate and copolymers thereof, poly ⁇ -strength prolatathone, polyhydroxybutyrate Aliphatic polyester polymerization such as rate and polyhydroxylinate And copolymers thereof, nylon 6, nylon 66, nylon 12, nylon 6,
  • the method for forming the inorganic layer on the surface of the substrate is not particularly limited, and an inorganic oxide such as oxide silicon, aluminum oxide, aluminum, silicon nitride, or silicon oxide nitride is used.
  • the method of forming the thin film which consists of a compound and a metal compound by a vapor deposition method is mentioned.
  • Such vapor deposition methods include physical vapor deposition methods such as sputtering, resistance heating vapor deposition, electron beam vapor deposition, and ion plating.
  • the sputtering method a direct current or a high frequency sputtering method using a desired material for the target and an inert gas such as argon or neon as the sputtering gas can be used.
  • the resistance heating vapor deposition method is a method in which a desired material is vapor-deposited by resistance heating, and an inorganic layer is formed on the surface of a substrate disposed oppositely.
  • the electron beam vapor deposition method is In this method, a desired material is vapor-deposited by an electron beam heating method, and an inorganic layer is formed on the surface of a substrate disposed oppositely.
  • an inorganic layer By forming the inorganic layer in this way, it is possible to impart high moisture, transparency, gas nozzle properties, and moisture resistance to the resulting laminated film for moisture barrier film. And in this invention, an inorganic layer can be formed on two base materials, and an inorganic layer formation base film can be obtained.
  • Step of obtaining two organic thin films laminated with an inorganic layer step of obtaining an organic-inorganic laminated film
  • the polycarboxylic acid is formed on the inorganic layers of the two inorganic layer-forming base films formed as described above. Apply a solution or dispersion of a mixture containing the acid polymer (A), the polyvalent metal compound (B), the volatile base (C) or the acid (D), and a solvent. Two organic thin films are produced that have an inorganic layer stacked on one side.
  • a known coating method can be used without any particular limitation, and is performed using dipping or spraying, and a coater, a printing machine, or a brush.
  • Coaters, types of printing machines, and coating methods include direct gravure method, reverse gravure method, kiss reverse gravure method, offset gravure method, etc.
  • a pecoater, a bar coater, a comma coater, a die coater, or the like can be used.
  • the coating thickness (wet) in a state (wet) immediately after coating the solution or dispersion on the inorganic layer is 0.02 m to lmm. Preferred 0.5 ⁇ to 500 / ⁇ ⁇ is more preferable.
  • the coating thickness (dry) of the solution or dispersion is preferably 0.001 / zm to Lmm. It is more preferable that it is m-100 micrometers. The desired thickness can be obtained by coating and drying repeatedly 1 to 4 times to achieve such a dry thickness.
  • the above-mentioned coating thickness is a value measured from the film cross section using a transmission normalsky differential interference microscope manufactured by Olynos Hikari Kogyo Co., Ltd. Is used. If the thickness is 5 m or less, use a value measured using Otsuka Electronics Co., Ltd. product name MCPD-2000.
  • the viscosity of the solution or dispersion in the state immediately before coating the solution or dispersion on the inorganic layer can be adjusted as appropriate.
  • the method of evaporating and drying the solvent after applying the coating liquid on the inorganic layer is not particularly limited.
  • a method using natural drying a method of drying in an oven set to a predetermined temperature, or a dryer attached to the coater, such as an arch dryer, a floating dryer, a drum dryer, an infrared dryer, or the like can be used.
  • the drying conditions can be arbitrarily selected within the range of V, in which the base material, polyvalent metal salt of the polycarboxylic acid polymer (A), and other additives are not damaged by heat.
  • the polyvalent metal compound (B) is an unreacted molecular form, a polyvalent metal salt with the polycarboxylic acid polymer (A), and a metal complex salt with the polycarboxylic acid.
  • the metal complex salt means a complex of cobalt, nickel, copper, zinc, zirconium or the like and a volatile base.
  • Specific examples of the metal complex salt include zinc and copper tetraamonium complex salts.
  • the solution or dispersion is applied onto the inorganic layer, dried to form an organic thin film, and an organic thin film (organic / inorganic laminated film) having an inorganic layer laminated on one surface is obtained. Sheets can be manufactured.
  • Step of obtaining two layers of organic thin films to obtain a laminated film for moisture-proof membrane of the present invention two pieces obtained as described above were used.
  • the organic thin film surfaces of the organic inorganic laminated film can be directly opposed to each other and brought into close contact with each other to produce a moisture proof laminated film.
  • the method of directly facing and bonding the organic thin film surfaces of the two organic-inorganic laminated films is not particularly limited, and a known method can be used as appropriate. Specifically, as such a method, a method in which a heating roll is used and the other surfaces of the two organic thin films in which the inorganic layer is laminated on one surface is directly opposed to each other and pressed. Is mentioned. In addition, as a method for performing such pressure bonding, a method using a high-frequency induction heating roll or a resistance heating roll can be cited. Further, when performing such pressure bonding, a heating roll is used to obtain flatness of the film. Expanding rolls and dancer rolls can be appropriately arranged before and after. By directly facing the two organic thin films in this way, the substrate Z inorganic layer Z organic layer (organic thin film 1Z organic thin film 2) Z inorganic layer Z substrate laminated in order of the moisture barrier film A film can be obtained.
  • the obtained laminated film for moisture-proof film is subjected to heat treatment at a temperature in the range of 60 ° C to 400 ° C, preferably 100 to 300 ° C, more preferably 150 to 250 ° C. If it is within the above-mentioned temperature range, there is no particular restriction on the heat treatment. Usually, preferably under an inert gas atmosphere, 0.1 to 600 MPa, more preferably 0.1 to: Heat treatment is performed under a LOOMPa caloric pressure, preferably 0.1 to 300 minutes, more preferably 1 to 2000 minutes. If the heat treatment temperature exceeds 400 ° C or if the heat treatment time exceeds 3000 minutes, it will be difficult to obtain the desired oxygen gas barrier property and moisture-proof film, and the production viewpoint will also be problematic.
  • Heat treatment temperature and force Less than S60 ° C and heat treatment time of less than 0.1 minutes tend to cause problems, especially from the viewpoint of moisture resistance, because moisture removal is not sufficient.
  • the area ratio ⁇ of the infrared absorption spectrum is more reliably 2.5 or less (preferably 0.01-2.3, more preferably 0.01-2.0) from the organic thin film strength in the resulting laminated film for moisture-proof film. ) Is preferably heat-treated at a temperature of 60 to 400 ° C. under 0.1 to 600 MPa.
  • the heat treatment temperature is less than the lower limit, moisture tends not to be removed sufficiently, and if the heat treatment temperature exceeds the upper limit, a black to brown pyrolyzate tends to be generated due to thermal decomposition of the resin constituting the organic layer. is there.
  • the heat treatment temperature may be changed a plurality of times to raise the temperature step by step to give a heat history.
  • the heat treatment apparatus is not particularly limited. For example, it can be heat-treated with a continuous heating device such as an atmospheric oven, an autoclave under pressure, a press machine, or a floating furnace. Examples of the heat treatment method include hot air injection, air floating, infrared radiation, microwave irradiation, and high frequency dielectric heating.
  • the volatile base (C) or acid (D) or ammonium carbonate (E) becomes a volatilizing force or salt, leaving traces in the film, but leaving traces in the film. 'Spontaneous has no effect.
  • the laminated film for moisture-proof film after such heat treatment is the laminated film for moisture-proof film of the present invention having excellent gas barrier properties and moisture-proof properties.
  • FIG. 1 is a schematic view showing a preferred embodiment of an apparatus for producing a laminated film for a moisture-proof film of the present invention.
  • the manufacturing apparatus shown in FIG. 1 includes a feeding apparatus 1.
  • the inorganic layer forming base film 3 manufactured according to the manufacturing process (1) described above is wound in a roll shape.
  • the inorganic layer forming substrate film roll 2 is installed.
  • the manufacturing apparatus shown in FIG. 1 includes a corona discharge system 4 and a gravure roll 5 in the direction in which the inorganic layer forming base film 3 fed from the feeding apparatus 1 travels. Part of the gravure roll 5 is added to a solution 6 of a mixture containing the polycarboxylic acid polymer (A), polyvalent metal compound (B), volatile base (C), and solvent prepared as described above. Touching.
  • Sarako the production apparatus shown in Fig. 1 is composed of a first drying furnace 7, a heating roll 8, and a second drying furnace in the direction in which the inorganic layer forming substrate film 3 coated with the solution 6 proceeds. 10, Akimuley 1 1, and scraper 12.
  • an inorganic layer-forming substrate film roll 2 is provided in a feeding apparatus 1. Is set and the inorganic layer forming base film 3 is fed out. Then, the surface of the inorganic layer of the fed inorganic layer-forming substrate film 3 passes through the corona discharge system 4 so that a corona discharge treatment is performed. The inorganic layer forming base film 3 subjected to such corona discharge treatment is guided to the gravure roll 5, and the solution 6 is applied on the surface of the inorganic layer of the inorganic layer forming base film 3.
  • the surface of the inorganic layer of the inorganic layer forming base film 3 is subjected to the corona discharge treatment as described above, it is easy to apply the solution 6 uniformly. Then, the inorganic layer forming base film 3 coated with the solution 6 is guided to the first drying furnace 7 and subjected to heat treatment. Thus, an organic-inorganic laminated film in which an organic thin film is laminated on an inorganic layer can be obtained. In the present embodiment, the step of obtaining such an organic-inorganic laminated film is simultaneously performed on two lines as shown in FIG.
  • the organic thin film surfaces of the two organic-inorganic laminate films obtained as described above are pressure-bonded using a heating roll 8, A layer film for a moisture-proof film is obtained in which the base material, the inorganic layer, the organic thin film Z, the organic thin film Z, the inorganic layer, and the base material are laminated in this order.
  • the laminated film for moisture-proof film thus pressure-bonded is guided to the second drying furnace 10 and subjected to heat treatment.
  • the laminated film for a moisture-proof film of the present invention passes through the Achille Ray 11, and is wound up into a roll shape by the scooping device 12 (a laminated film roll 13 for the moisture-proof film).
  • the laminated film for moisture-proof film of the present invention can be obtained.
  • the apparatus for producing the moisture-proof laminated film of the present invention suitable for carrying out the production steps (2) and (3) in the production method (i) described above is described above.
  • the apparatus for producing such a moisture-proof laminated film is not limited to the above embodiment.
  • the embodiment described above is an apparatus for manufacturing a laminated film for a moisture-proof film according to the present invention through a series of operations. It may be performed separately using a separate apparatus as described below.
  • Fig. 2 is a schematic view showing an embodiment of an apparatus for producing an organic-inorganic laminated film used for the moisture-proof laminated film of the present invention
  • Fig. 3 is a previously produced organic-inorganic laminated film. It is a schematic diagram showing an embodiment of an apparatus for producing a laminated film for a moisture-proof film of the present invention using a film.
  • the manufacturing apparatus shown in FIG. 2 includes a feeding apparatus 1 for feeding out the inorganic layer forming base film 3, and the feeding apparatus 1 includes an inorganic layer shape manufactured according to the manufacturing process (1) described above.
  • An inorganic layer-forming base film roll 2 in which the base film 3 is wound into a roll is installed.
  • the manufacturing apparatus shown in FIG. 2 includes a corona discharge system 4 and a gravure roll 5 for applying the solution 6 in the traveling direction of the inorganic layer forming base film 3.
  • the manufacturing apparatus shown in FIG. 2 includes a first drying furnace 7 for performing heat treatment after coating the solution 6, and further, an accumulator 11, and a soot cup in the traveling direction of the heat-treated organic-inorganic laminated film.
  • a take-off device 14 is provided.
  • the process for producing the organic / inorganic laminated film using the production apparatus shown in FIG. 2 is basically the same as the process for obtaining the organic / inorganic laminated film described in the above-described embodiment.
  • the organic / inorganic laminated film roll 15 is taken up into a roll using the scraping device 14 and the organic / inorganic laminated film roll 15 is obtained.
  • the manufacturing apparatus shown in FIG. 3 includes a feeding device 1, and the feeding device 1 is provided with the organic-inorganic laminated film roll 15 obtained as described above. Further, the manufacturing apparatus shown in FIG. 3 includes a heating roll 8 for press-bonding the organic thin film surfaces of the two organic-inorganic laminated films 16 fed from the two feeding apparatuses 1, and further a moisture-proof film after the pressure-bonding. In the traveling direction of the laminated film for use, a second drying furnace 10, an Akimulet 11 and a soot removal device 12 are provided.
  • the process of obtaining the moisture-proof film laminate film using the manufacturing apparatus shown in FIG. 3 is basically the same as the process of obtaining the moisture-proof film laminate film described in the above-described embodiment.
  • the organic thin film surfaces of the organic / inorganic laminated film 16 fed from the two feeding devices 1 are pressure-bonded to each other.
  • a laminated film for moisture-proof film is obtained.
  • a specific method (ii) for producing a laminated film for a moisture-proof film includes (1) a process of forming an inorganic layer on the surface of a substrate (a step of obtaining an inorganic layer-forming substrate film), and (2) an inorganic layer comprising A process for obtaining two laminated organic thin films (a process for obtaining an organic-inorganic laminated film), and (3) a process for obtaining a laminated film for a moisture-proof film by laminating two organic thin films via an adhesive layer. It is.
  • Step of forming an inorganic layer on the surface of a base material Step of obtaining an inorganic layer-forming base film
  • Manufacturing method The step of obtaining an inorganic layer-forming base film in (ii) is the above-described manufacturing method This is the same step as the step (1) in (i) of forming an inorganic layer on the surface of the substrate.
  • Step of obtaining two organic thin films laminated with an inorganic layer step of obtaining an organic-inorganic laminated film
  • the step of obtaining the organic / inorganic laminated film in the production method (ii) is the step of obtaining the two organic thin films laminated with the inorganic layer in the production method (i) described above (the step of obtaining the organic / inorganic laminated film).
  • the solution or dispersion is applied onto the inorganic layer and dried to form an organic thin film, and the inorganic film is formed on one surface.
  • the step of obtaining the organic / inorganic laminated film in the method (ii) is different in that the solution or dispersion is applied on the inorganic layer and dried to form an organic thin film, followed by heat treatment.
  • the solution or dispersion is applied on an inorganic layer, dried to form an organic thin film, and then the organic thin film on which the inorganic layer is laminated is heated to 60 ° C. ⁇ 400 ° C, preferably 100 ⁇ 300 ° C, more preferably 150 ⁇ 250 ° C Two films can be manufactured. If it is within the said temperature range, there will be no special restriction
  • 0.1 to 600 MPa preferably 0.1 to: under pressure of LOOMPa, preferably 0.1 to 3000 minutes, more preferably 1 to 2000 minutes. Done.
  • the heat treatment temperature exceeds 400 ° C or if the heat treatment time exceeds 3000 minutes, it will be difficult to obtain the desired film with oxygen gas resistance and moisture resistance, and there is also a problem from the viewpoint of production.
  • the heat treatment temperature is less than 60 ° C, or when the heat treatment time is less than 0.1 minute, moisture removal is not sufficient, and there is a tendency for a dampproof point problem.
  • the organic thin film in the resulting laminated film for moisture-proof film more reliably has an infrared absorption spectrum area ratio ⁇ of 2.5 or less (preferably 0.01-2.3, more preferably 0.01-2). 0), it is preferable that the heat treatment is performed under conditions of 60 to 400 ° C under 0.1 to 600 MPa.
  • the heat treatment temperature is less than the lower limit, moisture tends not to be sufficiently removed, and if the heat treatment temperature exceeds the upper limit, a black to brown pyrolysis product tends to be generated due to thermal decomposition of the resin constituting the organic layer. It is in.
  • the heat treatment method is not particularly limited.
  • the heat treatment temperature may be changed a plurality of times, and the temperature may be raised stepwise to give a heat history.
  • the heat treatment apparatus is not particularly limited.
  • the heat treatment can be performed by a continuous heating device such as an atmospheric oven, an autoclave under pressure, a press, or a floating furnace.
  • Examples of the heat treatment method include hot air injection, air floating, infrared radiation, microwave irradiation, high-frequency dielectric heating, and the like.
  • the volatile base (C) or acid (D) or ammonium carbonate (E) is a stripping force or a salt that leaves traces in the film. Does not affect the performance of.
  • the organic thin film surfaces of the two organic-inorganic laminated films obtained as described above are laminated with an adhesive layer therebetween to obtain the moisture-proof laminated film of the present invention.
  • the method of applying the adhesive to the organic thin film surface of the organic thin film on which the inorganic layer obtained as described above is laminated is not particularly limited, and a known coating method can be used, It can be carried out by dipping, spraying, and using a coater, printing machine or brush. Coaters, types of printing machines, and coating methods include direct gravure method, reverse gravure method, kiss reverse gravure method, offset gravure method, etc. A coater, bar coater, comma coater, die coater, etc. can be used. In addition, when the adhesive is applied, one organic thin film of the two organic thin films may be coated on both organic thin film surfaces of the two organic thin films. Adhesive may be applied only to the surface. Furthermore, it is preferable that the coating thickness when the adhesive is applied to the organic thin film be sufficient to realize a suitable thickness of the adhesive layer described above.
  • the method for adhering the two organic thin film surfaces to each other is not particularly limited, and a known method can be used as appropriate, such as a dry laminating method, an etatrusion lamination method, a hot method. A melt lamination method or the like can be used.
  • FIG. 4 is a schematic view showing an embodiment of an apparatus for producing the laminated film for moisture-proof membrane of the present invention.
  • the configuration of the manufacturing apparatus shown in FIG. 4 is basically the same as that of the manufacturing apparatus shown in FIG.
  • the structure differs from the manufacturing apparatus shown in FIG. 1 in that a laminating apparatus 9 is arranged. That is, the manufacturing apparatus shown in FIG. 4 includes two lines configured in the order of the feeding apparatus 1, the corona discharge system 4, the gravure roll 5, and the first drying furnace 7, and one of the lines includes the first line.
  • a laminator 9 is further disposed after the drying oven 7.
  • the manufacturing apparatus shown in FIG. 4 has an organic / inorganic laminated film that has passed through the first drying furnace 7 and an organic / inorganic laminated film that has been passed through the laminating apparatus 9 and is coated with an adhesive (hereinafter referred to as “contact”).
  • a heating roll 8, a second drying furnace 10, an Akumulet 11, and a wrinkle removing device 12 are provided in the traveling direction of the “laminated layer forming laminated film”.
  • the process for obtaining the organic / inorganic laminated film in producing the laminated film for moisture-proof film using the production apparatus shown in FIG. 4 is performed using the production apparatus shown in FIG. 1 described above. It is the same process as the process of manufacturing the organic inorganic laminated film at the time of manufacturing.
  • the laminated film for moisture-proof film of the present invention that has been subjected to such heat treatment passes through Achille Ray 11, and is wound up into a roll by a scissoring device 12 (laminated film roll for moisture-proof film 13).
  • the laminated film for moisture-proof film of the present invention can be obtained.
  • an apparatus for producing a laminated film for a moisture-proof film of the present invention suitable for carrying out the production steps (2) and (3) in the production method (ii) described above.
  • an apparatus for manufacturing such a laminated film for a moisture-proof film is implemented as described above.
  • the form is not limited.
  • the embodiment described above is an apparatus for producing a laminated film for a moisture-proof film according to the present invention by a series of operations. Separately from the process of manufacturing the laminated film, it may be performed using a separate apparatus as described below.
  • FIG. 5 is a schematic view showing an embodiment of an apparatus for producing an adhesive layer-forming laminated film used for the moisture-proof laminated film of the present invention
  • FIG. 6 is a diagram showing formation of an adhesive layer produced in advance. It is a schematic diagram which shows one Embodiment of the apparatus for manufacturing the laminated
  • the manufacturing apparatus shown in Fig. 5 includes two feeding apparatuses 1.
  • the inorganic layer forming substrate film 3 manufactured according to the manufacturing process (1) described above is rolled.
  • a rolled inorganic layer forming substrate film roll 2 is installed.
  • the production apparatus shown in FIG. 5 has a corona discharge system 4 in the traveling direction of the inorganic layer forming base film 3 and a polycarboxylic acid polymer (A) and a polyvalent metal compound (A) prepared as described above.
  • a gravure roll 5 for coating a solution 6 of a mixture containing B), a volatile base (C) and a solvent is provided.
  • the manufacturing apparatus shown in FIG. 5 includes a first drying furnace 7 for performing heat treatment after coating the solution 6, and further applying an adhesive in the traveling direction of the heat-treated organic-inorganic laminated film.
  • a laminating device 9 is provided.
  • the other feeding device 1 of the manufacturing apparatus shown in FIG. 5 is provided with a release paper roll 20 in which a release paper 21 is wound in a roll shape.
  • the release paper 21 used is not particularly limited, and a commercially available release paper or the like can be used.
  • the manufacturing apparatus shown in FIG. 5 includes a heating roll 8 for crimping the adhesive layer-forming laminated film coated with the adhesive by the laminating apparatus 9 and the release paper 21 fed from the feeding apparatus 1. In the advancing direction of the adhesive layer-forming laminated film laminated with the release paper pressure-bonded by the heating roll 8, an Akimulet 11 and a scraping device 22 are provided.
  • a process for producing an adhesive layer-formed laminated film using the production apparatus shown in Fig. 5 will be described below. First, it is the same as the step of obtaining the organic-inorganic laminated film described in the above-described embodiment for the inorganic layer forming substrate film 3 fed from one feeding device 1. To obtain an organic-inorganic laminated film. Thereafter, an adhesive is applied to the organic thin film surface of the obtained organic-inorganic laminated film using a laminating apparatus 9. Next, the adhesive layer-formed laminated film coated with such an adhesive and the release paper 21 fed from the other feeding device 1 are pressure-bonded by a heating roll 8 and applied to the adhesive layer surface of the adhesive layer-formed laminated film. Adhere release paper 21.
  • the adhesive layer forming laminated film having the release paper 21 bonded in this manner passes through the Achille tray 11 and is taken up into a roll by the scooping device 22 (adhesive layer forming laminated film roll 23). In this way, an adhesive layer-formed laminated film is obtained.
  • the manufacturing apparatus shown in FIG. 5 can also be produced by using the apparatus in which the feeding apparatus 1, laminating apparatus 9 and heating roll 8 are removed from which the release paper roll 20 is installed, so that the organic-inorganic laminated film 16 is used.
  • the organic-inorganic laminated film 16 is used.
  • an organic / inorganic laminated film roll 15 wound in a roll shape is obtained.
  • the manufacturing apparatus shown in FIG. 6 includes two feeding apparatuses 1, and one feeding apparatus 1 is provided with an adhesive layer-formed laminated film roll 23 obtained as described above.
  • the manufacturing apparatus shown in FIG. 6 includes a scooping device 25 for taking up the release paper 21 laminated on the adhesive layer-forming laminated film and winding it in a roll shape (release paper roll 24).
  • the other feeding apparatus 1 is provided with the organic / inorganic laminated film roll 15 obtained as described above.
  • the manufacturing apparatus shown in FIG. 6 includes a heating roll 8 for press-bonding the adhesive layer surface of the adhesive layer-forming laminated film and the organic thin film surface of the organic-inorganic multilayer film 16, and a moisture-proof film obtained after the press-bonding.
  • a second drying furnace 10 In the traveling direction of the laminated film for use, a second drying furnace 10, an Akimulet 11, and a scraping device 12 are provided.
  • the step of obtaining the moisture-proof laminated film using the manufacturing apparatus shown in Fig. 6 obtains the moisture-proof laminated film described in the embodiment using the production apparatus shown in Fig. 4 described above.
  • the adhesive layer-forming laminated film roll 23 and the organic / inorganic laminated film roll 15 obtained as described above were used and bonded to the adhesive layer-forming laminated film.
  • the adhesive layer surface of the adhesive layer forming laminate film and the organic thin film surface of the organic / inorganic laminated film 16 are pressure-bonded. A bright laminated film for moisture-proof film is obtained.
  • the laminated film for a moisture-proof film and the method for producing the same of the present invention may further include another layer on the outside of the substrate.
  • the laminated film for a moisture-proof film of the present invention may further include another layer on the outside of the substrate.
  • other layers include, but are not limited to, a layer made of a synthetic resin having transparency, a heat-sealable resin layer, and the like, which are different from the base material used in the present invention.
  • stacked the base material and made the base material into multiple layers can also be mentioned.
  • Examples of such a layer made of a synthetic resin having transparency include, for example, a resin layer formed from a mixture of polybulualcohol and poly (meth) acrylic acid, a mixture of sugars and poly (meth) acrylic acid, and the like. And the like.
  • Examples of the heat-sealable resin layer include a polyolefin hot-melt sealant layer and an epoxy hot-melt sealant layer.
  • a known laminating method may be employed, in which a laminating material is laminated by coating, or a laminating material in the form of a film or sheet is interposed with or without an adhesive. The method of laminating is mentioned.
  • Specific lamination methods include a dry lamination method, a wet lamination method, and an extrusion lamination method. Even when other layers are laminated in this way, the properties of the moisture-proof laminated film (oxygen permeability, water vapor permeability, etc.) are not inferior. By selecting this material, it is possible to obtain a laminate with other functions added.
  • the laminated film for moisture-proof film of the present invention can be used as a moisture-proof film for an electoluminescence device.
  • the substrate is a transparent resin film and has heat resistance that can withstand vapor deposition or sputtering. What has is preferable.
  • any material can be used as the base material resin. Examples of such a base material resin include polyarylate, polycarbonate, polyethylene terephthalate, polyethylene naphthalate, polyethersulfone, polyester resin, polyamide, cellulose triacetate, acrylic resin, methacrylic resin, and polyester.
  • the laminated film for moisture-proof film of the present invention is preferably used as follows.
  • the laminate film for moisture-proof film of the present invention is used to sandwich the electret luminescence element from the front and back. In that case, it is preferable to make the laminated film for moisture-proof film sufficiently large and to adhere the laminated film for moisture-proof film to each other around the electoluminescence element.
  • an adhesive is applied to the entire surface or the end of the laminated film for the moisture-proof film on the side to be in close contact with the electoluminescence element.
  • the adhesive By using the adhesive, the electoric luminescence element body and the laminated film for the moisture-proof film are bonded, and further, the laminated films for the moisture-proof film are bonded around the elect-luminescent element.
  • the front side and the back side of the electoric luminescence element are insulated.
  • the length from the end surface in contact with the outside air of the adhesive to the inner end surface sealed with the laminated film for moisture-proof film is the thickness of the applied adhesive from the viewpoint of maintaining moisture-proof property. It is preferable to make it sufficiently longer than that.
  • an adhesive an ultraviolet curable adhesive, a hot melt adhesive, or a synthetic resin adhesive is used, and an epoxy or acrylic ultraviolet curable adhesive is particularly preferably used.
  • the obtained multilayer film for moisture-proof membrane of the present invention can be assembled as a material for precision electronic parts, and forms packaging bags and packaging containers for fine chemicals such as pharmaceuticals and test drugs. Can be made.
  • an electroluminescent device hereinafter referred to as EL
  • EL electroluminescent device
  • the fine chemicals as packaging bags or containers, for example, for the long-term storage of pharmaceuticals and test drugs that may reduce the effect of the drug due to moisture absorption or cause side effects due to chemical changes.
  • the use of the laminated film for a moisture-proof film of the present invention for a packaging bag or packaging container for pharmaceuticals or test drugs is mentioned.
  • an EL element emits light by itself, and its thin film, light weight,!
  • the application is expanding as an image display.
  • the phosphor constituting the light emitting layer absorbs moisture, the luminance of the emitted light is remarkably impaired. Specifically, a phenomenon may occur in which the luminance of the dark spot or the entire panel becomes small. Therefore, an EL element generally has a structure in which a light emitting layer is disposed between a pair of electrodes, and has a structure in which the whole is sealed with a transparent moisture-proof film.
  • Example 1 Regarding the laminated film for moisture-proof film obtained in the preliminary test, Example 1 and each comparative example, the area ratio ex [peak area S (3700 ⁇ 2500cm _1) was determined Z peak area S (1800 ⁇ 1500cm _ 1)].
  • the peak area S (3700-2500 cm _ 1 ) is obtained by area integration in the range of 3700-2500 cm _ 1 with a line connecting the absorbance of 3700 cm _ 1 and the absorbance of 2500 cm- 1 as the base line. It was. Also, the peak area S (1800 ⁇ 1500cm _ 1) is, and the absorbance of 1800 cm _ 1 1500
  • cm- 1 of the straight line connecting two points of the absorbance as a baseline was determined by area integration of a range of 1800 ⁇ 1500cm _ 1.
  • Example 1 Regarding the laminated film for moisture-proof film obtained in the preliminary test, Example 1 and each comparative example, among the methods described above, the peak ratio j8 [peak] from the ratio of the peak height of the infrared absorption spectrum of the film by the ATR method. a (1560cm - 1) / peak a (1700cm _ 1)] was determined.
  • the peak A (1600cm- absorbance, 1600 cm _ 1 of absorbance and 1500Cm- 1 of the intake
  • the peak A (1700cm _ 1) is, 1800 cm _ 1 of absorbance and 1600Cm- 1 of the intake
  • the oxygen permeability of the moisture-proof laminated film obtained in the preliminary test, Example 1 and each comparative example was measured using a product name OXTRAN2Z20 of an oxygen permeation tester manufactured by Modern Control, at a temperature of 30 ° C and a relative humidity of 80%. It was measured under the condition of (RH).
  • the measurement method conformed to JIS K 7126, B method (isobaric method), and ASTM D3985-81, and the measured value was expressed in the unit cm 3 (ST P) / (m 2 ⁇ day-MPa).
  • (STP) means the standard condition (0 ° C, 1 atm) for defining the volume of oxygen.
  • the measurement was performed by the isobaric method.
  • Example 1 In order to evaluate the moisture resistance of the laminated film for moisture-proof membranes obtained in the preliminary test, Example 1 and each comparative example, the water vapor permeability was measured using the JIS K7129-1992 water vapor permeability test method for plastic films and sheets (equipment). The measurement method was performed according to Method B (infrared sensor method). Specifically, preliminary humidification was performed under conditions of a temperature of 60 ° C and a relative humidity of 90%, and WVTR was measured at a temperature of 40 ° C and a relative humidity of 90% after a predetermined time had elapsed since the start of humidification.
  • Method B infrared sensor method
  • the measuring equipment was PERMA TRA N, a product name of a water vapor permeation tester manufactured by Modern Control, at a relative humidity of 90% RH on the water vapor supply side.
  • the measured value was expressed in the unit gZm 2 'day.
  • a laminated film for a moisture-proof film in which an organic thin film is formed on a base material is manufactured.
  • the Zn Auger electron spectrum of the thin film was measured.
  • an organic thin film was produced under the following conditions. It is also possible to peel another layer so as to expose the surface of the organic thin film, and to use this surface as an organic thin film specimen.
  • Polyacrylic acid solid content concentration 2.5 wt%, ZnO addition amount: 2.0 chemical equivalent, ammonia addition amount: 5.0 (mass ratio to ZnO), ammonium carbonate addition amount: 5.5 ( The coating solution was prepared so that the mass ratio to ZnO).
  • polyacrylic acid PAA: Toagosei Co., Ltd., trade name AALON A-10H
  • ZnO Wako Pure Chemical Industries
  • Direct gravure method (gravure version: 45 lines, depth: 800 ⁇ m, wet coating amount: about 22 g / m 2 , KL multi-coater, substrate: polyethylene terephthalate).
  • In-line drying drying oven setting: first zone 60 ° C 15mZsec, second zone 60 ° C 15mZsec, line speed: 4mZmin).
  • the organic thin film was fixed to the ferrule plate and heat-treated for 15 minutes in a 210 ° C gear oven.
  • the obtained organic thin film was subjected to chamfering with an inclination by a polishing method. After that, the distribution of the elements in the organic thin film and the auger electronic spectrum of Zn at the point of 0.2111 and the point of 0.4 m from the surface side were clearly measured.
  • the measurement method was based on the following conditions.
  • Measuring device Product name manufactured by PHI Quantera SXM
  • Measurement spectrum Wide (0 to 1500 eV), narrow (490 to 505 eV corresponding to Zn—LMN Auger electrons).
  • Fig. 7 shows the distribution of the elements confirmed by the measurement
  • Fig. 8 shows the measurement results obtained by the analysis of the Zn Auger electron spectrum.
  • indicates the relationship between the binding energy and the strength of zinc by the Auger electron spectrum analysis on the surface of the organic thin film
  • indicates the Auger electron spectrum at the surface force of 0.2 m of the organic thin film.
  • Analysis shows the relationship between the binding energy and strength of zinc
  • shows the relationship between the binding energy and strength of zinc in the position of surface force 0.
  • the binding energy by the Auger electron spectrum analysis of Zn has a peak at 496 to 498 eV, and the strong peak is mainly the chemistry of zinc and ammonia. It was presumed to be derived from the mechanical bond.
  • Solution A for forming an organic thin film was produced as follows.
  • polycarboxylic acid polymer A
  • PAA polyacrylic acid
  • trade name: AALON A-10H a few average molecular weight 200, 000, 25 wt% aqueous solution
  • ammonia water (reagent ammonia 28 wt% aqueous solution manufactured by Wako Pure Chemical Industries, Ltd.), acid zinc (reagent manufactured by Wako Pure Chemical Industries, Ltd.), and distilled water are used as volatile bases.
  • Solution A was obtained by sequentially adding in composition and mixing with an ultrasonic homogenizer. Utilizing the complexing ability of zinc with volatile base (ammonia), it was a homogeneous transparent solution in which zinc oxide was completely dissolved.
  • Solution B for forming an organic thin film was prepared as follows.
  • a polycarboxylic acid polymer Toagosei Co., Ltd., product name AALON A-10H (number average molecular weight 200, 000, 25 wt% aqueous solution) of polyacrylic acid (PAA) is used, and Wako Pure Chemical is used as a saccharide.
  • PAA polyacrylic acid
  • Soluble starch was used and each was diluted with water to prepare an aqueous solution.
  • a sodium hydroxide hydroxide manufactured by Wako Pure Chemical Industries, Ltd., first grade reagent
  • the composition of solution B is as follows.
  • Solution B composition is as follows.
  • Example 1 a laminated film for a moisture-proof film was produced by laminating the base material Z inorganic layer Z organic layer (organic thin film Z organic thin film) Z inorganic layer Z base material in this order. That is, two stretched polyethylene terephthalate films (PET film: product name Lumirror S10, thickness 12 / zm, manufactured by Toray Industries, Inc.) are used as the base materials, and the oxidation cages are respectively formed on the two base materials. A vapor-deposited film (inorganic layer) was formed. As the vapor deposition method, an electron beam vapor deposition method was used, and an oxide layer was deposited on the substrate so that the film thickness was 0.025 m. In this way, two inorganic layer-forming substrate films in which the inorganic layer was laminated on the substrate were produced.
  • PET film product name Lumirror S10, thickness 12 / zm, manufactured by Toray Industries, Inc.
  • the solution A obtained in Production Example 1 was applied to a bar coater (a product manufactured by RK PRINT-COAT IN STRUMENT). (Name K303PROOFER) to obtain two organic / inorganic laminated films in which an inorganic layer and an organic thin film were laminated on a base material.
  • the organic thin film surfaces of the two organic-inorganic laminated films are directly opposed to each other and are pressure-bonded with a pressure IMPa under a condition of 90 ° C using a heating roll, and then in an oven,
  • the laminated film for moisture-proof film of the present invention was obtained by heat treatment at 200 ° C. for 60 minutes.
  • the thickness of the organic layer in the obtained laminated film for moisture-proof membrane is 1.4 m (one organic thin film) The thickness was 0.
  • the area ratio ⁇ [peak area S (3700-2500 cm _1 ) Z peak area S (1800-1500 cm _1 )] and the peak ratio j8 [ Peak A (1560cm— 1 ) / Peak A (1700cm
  • WVTR water vapor permeability
  • Example 2 a laminated film for a moisture-proof film was produced by laminating the base material Z inorganic layer Z organic thin film Z adhesive layer Z organic thin film Z inorganic layer Z base material in this order. That is, two stretched polyethylene terephthalate films (PET film: product name Lumirror S10, thickness 12 / zm, manufactured by Toray Industries, Inc.) are used as the base materials, and the oxidation cages are respectively formed on the two base materials. A vapor-deposited film (inorganic layer) was formed. As the vapor deposition method, an electron beam vapor deposition method was used, and an oxide layer was deposited on the substrate so that the film thickness was 0.025 m. In this way, two inorganic layer-forming substrate films in which the inorganic layer was laminated on the substrate were produced.
  • PET film product name Lumirror S10, thickness 12 / zm, manufactured by Toray Industries, Inc.
  • the solution A obtained in Production Example 1 was applied to a bar coater (product of RK PRINT-COAT IN STRUMENT). Name was K303PROOFER), and then heat treated in an oven at 200 ° C for 60 minutes to obtain two organic / inorganic laminated films in which an inorganic layer and an organic thin film were laminated on the substrate. .
  • an adhesive was applied onto the organic thin film surfaces of the two organic / inorganic laminated films and adhered by a dry laminating method to obtain a laminated film for a moisture-proof film of the present invention.
  • a urethane adhesive (Dick Dry LX500 (main agent) / KW75 (curing agent), Vicat soft spot, manufactured by Dainippon Ink & Chemicals) on the organic thin film surface of the two organic / inorganic laminated films. 100 ° C. to 105 ° C.) and dried for 5 seconds at a temperature of 200 ° C. and then pressure-bonded at a pressure of IM Pa at a temperature of 150 ° C.
  • a laminated film for a moisture-proof film of the present invention adhered through the film was obtained.
  • the thickness of the organic thin film in the obtained laminated film for moisture-proof film was 0.7 ⁇ m, and the thickness of the adhesive layer was 1.5 m.
  • the laminated film for moisture-proof film obtained in this way is also used.
  • Area ratio ⁇ [peak area S (3700-2500 cm _1 ) Z peak area S (1800-1500 cm _1 )], peak ratio j8 [peak A (1560 cm
  • Example 3 instead of urethane adhesive (product name Dick Dry LX500 (main agent) / KW75 (curing agent) manufactured by Dainippon Ink, Vicat softening point 100 to 105 ° C), polyester adhesive (Toyo The product name TM250HV (main agent), product name CAT-RT 86L-60 (curing agent), Vicat soft spot 95-98 ° C) manufactured by Morton Co., Ltd. A laminated film for moisture-proof film was obtained.
  • urethane adhesive product name Dick Dry LX500 (main agent) / KW75 (curing agent) manufactured by Dainippon Ink, Vicat softening point 100 to 105 ° C
  • polyester adhesive Toyo The product name TM250HV (main agent), product name CAT-RT 86L-60 (curing agent), Vicat soft spot 95-98 ° C) manufactured by Morton Co., Ltd.
  • a laminated film for moisture-proof film was obtained.
  • the thickness of the organic thin film in the obtained laminated film for moisture-proof film was 0.7 ⁇ m, and the thickness of the adhesive layer was 1.5 m.
  • the area ratio ⁇ [peak area S (3700-2500 cm _1 ) Z peak area S (1800-1500 cm _1 )] and peak ratio j8 [ Peak A (1560cm— 1 ) / peak
  • acrylic adhesive was used instead of urethane adhesive (product name Dick Dry LX500 (main agent) / KW75 (curing agent), Vicat softening point 100 to 105 ° C, manufactured by Dainippon Ink and Co., Ltd.) Except for using the agent (trade name BLS-PA3 (main agent) / CAT-RT35 (curing agent), Vicat soft spot 105-110 ° C, manufactured by Toyo Morton Co., Ltd.) A laminated film for a moisture-proof film was obtained.
  • urethane adhesive product name Dick Dry LX500 (main agent) / KW75 (curing agent), Vicat softening point 100 to 105 ° C, manufactured by Dainippon Ink and Co., Ltd.
  • the agent trade name BLS-PA3 (main agent) / CAT-RT35 (curing agent)
  • Vicat soft spot 105-110 ° C manufactured by Toyo Morton Co., Ltd.
  • the thickness of the organic thin film in the obtained laminated film for moisture-proof film was 0.7 ⁇ m, respectively, and the thickness of the adhesive layer was 1.5 m.
  • the area ratio ⁇ [peak area S (3700-2500 cm _1 ) Z peak area S (1800-1500 cm _1 )] and peak ratio j8 [ Peak A (1560cm— 1 ) / peak A (1700cm- 1 )], oxygen permeability and water vapor permeability (WVTR)
  • Comparative Example 1 a laminated film for a moisture-proof film was produced, which was laminated in the order of base material Z inorganic layer Z organic thin film. That is, a stretched polyethylene terephthalate film (PET film: product name Lumirror S10, thickness 12 / zm, manufactured by Toray Industries, Inc.) is used as the base material, and a silicon oxide vapor deposition film (inorganic layer) is formed on the strong base material. ) To form an inorganic layer-formed base film in which an inorganic layer was laminated on the base material. In addition, as a vapor deposition method, the same method as in Example 1 was used.
  • PET film product name Lumirror S10, thickness 12 / zm, manufactured by Toray Industries, Inc.
  • the solution A obtained in Production Example 1 is used with a bar coater (trade name K3 03PROOFER manufactured by RK PRINT-COAT IN STRUMENT).
  • the coated film was heat-treated in an oven at 200 ° C. for 60 minutes to obtain a laminated film for a moisture-proof film as a comparison.
  • the film thickness of the inorganic layer was 0.025 ⁇ m, and the film thickness of the organic thin film was 0. Further, the same measurement as in Example 1 was performed on the laminated film for moisture-proof film thus obtained. The WVTR was measured after 0 hours and after 250 hours. The results obtained are shown in Table 1.
  • Comparative Example 2 a laminated film for a moisture-proof film was produced, which was laminated in the order of base material Z inorganic layer Z organic thin film. At this time, a laminated film for a moisture-proof film was obtained in the same manner as in Comparative Example 1 except that the solution B was used.
  • the film thickness of the inorganic layer was 0.025 ⁇ m, and the film thickness of the organic thin film was 0.0. Further, the same measurement as in Example 1 was performed on the laminated film for moisture-proof film thus obtained. The WVTR was measured after 0 hours and after 250 hours. The results obtained are shown in Table 1.
  • a laminated film for a moisture-proof film was produced in the order of the base material Z organic thin film. That is, stretched polyethylene terephthalate film (PET film: Toray Using the product name Lumirror S10 (thickness: 12 / zm) manufactured by Co., Ltd., the solution A obtained in Production Example 1 was applied on a strong substrate using a bar coater (RK PRINT-COAT IN STRUMENT Product name K303PROOFER) was applied, and heat treatment was performed in an oven at 200 ° C. for 60 minutes to obtain a laminated film for moisture-proof film as a comparison.
  • a bar coater RK PRINT-COAT IN STRUMENT Product name K303PROOFER
  • the film thickness of the organic thin film was 0.7 ⁇ m. Further, the same measurement as in Example 1 was performed on the laminated film for moisture-proof film thus obtained. WVTR was measured 0 hours after the start of humidification. The results obtained are shown in Table 1.
  • Comparative Example 4 a laminated film for a moisture-proof film laminated in the order of the base material Z inorganic layer was produced. That is, stretched polyethylene terephthalate film (PET film: product name Lumirror S10, thickness 12 111, manufactured by Toray Industries, Inc.) is used as a base material, and an acid-sealed vapor deposition film (inorganic layer) on a strong base material. ) To obtain a laminated film for moisture-proof film as a comparison. As a vapor deposition method, the same method as in Example 1 was used.
  • PET film product name Lumirror S10, thickness 12 111, manufactured by Toray Industries, Inc.
  • the film thickness of the inorganic layer was 0.025 ⁇ m. Further, the same measurement as in Example 1 was performed on the laminated film for moisture-proof film thus obtained. WVTR was measured after 0 hours and 250 hours after the start of humidification. The results obtained are shown in Table 1.
  • a laminated film for a moisture-proof film was produced in the order of the base material Z inorganic layer Z adhesive layer. That is, a stretched polyethylene terephthalate film (PET film: product name Lumirror S 10 manufactured by Toray Industries, Inc., thickness 12 m) is used as the base material, and an oxidized silicon vapor-deposited film (inorganic layer) is applied on the strong base material. ) To produce an inorganic layer forming substrate film in which an inorganic layer is laminated on a substrate. The vapor deposition method was the same as in Example 1.
  • PET film product name Lumirror S 10 manufactured by Toray Industries, Inc., thickness 12 m
  • an adhesive (trade name TM250HV (main agent), product name CAT—RT86L-60 (hard hardener), Vicat Soft, manufactured by Toyo Morton Co., Ltd.) was applied on the inorganic layer of the inorganic layer forming substrate film. (Chemical point 95-98 ° C), dried for 1 minute at 70 ° C using a dryer, and then heat treated in an oven at 200 ° C for 60 minutes for comparative moisture-proofing Laminate film for membrane I got Lum.
  • TM250HV main agent
  • CAT—RT86L-60 hard hardener
  • Vicat Soft manufactured by Toyo Morton Co., Ltd.
  • the film thickness of the inorganic layer was 0.025 ⁇ m, and the film thickness of the adhesive layer was 1. Further, the same measurement as in Example 1 was performed on the laminated film for moisture-proof film thus obtained. WVTR was measured after 0, 24 and 250 hours from the start of humidification. The results obtained are shown in Table 1.
  • Comparative Example 6 a laminated film for a moisture-proof film was produced by laminating the base material Z inorganic layer Z organic layer (organic thin film Z organic thin film) Z inorganic layer Z base material in this order.
  • a comparative laminated film for a moisture-proof film was obtained in the same manner as in Example 1 except that the solution B was used instead of the solution A in the production of the strong laminated film for the moisture-proof film.
  • the inorganic layer has a thickness of 0.025 ⁇ m and the organic layer has a thickness of 1.4 m (the thickness of one organic thin film is 0.7 m). there were. Further, the same measurement as in Example 1 was performed on the laminated film for moisture-proof film thus obtained. WVT R was measured after 0 hours, 24 hours, and 250 hours after the start of humidification. Table 1 shows the results obtained.
  • Comparative Example 7 a laminated film for a moisture-proof film was produced by laminating the base material Z inorganic layer Z organic thin film Z adhesive layer Z organic thin film Z inorganic layer Z base material in this order.
  • a comparative laminated film for a moisture-proof film was obtained in the same manner as in Example 2 except that the solution B was used instead of the solution A in the production of the strong laminated film for the moisture-proof film.
  • the film thickness of the inorganic layer was 0.025 ⁇ m
  • the film thickness of the organic thin film was 0.0
  • the thickness of the adhesive layer was 1.5 m. Further, the same measurement as in Example 1 was performed on the laminated film for moisture-proof film thus obtained. WVT R was measured after 0 hours, 24 hours, and 250 hours after the start of humidification. Table 1 shows the results obtained.
  • a laminated film for a moisture-proof film was produced by laminating the base material Z organic layer (organic thin film Z organic thin film) Z base material in this order. That is, as a base material, Using a tarate film (PET film: trade name Lumirror S 10 manufactured by Toray Industries, Inc., thickness 12 m), the solution A obtained in Production Example 1 was applied to Barco on each of the two substrates. The organic thin film is coated with a thin film (product name: K303PROOFE R manufactured by RK PRINT-COAT IN STRUMENT), dried in an oven at 200 ° C for 60 minutes, and the organic thin film is laminated on the substrate. Two laminated films were produced.
  • a tarate film PET film: trade name Lumirror S 10 manufactured by Toray Industries, Inc., thickness 12 m
  • the organic thin film is coated with a thin film (product name: K303PROOFE R manufactured by RK PRINT-COAT IN STRUMENT), dried in an oven at 200 ° C for 60 minutes
  • the organic thin film surfaces of the two organic thin film laminated films are directly opposed to each other, and are pressure-bonded at a pressure IMPa under a condition of 50 ° C using a heating roll.
  • a heat-resistant laminated film for comparison was obtained by heat treatment at 50 ° C. for 60 minutes.
  • the thickness of the organic layer in the obtained laminated film for moisture-proof film was 1.4 m (the thickness of one organic thin film was 0. In addition, the laminated film for moisture-proof film thus obtained was about
  • Example 1 The same measurement as in Example 1 was performed. WVTR was measured after 0 hours and 250 hours from the start of humidification. The results obtained are shown in Table 1.
  • the laminated films for moisture-proof membranes of the present invention obtained in Examples 1 to 4 have a WVTR of 0.02 or less even after 500 hours have passed since the start of humidification. Humidification Even after 1000 hours from the start, the WVTR was 0.02. For this reason, it was confirmed that the laminated film for moisture-proof membranes of the present invention obtained in Examples 1 to 4 stably maintained a high level of moisture-proof property over a long period of time. On the other hand, the laminated films for moisture-proof membranes obtained in each comparative example all showed a WVTR value of 0.04 or more after 250 hours after humidification, which is not sufficient in terms of maintaining waterproofness. I helped. Further, as is clear from the results in Table 1, it was confirmed that the laminated films for moisture-proof films of the present invention obtained in Examples 1 to 4 exhibited high gas nozzle properties.
  • each electoluminescence element assembled with the laminated film for moisture-proof film obtained in Example 1 and Comparative Examples 1, 6, and 7 was 250 hours at a temperature of 60 ° C and a relative humidity of 90%. After pre-humidification, electricity was applied to each electroluminescent device, and the degree of dark spot generation was observed. Table 2 shows the results obtained.
  • Substrate / inorganic layer / organic layer organic thin film organic thin film
  • Example 3 Substrate Inorganic layer / organic thin film / adhesive layer / organic thin solution A Adhesive No dark spot was produced.
  • Comparative Example 7 Solution B Agent A film / inorganic layer / base material that has dark spots around the display (100 to 105 ° C)
  • the electoluminescence device assembled with the multilayer film for a moisture-proof film of the present invention obtained in Examples 1 to 4 has a light emitting display surface on its entire surface. The cspot worked normally without any spots.
  • the electoluminescence device assembled with the laminated film for the moisture-proof film obtained in Comparative Examples 1 and 6 to 8 produced a dark spot on the light emitting display surface, and did not operate normally. From this, it was confirmed that the laminated film for a moisture-proof film of the present invention can be suitably used as a moisture-proof film for an electoluminescence device.
  • each of the moisture-proof laminated films obtained in Examples 1 to 4 and Comparative Examples 1 and 6 to 8 was used to form a three-way pillow-one sealed packaging container.
  • Each three-way pillow sealed packaging container is packed with 20 g of fine chemical acid titanium dioxide powder (number average diameter 2 m) for 250 hours under conditions of 60 ° C temperature and 90% relative humidity. After pre-humidification, the degree of powder lump (also called core guidance) in the three-way pillow sealed package was shaken by hand. Table 3 shows the results obtained.
  • Item Solvent used in the construction of laminated film for moisture barrier film
  • Example 3 Substrate / Inorganic layer / Organic thin film / Adhesive layer / Organic thin solution A Adhesive
  • a laminated film for a moisture-proof film in which inorganic layers are laminated on both sides of an organic layer, the gas barrier being caused by micro pinholes in the film thickness direction in the organic layer. It is possible to prevent the deterioration of heat resistance and moisture resistance sufficiently and to stably exhibit a high level of gas barrier properties and moisture resistance over a long period of time, even if external force such as bending or impact is applied. It is possible to provide a laminated film for a moisture-proof film capable of maintaining the high gas nozzle property and moisture-proof property, and a method for producing the same.
  • the laminated film for a moisture-proof film of the present invention is excellent in gas barrier properties and moisture-proof properties, and thus is suitable as a material for precision electronic parts and used as a package for fine chemicals such as pharmaceuticals and test drugs. It is particularly useful as a moisture-proof film for electoluminescence devices

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Disclosed is a multilayer film for moisture barrier film which comprises an organic layer and inorganic layers arranged on both sides of the organic layer. The organic layer comprises two organic thin films which are respectively composed of a film containing at least a polyvalent metal salt of a polycarboxylic acid polymer (A) and having an infrared absorption spectrum wherein the area ratio α [peak area S1 (3700-2500 cm-1)/peak area S2 (1800-1500 cm-1)] is not more than 2.5, and the peak ratio β [peak A1 (1560 cm-1)/peak A2 (1700 cm-1)] is not less than 1.2.

Description

防湿膜用積層フィルム及びその製造方法  Laminated film for moisture-proof film and method for producing the same
技術分野  Technical field
[0001] 本発明は、防湿膜用積層フィルム及びその製造方法に関し、より詳しくは、精密電 子部品の材料に適し、また医薬品、試験薬等の精密化学品の包装体としても適する 防湿膜用積層フィルムであり、特に、長期に亘り安定したガスバリア性能が必要で、 且つ高度な防湿性能を求められるエレクト口ルミネッセンス素子用の防湿膜として有 用な防湿膜用積層フィルム及びその製造方法に関する。  [0001] The present invention relates to a laminated film for a moisture-proof film and a method for producing the same, and more specifically, suitable for materials for precision electronic parts, and also suitable for packaging of fine chemicals such as pharmaceuticals and test drugs. More particularly, the present invention relates to a laminated film for a moisture-proof film that is useful as a moisture-proof film for an electoluminescence device that requires a stable gas barrier performance for a long period of time and requires high moisture-proof performance, and a method for producing the same.
背景技術  Background art
[0002] 従来より、飲食品、医薬品、化粧品、洗剤、雑貨品、精密金属部品等の種々の物 品を充填包装するために用いられる種々の防湿膜用積層フィルムが提案されてきて いる。このような防湿膜用積層フィルムの防湿性能は、 10〜102cm3 (STP) / (m2'd ay MPa)程度の水準であることが知られている。そして、このような防湿膜用積層フ イルムと、塩化カルシウム粉末や商品名称「シリカゲル」等の吸湿材料とを併用するこ とで、通常の充填包装には何らの不都合を生じていないことが知られている。特に、 近年では電子機器の高性能化に伴って、組み込まれる素材の吸湿劣化や金属材料 の腐食が電子機器の寿命に影響を与えることが多ぐ用いられる防湿膜用積層フィ ルムの性能が、電子機器全体としての長期間寿命に影響することが知られている。こ のような理由から、電子機器の部材として用いられるような防湿膜用積層フィルムとし ては、水蒸気による水蒸気ノリャ性 (即ち防湿性能、以下防湿性という)も含むガスバ リャ性の水準が高度なものを求められている。そして、このような電子機器の部材とし て用いられるような防湿膜用積層フィルムの防湿性の水準としては、通常の充填包装 に用いられて ヽるような防湿膜用積層フィルムの防湿性の水準では不十分である。ま た、精密電子部品等においては、限られた部品容積の中に防湿膜用積層フィルムを 組み込む制約があることから、防湿膜用積層フィルムに吸湿材料を併用させることが できず、それ自体が高度な防湿性を有する防湿膜用積層フィルムが求められて 、る 。そして、このような電子機器の部材として用いられるような防湿膜用積層フィルムとし ては、酸化ケィ素、酸化マグネシウム、酸ィ匕アルミニウム等の金属酸ィ匕物を用いて、 真空蒸着法、プラズマ蒸着法、スパッタリング法等によってガスノリャ性フィルムの上 に蒸着膜を形成せしめた防湿膜用積層フィルム等が注目されるようになってきている 例えば、特開 2004— 42502号公報においては、透明フィルム基板上に窒化ケィ 素スパッタリング膜を形成してなるバリヤ性透明積層フィルムが開示されている。また 、国際公開 98Z046424号パンフレットにおいては、ポリビュルアルコール、ェチレ ン—酢酸ビュル共重合体けん化物、またはポリアミドからなる吸湿性榭脂層(A)の両 面に直接または接着剤層(B)を介して金属または非金属の酸ィ匕物薄膜 (C)が配置 された層構成を含有する透明な多層フィルム力 なる防湿性フィルムが開示されてい る。さらに、特開平 9— 193306号公報及び特開平 9— 193307号公報においては、 延伸ナイロンフィルム (A)、蒸着フィルム (B)、少なくとも 1層の複合蒸着フィルムを含 むガスバリヤ一層(C)、及びヒートシール層 (D)がそれぞれ接着剤層を介して積層さ れてなる積層フィルムが開示されている。さらに、特開 2004— 148626号公報にお いては、無機酸化物蒸着膜の上に、蒸着膜保護塗材を塗布することにより形成され る蒸着膜保護層を積層したガスノリアフィルムが開示されている。このような特開 200 4— 148626号公報に記載のガスノリャフィルムは、無機酸化物蒸着膜の上にシラン カップリング剤等の蒸着膜保護塗材を塗布した透明で視認性及び柔軟性があるガス ノリャフィルムであった。また、特開平 8— 142256号公報においては、高分子フィル ム基材 (A)の少なくとも片面に無機材料の蒸着膜 (B)が形成され、さらに、該蒸着膜 (B)の上に、耐水性フィルム (C)が積層されて ヽる積層構造を少なくとも 1つ含有す る複合フィルムであって、該積層構造の少なくとも一方の側に、乾燥剤を含有するポ リマー組成物の層(D)が配置されている防湿複合蒸着フィルムが開示されている。さ らに、特開平 9— 183179号公報においては、高分子フィルム基材層(A)、無機材 料蒸着層 (B)、バリヤ一性榭脂コーティング層 (C)、緩和層 (D)の順に積層された複 合フィルムが開示されており、特開平 9— 193307号公報においては、延伸ナイロン フィルム (A)、蒸着フィルム (B)、少なくとも 1層の複合蒸着フィルムを含むガスノ リャ 一層(C)、及びヒートシール層 (D)がそれぞれ接着剤層を介して積層されてなる積 層フィルムが開示されている。 [0002] Conventionally, various laminated films for moisture-proof films used for filling and packaging various products such as foods and drinks, pharmaceuticals, cosmetics, detergents, miscellaneous goods, and precision metal parts have been proposed. Such moisture barrier properties of the moisture-proof film for a laminated film, is known to be a level of about 10~10 2 cm 3 (STP) / (m 2 'd ay MPa). It is also known that using such a moisture-proof laminated film together with a moisture absorbing material such as calcium chloride powder or the product name “silica gel” does not cause any inconvenience in ordinary filling packaging. It has been. In particular, as the performance of electronic equipment has improved in recent years, the performance of laminated films for moisture-proof films, which are often used due to the fact that moisture absorption deterioration of incorporated materials and corrosion of metal materials affect the life of electronic equipment, It is known to affect the long-term life of the entire electronic device. For these reasons, a laminated film for a moisture-proof film used as a component of an electronic device has a high level of gas barrier properties including a water vapor-nozzle property (i.e., moisture-proof performance, hereinafter referred to as moisture-proof property) due to water vapor. Things are sought. The moisture-proof level of the moisture-proof laminated film used as a member of such an electronic device is the level of moisture-proof property of the moisture-proof laminated film as used in ordinary filling packaging. Is not enough. In addition, in precision electronic parts and the like, there is a restriction to incorporate a moisture-proof film laminated film in a limited part volume, so it is not possible to use a moisture-absorbing material in the moisture-proof film laminated film. There is a need for a laminated film for a moisture-proof film having a high moisture-proof property. And as a laminated film for a moisture-proof film used as a member of such an electronic device. For example, using metal oxides such as silicon oxide, magnesium oxide, and aluminum oxide, a vapor-deposited film is formed on a gas-free film by vacuum deposition, plasma deposition, sputtering, etc. For example, Japanese Unexamined Patent Application Publication No. 2004-42502 discloses a barrier transparent laminated film formed by forming a silicon nitride sputtering film on a transparent film substrate. ing. In addition, in the pamphlet of International Publication No. 98Z046424, an adhesive layer (B) is formed directly or on both sides of a hygroscopic resin layer (A) made of polybutyl alcohol, a saponified ethylene-butyl acetate copolymer, or polyamide. There is disclosed a moisture-proof film having a transparent multilayer film strength containing a layer structure in which a metal or non-metal oxide thin film (C) is disposed. Further, in JP-A-9-193306 and JP-A-9-193307, a stretched nylon film (A), a vapor-deposited film (B), a gas barrier layer (C) including at least one composite vapor-deposited film, and A laminated film in which the heat seal layer (D) is laminated via an adhesive layer is disclosed. Furthermore, Japanese Patent Application Laid-Open No. 2004-148626 discloses a gas noria film in which a deposited film protective layer formed by applying a deposited film protective coating material on an inorganic oxide deposited film is laminated. Yes. Such a gas nore film described in Japanese Patent Application Laid-Open No. 2004-148626 is transparent and has visibility and flexibility in which a vapor deposition film protective coating material such as a silane coupling agent is applied on an inorganic oxide vapor deposition film. It was a gas nolla film. In JP-A-8-142256, a vapor deposition film (B) of an inorganic material is formed on at least one surface of the polymer film substrate (A), and further, a water-resistant film is formed on the vapor deposition film (B). A composite film containing at least one laminated structure formed by laminating the conductive film (C), the polymer composition layer (D) containing a desiccant on at least one side of the laminated structure A moisture-proof composite vapor deposition film is disclosed. Further, in JP-A-9-183179, a polymer film substrate layer (A), an inorganic material vapor deposition layer (B), a barrier unifacial resin coating layer (C), and a relaxation layer (D) are disclosed. JP-A-9-193307 discloses a composite film laminated in order. A stretched nylon film (A), a vapor-deposited film (B), and a gas-nozzle layer (C) containing at least one composite vapor-deposited film. ), And a heat seal layer (D), each laminated via an adhesive layer A layer film is disclosed.
[0004] し力しながら、このような防湿膜用積層フィルムとしては、更なる高い水準でガスバリ ャ性及び防湿性を発揮でき、し力も長期間に亘り安定してその能力を発揮できる防 湿膜用積層フィルムが求められている。  [0004] However, as such a laminated film for a moisture-proof film, the moisture-proof film can exhibit gas barrier properties and moisture-proof properties at an even higher level, and the strength can be stably demonstrated over a long period of time. There is a need for laminated films for membranes.
発明の開示  Disclosure of the invention
[0005] 本発明は、上記従来技術の有する課題に鑑みてなされたものであり、有機層の両 面に無機層が積層された防湿膜用積層フィルムであって、前記有機層における膜厚 方向のミクロピンホールに起因するガスノ リャ性ゃ防湿性の低下が十分に防止され、 高水準のガスバリヤ性及び防湿性を長期に亘り安定して発揮することが可能であり、 し力も折り曲げや衝撃等の外部力が加えられてもその高いガスノリャ性及び防湿性 を維持することが可能な防湿膜用積層フィルム、並びにその製造方法を提供すること を目的とする。  [0005] The present invention has been made in view of the above-described problems of the prior art, and is a moisture-proof laminated film in which inorganic layers are laminated on both sides of an organic layer, and the film thickness direction in the organic layer It is possible to sufficiently prevent the deterioration of moisture resistance due to gas micro pinholes and to achieve high level gas barrier and moisture resistance over a long period of time. An object of the present invention is to provide a laminated film for a moisture-proof film capable of maintaining its high gas-nozzle property and moisture-proof property even when an external force is applied, and a method for producing the same.
[0006] 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、ポリカルボン酸系 重合体 (A)の多価金属塩を少なくとも含む有機薄膜のポリカルボン酸系重合体 (A) の親水性基や多価金属との塩形成等に起因して重合体分子構造の密度を大きくし てなる有機薄膜を用い、 2枚の前記有機薄膜を備える有機層を形成させ、前記有機 層を 2以上の無機層の間に積層配置してなる構成とすることで、前記目的が達成され ることを見出し、本発明を完成するに至った。  [0006] As a result of intensive studies to achieve the above-mentioned object, the present inventors have determined that an organic thin film polycarboxylic acid polymer (A) containing at least a polyvalent metal salt of the polycarboxylic acid polymer (A). ) Using an organic thin film in which the density of the polymer molecular structure is increased due to, for example, salt formation with a hydrophilic group or a polyvalent metal, and an organic layer having two organic thin films is formed. The inventors have found that the above-mentioned object can be achieved by forming a layer by laminating two or more inorganic layers, and have completed the present invention.
[0007] すなわち、本発明の防湿膜用積層フィルムは、有機層と、該有機層の両面に積層 されている無機層とを備える防湿膜用積層フィルムであって、  That is, the moisture-proof film laminate film of the present invention is a moisture-proof film laminate film comprising an organic layer and inorganic layers laminated on both sides of the organic layer,
前記有機層が、 2枚の有機薄膜を備えており、  The organic layer comprises two organic thin films;
前記 2枚の有機薄膜が、それぞれ、ポリカルボン酸系重合体 (A)の多価金属塩を 少なくとも含み、赤外線吸収スペクトルの面積比 α [ピーク面積 S (3700〜2500cm  Each of the two organic thin films contains at least a polyvalent metal salt of the polycarboxylic acid polymer (A), and an infrared absorption spectrum area ratio α [peak area S (3700-2500 cm
1  1
ピーク面積 S (1800〜1500cm_1) ]が 2. 5以下であり、且つ赤外線吸収スぺ Peak area S (1800-1500 cm _1 )] is 2.5 or less and an infrared absorption spectrum
2  2
タトルのピーク比 j8 [ピーク A (1560cm- 1) /ピーク A (1700cm—1) ]が 1. 2以上で Tuttle peak ratio j8 [Peak A (1560cm- 1 ) / Peak A (1700cm- 1 )] is 1.2 or more
1 2  1 2
あるフィルムである、ものである。  It is a certain film.
[0008] また、本発明の防湿膜用積層フィルムの製造方法は、ポリカルボン酸系重合体 (A) と、多価金属化合物 (B)と、揮発性塩基 (C)又は酸 (D)のいずれか一方と、溶媒とを 含む混合物の溶液又は分散液を、 2枚の無機層上にそれぞれ塗工し、一方の面に 無機層が積層されて 、る有機薄膜を 2枚得る工程と、 [0008] The method for producing a laminated film for a moisture-proof film of the present invention comprises a polycarboxylic acid polymer (A), a polyvalent metal compound (B), a volatile base (C) or an acid (D). Either one and the solvent. A step of obtaining two organic thin films, each of which comprises coating a solution or dispersion of a mixture comprising two inorganic layers and laminating the inorganic layer on one surface;
前記 2枚の有機薄膜を積層せしめて防湿膜用積層フィルムを得る工程と、 を含み、前記 2枚の有機薄膜が、それぞれ、ポリカルボン酸系重合体 (A)の多価金 属塩を少なくとも含み、赤外線吸収スペクトルの面積比 α [ピーク面積 S (3700-25  Laminating the two organic thin films to obtain a laminated film for a moisture-proof film, wherein each of the two organic thin films contains at least a polyvalent metal salt of the polycarboxylic acid-based polymer (A). Infrared absorption spectrum area ratio α [Peak area S (3700-25
1  1
00cm—1) /ピーク面積 S (1800〜1500cm_1) ]が 2. 5以下であり、且つ赤外線吸 00cm— 1 ) / peak area S (1800-1500 cm _1 )] is 2.5 or less and infrared absorption
2  2
収スペクトルのピーク比 j8 [ピーク A (1560cm—1) /ピーク A (1700cm_1) ]が 1 · 2 Peak ratio of yield spectrum j8 [Peak A (1560cm- 1) / Peak A (1700cm _1)] is 1 - 2
1 2  1 2
以上であるフィルムである、製造方法である。  It is a manufacturing method which is the above film.
[0009] 上記本発明の防湿膜用積層フィルムにおいては、前記有機層が、 2枚の有機薄膜 を直接的に対向させ、且つ、密着せしめて形成されたものであることが好ましい。 [0009] In the laminated film for a moisture-proof film of the present invention, it is preferable that the organic layer is formed by directly facing and adhering two organic thin films.
[0010] また、上記本発明の防湿膜用積層フィルムにおいては、前記有機層が、 2枚の有 機薄膜を接着層を介して積層せしめて形成されたものであることが好ましい。 [0010] In the laminated film for a moisture-proof film of the present invention, the organic layer is preferably formed by laminating two organic thin films via an adhesive layer.
[0011] また、上記本発明の防湿膜用積層フィルムの製造方法としては、前記防湿膜用積 層フィルムを得る工程において、前記 2枚の有機薄膜の他方の面同士を直接的に対 向させ、且つ、密着せしめて前記防湿膜用積層フィルムを得ることが好ましい。 [0011] Further, according to the method for producing the laminated film for moisture-proof film of the present invention, in the step of obtaining the laminated film for moisture-proof film, the other surfaces of the two organic thin films are directly opposed to each other. In addition, it is preferable that the laminated film for a moisture-proof film is obtained by close contact.
[0012] さらに、上記本発明の防湿膜用積層フィルムの製造方法としては、前記防湿膜用 積層フィルムを得る工程において、前記 2枚の有機薄膜の他方の面同士を接着層を 介して積層せしめて前記防湿膜用積層フィルムを得ることが好ましい。 [0012] Further, as a method for producing the moisture-proof film laminate film of the present invention, in the step of obtaining the moisture-proof film laminate film, the other surfaces of the two organic thin films are laminated via an adhesive layer. It is preferable to obtain the laminated film for moisture-proof film.
[0013] また、上記本発明に力かる多価金属としては、亜鉛、ジルコニウム、銅及びニッケル 力もなる群力も選択される少なくとも一種の金属であることが好ましい。 [0013] In addition, the polyvalent metal that can be used in the present invention is preferably at least one metal that can select a group force including zinc, zirconium, copper, and nickel.
[0014] また、上記本発明に力かる多価金属が亜鉛であり、且つ亜鉛のォージェ電子スぺク トル分析による結合エネルギー力 96〜498eVの間に少なくとも一つのピークを有 することが好ましい。 [0014] In addition, it is preferable that the polyvalent metal according to the present invention is zinc and has at least one peak between 96 to 498 eV of binding energy force by the Auger electron spectrum analysis of zinc.
[0015] さらに、上記本発明にかかる無機層としては、無機酸ィ匕物蒸着膜からなることが好 ましぐ前記無機酸化物が、ケィ素酸ィ匕物であることがより好ましい。  [0015] Further, as the inorganic layer according to the present invention, the inorganic oxide, which is preferably made of an inorganic oxide vapor deposition film, is more preferably a silicate oxide.
[0016] また、前記接着層としては、ウレタン系接着剤、アクリル系接着剤、ポリエステル系 接着剤及びエポキシ系接着剤からなる群から選択される少なくとも 1種の接着剤を用 いて形成された接着層であることが好ましぐ前記接着剤のビカット軟ィ匕点が、 50°C 〜140°Cであることがより好ましい。 [0016] Further, as the adhesive layer, an adhesive formed using at least one adhesive selected from the group consisting of urethane adhesives, acrylic adhesives, polyester adhesives, and epoxy adhesives. The adhesive's Vicat soft spot is preferably 50 ° C. More preferably, it is ˜140 ° C.
[0017] また、本発明の防湿膜用積層フィルムとしては、 60°C、相対湿度 90%の予備加湿 条件下で 250時間静置後に、 40°C、相対湿度 90%における水蒸気透過度が 0. 02 gZ (m2' day)以下に維持されるものであることが好ましい。 [0017] The laminated film for a moisture-proof film of the present invention has a water vapor transmission rate of 0 at 40 ° C and 90% relative humidity after standing for 250 hours under prehumidification conditions at 60 ° C and 90% relative humidity. It is preferably maintained at 02 gZ (m 2 'day) or less.
[0018] さらに、本発明の防湿膜用積層フィルム力 エレクト口ルミネッセンス素子用の防湿 膜であることが好ましい。  [0018] Further, the laminated film force for moisture-proof film of the present invention is preferably a moisture-proof film for an electoluminescence element.
[0019] なお、本発明の防湿膜用積層フィルムが、上記のような構成としてなることを、以下 に説明する。すなわち、先ず、ポリカルボン酸系重合体 (A)の多価金属塩を少なくと も含有させつつ、ポリカルボン酸系重合体 (A)の親水性基と多価金属との塩形成等 に起因して重合体分子構造の密度を大きくしてなる有機薄膜とすることで、ガスバリ ァ性と防湿性とを格段に向上させた有機薄膜とすることが可能となる。本発明の防湿 膜用積層フィルムにおいては、有機層において、前記有機薄膜を 2枚備えており、有 機層において 1枚の有機薄膜の膜厚方向にミクロピンホールができた場合でも、更に もう 1枚の有機薄膜が配置されて 、るため、ミクロピンホールが連結することを防止で き、有機層におけるミクロピンホールを原因としたガスノリャ性及び防湿性の低下が 防止されて防湿膜用積層フィルムに安定して高いガスバリア性と防湿性とを維持させ ることが可能となる。また、有機層において、前記有機薄膜を 2枚直接対向させるか、 或いは、前記有機薄膜を接着層を介して積層せしめた場合には、前記ミクロピンホー ルが連結することをより効率的に防止でき、防湿膜用積層フィルムにより安定して高 いガスノリア性と防湿性とを維持させることが可能となる。また、本発明の防湿膜用積 層フィルムは、有機層の両面に防湿性の高い無機層を積層させることで、より高い防 湿性及びガスノ リャ性を発揮させることが可能となり、し力も、相対的にやわらかい有 機層を相対的に硬い無機層で覆う構成となるため、折り曲げや衝撃等の外部力が加 えられても、防湿膜用積層フィルムが有するガスノリャ性及び防湿性が低下すること がないものである。  [0019] It will be described below that the moisture-proof film laminated film of the present invention has the above-described configuration. That is, first, due to the salt formation between the hydrophilic group of the polycarboxylic acid polymer (A) and the polyvalent metal while containing at least the polyvalent metal salt of the polycarboxylic acid polymer (A). Thus, by forming an organic thin film with a polymer molecular structure having a higher density, it is possible to obtain an organic thin film with significantly improved gas barrier properties and moisture resistance. In the laminated film for a moisture-proof film of the present invention, the organic layer is provided with two organic thin films, and even when a micro pinhole is formed in the thickness direction of one organic thin film in the organic layer, it is still more. Since one organic thin film is arranged, it is possible to prevent the micro pinholes from being connected, and the deterioration of the gas resistance and moisture resistance due to the micro pin holes in the organic layer is prevented, and the laminate for the moisture-proof film is prevented. The film can stably maintain high gas barrier properties and moisture resistance. In addition, in the organic layer, when the two organic thin films are directly opposed to each other, or when the organic thin film is laminated through an adhesive layer, it is possible to more efficiently prevent the micro pin holes from being connected. In addition, the laminated film for moisture-proof film makes it possible to stably maintain a high gas noria property and moisture-proof property. In addition, the laminated film for a moisture-proof film of the present invention can exhibit higher moisture-proof and gas-nozzle properties by laminating an inorganic layer having a high moisture-proof property on both sides of the organic layer. Since the soft organic layer is covered with a relatively hard inorganic layer, the gas resistance and moisture resistance of the laminated film for moisture-proof film will be reduced even when an external force such as bending or impact is applied. There is no.
[0020] 本発明によれば、有機層の両面に無機層が積層された防湿膜用積層フィルムであ つて、前記有機層における膜厚方向のミクロピンホールに起因するガスバリヤ性や防 湿性の低下が十分に防止され、高水準のガスバリヤ性及び防湿性を長期に亘り安定 して発揮することが可能であり、し力も折り曲げや衝撃等の外部力が加えられてもそ の高 、ガスノリャ性及び防湿性を維持することが可能な防湿膜用積層フィルム、並 びにその製造方法を提供することが可能となる。 [0020] According to the present invention, a laminated film for a moisture-proof film in which inorganic layers are laminated on both sides of an organic layer, the gas barrier property and moisture-proof property being reduced due to micro pinholes in the film thickness direction in the organic layer. Is sufficiently prevented, and a high level of gas barrier and moisture resistance is stable over a long period of time. A laminated film for moisture-proof film that can maintain its high strength, gas-nozzle property and moisture-proof property even when an external force such as bending or impact is applied, and a method for producing the same. It becomes possible to provide.
図面の簡単な説明  Brief Description of Drawings
[0021] [図 1]本発明の防湿膜用積層フィルムを製造するための装置の一実施形態を示す模 式図である。  FIG. 1 is a schematic view showing an embodiment of an apparatus for producing a laminated film for a moisture-proof film of the present invention.
[図 2]本発明の防湿膜用積層フィルムに用いる有機無機積層フィルムを製造するた めの装置の一実施形態を示す模式図である。  FIG. 2 is a schematic view showing an embodiment of an apparatus for producing an organic-inorganic laminated film used for a moisture-proof laminated film of the present invention.
[図 3]予め製造された有機無機積層フィルムを用いて本発明の防湿膜用積層フィル ムを製造するための装置の一実施形態を示す模式図である。  FIG. 3 is a schematic view showing an embodiment of an apparatus for producing a laminated film for a moisture-proof film of the present invention using an organic-inorganic laminated film produced in advance.
[図 4]本発明の防湿膜用積層フィルムを製造するための装置の一実施形態を示す模 式図である。  FIG. 4 is a schematic view showing an embodiment of an apparatus for producing a laminated film for a moisture-proof film of the present invention.
[図 5]本発明の防湿膜用積層フィルムに用いる接着層形成積層フィルムを製造する ための装置の一実施形態を示す模式図である。  FIG. 5 is a schematic view showing an embodiment of an apparatus for producing an adhesive layer-formed laminated film used for the moisture-proof laminated film of the present invention.
[図 6]予め製造された接着層形成積層フィルムを用いて本発明の防湿膜用積層フィ ルムを製造するための装置の一実施形態を示す模式図である。  FIG. 6 is a schematic view showing an embodiment of an apparatus for producing a moisture-proof laminated film of the present invention using an adhesive layer-formed laminated film produced in advance.
[図 7]有機薄膜の表面力ゝらの距離と有機薄膜中の元素の組成分布の関係を示すダラ フである。  [Fig. 7] A graph showing the relationship between the distance of the surface force of an organic thin film and the composition distribution of elements in the organic thin film.
[図 8]オージュ電子スペクトル分析による亜鉛の結合エネルギーとオージュ電子の放 出量に正相関する強度との関係を示すグラフである。  FIG. 8 is a graph showing the relationship between the binding energy of zinc and the intensity that is positively correlated with the amount of emitted Auge electrons, as determined by Auger electron spectrum analysis.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 以下、本発明をその好適な実施形態に即して詳細に説明する。 [0022] Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof.
[0023] 本発明の防湿膜用積層フィルムは、有機層と、該有機層の両面に積層されている 無機層とを備える防湿膜用積層フィルムであって、 [0023] The moisture-proof film laminate film of the present invention is a moisture-proof film laminate film comprising an organic layer and inorganic layers laminated on both sides of the organic layer,
前記有機層が、 2枚の有機薄膜を備えており、  The organic layer comprises two organic thin films;
前記 2枚の有機薄膜が、それぞれ、ポリカルボン酸系重合体 (A)の多価金属塩を 少なくとも含み、赤外線吸収スペクトルの面積比 α [ピーク面積 S (3700〜2500cm  Each of the two organic thin films contains at least a polyvalent metal salt of the polycarboxylic acid polymer (A), and an infrared absorption spectrum area ratio α [peak area S (3700-2500 cm
1  1
_1)Zピーク面積 S (1800〜1500cm_1) ]が 2. 5以下であり、且つ赤外線吸収スぺ タトルのピーク比 j8 [ピーク A ( 1560cm- 1) /ピーク A ( 1700cm—1) ]が 1. 2以上で _1 ) Z peak area S (1800-1500 cm _1 )] is 2.5 or less, and infrared absorption spectrum Tuttle peak ratio j8 [Peak A (1560cm- 1 ) / Peak A (1700cm- 1 )] is 1.2 or more
1 2  1 2
あるフィルムである、ものである。  It is a certain film.
[0024] (有機薄膜)  [0024] (Organic thin film)
本発明にかかる有機層を形成する 2枚の有機薄膜は、それぞれ、ポリカルボン酸系 重合体 (A)の多価金属塩を少なくとも含み、赤外線吸収スペクトルの面積比 α [ピー ク面積 S (3700〜2500cm_1)Zピーク面積 S ( 1800〜1500cm_ 1) ]力 . 5以下The two organic thin films forming the organic layer according to the present invention each contain at least a polyvalent metal salt of the polycarboxylic acid polymer (A), and the area ratio α [peak area S (3700 ~2500cm _1) Z peak area S (1800~1500cm _ 1)] force. 5 below
1 2 1 2
であり、且つ赤外線吸収スペクトルのピーク比 j8 [ピーク A ( 1560cm—1) /ピーク A Infrared absorption spectrum peak ratio j8 [Peak A (1560cm— 1 ) / Peak A
1 2 1 2
( 1700cm—1) ]が 1. 2以上であり、ガスノリア性及び防湿性を有する有機薄膜である 。尚、本発明においては、上記の面積比を簡略ィ匕して、赤外線吸収スペクトルの面 積比 a、或いは単に面積比 aと表現したり、また、前記ピーク比を簡略化して赤外線 吸収スペクトルのピーク比 β、或いは単にピーク比 βと表現する場合もある。さらに、 本発明で云うガスノリア性とは、高湿度条件下において低酸素透過度を有することを 意味している。特に断りのない限り、温度 30°C、相対湿度 (RH) 80%における酸素 透過度を云う。 (1700cm- 1 )] is 1.2 or more, and it is an organic thin film having gas nooricity and moisture resistance. In the present invention, the above-mentioned area ratio is simplified and expressed as the area ratio a of the infrared absorption spectrum, or simply as the area ratio a, or the peak ratio is simplified to reduce the infrared absorption spectrum. It may be expressed as peak ratio β or simply as peak ratio β. Further, the gas nolia property in the present invention means having a low oxygen permeability under high humidity conditions. Unless otherwise noted, oxygen permeability at a temperature of 30 ° C and a relative humidity (RH) of 80%.
[0025] 本発明に力かる有機薄膜に含有されるポリカルボン酸系重合体 (A)が以下の特定 の要件を満たしている場合には、前記有機薄膜は高湿度下でも酸素等のガスバリア 性に優れ、多湿である熱帯地方という自然環境の下でも長期間の耐水性を有するた め有機薄膜の原料として好適に用いることができる。  [0025] When the polycarboxylic acid polymer (A) contained in the organic thin film useful for the present invention satisfies the following specific requirements, the organic thin film has a gas barrier property such as oxygen even under high humidity. It can be used suitably as a raw material for organic thin films because it has long-term water resistance even in a natural environment such as a humid tropical region.
[0026] ここで、前記特定の要件とは、本発明に力かる有機薄膜の原料であるポリカルボン 酸系重合体 (A)単独カゝら形成される有機薄膜の乾燥条件 (温度 30°C、相対湿度 0 %)における酸素透過係数が特定値以下であることをいう。ここで、ガスの種類、測定 雰囲気、及びポリカルボン酸系重合体フィルムの調製法を限定することにより、ガス 透過係数を、重合体の構造を反映する変数として採用することが可能となる。なお、 重合体の分子構造とガス透過係数の関係については、 Jhon Wiley & Sons, In c. , ENCYCLOPEDIA OF POLYMER SCIENCE AND ENGINEERI NG, VOL. 2, p. 177 ( 1985)を参照すること力 Sできる。  [0026] Here, the specific requirement is that the polycarboxylic acid polymer (A) as a raw material for the organic thin film according to the present invention (A) is a drying condition for the organic thin film formed at a single temperature (temperature 30 ° C). In other words, the oxygen transmission coefficient at 0% relative humidity is below a specific value. Here, by limiting the type of gas, the measurement atmosphere, and the preparation method of the polycarboxylic acid polymer film, the gas permeability coefficient can be adopted as a variable reflecting the structure of the polymer. Please refer to Jhon Wiley & Sons, Inc., ENCYCLOPEDIA OF POLYMER SCIENCE AND ENGINEERI NG, VOL. 2, p. 177 (1985) for the relationship between polymer molecular structure and gas permeability coefficient. .
[0027] 本発明に力かる有機薄膜の原料として用いるポリカルボン酸系重合体 (A)としては 、既存のポリカルボン酸系重合体であれば特に制限はないが、本発明にかかる有機 薄膜のガスバリア性及び防湿性の向上と 、う観点から、原料としてのポリカルボン酸 系重合体 (A)の乾燥条件下(30°C、相対湿度 0%)で測定した前記酸素透過係数が 、 100cm3 (STP) · /z mZ
Figure imgf000010_0001
' day MPa)以下であることが好ましい。尚、このような 酸素透過係数は、例えば以下の方法で求めることができる。すなわち、ポリカルボン 酸系重合体 (A)の 10重量%水溶液を調製して、プラスチック基材上に厚さ 1 mの ポリカルボン酸系重合体層が形成されたコーティングフィルムを製造し、得られたコ 一ティングフィルムを乾燥したときの 30°C、相対湿度 0%における酸素透過度を測定 する。前記プラスチック基材としては、その酸素透過度が既知である任意のプラスチ ックフィルムを用いる。そして、得られたポリカルボン酸系重合体 (A)のコーティングフ イルムの酸素透過度が基材として用いたプラスチックフィルム単独の酸素透過度に対 して、 10分の 1以下であれば、前記のようにして測定された酸素透過度の測定値力 ほぼポリカルボン酸系重合体 (A)の層単独の酸素透過度と見なすことができる。そし て、このようにして得られた酸素透過度の測定値に 1 μ mを乗じることにより、酸素透 過係数に変換することができる。
[0027] The polycarboxylic acid-based polymer (A) used as a raw material for the organic thin film useful in the present invention is not particularly limited as long as it is an existing polycarboxylic acid-based polymer, but the organic according to the present invention From the viewpoint of improving the gas barrier property and moisture resistance of the thin film, the oxygen permeability coefficient measured under dry conditions (30 ° C, relative humidity 0%) of the polycarboxylic acid polymer (A) as a raw material is: 100cm 3 (STP) · / z mZ
Figure imgf000010_0001
'day MPa) or less. Such an oxygen transmission coefficient can be obtained, for example, by the following method. That is, a 10% by weight aqueous solution of the polycarboxylic acid polymer (A) was prepared to produce a coating film having a 1 m-thick polycarboxylic acid polymer layer formed on a plastic substrate. The oxygen permeability at 30 ° C and 0% relative humidity when the coated film is dried is measured. As the plastic substrate, any plastic film whose oxygen permeability is known is used. If the oxygen permeability of the coating film of the obtained polycarboxylic acid polymer (A) is 1/10 or less than the oxygen permeability of the plastic film alone used as the substrate, the above-mentioned The measured value of the oxygen permeability measured as described above can be regarded as the oxygen permeability of the layer of the polycarboxylic acid polymer (A) alone. Then, the oxygen permeability coefficient can be converted to the oxygen permeability coefficient by multiplying the measured value of oxygen permeability thus obtained by 1 μm.
[0028] 本発明に力かる有機薄膜の原料として用いるポリカルボン酸系重合体 (A)としては 、既存のポリカルボン酸系重合体を用いることができる力 既存のポリカルボン酸系 重合体とは、分子内に 2個以上のカルボキシ基を有する重合体の総称である。具体 的には、重合性単量体として、 ひ, j8—モノエチレン性不飽和カルボン酸を用いた単 独重合体、単量体成分として、 a , j8—モノエチレン性不飽和カルボン酸のみ力 な り、それらの少なくとも 2種の共重合体、また α , β モノエチレン性不飽和カルボン 酸と他のエチレン性不飽和単量体との共重合体、更にアルギン酸、カルボキシメチ ルセルロース、ぺクチン等の分子内にカルボキシ基を有する酸性多糖類を例示する ことができる。これらのポリカルボン酸系重合体 (Α)は、それぞれ単独で、又は少なく とも 2種のポリカルボン酸系重合体 (Α)を混合して用いることができる。  [0028] The polycarboxylic acid polymer (A) used as a raw material for the organic thin film according to the present invention is a force capable of using an existing polycarboxylic acid polymer. What is an existing polycarboxylic acid polymer? This is a general term for polymers having two or more carboxy groups in the molecule. Specifically, homopolymers that use j8-monoethylenically unsaturated carboxylic acid as the polymerizable monomer, and only a, j8-monoethylenically unsaturated carboxylic acid as the monomer component. In other words, at least two types of these copolymers, copolymers of α, β monoethylenically unsaturated carboxylic acid and other ethylenically unsaturated monomers, alginic acid, carboxymethylcellulose, and pectin. Examples thereof include acidic polysaccharides having a carboxy group in the molecule. These polycarboxylic acid polymers (Α) can be used alone or as a mixture of at least two polycarboxylic acid polymers (Α).
[0029] ここで、前記 ex , β モノエチレン性不飽和カルボン酸としては、アクリル酸、メタク リル酸、ィタコン酸、マレイン酸、フマル酸、クロトン酸等が代表的なものである。また それらと共重合可能なエチレン性不飽和単量体としては、エチレン、プロピレン、酢 酸ビュル等の飽和カルボン酸ビュルエステル類、アルキルアタリレート類、アルキルメ タクリレート類、アルキルイタコネート類、アクリロニトリル、塩化ビュル、塩化ビ-リデン 、フッ化ビュル、フッ化ビ-リデン、スチレン、アクリルアミド等が代表的なものである。 また、ポリカルボン酸系重合体 (A)が、 a , j8—モノエチレン性不飽和カルボン酸と 酢酸ビュル等の飽和カルボン酸ビニルエステル類との共重合体の場合には、更にケ ン化することにより、飽和カルボン酸ビュルエステル部分をビュルアルコールに変換 して使用することができる。 [0029] Here, as the ex, β monoethylenically unsaturated carboxylic acid, acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid and the like are representative. Examples of the ethylenically unsaturated monomer copolymerizable therewith include saturated carboxylic acid butyl esters such as ethylene, propylene, and butyl acetate, alkyl acrylates, and alkyl methacrylates. Typical examples include tacrylates, alkyl itaconates, acrylonitrile, butyl chloride, vinylidene chloride, butyl fluoride, vinylidene fluoride, styrene, acrylamide, and the like. Further, when the polycarboxylic acid polymer (A) is a copolymer of a, j8-monoethylenically unsaturated carboxylic acid and a saturated carboxylic acid vinyl ester such as butyl acetate, it is further saponified. As a result, it is possible to convert the saturated carboxylic acid bull ester moiety into a butyl alcohol for use.
[0030] また、本発明に力かる有機薄膜の原料として用いるポリカルボン酸系重合体 (A)が 、 a , j8—モノエチレン性不飽和カルボン酸とその他のエチレン性不飽和単量体と の共重合体である場合には、得られる有機薄膜のガスバリア性及び高温水蒸気や熱 水に対する耐性の向上という観点から、その共重合組成は a , β—モノエチレン性 不飽和カルボン酸単量体組成が、好ましくは 60モル%以上であり、より好ましくは 80 モル%以上であり、更に好ましくは 90モル%以上であり、最も好ましくは 100モル% である。このように、本発明に力かる有機薄膜の原料として用いるポリカルボン酸系重 合体 (Α)としては、 α , |8—モノエチレン性不飽和カルボン酸のみ力もなる重合体を 用いることが好ましい。更にポリカルボン酸系重合体 (Α)が α , β モノエチレン性 不飽和カルボン酸のみ力 なる重合体の場合には、その好適な具体例は、アクリル 酸、メタクリル酸、ィタコン酸、マレイン酸、フマール酸、クロトン酸からなる群力 選ば れる少なくとも 1種の重合性単量体の重合によって得られる重合体、及びそれらの混 合物が挙げられる。そして、このような α , β モノエチレン性不飽和カルボン酸のみ 力 なる重合体の中でも、アクリル酸、メタクリル酸、マレイン酸力 選ばれる少なくとも 1種の重合性単量体の重合によって得られる重合体、及び Ζ又はそれらの混合物が 用いることがより好ましぐポリアクリル酸、ポリメタクリル酸、ポリマレイン酸、及びそれ らの混合物を用いることが最も好まし 、。また、ポリカルボン酸系重合体 (Α)が a , /3 モノエチレン性不飽和カルボン酸単量体の重合体以外の例えば、酸性多糖類の 場合には、アルギン酸を好ましく用いることができる。 [0030] In addition, the polycarboxylic acid polymer (A) used as a raw material for the organic thin film according to the present invention comprises a, j8-monoethylenically unsaturated carboxylic acid and other ethylenically unsaturated monomers. In the case of a copolymer, the copolymer composition is a, β-monoethylenically unsaturated carboxylic acid monomer composition from the viewpoint of improving the gas barrier property of the obtained organic thin film and resistance to high-temperature steam and hot water. However, it is preferably 60 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more, and most preferably 100 mol%. As described above, as the polycarboxylic acid polymer (な る) used as the raw material for the organic thin film according to the present invention, it is preferable to use a polymer having only the power of α, | 8-monoethylenically unsaturated carboxylic acid. Further, when the polycarboxylic acid-based polymer (Α) is a polymer that only has α , β monoethylenically unsaturated carboxylic acid, preferred specific examples thereof are acrylic acid, methacrylic acid, itaconic acid, maleic acid, Examples thereof include polymers obtained by polymerization of at least one polymerizable monomer selected from the group power consisting of fumaric acid and crotonic acid, and mixtures thereof. Among such polymers having only α , β monoethylenically unsaturated carboxylic acid, a polymer obtained by polymerization of at least one polymerizable monomer selected from acrylic acid, methacrylic acid, and maleic acid And most preferably polyacrylic acid, polymethacrylic acid, polymaleic acid, and mixtures thereof, which are more preferably used. In the case where the polycarboxylic acid polymer (Α) is an acidic polysaccharide other than the polymer of a, / 3 monoethylenically unsaturated carboxylic acid monomer, for example, alginic acid can be preferably used.
[0031] ポリカルボン酸系重合体 (A)の数平均分子量については特に限定されないが、有 機薄膜の形成'性の観点、力ら、 2, 000-10, 000, 000の範囲であること力 S好ましく、 更に 5, 000〜1, 000, 000であること力 子まし!/、。 [0032] なお、本発明に力かる有機薄膜には、ポリカルボン酸系重合体 (A)以外にも有機 薄膜のガスノリア性及び防湿性を損なわな 、範囲で他の重合体を混合して用いるこ とが可能であるが、ポリカルボン酸系重合体 (A)のみを単独で用いることが好ま 、 [0031] The number average molecular weight of the polycarboxylic acid-based polymer (A) is not particularly limited, but it should be in the range of 2,000-10, 000, 000 from the viewpoint of the ability to form an organic thin film. Force S, preferably 5,000 to 1,000,000. [0032] In addition to the polycarboxylic acid polymer (A), the organic thin film that is useful in the present invention is used by mixing other polymers as long as the gas thinness and moisture resistance of the organic thin film are not impaired. Although it is possible to use only the polycarboxylic acid polymer (A) alone,
[0033] また、本発明に力かる有機薄膜に含有されるポリカルボン酸系重合体 (A)の多価 金属塩に構成成分として含有される多価金属は、金属イオンの価数が 2以上の多価 金属原子単体である。このような多価金属の具体例としては、ベリリウム、マグネシゥ ム、カルシウム等のアルカリ土類金属、チタン、ジルコニウム、クロム、マンガン、鉄、コ バルト、ニッケル、銅、亜鉛等の遷移金属、アルミニウム等を挙げることができる。この ような多価金属の中でも、亜鉛、ジルコニウム、銅又はニッケルを用いることが好まし い。また、表示装置を備える電子部品に防湿膜用積層フィルムを用いる場合には、 有機薄膜は透明であることが好ましぐこのような有機薄膜に含有させる多価金属とし ては、例えば亜鉛又はジルコニウムが挙げられる。更に、表示装置を備えない電子 部品に防湿膜用積層フィルムを用いる場合には、有機薄膜は着色していてもよぐこ のような有機薄膜に含有させる多価金属としては、例えば銅が挙げられる。 [0033] The polyvalent metal contained as a constituent in the polyvalent metal salt of the polycarboxylic acid polymer (A) contained in the organic thin film according to the present invention has a metal ion valence of 2 or more. It is a single polyvalent metal atom. Specific examples of such polyvalent metals include alkaline earth metals such as beryllium, magnesium and calcium, transition metals such as titanium, zirconium, chromium, manganese, iron, cobalt, nickel, copper and zinc, aluminum, etc. Can be mentioned. Among such polyvalent metals, it is preferable to use zinc, zirconium, copper or nickel. In addition, when a multilayer film for a moisture-proof film is used for an electronic component equipped with a display device, the organic thin film is preferably transparent. Examples of the polyvalent metal contained in such an organic thin film include zinc or zirconium. Is mentioned. Furthermore, when using a laminated film for a moisture-proof film for an electronic component that does not include a display device, the organic thin film may be colored. For example, copper may be used as the polyvalent metal contained in the organic thin film. .
[0034] また、本発明に力かる有機薄膜に含有される多価金属塩の原料としては、多価金 属化合物(B)が用いられる。このような多価金属化合物(B)の具体例としては、前記 多価金属の酸化物、水酸化物、炭酸塩、有機酸塩、無機酸塩、その他、多価金属の アンモニゥム錯体や多価金属の 2〜4級アミン錯体とそれら錯体の炭酸塩や有機酸 塩等が挙げられる。前記有機酸塩としては、酢酸塩、シユウ酸塩、クェン酸塩、乳酸 塩、リン酸塩、亜リン酸塩、次亜リン酸塩、ステアリン酸塩、モノエチレン性不飽和カル ボン酸塩等が挙げられる。前記無機酸塩としては、塩化物、硫酸塩、硝酸塩等を挙 げることができる。それ以外には多価金属のアルキルアルコキシド等を挙げることが できる。  [0034] In addition, as a raw material for the polyvalent metal salt contained in the organic thin film according to the present invention, a polyvalent metal compound (B) is used. Specific examples of such a polyvalent metal compound (B) include oxides, hydroxides, carbonates, organic acid salts, inorganic acid salts of polyvalent metals, ammonium complexes of polyvalent metals, and polyvalent metals. Examples include metal secondary to quaternary amine complexes and carbonates and organic acid salts of these complexes. Examples of the organic acid salt include acetate, oxalate, citrate, lactate, phosphate, phosphite, hypophosphite, stearate, monoethylenically unsaturated carbonate, etc. Is mentioned. Examples of the inorganic acid salt include chloride, sulfate, nitrate and the like. In addition, polyvalent metal alkyl alkoxides and the like can be mentioned.
[0035] このような多価金属化合物(B)はそれぞれ単独で、また少なくとも 2種の多価金属 化合物を混合して用いることができる。このような多価金属化合物(B)の中でも、有機 薄膜のガスバリア性、防湿性及び製造性の向上という観点から、 2価の金属化合物が 好ましく用いられる。更に、このような多価金属化合物(B)の中でも、アルカリ土類金 属、ジルコニウム、コバルト、ニッケル、銅及び亜鉛の酸化物、水酸化物、炭酸塩又 はアルカリ土類金属、ジルコニウム、コノ レト、ニッケル、銅及び亜鉛のアンモ-ゥム 錯体或いは前記錯体の炭酸塩を用いることが好ましぐマグネシウム、カルシウム、ジ ルコ-ゥム、銅、亜鉛の各酸化物、水酸化物、炭酸塩、及びジルコニウム、銅、 -ッケ ルもしくは亜鉛のアンモ-ゥム錯体とその錯体の炭酸塩を用いることがより好ましい。 [0035] Such polyvalent metal compounds (B) can be used alone or in a mixture of at least two polyvalent metal compounds. Among such polyvalent metal compounds (B), divalent metal compounds are preferably used from the viewpoint of improving the gas barrier properties, moisture resistance and manufacturability of the organic thin film. Furthermore, among such polyvalent metal compounds (B), alkaline earth gold Genus, zirconium, cobalt, nickel, copper and zinc oxides, hydroxides, carbonates or alkaline earth metals, zirconium, corundum, nickel, copper and zinc ammonium complexes or carbonates of said complexes And magnesium, calcium, zinc, copper, zinc oxides, hydroxides, carbonates and zirconium, copper, nickel or zinc ammonium complexes. More preferably, a carbonate of the complex is used.
[0036] また、本発明に力かる有機薄膜のガスノ リア性及び防湿性を損なわな!/、範囲で、 1 価の金属からなる金属化合物、例えばポリカルボン酸系重合体 (A)の 1価金属塩を 混合又は含まれたまま用いることができる。このような 1価の金属化合物の好ましい添 加量は、前記有機薄膜のガスノ リア性及び防湿性の観点で、ポリカルボン酸系重合 体 (A)のカルボキシ基に対して、 0. 2化学当量以下である。なお、前記 1価の金属化 合物は、部分的にポリカルボン酸系重合体の多価金属塩の分子中に含まれていても よい。  [0036] In addition, the gas nooricity and moisture resistance of the organic thin film, which is useful in the present invention, are not impaired! In the range, a metal compound composed of a monovalent metal, for example, a monovalent metal salt of the polycarboxylic acid polymer (A) can be used as mixed or contained. A preferable addition amount of such a monovalent metal compound is 0.2 chemical equivalent with respect to the carboxy group of the polycarboxylic acid-based polymer (A) from the viewpoints of gas nature and moisture resistance of the organic thin film. It is as follows. The monovalent metal compound may be partially contained in the molecule of the polyvalent metal salt of the polycarboxylic acid polymer.
[0037] 本発明に力かる有機薄膜の原料として用いられる多価金属化合物 (B)の形態は、 特別限定されない。しかし、後述するように、本発明にかかる有機薄膜中では、多価 金属化合物(B)の一部又は全部がポリカルボン酸系重合体 (A)のカルボキシ基とィ オン結合により塩を形成して 、る。  [0037] The form of the polyvalent metal compound (B) used as the raw material for the organic thin film that is useful in the present invention is not particularly limited. However, as will be described later, in the organic thin film according to the present invention, a part or all of the polyvalent metal compound (B) forms a salt with the carboxy group of the polycarboxylic acid polymer (A) and an ionic bond. And
[0038] 従って、本発明にかかる有機薄膜にカルボン酸塩形成に関与しない多価金属化合 物 (B)が存在する場合には、有機薄膜の透明性の観点で多価金属化合物 (B)は、 粒状で、その粒径が小さい方が好ましい。また、後述する本発明にかかる有機薄膜 を製造するための溶液又は分散液を調製する上でも、調製時の効率化及びより均一 な溶液又は分散液を得る観点で多価金属化合物は粒状で、その粒径は小さ!、方が 好ましい。多価金属化合物の平均粒径としては、好ましくは 5 m以下、更に好ましく は 1 m以下、最も好ましくは 0. 1 μ m以下である。  [0038] Accordingly, when the organic thin film according to the present invention contains a polyvalent metal compound (B) that does not participate in carboxylate formation, the polyvalent metal compound (B) is used from the viewpoint of transparency of the organic thin film. It is preferable to be granular and have a smaller particle size. Also, in preparing a solution or dispersion for producing the organic thin film according to the present invention described later, the polyvalent metal compound is granular in terms of efficiency during preparation and obtaining a more uniform solution or dispersion. Its particle size is small! The average particle size of the polyvalent metal compound is preferably 5 m or less, more preferably 1 m or less, and most preferably 0.1 μm or less.
[0039] 本発明に力かる有機薄膜は、前記のようにポリカルボン酸系重合体 (A)の多価金 属塩を少なくとも含み、赤外線吸収スペクトルの特定領域を測定し、これから求めら れる面積比 αが 2. 5以下であり、且つピーク比 |8が 1. 2以上であることを特徴として いる。このような特徴を有する本発明にかかる有機薄膜は、酸素等のガスバリア性と 防湿性とが満足なものとなる。 [0040] 次に、有機薄膜の赤外線吸収スペクトルの面積比 α [ピーク面積 ェ (3700-2500 cm—1) /ピーク面積 S (1800〜1500cm_1) ]について説明する。 [0039] The organic thin film according to the present invention contains at least the polyvalent metal salt of the polycarboxylic acid polymer (A) as described above, measures a specific region of the infrared absorption spectrum, and obtains the area obtained therefrom. The ratio α is 2.5 or less, and the peak ratio | 8 is 1.2 or more. The organic thin film according to the present invention having such characteristics is satisfactory in gas barrier properties such as oxygen and moisture resistance. [0040] Next, the area ratio of the infrared absorption spectrum of the organic thin film alpha [peak area E (3700-2500 cm- 1) / peak area S (1800~1500cm _1)] will be described.
2  2
[0041] 本発明にお 、て、赤外線吸収スペクトルの面積比 αは、有機薄膜中の水分量を表 す指標として代用する。有機薄膜中の水分の状態は明確ではないが、本発明にかか る有機薄膜中の水分は、全て有機薄膜中に吸着された状態のものを指し、吸着水と する。水分に起因する 0—Η伸縮振動は、 3700〜2500cm_1の赤外光波数領域に 幅広い吸収を与える。そこで本発明においては、 3700〜2500cm_1の赤外線吸収 スペクトルのピーク面積をピーク面積 S (3700〜2500cm_ 1)と規定した。ピーク面 積 S (3700〜2500cm_1;)は、 3700cm_1の吸光度と 2500cm_ 1の吸光度の 2点を 結ぶ直線を基線として、 3700〜2500cm_1の範囲の面積積分により求めることがで きる。 In the present invention, the area ratio α of the infrared absorption spectrum is substituted as an index representing the amount of water in the organic thin film. Although the state of moisture in the organic thin film is not clear, the moisture in the organic thin film according to the present invention refers to the state of being adsorbed in the organic thin film, and is referred to as adsorbed water. The 0—Η stretching vibration caused by moisture gives a broad absorption in the infrared light wave number region of 3700-2500 cm _1 . Therefore, in the present invention, the peak area of the infrared absorption spectrum of 3700~2500Cm _1 was defined as the peak area S (3700~2500cm _ 1). Peak area S (3700~2500cm _1;) is a straight line connecting two points of the absorbance and 2500 cm _ 1 absorbance 3700 cm _1 as the baseline, as possible out be determined by area integration ranging 3700~2500cm _1.
[0042] また、ポリカルボン酸系重合体 (A)中のカルボキシ基(一 COOH)に帰属される C  [0042] Further, C belonging to the carboxy group (one COOH) in the polycarboxylic acid polymer (A)
=0伸縮振動は、 1800〜1600cm_ 1の赤外光波数領域に、 1700cm_1付近に吸 収極大を有するピークを与える。また、カルボキシ基の塩(— COO_)に帰属される C = O伸縮振動は、 1600〜 1500cm_ 1の赤外光波数領域に 1560cm_1付近に吸収 極大を有するピークを与える。 = 0 stretching vibration, infrared wave number range of 1800~1600cm _ 1, giving a peak with absorption maximum around 1700 cm _1. Salts of a carboxyl group - C = O stretching vibration attributable to the (COO_) gives a peak having an absorption maximum in the vicinity of 1560 cm _1 infrared wave number range of 1600~ 1500cm_ 1.
[0043] このようなカルボキシ基(一 COOH)及びカルボキシ基の塩(一 COO_)に帰属され るピークは、本発明にかかる有機薄膜の特徴的なピークである。従って、このピークを 含む 1800〜1500cm_1の赤外線吸収スペクトルの面積は、本発明に力かる有機薄 膜の特徴的なピーク面積となる。本発明においては、この面積を、ピーク面積 S (18 [0043] Such a peak attributed to a carboxy group (one COOH) and a salt of a carboxy group (one COO_) is a characteristic peak of the organic thin film according to the present invention. Therefore, the area of the infrared absorption spectrum of 1800~1500Cm _1 containing this peak is a characteristic peak area of force Cal organic thin film of the present invention. In the present invention, this area is defined as the peak area S (18
2 2
00〜1500cm_1)と規定した。ピーク面積 S (1800〜1500cm_ 1)は、 1800cm"1 00~1500cm _1) and was defined. Peak area S (1800~1500cm _ 1) is, 1800cm "1
2  2
の吸光度と 1500cm_1の吸光度の 2点を結んだ直線を基線として、 1800〜1500c m_1の範囲の面積積分により求めることができる。 The absorbance and a straight line connecting two points of the absorbance of 1500 cm _1 as the baseline, can be determined by area integration ranging 1800~1500c m _1.
[0044] 以上から、赤外線吸収スペクトルのピーク面積 S (3700〜2500cm_1)と赤外線吸 収スペクトルのピーク面積 S (1800〜1500cm_1)との比、即ち、ピーク面積 S (370 From the above, the ratio of the peak area S (3700 to 2500 cm _1 ) of the infrared absorption spectrum and the peak area S (1800 to 1500 cm _1 ) of the infrared absorption spectrum, that is, the peak area S (370
2 1 twenty one
0〜2500«11_ 1) /ピーク面積3 (1800〜1500cm_1)を、赤外線吸収スペクトルの 0-2500 «11 _ 1) / peak area 3 (1800~1500cm _1), the infrared absorption spectrum
2  2
面積比 Oと規定し、有機薄膜中の水分量を表す指標として用いることとした。本発明 において、この赤外線吸収スペクトルの面積比 αは、 2. 5以下、好ましくは 0. 01以 上、 2. 3以下、更に好ましくは、 0. 01以上、 2. 0以下である。面積比 αが 2. 5を超 えるものは、防湿性が不十分となる。 The area ratio was defined as O and was used as an index representing the amount of water in the organic thin film. In the present invention, the area ratio α of the infrared absorption spectrum is 2.5 or less, preferably 0.01 or less. Above, 2.3 or less, more preferably 0.01 or more and 2.0 or less. If the area ratio α exceeds 2.5, the moisture resistance is insufficient.
[0045] 具体的には、本発明にお 、て、赤外線吸収スペクトルは、透過法、 ATR法 (全反射 減衰法)、 KBrペレット法、拡散反射法、光音響法 (PAS法)等で測定し、前記赤外 線吸収スペクトルのピーク面積 S及びピーク面積 Sを計算し、両者の比を求める。代 [0045] Specifically, in the present invention, the infrared absorption spectrum is measured by transmission method, ATR method (total reflection attenuation method), KBr pellet method, diffuse reflection method, photoacoustic method (PAS method), etc. Then, the peak area S and peak area S of the infrared absorption spectrum are calculated, and the ratio between the two is obtained. Generation
1 2  1 2
表的な測定条件例としては、本発明にカゝかる有機薄膜が基材上に形成された積層 体を試料として、 ATR法で、 ATRプリズムとしては、 KRS - 5 (Thallium Bromide —Iodide)を用い、入射角 45度、分解能 4cm_ 1、積算回数 30回での測定を挙げるこ とがでさる。 As an example of typical measurement conditions, a laminate in which an organic thin film according to the present invention is formed on a substrate is used as a sample, the ATR method is used, and KRS-5 (Thallium Bromide —Iodide) is used as an ATR prism. It can be measured at an angle of incidence of 45 degrees, a resolution of 4 cm _ 1 and an integration count of 30 times.
[0046] 本発明において、有機薄膜の赤外線吸収スペクトルのピーク比 j8 [ピーク A (156 Ocm_1)Zピーク A (1700cm—1) ]は、有機薄膜中のポリカルボン酸系重合体 (A)と [0046] In the present invention, the peak ratio of the infrared absorption spectrum of the organic thin film j8 [Peak A (156 Ocm _1) Z peak A (1700cm- 1)] is the polycarboxylic acid polymer in the organic thin film and (A)
2  2
多価金属化合物 (B)との金属塩形成の度合!/、を表す指標として用いる。赤外線吸収 スペクトルのピーク比 13を構成するピーク A (1560cm"1)は、カルボキシ基の塩(一 COO")に帰属される 1560cm_1付近の C = O伸縮振動の赤外線吸収スペクトルの 吸収ピーク面積又はピーク高さである。即ち、通常カルボン酸塩(一 coo_)に帰属 される C = 0伸縮振動は、 1600〜1500cm_1の赤外光波数領域に 1560cm_1付近 に吸収極大を有する吸収ピークを与える。ピーク A (1560cm"1) { 1600cm_1の 吸光度と 1500cm_1の吸光度の 2点を結んだ直線を基線として、 1600〜 1500cm_ 1の範囲の面積積分からピーク面積、 1600〜1500cm_1の範囲の吸収極大の高さ 力もピーク高さを求めることができる。 It is used as an index indicating the degree of metal salt formation with the polyvalent metal compound (B)! /. The peak A (1560 cm " 1 ) constituting the peak ratio 13 of the infrared absorption spectrum is the absorption peak area of the infrared absorption spectrum of the C = O stretching vibration around 1560 cm _1 attributed to the carboxy group salt (one COO") or It is the peak height. That, C = 0 stretching vibration attributable to normal carboxylic acid salt (one Coo_) gives an absorption peak having an absorption maximum in the vicinity of 1560 cm _1 infrared wave number range of 1600~1500cm _1. The straight line connecting two points of the absorbance peak A (1560cm "1) {1600cm absorbance and 1500 cm _1 _1 as baseline, peak areas from the area integral of the range of 1600~ 1500cm_ 1, absorption maximum in the range of 1600~1500Cm _1 The peak height can also be obtained for the height force.
[0047] また、ピーク比 13を構成するピーク A (1700cm"1)は、前記ピーク A (1560cm"1 [0047] Further, the peak A (1700 cm " 1 ) constituting the peak ratio 13 is the peak A (1560 cm" 1
2 1  twenty one
)とは分離独立した赤外線吸収ピークであり、カルボキシ基 (-COOH)に帰属される 1700cm_1付近の C = O伸縮振動の赤外線吸収スペクトルのピーク面積又はピーク 高さである。即ち、通常、カルボキシ基(-COOH)に帰属される C = 0伸縮振動は、 1800〜1600cm_1の赤外光波数領域に 1700cm_1付近に吸収極大を有する吸収 ピークを与える。ピーク A (1700cm_1)は、 1800cm_1の吸光度と 1600cm_ 1の吸 ) And is a separate and independent infrared absorption peak with a peak area or peak height of the infrared absorption spectrum of C = O stretching vibration in the vicinity of 1700 cm _1 attributed to a carboxy group (-COOH). That is, normally, C = 0 stretching vibration attributable to the carboxyl group (-COOH) gives an absorption peak having an absorption maximum in the vicinity of 1700 cm _1 infrared wave number range of 1800~1600cm _1. Peak A (1700cm _1) is, absorbance and 1600cm _ 1 of the intake of 1800cm _1
2  2
光度の 2点を結んだ直線を基線として 1800〜1600cm_1の範囲の面積積分からピ ーク面積、 1800〜1600cm_1の範囲の吸収極大の高さ力 ピーク高さを求めること 力 Sできる。有機薄膜の吸光度は、有機薄膜中に存在する赤外活性を持つ化学種の 量と比例関係にある。従って、前記赤外線吸収スペクトルのピークの比、即ち、ピークArea integration Karapi over click area in the range of 1800~1600Cm _1 a straight line connecting two points of the light intensity as a baseline, to determine the height force peak height of the absorption maximum in the range of 1800~1600Cm _1 Power S can be. The absorbance of the organic thin film is proportional to the amount of chemical species with infrared activity present in the organic thin film. Therefore, the peak ratio of the infrared absorption spectrum, i.e. the peak
A (1560cm—1) /ピーク A (1700cm_1)を赤外線吸収スペクトルのピーク比 j8と規A (1560cm- 1) / Peak A (1700 cm _1) peak ratio j8 and regulations of the infrared absorption spectrum
1 2 1 2
定し、有機薄膜中で多価金属と塩を形成したカルボキシ基の塩(一 coo_)と遊離力 ルポキシ基(一 COOH)の量比を表す尺度として代用することができる。  In other words, it can be used as a measure to express the quantitative ratio of salt of carboxy group (one coo_) and free power loxy group (one COOH) that form a salt with polyvalent metal in organic thin film.
[0048] 本発明に力かる有機薄膜の赤外線吸収スペクトルのピーク比 j8は、 1. 2以上 1000 0以下であるが、有機薄膜の防湿性の観点から、ピーク比 j8は 2. 0以上 10000以下 であることが好ましぐ 4. 0以上 10000以下であることが更に好ましい。赤外線吸収ス ベクトルの吸光度のベースラインは、測定限界に係わる僅かな揺らぎを有する。カル ボキシ基の塩 ( - COO")に帰属される 1560cm_1付近の C = O伸縮振動の赤外線 吸収を用いる吸光度ピーク A (1560cm_1)のベースラインに係わる測定限界から、 ピーク比 j8の上限値は 10000である。ピーク比 /3 (イオンィ匕度)が大きいとは、遊離 カルボキシ基の塩(一 COO_)が錯体形成により拘束されている状態であり、吸光度 ピーク A (1560cm_1)が小さいことである。 [0048] The peak ratio j8 of the infrared absorption spectrum of the organic thin film useful in the present invention is 1.2 or more and 1000 or less, but from the viewpoint of moisture resistance of the organic thin film, the peak ratio j8 is 2.0 or more and 10,000 or less. Preferably it is 4.0 or more and 10,000 or less. The absorbance baseline of the infrared absorption vector has a slight fluctuation related to the measurement limit. From the measurement limit related to the baseline of absorbance peak A (1560cm _1 ) using infrared absorption of C = O stretching vibration around 1560cm _1 attributed to the carboxyl group salt (-COO "), the upper limit of peak ratio j8 The peak ratio / 3 (ionicity) is high when the free carboxy group salt (one COO_) is constrained by complex formation, and the absorbance peak A (1560cm _1 ) is small. It is.
[0049] 更に、本発明に力かる有機薄膜に酸素ガスノ リア性及び防湿性を損なわな 、範囲 で、 1価の金属力 なる金属化合物を混合して用いた場合には、カルボン酸の 1価金 属塩(-COO—)に帰属される C = 0伸縮振動は、 1600〜1500cm_1の赤外光波 数領域に 1560cm_ 1付近に吸収極大を有する吸収ピークを与える。従って、この場 合には、赤外線吸収ピーク中のカルボン酸の 1価金属塩とカルボン酸多価金属塩に 由来する二つの c = o伸縮振動が含まれる。このような場合にも、前記同様、ピーク 比 j8 [ピーク A (1560cm—1) /ピーク A (1700cm— ]は、カルボキシ基の多価金 [0049] Further, when a metal compound having a monovalent metal power is used in a range that does not impair the oxygen gas nooricity and moisture resistance, the organic thin film that is useful in the present invention is used. C = 0 stretching vibration attributable to the gold Shokushio (-COO-) gives an absorption peak having an absorption maximum in the infrared wave number range of 1600~1500Cm _1 near 1560 cm _ 1. Therefore, this case includes two c = o stretching vibrations derived from the carboxylic acid monovalent metal salt and carboxylic acid polyvalent metal salt in the infrared absorption peak. Even in such a case, the peak ratio j8 [Peak A (1560 cm— 1 ) / Peak A (1700 cm—]) is the same as the above.
1 2  1 2
属塩( COO_)と遊離カルボキシ基( COOH)の量比を表す尺度としてそのまま 用いる。  It is used as it is as a measure for the quantitative ratio of the genus salt (COO_) and free carboxy group (COOH).
[0050] ピーク比 βを求めるための赤外線吸収スペクトルの測定は、例えば PERKIN— EL MER社製 FT— IR2000を用いて行うことができる。  [0050] The infrared absorption spectrum for obtaining the peak ratio β can be measured using, for example, FT-IR2000 manufactured by PERKIN-EL MER.
[0051] 具体的には、本発明にカゝかる有機薄膜の赤外線吸収スペクトルを透過法、 ATR法  [0051] Specifically, the infrared absorption spectrum of the organic thin film according to the present invention is measured by the transmission method, ATR method.
(全反射減衰法)、 KBrペレット法、拡散反射法、光音響法 (PAS法)等で測定し、前 記両吸収スペクトルのピーク高さ(極大吸収波数における)又はピーク面積を計測し、 両者の比を求める。 (Total reflection attenuation method), KBr pellet method, diffuse reflection method, photoacoustic method (PAS method), etc., and measure the peak height (at maximum absorption wave number) or peak area of both absorption spectra. Find the ratio of the two.
[0052] 代表的な測定条件例としては、有機層の両面に無機層が積層された本発明の防 湿膜用積層フィルムカゝら有機薄膜面を露出するように無機層を剥離して、この面を有 機薄膜の検体とし、 ATR法で、 ATRプリズムとしては KRS - 5 (Thallium Bromid e— Iodide)を用い、入射角 45度、分解能 4cm_1、積算回数 30回での測定を挙げる ことができる。 FT— IRを用いた赤外線吸収スペクトル測定法については、例えば田 隅三生 編者、「FT— IRの基礎と実際」を参照することができる。 [0052] As a typical measurement condition example, the inorganic layer is peeled off so as to expose the organic thin film surface such as the laminated film for a moisture-proof film of the present invention in which the inorganic layer is laminated on both sides of the organic layer, the face is the test sample of organic thin film, in the ATR method, the ATR prism KRS - 5 (Thallium Bromid e- Iodide ) used, degree incidence angle 45, be mentioned measurements with a resolution 4 cm _1, number of integration 30 times Can do. For the infrared absorption spectrum measurement method using FT-IR, refer to, for example, Ms. Mitsuo Tasumi, “Basics and Practice of FT-IR”.
[0053] また、本発明に力かる有機薄膜としては、前記多価金属が亜鉛であり、且つ亜鉛の ォージェ電子スペクトル分析による結合エネルギーが 496〜498eVの間に少なくとも 一つのピークを有することが好まし 、。  [0053] Further, in the organic thin film according to the present invention, it is preferable that the polyvalent metal is zinc and that the binding energy by the Auger electron spectrum analysis of zinc has at least one peak between 496 and 498 eV. Better ,.
[0054] このようにォージェ電子スペクトル分析を用いて、本発明に力かる有機薄膜のより好 適な条件を導き出すことができる。ここで、このようなォージェ電子スペクトル分析は、 原子の励起エネルギー源を X線とするときは X線光電子分析法 (XPS)ともいう。この ようなォージェ電子スペクトル分析において、例えば、亜鉛に注目した場合には、亜 鉛の化学量論的又は非化学量論的結合状態を、結合エネルギーの値で知ることが でき、更には、亜鉛の錯体形成の結合状態をも知ることができる。このような亜鉛に注 目したォージェ電子スペクトル分析にぉ 、て励起エネルギー源として X線を用いた場 合には、 X線照射で亜鉛の内殻電子が電離されて空孔を生じ、上の準位にある電子 が落ち込んで亜鉛は安定した状態に変わる。このとき、このような準位間のエネルギ 一差が別の電子に受け渡されて放出される。この放出された電子をオージュ電子と 呼ぶ。また、エネルギー差が X線として放出されれば、力かる X線は特性 X線である。 本発明に力かる有機薄膜に含有される多価金属として亜鉛を用いた場合にぉ 、て、 ォージェ電子スペクトル分析を行うと、亜鉛の L内殻電子が照射 X線で電離されて L 殻に空孔を生じてその一つ上位軌道の M殻の電子が L殻に遷移し、これに誘起され て更に一つ上位軌道の N殻の電子が M殻に遷移する。そして、このような電子が遷 移していく過程に相当する Zn— LMN遷移過程のオージ 電子の放出量の大きさと 、有機薄膜が防湿性を有することとが正相関することを本発明者は見出した。すなわ ち、 Zn— LMN遷移過程のォージェ電子エネルギーは 496〜498eVであり、このェ ネルギ一間に少なくとも一つのピークを有することが有機薄膜が防湿性を有すること と正相関する。なお、このような分析に用いる測定装置としては特に制限されず、適 宜公知の測定装置を用いることができ、具体的には、 PHI社製の商品名称 Quanter a SXM等を用いることが挙げられる。 As described above, by using the Auger electron spectrum analysis, it is possible to derive a more favorable condition of the organic thin film that is useful in the present invention. Here, such Auger electron spectrum analysis is also called X-ray photoelectron analysis (XPS) when the excitation energy source of atoms is X-rays. In such an Auger electron spectrum analysis, for example, when attention is focused on zinc, the stoichiometric or non-stoichiometric binding state of zinc can be known from the value of the binding energy. It is also possible to know the bonding state of complex formation. When X-rays are used as an excitation energy source in the analysis of such an Auger electron spectrum focused on zinc, the inner electrons of zinc are ionized by X-ray irradiation, resulting in vacancies. The electrons in the level drop and the zinc turns into a stable state. At this time, the energy difference between the levels is transferred to another electron and emitted. These emitted electrons are called Auge electrons. Also, if the energy difference is emitted as X-rays, the powerful X-rays are characteristic X-rays. In the case where zinc is used as the polyvalent metal contained in the organic thin film that is useful in the present invention, when the Auger electron spectrum analysis is performed, the L inner-shell electrons of zinc are ionized by the irradiated X-rays and become the L shell. A vacancy is created, and the M-shell electron in the upper orbital transitions to the L-shell, and this induces another N-shell electron in the upper orbital transition to the M-shell. The present inventors have found that there is a positive correlation between the amount of auger electrons emitted in the Zn-LMN transition process corresponding to the process of such electron transition and the moisture resistance of the organic thin film. It was. In other words, the Auger electron energy of the Zn-LMN transition process is 496 to 498 eV. Having at least one peak between the energies directly correlates with the moisture resistance of the organic thin film. The measuring device used for such analysis is not particularly limited, and a known measuring device can be used as appropriate. Specifically, the product name Quanter a SXM manufactured by PHI can be used. .
[0055] 本発明にかかる防湿膜用積層フィルムの有機薄膜 (以下単に有機薄膜と云う)は、 高湿度下においても酸素等のガスバリア性に優れる。  [0055] The organic thin film (hereinafter simply referred to as an organic thin film) of the laminated film for moisture-proof film according to the present invention is excellent in gas barrier properties such as oxygen even under high humidity.
[0056] また、本発明に力かる有機薄膜は、酸素等のガスノリア性と共に防湿性にも優れる 点で特徴がある。即ち、本発明で云う有機薄膜の防湿性とは、温度 40°C、相対湿度 90%の雰囲気下で、水蒸気透過度が 15gZ (m2 ' day)以下、好ましくは 3gZ (m2'd ay)以下 (水蒸気供給側の相対湿度を 90%)であることを 、う。この値が 15gZ (m2- day)を超えるものでは、本発明が目的とするガスノリア性と防湿性に共に優れる防 湿膜用積層フィルムを得られな 、。 [0056] Further, the organic thin film that is useful in the present invention is characterized in that it is excellent in moisture resistance as well as gas-nore properties such as oxygen. That is, the moisture resistance of the organic thin film referred to in the present invention, the temperature 40 ° C, in an atmosphere of 90% RH, a water vapor permeability 15gZ (m 2 'day) or less, preferably 3gZ (m 2' d ay ) The following (the relative humidity on the steam supply side is 90%). When this value exceeds 15 gZ (m 2 -day), a laminated film for a moisture-proof film that is excellent in both the gas noria property and moisture-proof property, which is the object of the present invention, cannot be obtained.
[0057] また、本発明にかかる有機薄膜の密度は、 1. 80gZcm3以上であることが好ましく 、 1. 80〜2. 89g/cm3であること力 Sより好ましく、 1. 85〜2. 89g/cm3であること力 ^ 更に好ましい。密度が 1. 80gZcm3未満の有機薄膜を用いると、防湿性が不十分で 目標とする防湿性能を有する防湿膜用積層フィルムが得られな ヽ傾向にある。一方 、密度が 2. 89gZcm3を超える有機薄膜は、使用する多価金属化合物の添加量が 増え、塗工後の有機薄膜の製膜が困難になる。このような有機薄膜の密度は、 JIS K7112 (プラスチックの密度と比重の測定方法)に従って、測定することができる。 [0057] The density of the organic thin film according to the present invention is preferably 1.80 gZcm 3 or more, more preferably 1.80-2.89 g / cm 3 , more preferably force S, 1.85-2. A force of 89 g / cm 3 ^ is more preferable. When an organic thin film having a density of less than 1.80 gZcm 3 is used, there is a tendency that a moisture-proof laminated film having insufficient moisture-proof properties and a target moisture-proof performance cannot be obtained. On the other hand, an organic thin film having a density exceeding 2.89 gZcm 3 increases the amount of polyvalent metal compound used, making it difficult to form an organic thin film after coating. The density of such an organic thin film can be measured according to JIS K7112 (Method for measuring the density and specific gravity of plastic).
[0058] (有機層)  [0058] (Organic layer)
本発明にかかる有機層は、 2枚の前記有機薄膜を備えている。このように、本発明 において、有機層が前記 2枚の有機薄膜を備えた構造をとるため、衝撃等により 1枚 の有機薄膜にミクロピンホールが発生したとしても、もう 1枚の有機薄膜が配置されて V、るため有機層内でミクロピンホールが連結することを防止することが可能となる。  The organic layer according to the present invention includes two organic thin films. Thus, in the present invention, since the organic layer has the structure including the two organic thin films, even if a micro pinhole is generated in one organic thin film due to impact or the like, the other organic thin film is Because it is placed V, it is possible to prevent the micro pinholes from being connected in the organic layer.
[0059] このような有機層としては、 2枚の有機薄膜を直接的に対向させ、且つ、密着せしめ て形成された有機層又は 2枚の有機薄膜を接着層を介して積層せしめて形成された 有機層が好ましい。前記接着層を形成する接着剤の材質は特に制限されず、ドライ ラミネーシヨン等で通常用いられている榭脂を用いることができる。また、このような接 着剤としては特に制限されないが、ウレタン系接着剤、ポリエステル系接着剤、アタリ ル系接着剤又はエポキシ系接着剤を用いることが好ましい。更に、このようなウレタン 系接着剤、ポリエステル系接着剤、アクリル系接着剤及びエポキシ系接着剤としては 、本発明の防湿膜用積層フィルムのガスノ リャ性及び防湿性の向上と ヽぅ観点から は、ビカット軟ィ匕点が 50°C〜140°Cである接着剤が好ましぐ 50°C〜98°Cである接 着剤がより好ましい。ここで、接着剤のビカット軟化点は接着剤を硬化させた状態で の軟ィ匕温度である。なお、ビカット軟ィ匕点 WIS K— 7206に準拠して測定すること ができる。このような接着剤は、それぞれ単独で、あるいは 2種以上を組み合わせて 使用することができる。 [0059] Such an organic layer is formed by directly facing two organic thin films and adhering them, or by laminating two organic thin films via an adhesive layer. Organic layers are preferred. The material of the adhesive that forms the adhesive layer is not particularly limited, and a resin commonly used in dry lamination or the like can be used. Also, such connections Although it does not restrict | limit especially as an adhesive agent, It is preferable to use a urethane type adhesive agent, a polyester-type adhesive agent, an talyl type adhesive agent, or an epoxy-type adhesive agent. Furthermore, as such urethane adhesives, polyester adhesives, acrylic adhesives, and epoxy adhesives, from the viewpoint of improving the gas and moisture resistance of the laminated film for moisture-proof film of the present invention, An adhesive having a Vicat softness point of 50 ° C to 140 ° C is preferred, and an adhesive having a temperature of 50 ° C to 98 ° C is more preferable. Here, the Vicat softening point of the adhesive is a softening temperature when the adhesive is cured. It can be measured according to Vicat soft spot WIS K-7206. These adhesives can be used alone or in combination of two or more.
[0060] (無機層) [0060] (Inorganic layer)
本発明においては、無機層は前記有機層の両面に積層されている。このような無 機層としては特に制限されないが、無機層が無機蒸着膜であることが好ましぐ前記 無機蒸着膜が無機酸ィ匕物蒸着膜からなることが好ましい。具体的に、このような無機 層を形成するために用いられる無機材料としては、アルミニウム (A1)、アルミニウム酸 化物(Al O )、ケィ素酸化物(SiO ;x= l〜2)、酸窒化ケィ素(SiO N ;x=0. 6〜  In the present invention, the inorganic layer is laminated on both sides of the organic layer. Such an inorganic layer is not particularly limited, but it is preferable that the inorganic layer is an inorganic vapor deposition film. The inorganic vapor deposition film is preferably composed of an inorganic oxide vapor deposition film. Specifically, the inorganic materials used to form such an inorganic layer include aluminum (A1), aluminum oxide (Al 2 O 3), silicon oxide (SiO 2; x = l to 2), oxynitriding Keystone (SiO N; x = 0.
2 3  twenty three
0. 8、 y=0. 7〜0. 9)等が挙げられる。また、前記無機酸化物としては、透明性の観 点から、ケィ素酸化物(SiO )を用いることが特に好ましい。無機層を、このような無機 蒸着膜とすることで、得られる防湿膜用積層フィルムが高 、ガスバリヤ性と防湿性を 有することとなる。  0.8, y = 0.7 to 0.9) and the like. Further, as the inorganic oxide, it is particularly preferable to use a silicon oxide (SiO 2) from the viewpoint of transparency. By using such an inorganic vapor deposition film as the inorganic layer, the resulting laminated film for moisture-proof film has high gas barrier properties and moisture-proof properties.
[0061] 本発明にかかる無機層は、高湿度下においても酸素等のガスノ リア性に優れた無 機層である。本発明にカゝかる無機層としては、無機層の厚みが 1 mの場合に、 40 。C、相対湿度 90% (RH)において測定した酸素透過度力 500cm3 (STP) / (m2 · day- MPa)以下であることが好ましく、 100cm3 (STP) / (m2 · day- MPa)以下であ ることがより好まし!/、。 [0061] The inorganic layer according to the present invention is an inorganic layer that is excellent in gas-nore property such as oxygen even under high humidity. The inorganic layer used in the present invention is 40 when the thickness of the inorganic layer is 1 m. C, oxygen permeability measured at a relative humidity of 90% (RH), preferably 500 cm 3 (STP) / (m 2 day-MPa) or less, 100 cm 3 (STP) / (m 2 day- MPa ) It is more preferable that
[0062] 本発明にかかる無機層は、酸素等のガスノ リア性と共に防湿性にも優れる点で特 徴がある。本発明にカゝかる無機層としては、無機層の厚みが 1 μ mの場合に、温度 4 0°C、相対湿度 90%の雰囲気下で、水蒸気透過度が 15gZ (m2' day)以下であるこ と力 S好ましく、 3g/ (m2' day)以下であることがより好ましい。この値が 15g/ (m2' da y)を超えるものでは、本発明が目的とするガスノリア性と防湿性に共に優れる防湿膜 用積層フィルムを得られな ヽ傾向にあるためである。 [0062] The inorganic layer according to the present invention is characterized in that it is excellent in moisture resistance as well as gas-nore property such as oxygen. As the inorganic layer used in the present invention, when the thickness of the inorganic layer is 1 μm, the water vapor transmission rate is 15 gZ (m 2 ′ day) or less in an atmosphere at a temperature of 40 ° C. and a relative humidity of 90%. The force S is preferably 3 g / (m 2 'day) or less. This value is 15g / (m 2 'da This is because if it exceeds y), there is a tendency that a laminated film for a moisture-proof film that is excellent in both the gas noria property and moisture-proof property of the present invention cannot be obtained.
[0063] (防湿膜用積層フィルム)  [0063] (Laminated film for moisture-proof film)
本発明の防湿膜用積層フィルムは、 2枚の前記有機薄膜を備えた有機層と、該有 機層の両面に積層されて ヽる前記無機層とを備える防湿膜用積層フィルムである。  The laminated film for moisture-proof film of the present invention is a laminated film for moisture-proof film comprising an organic layer having two organic thin films and the inorganic layer laminated on both surfaces of the organic layer.
[0064] このように本発明の防湿膜用積層フィルムにおいては、有機層が 2枚の前記有機 薄膜を備えている。従って、有機層において 1枚の有機薄膜の膜厚方向にミクロピン ホールができた場合でも、更にもう 1枚の有機薄膜を備えているため、ミクロピンホー ルが連結することを防止でき、有機層におけるミクロピンホールを原因としたガスバリ ャ性及び防湿性の低下が防止されて防湿膜用積層フィルムに安定して高いガスバリ ァ性と防湿性とを維持させることが可能となる。  [0064] Thus, in the moisture-proof film laminated film of the present invention, the organic layer includes two organic thin films. Therefore, even if a micro pin hole is formed in the thickness direction of one organic thin film in the organic layer, since another organic thin film is provided, it is possible to prevent the micro pin holes from being connected. Deterioration of gas barrier properties and moisture resistance due to micro pinholes is prevented, and the laminated film for moisture barrier film can stably maintain high gas barrier properties and moisture resistance.
[0065] また、本発明の防湿膜用積層フィルムは、有機層の両面に防湿性の高い無機層が 積層されている。従って、本発明の防湿膜用積層フィルムは、より高い防湿性及びガ スノリャ性を発揮することが可能となる。し力も、相対的にやわらかい有機層を相対 的に硬い無機層で覆う構成となるため、本発明の防湿膜用積層フィルムは、折り曲げ や衝撃等の外部力が加えられても、防湿膜用積層フィルムが有するガスノ リャ性及 び防湿性が低下することがな 、。  [0065] Further, in the laminated film for moisture-proof film of the present invention, an inorganic layer having a high moisture-proof property is laminated on both surfaces of the organic layer. Therefore, the laminated film for a moisture-proof film according to the present invention can exhibit higher moisture-proof and gas-tight properties. Since the relatively soft organic layer is covered with a relatively hard inorganic layer, the laminated film for a moisture-proof film of the present invention is laminated even if an external force such as bending or impact is applied. The gas nozzle and moisture resistance of the film will not deteriorate.
[0066] また、本発明の防湿膜用積層フィルムとしては、 2枚の前記有機薄膜を直接的に対 向させ、且つ、密着せしめて形成された有機層と、該有機層の両面に積層されてい る前記無機層とを備える防湿膜用積層フィルム (i)又は、 2枚の有機薄膜を接着層を 介して積層せしめて形成された有機層と、該有機層の両面に積層されている前記無 機層とを備える防湿膜用積層フィルム (ii)が好ましい。  [0066] The laminated film for a moisture-proof film of the present invention is formed by laminating two organic thin films directly facing each other and in close contact with each other and on both sides of the organic layer. A laminated film for a moisture-proof film comprising the inorganic layer (i) or an organic layer formed by laminating two organic thin films via an adhesive layer, and the organic layer laminated on both sides of the organic layer. A laminated film for moisture-proof membrane (ii) provided with an inorganic layer is preferred.
[0067] 本発明に好適な防湿膜用積層フィルム (i)における有機層の厚さは特に限定され ないが、防湿膜用積層フィルム形成時の成形性、ハンドリング性の観点から、有機層 の厚さ力0. 001 μ m〜200 μ mであること力 子ましく、 0. 01 μ m〜100 μ mであるこ とがより好ましぐ 0. mであることが特に好ましい。このような防湿膜用 積層フィルムにおける有機層の厚さ力 0. 001 m未満になると、有機層の製膜が 困難になり、安定的な製造ができなくなる傾向にある。一方、有機層の厚さが 200 mを超えるものは、塗工が難しぐ製造する上で問題が生じる傾向にある。 [0067] The thickness of the organic layer in the moisture-proof film laminated film (i) suitable for the present invention is not particularly limited, but from the viewpoint of moldability and handling properties when forming the moisture-proof film laminated film, The force is preferably 0.001 μm to 200 μm, more preferably 0.01 μm to 100 μm, particularly preferably 0.m. When the thickness of the organic layer in such a moisture-proof film laminated film is less than 0.001 m, it is difficult to form the organic layer, and stable production tends to be impossible. On the other hand, the organic layer thickness is 200 If it exceeds m, there is a tendency for problems to occur in the production that is difficult to coat.
[0068] また、本発明に好適な防湿膜用積層フィルム (ii)にお 、ては、 1枚の有機薄膜の厚 さは特に限定されないが、防湿膜用積層フィルム形成時の成形性、ノ、ンドリング性の 観点から、 1枚の有機薄膜の厚さが 0. 001 μ m〜200 μ mであることが好ましぐ 0. 01 μ m〜100 μ mであることがより好ましぐ 0. 1 m〜: LO mであることが特に好ま しい。このような防湿膜用積層フィルムにおいて、 1枚の有機薄膜の厚さ力 0. 001 m未満になると、有機薄膜の製膜が困難になり、安定的な製造ができなくなる傾向 にある。一方、有機薄膜の厚さが 200 mを超えるものは、塗工が難しぐ製造する 上で問題が生ずる傾向にある。  [0068] Further, in the laminated film for moisture-proof film (ii) suitable for the present invention, the thickness of one organic thin film is not particularly limited. From the viewpoint of ringability, the thickness of one organic thin film is preferably 0.001 μm to 200 μm, more preferably 0.01 μm to 100 μm. 0 1 m ~: Especially preferred is LO m. In such a laminated film for moisture-proof film, when the thickness force of one organic thin film is less than 0.001 m, it becomes difficult to form an organic thin film, and stable production tends to be impossible. On the other hand, when the thickness of the organic thin film exceeds 200 m, there is a tendency for problems to occur in the manufacture that is difficult to coat.
[0069] また、本発明に好適な防湿膜用積層フィルム (ii)にお!/、ては、接着層の厚さは特に 制限されないが、得られる防湿膜用積層フィルムのガスノ リャ性及び防湿性の低下 を防止するという観点から、 0. 1〜100 111でぁることが好ましぐ0. 5〜10 /ζ πιであ ることがより好ましい。接着層の厚さが 0. : L m未満では、有機薄膜の接着が困難と なる傾向にあり、 100 /z mを超えると塗工が難しぐ防湿膜用積層フィルムを製造する 上で問題が生ずる傾向にある。  [0069] Moreover, the laminated film (ii) for a moisture-proof film suitable for the present invention! / Although the thickness of the adhesive layer is not particularly limited, it may be 0.1 to 100 111 from the viewpoint of preventing the deterioration of gas and moisture resistance of the resulting laminated film for moisture-proof film. It is more preferably 0.5 to 10 / ζ πι. If the thickness of the adhesive layer is less than 0 .: L m, adhesion of organic thin film tends to be difficult, and if it exceeds 100 / zm, there will be a problem in producing a laminated film for moisture-proof film that is difficult to apply. There is a tendency.
[0070] また、本発明の防湿膜用積層フィルムにおける無機層の厚さは特に限定されない 力 防湿膜用積層フィルム形成時の成形性、ハンドリング性の観点から、無機層の厚 さが 0. 01 μ m〜100 μ mであることが好ましぐ 0. l ^ m^lO ^ mであることがより 好ましい。無機層の厚さが、 0. 01 m未満になると、無機層の製膜が困難になり、 安定的な製造ができなくなる。一方、無機層の厚さが 100 /z mを超えるものは、蒸着 が難しぐ安定して防湿膜用積層フィルムを製造することが困難となる傾向にある。  [0070] In addition, the thickness of the inorganic layer in the laminated film for moisture-proof film of the present invention is not particularly limited. From the viewpoint of moldability and handling properties when forming the laminated film for moisture-proof film, the thickness of the inorganic layer is 0.01. It is preferable that it is μm to 100 μm, more preferably 0.l ^ m ^ lO ^ m. When the thickness of the inorganic layer is less than 0.01 m, it becomes difficult to form the inorganic layer and stable production cannot be achieved. On the other hand, when the thickness of the inorganic layer exceeds 100 / zm, vapor deposition is difficult and it tends to be difficult to produce a moisture-proof laminated film.
[0071] さらに、前記防湿膜用積層フィルムとしては、 60°C、相対湿度 90%の予備加湿条 件下で 250時間静置後に、 40°C、相対湿度 90%における水蒸気透過度が 0. 02g Z(m2'day)以下に維持されるものであることが好ましい。前記条件を満たすような高 V、防湿性を示す防湿膜用積層フィルムは、エレクト口ルミネッセンス素子用の防湿膜 として特に好適に用いることができる。 [0071] Furthermore, the laminated film for moisture-proof film has a water vapor permeability of 0. 0 at 40 ° C and 90% relative humidity after standing for 250 hours under pre-humidification conditions at 60 ° C and 90% relative humidity. It is preferably maintained below 02 g Z (m 2 'day). A laminated film for a moisture-proof film exhibiting a high V and moisture-proof property that satisfies the above conditions can be particularly suitably used as a moisture-proof film for an electoluminescence device.
[0072] 本発明の防湿膜用積層フィルムは、更に他の層を積層した積層体であってもよい。  [0072] The laminated film for a moisture-proof film of the present invention may be a laminate in which other layers are further laminated.
例えば、防湿膜用積層フィルムへの耐磨耗性付与、光沢性付与、ヒートシール性付 与、強度付与または更なる防湿性付与等の目的に併せて、 1種以上の層を積層させ ることが挙げられる。 For example, imparting abrasion resistance, glossiness, and heat sealability to laminated films for moisture barriers One or more layers may be laminated for the purpose of imparting strength, imparting strength, or providing further moisture resistance.
[0073] また、このような防湿膜用積層フィルムの用途としては、精密電子部品の材料に適 し、また医薬品、試験薬等の精密化学品の包装体としても用いることができる。このよ うな防湿膜用積層フィルムの用途の中でも、エレクト口ルミネッセンス素子用の防湿膜 であることが特に好ましい。本発明の防湿膜用積層フィルムは、長期に亘り安定して 高水準のガスバリヤ性及び防湿性を有するため、エレクト口ルミネッセンス素子用の 防湿膜として好適に用いることができるためである。  [0073] Further, the use of such a moisture-proof film laminated film is suitable as a material for precision electronic parts, and can also be used as a package for fine chemicals such as pharmaceuticals and test drugs. Among such uses of the laminated film for moisture-proof film, a moisture-proof film for an electoluminescence device is particularly preferable. This is because the laminated film for a moisture-proof film of the present invention has a high level of gas barrier property and moisture-proof property stably over a long period of time, and can be suitably used as a moisture-proof film for an electoluminescence device.
[0074] (防湿膜用積層フィルムの製造方法) [0074] (Method for producing laminated film for moisture-proof film)
本発明の防湿膜用積層フィルムの製造方法は、ポリカルボン酸系重合体 (A)と、多 価金属化合物 (B)と、揮発性塩基 (C)又は酸 (D)の ヽずれか一方と、溶媒とを含む 混合物の溶液又は分散液を、 2枚の無機層上にそれぞれ塗工し、一方の面に無機 層が積層されて 、る有機薄膜を 2枚得る工程と、  The method for producing a moisture-proof laminated film of the present invention comprises a polycarboxylic acid polymer (A), a polyvalent metal compound (B), and either one of a volatile base (C) or an acid (D). A solution or dispersion of a mixture containing a solvent is applied to each of the two inorganic layers, and the inorganic layer is laminated on one surface to obtain two organic thin films;
前記 2枚の有機薄膜を積層せしめて防湿膜用積層フィルムを得る工程と、 を含み、前記 2枚の有機薄膜が、それぞれ、ポリカルボン酸系重合体 (A)の多価金 属塩を少なくとも含み、赤外線吸収スペクトルの面積比 α [ピーク面積 S (3700-25  Laminating the two organic thin films to obtain a laminated film for a moisture-proof film, wherein each of the two organic thin films contains at least a polyvalent metal salt of the polycarboxylic acid-based polymer (A). Infrared absorption spectrum area ratio α [Peak area S (3700-25
1  1
OOcm_1)Zピーク面積 S (1800〜1500cm_1) ]が 2· 5以下であり、且つ赤外線吸 OOcm _1) Z peak area S (1800~1500cm _1)] is at 2-5 or less, and infrared absorption
2  2
収スペクトルのピーク比 j8 [ピーク A (1560cm—1) /ピーク A (1700cm_1) ]が 1· 2 Peak ratio of yield spectrum j8 [Peak A (1560cm- 1) / Peak A (1700cm _1)] is 1 - 2
1 2  1 2
以上であるフィルムである、製造方法である。  It is a manufacturing method which is the above film.
[0075] 先ず、ポリカルボン酸系重合体 (Α)と、多価金属化合物 (Β)と、揮発性塩基 (C)又 は酸 (D)の 、ずれか一方と、溶媒とを含む混合物の溶液又は分散液の調製方法に つき説明する。  [0075] First, a mixture of a polycarboxylic acid polymer (多 価), a polyvalent metal compound (Β), a volatile base (C) or an acid (D), and a solvent. Explain how to prepare the solution or dispersion.
[0076] ここで原料、ポリカルボン酸系重合体 (Α)、多価金属化合物(Β)につ 、ては、前記 説明した通りである。ポリカルボン酸系重合体 (Α)と多価金属化合物(Β)は水溶液 中では、容易に反応し、不均一な沈殿を形成することがあるため、ポリカルボン酸系 重合体 (Α)と多価金属化合物 (Β)と溶媒として水力 なる均一な塗工液を得るため に、揮発性塩基 (C)又は酸 (D)の 、ずれか一方を溶媒としての水と混合する。  Here, the raw material, polycarboxylic acid polymer (Α), and polyvalent metal compound (Β) are as described above. Since the polycarboxylic acid polymer (Α) and the polyvalent metal compound (Β) react easily in an aqueous solution and may form a heterogeneous precipitate, the polycarboxylic acid polymer (Α) and the polycarboxylic acid polymer (Α) In order to obtain a uniform coating solution that is hydrodynamic as a valent metal compound (Β) and a solvent, either volatile base (C) or acid (D) is mixed with water as a solvent.
[0077] このような揮発性塩基(C)としては、アンモニア、メチルァミン、ェチルァミン、ジメチ ルァミン、ジェチルァミン、トリエチルァミン、モルフォリン、エタノールァミンが用いら れる。このような揮発性塩基 (C)の中でも、形成される有機薄膜のガスバリヤ性及び 防湿性の向上という観点から、アンモニアが好ましく用いられる。また、酸 (D)として は、塩酸、酢酸、硫酸、シユウ酸、クェン酸、リンゴ酸、酒石酸等の無機酸、有機酸が 用いられる。 [0077] Examples of such a volatile base (C) include ammonia, methylamine, ethylamine, and dimethyl. Luamine, jetylamine, triethylamine, morpholine, and ethanolamine are used. Among these volatile bases (C), ammonia is preferably used from the viewpoint of improving the gas barrier property and moisture resistance of the organic thin film to be formed. As the acid (D), hydrochloric acid, acetic acid, sulfuric acid, oxalic acid, citrate, malic acid, tartaric acid and other inorganic acids and organic acids are used.
[0078] 前記溶液又は分散液 (塗工液)の調製に際して、ポリカルボン酸系重合体 (A)の量 に対する多価金属化合物 (B)の配合量は、有機薄膜のガスバリア性、防湿性の観点 で、ポリカルボン酸系重合体 (A)中の全てのカルボキシ基に対して、 0. 5化学当量 以上であることが好ましぐ 0. 8化学当量以上であることがより好ましい。更に、上記 観点に加え、有機薄膜の成形性や透明性の観点力も 10化学当量以下であることが 好ましぐ 1化学当量以上 5ィ匕学当量以下の範囲であることが特に好ましい。また、得 られる有機薄膜の赤外線吸収スペクトルのピーク比 j8を、 1. 2以上 (好ましくは 2. 0 以上、更に好ましくは 4. 0以上)とするという観点からは、ポリカルボン酸系重合体 (A )の量に対する多価金属化合物(B)の配合量は、ポリカルボン酸系重合体 (A)中の 全てのカルボキシ基に対して 0. 5〜 10化学当量であることが好ましい。なお、ここで 化学当量とは、化学反応性に基づいて定められた元素(単体)又は化合物の一定量 である。本発明における化学当量は、ポリカルボン酸系重合体 (A)中の、カルボキシ 基に対する化学当量であるため、 1化学当量とは酸として作用する 1当量のカルボキ シ基の量を中和する塩基の量を云う。ここで塩基とは多価金属化合物 (B)を構成す る多価金属である。  [0078] In the preparation of the solution or dispersion (coating solution), the blending amount of the polyvalent metal compound (B) relative to the amount of the polycarboxylic acid polymer (A) depends on the gas barrier property and moisture resistance of the organic thin film. From the viewpoint, it is preferably 0.5 chemical equivalent or more with respect to all carboxy groups in the polycarboxylic acid polymer (A), more preferably 0.8 chemical equivalent or more. Further, in addition to the above viewpoint, it is preferable that the viewpoint of moldability and transparency of the organic thin film is 10 chemical equivalents or less. Particularly preferred is a range of 1 chemical equivalent or more and 5 chemical equivalents or less. Further, from the viewpoint of setting the peak ratio j8 of the infrared absorption spectrum of the obtained organic thin film to 1.2 or more (preferably 2.0 or more, more preferably 4.0 or more), a polycarboxylic acid polymer ( The blending amount of the polyvalent metal compound (B) with respect to the amount of A) is preferably 0.5 to 10 chemical equivalents with respect to all the carboxy groups in the polycarboxylic acid polymer (A). Here, the chemical equivalent is a certain amount of an element (a simple substance) or a compound determined based on chemical reactivity. Since the chemical equivalent in the present invention is a chemical equivalent to the carboxy group in the polycarboxylic acid polymer (A), one chemical equivalent is a base that neutralizes the amount of one equivalent carboxy group that acts as an acid. Say the amount. Here, the base is a polyvalent metal constituting the polyvalent metal compound (B).
[0079] また、均一な混合物の溶液又は分散液 (塗工液)を得るために必要な揮発性塩基( C)の量は、ポリカルボン酸系重合体 (A)中のカルボキシ基に対して 1ィ匕学当量であ る。し力 多価金属化合物がコバルト、ニッケル、銅、亜鉛の酸化物、水酸化物、炭 酸塩であるような場合には、 1化学当量以上の揮発性塩基 (C)を加えることにより、そ れら金属が揮発性塩基 (C)と錯体を形成し、ポリカルボン酸系重合体 (A)と多価金 属化合物 (B)と揮発性塩基 (C)、及び溶媒としての水力もなる透明、均一な溶液が 得られる。揮発性塩基 (C)の好適な添加量は、ポリカルボン酸系重合体 (A)中の全 てのカルボキシ基に対して、 1化学当量以上 60化学当量以下、更には 2化学当量以 上 30化学当量以下であることが好ましい。 1化学当量未満の添加量では、均一な溶 液 (塗工液)が得難ぐ一方、 60化学当量を超えるとフィルムの製造 (製膜)に問題が 生じる。また、多価金属化合物として亜鉛ィ匕合物を用いる場合には、亜鉛のォージェ 電子スペクトル分析の結合エネルギーが 496〜498eVの間に少なくとも一つのピー クを有するような防湿膜用積層フィルムを製造するという観点からは、亜鉛化合物 1モ ルに対して、揮発性塩基 (C)を 2〜 120モル配合することが好ましぐ特に揮発性塩 基 (C)がアンモニアである場合には、亜鉛ィ匕合物 1モルに対して 4〜60モル配合す ることが好ましい。 [0079] The amount of the volatile base (C) necessary for obtaining a solution or dispersion (coating solution) of a uniform mixture is based on the carboxy group in the polycarboxylic acid polymer (A). 1 匕 匕 equivalent. When the polyvalent metal compound is cobalt, nickel, copper, zinc oxide, hydroxide, or carbonate, it can be added by adding one or more chemical equivalents of volatile base (C). These metals form a complex with the volatile base (C), and the polycarboxylic acid polymer (A), the polyvalent metal compound (B), the volatile base (C), and a transparent hydrodynamic solvent. A homogeneous solution is obtained. A suitable addition amount of the volatile base (C) is 1 chemical equivalent or more and 60 chemical equivalents or less, and further 2 chemical equivalents or less with respect to all carboxy groups in the polycarboxylic acid polymer (A). The upper limit is preferably 30 chemical equivalents or less. If the addition amount is less than 1 chemical equivalent, it is difficult to obtain a uniform solution (coating solution). On the other hand, if it exceeds 60 chemical equivalents, a problem arises in film production (film formation). In addition, when zinc compounds are used as the polyvalent metal compound, a laminated film for a moisture-proof film is produced that has at least one peak between 496 and 498 eV in the binding energy of zinc ogee electron spectrum analysis. From the standpoint of achieving this, it is preferable to add 2 to 120 moles of volatile base (C) per mole of zinc compound, especially when the volatile base (C) is ammonia. It is preferable to add 4 to 60 mol per mol of the compound.
[0080] 一方、酸 (D)を用いる場合に、均一な混合物の溶液又は分散液 (塗工液)を得るた めに必要な酸 (D)の量は、ポリカルボン酸系重合体 (A)中のカルボキシ基に対して 1 化学当量以上、 60化学当量以下であり、 2化学当量以上、 30化学当量以下であるこ とが好ましい。この量が 1化学当量未満では、均一な溶液 (塗工液)が得難ぐ一方、 60化学当量を超えるとフィルムの製造 (製膜)に問題が生じる。酸 (D)としては、塩酸 が好ましく用いられる。また、多価金属化合物として亜鉛ィ匕合物を用いる場合には、 亜鉛のォージェ電子スペクトル分析の結合エネルギー力 96〜498eVの間に少なく とも一つのピークを有するような防湿膜用積層フィルムを製造するという観点力 は、 亜鉛化合物 1モルに対して、酸(D)を 2〜 120モル配合することが好ましい。  [0080] On the other hand, when acid (D) is used, the amount of acid (D) required to obtain a uniform mixture solution or dispersion (coating solution) is determined by the amount of polycarboxylic acid polymer (A It is preferably 1 chemical equivalent or more and 60 chemical equivalents or less, and preferably 2 chemical equivalents or more and 30 chemical equivalents or less with respect to the carboxy group in (). If this amount is less than 1 chemical equivalent, it is difficult to obtain a uniform solution (coating solution). On the other hand, if it exceeds 60 chemical equivalents, there is a problem in film production (film formation). As the acid (D), hydrochloric acid is preferably used. In addition, when zinc compounds are used as polyvalent metal compounds, we manufacture laminated films for moisture-proof films that have at least one peak between the binding energy of 96 to 498 eV in the analysis of zinc Auger electrons. In terms of the viewpoint power, it is preferable to add 2 to 120 moles of acid (D) with respect to 1 mole of zinc compound.
[0081] また、このような塗工液を得る際、原材料の混合順序には特別な順序はな 、。用い る溶媒の具体例としては、水、メチルアルコール、エチルアルコール、イソプロピルァ ノレコール、 n—プロピルアルコール、 n—ブチルアルコール、 n—ペンチノレアルコール 、ジメチルスルフォキシド、ジメチルフオルムアミド、ジメチルァセトアミド、トルエン、へ キサン、ヘプタン、シクロへキサン、アセトン、メチルェチルケトン、ジェチルエーテル 、ジォキサン、テトラヒドロフラン、酢酸ェチル、酢酸ブチル等を挙げることができる。 塗工時の廃液処理や、溶媒がフィルムに残留する可能性が生じる等の問題力 水を 用いることが好ましい。例えば、溶媒としてカ卩えた水の中へ、ポリカルボン酸系重合体 (A)としてポリアクリル酸 (水溶液状で入手される)、揮発性塩基 (C)としてアンモニア (水溶液状態)、多価金属化合物 (B)として酸化亜鉛 (粉末状)をこの順序で加え、超 音波ホモジナイザーで混合し塗工液を得ることができる。溶媒としての水の量は、塗 ェ装置の塗工適性に合うように、他の添加剤との組合せにより適宜調整する。溶媒は 、単一の種類であっても、混合して用いても差しつかえない。 [0081] Further, when obtaining such a coating liquid, there is no special order in the mixing order of the raw materials. Specific examples of the solvent to be used include water, methyl alcohol, ethyl alcohol, isopropyl alcohol, n-propyl alcohol, n-butyl alcohol, n-pentanol alcohol, dimethyl sulfoxide, dimethyl formamide, dimethylacetamide. , Toluene, hexane, heptane, cyclohexane, acetone, methyl ethyl ketone, jetyl ether, dioxane, tetrahydrofuran, ethyl acetate, butyl acetate and the like. It is preferable to use water, which is a problem solution such as waste liquid treatment at the time of coating, and the possibility that the solvent may remain on the film. For example, polyacrylic acid (available in the form of an aqueous solution) as a polycarboxylic acid polymer (A), ammonia (in an aqueous solution state) as a volatile base (C), polyvalent metal in water prepared as a solvent Zinc oxide (powder) can be added in this order as compound (B) and mixed with an ultrasonic homogenizer to obtain a coating solution. The amount of water as a solvent In order to suit the coating suitability of the device, it is appropriately adjusted by combining with other additives. The solvent may be a single type or a mixture.
[0082] 溶液又は分散液 (塗工液)には、前記成分の他に榭脂、柔軟剤、安定剤、膜形成 剤、アンチブロッキング剤、粘着剤等を適宜添加することができる。特に過剰に存在 する多価金属化合物の分散性、塗工性を向上させる目的で、用いた溶媒系に可溶 な榭脂を混合して用いることが好ましい。榭脂の好適な例としては、アルキッド榭脂、 メラミン榭脂、アクリル榭脂、硝化綿、ウレタン榭脂、ポリエステル榭脂、フエノール榭 脂、アミノ榭脂、フッ素榭脂、エポキシ榭脂等の塗料用に用いる榭脂を挙げることが できる。塗工液中のポリカルボン酸系重合体 (A)の多価金属塩、多価金属化合物、 榭脂、その他の添加剤の総量は、塗工適性の観点から、 1重量%〜50重量%の範 囲であることが好ましい。  [0082] To the solution or dispersion (coating liquid), in addition to the above components, a resin, a softener, a stabilizer, a film forming agent, an antiblocking agent, an adhesive, and the like can be appropriately added. In particular, for the purpose of improving the dispersibility and coating properties of the polyvalent metal compound present in excess, it is preferable to use a mixture of soluble resin in the solvent system used. Preferable examples of the resin include alkyd resin, melamine resin, acrylic resin, nitrified cotton, urethane resin, polyester resin, phenol resin, amino resin, fluorine resin, epoxy resin, etc. Examples of the coagulant used for the purpose. The total amount of polyvalent metal salt, polyvalent metal compound, resin, and other additives of polycarboxylic acid polymer (A) in the coating solution is 1% to 50% by weight from the viewpoint of coating suitability. It is preferable that it is in the range.
[0083] なお、本発明にお 、ては、ポリカルボン酸系重合体 (A)と多価金属化合物(B)と揮 発性塩基 (C)、炭酸アンモ-ゥム (E)を溶媒の水と混合して得られる溶液又は分散 液を用いることもできる。炭酸アンモニゥム (E)は、多価金属化合物(B)を、炭酸多価 金属アンモ-ゥム錯体の状態にして、ポリカルボン酸系重合体 (A)の全てのカルボキ シ基に対して 1化学当量以上の量の多価金属を含む均一な溶液を調製するために 添加するものである。炭酸アンモ-ゥム (E)の添加量は、多価金属化合物(B)に対し て、モル比、即ち、炭酸アンモ-ゥム (E)のモル数 Z多価金属化合物(B)のモル数 が 0. 05〜10の範囲、好ましくは 1〜5の範囲である。モル比が 0. 05未満では、ポリ カルボン酸系重合体 (A)の全てのカルボキシ基に対して 1ィ匕学当量を越える量の多 価金属塩を含む均一な溶液 (塗工液)が得難ぐ 10を超えると有機薄膜の製膜に問 題が生じる。以後の説明では、ポリカルボン酸系重合体 (A)と多価金属化合物 (B)と 揮発性塩基 (C)又は酸 (D)と溶媒として水を用いた塗工液を例として記述する。炭 酸アンモ-ゥム (E)を用いる場合も、特別に断りがない限り同様に考えて差しつかえ ない。  In the present invention, the polycarboxylic acid polymer (A), the polyvalent metal compound (B), the volatile base (C), and the ammonium carbonate (E) are used as solvents. A solution or dispersion obtained by mixing with water can also be used. Ammonium carbonate (E) converts polyvalent metal compound (B) into a carbonic acid polyvalent metal ammonium complex state for one carboxylic group of polycarboxylic acid polymer (A). It is added to prepare a uniform solution containing a polyvalent metal in an amount equal to or greater than the equivalent amount. The amount of ammonium carbonate (E) added is the molar ratio to the polyvalent metal compound (B), that is, the number of moles of ammonium carbonate (E). The number ranges from 0.05 to 10, preferably from 1 to 5. When the molar ratio is less than 0.05, a uniform solution (coating solution) containing a polyvalent metal salt in an amount exceeding 1 x chemical equivalent to all carboxy groups of the polycarboxylic acid polymer (A). If it is difficult to obtain, a problem arises in organic thin film formation. In the following description, a coating solution using polycarboxylic acid polymer (A), polyvalent metal compound (B), volatile base (C) or acid (D) and water as a solvent will be described as an example. When using ammonium carbonate (E), the same consideration can be made unless otherwise specified.
[0084] 次に、本発明の防湿膜用積層フィルムを製造するための好適な製造方法を説明す る。  [0084] Next, a preferred production method for producing the laminated film for moisture-proof membrane of the present invention will be described.
[0085] 本発明の防湿膜用積層フィルムを製造するための好適な製造方法としては、前記 本発明の防湿膜用積層フィルムの製造方法にぉ 、て、前記防湿膜用積層フィルムを 得る工程が、前記 2枚の有機薄膜の他方の面同士を直接的に対向させ、且つ、密着 せしめて防湿膜用積層フィルムを得る工程である防湿膜用積層フィルムの製造方法 ω及び、前記本発明の防湿膜用積層フィルムの製造方法において、前記防湿膜用 積層フィルムを得る工程が、前記 2枚の有機薄膜の他方の面同士を接着層を介して 積層せしめて防湿膜用積層フィルムを得る工程である防湿膜用積層フィルムの製造 方法 )を挙げることができる。 [0085] As a suitable production method for producing the laminated film for moisture-proof film of the present invention, In the method for producing a laminated film for a moisture-proof film according to the present invention, the step of obtaining the laminated film for a moisture-proof film directly causes the other surfaces of the two organic thin films to face each other and to adhere to each other. In the method for producing a laminated film for a moisture-proof film, which is a process for obtaining a laminated film for a moisture-proof film, and in the method for producing a laminated film for a moisture-proof film according to the present invention, the process for obtaining the laminated film for a moisture-proof film comprises A method for producing a moisture-proof film laminate film), which is a step of laminating the other surfaces of the organic thin film via an adhesive layer to obtain a moisture-proof film laminate film).
[0086] 先ず、防湿膜用積層フィルムの製造方法 (i)につ 、て説明する。  [0086] First, the production method (i) of a moisture-proof laminated film will be described.
[0087] 具体的な防湿膜用積層フィルムの製造方法 (i)は、(1)基材の表面上に無機層を 形成する工程 (無機層形成基材フィルムを得る工程)、(2)無機層が積層された有機 薄膜を 2枚得る工程 (有機無機積層フィルムを得る工程)、 (3) 2枚の有機薄膜を密 着せしめて本発明の防湿膜用積層フィルムを得る工程、を含む製造方法である。  [0087] A specific method for producing a laminated film for moisture-proof film (i) includes (1) a step of forming an inorganic layer on the surface of a substrate (a step of obtaining an inorganic layer-formed substrate film), (2) inorganic A step of obtaining two organic thin films in which layers are laminated (a step of obtaining an organic-inorganic laminated film), and (3) a step of obtaining a laminated film for a moisture-proof film of the present invention by adhering two organic thin films. Is the method.
[0088] (1)基材の表面上に無機層を形成する工程 (無機層形成基材フィルムを得る工程) 本発明の防湿膜用積層フィルムの製造に用いられる基材の材料としては特に制限 はなぐ金属類、ガラス類、プラスチック類等が使用可能である。本来ガスが透過しな い金属、ガラス等においてもその欠陥部分のガスノ リア性を補償する目的で基材とし ての使用が可能である。基材の形態については、特に限定はないが、フィルム状、シ ート状、容器の形態が挙げられる。  [0088] (1) Step of forming an inorganic layer on the surface of the base material (Step of obtaining an inorganic layer-formed base film) The material of the base material used for producing the laminated film for moisture-proof film of the present invention is particularly limited Hanagu metals, glasses, plastics, etc. can be used. Even metals, glass, etc., which do not inherently allow gas to pass through, can be used as substrates for the purpose of compensating for the gas norecity of the defective portion. The form of the substrate is not particularly limited, and examples thereof include a film form, a sheet form, and a container form.
[0089] 前記基材の構成がプラスチック類である場合、その種類は特に限定されな ヽが、具 体的には、低密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレン、ポ リプロピレン、ポリメチルペンテン (4ーメチルペンテン 1重合体)、環状ォレフィン共 重合体等のポリオレフイン系重合体やそれらの共重合体、及びその酸変性物、ポリ 酢酸ビニル、エチレン 酢酸ビニル共重合体、エチレン 酢酸ビニル共重合体ケン 化物、ポリビュルアルコール等の酢酸ビュル系共重合体、ポリエチレンテレフタレート 、ポリブチレンテレフタレート、ポリエチレンナフタレート等の芳香族ポリエステル系重 合体やその共重合体、ポリ ε一力プロラタトン、ポリヒドロキシブチレート、ポリヒドロキ シノ リレート等の脂肪族ポリエステル系重合体やその共重合体、ナイロン 6、ナイロン 66、ナイロン 12、ナイロン 6, 66共重合体、ナイロン 6, 12共重合体、メタキシレンァ ジノミド ·ナイロン 6共重合体等のポリアミド系重合体やその共重合体、ポリエーテル スルフォン、ポリフエ-レンサルファイド、ポリフエ-レンオキサイド等のポリエーテル系 重合体、ポリ塩化ビニル、塩化ビ-リデン系共重合体、ポリフッ化ビュル、フッ化ビ-リ デン系共重合体等の塩素系、及びフッ素系重合体やその共重合体、ポリメチルァク リレート、ポリェチルアタリレート、ポリメチルメタタリレート、ポリェチルメタタリレート、ポ リアクリロニトリル等のアクリル系重合体やその共重合体、ポリイミド系重合体やその共 重合体、その他塗料用に用いるアルキッド榭脂、アクリル榭脂、不飽和ポリエステル 榭脂、エポキシ榭脂等の榭脂を用いることができる。それらプラスチック類力もなる、 未延伸シート、延伸シート、未延伸フィルム、延伸フィルム、及び容器等を支持体とし て用いることができる。 [0089] When the base material is composed of plastics, the type of the base material is not particularly limited. Specifically, low-density polyethylene, high-density polyethylene, linear low-density polyethylene, polypropylene, Polyolefin polymers such as polymethylpentene (4-methylpentene monopolymer), cyclic olefin copolymers, and their copolymers, and their acid-modified products, polyvinyl acetate, ethylene vinyl acetate copolymer, ethylene vinyl acetate copolymer Polymer saponified products, butyl acetate copolymers such as polybutyl alcohol, aromatic polyester polymers such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate and copolymers thereof, poly ε-strength prolatathone, polyhydroxybutyrate Aliphatic polyester polymerization such as rate and polyhydroxylinate And copolymers thereof, nylon 6, nylon 66, nylon 12, nylon 6, 66 copolymer, nylon 6, 12 copolymer, Metakishirena Polyamide polymers such as dinimide nylon 6 copolymer and copolymers thereof, polyether polymers such as polyether sulfone, polyphenylene sulfide, and polyphenylene oxide, polyvinyl chloride, vinylidene chloride copolymer Chlorine-based and fluorine-based polymers such as polymers, polyfluoride butyl, and vinylidene fluoride-based copolymers and copolymers thereof, polymethyl acrylate, polyethyl acrylate, polymethyl methacrylate, poly Acrylic polymers such as tilmetatalylate and polyacrylonitrile, copolymers thereof, polyimide polymers and copolymers thereof, alkyd resins, acrylic resins, unsaturated polyester resins, epoxy resins used for coatings A resin such as a resin can be used. An unstretched sheet, a stretched sheet, an unstretched film, a stretched film, a container, and the like that can also be used as plastics can be used as the support.
[0090] また、前記基材の表面上に無機層を形成させる方法としては特に制限されず、酸 化ケィ素、酸ィ匕アルミニウム、アルミニウム、チッ化ケィ素、酸チッ化ケィ素等の無機 化合物、金属化合物からなる薄膜を蒸着法により形成する方法が挙げられる。このよ うな蒸着法としては物理蒸着法があり、例えばスパッタリング法、抵抗加熱蒸着法、電 子ビーム蒸着法、イオンプレーティング法等がある。また、前記スパッタリング法として は、ターゲットに所望の材料を用いて、スパッタリングガスにアルゴン、ネオン等の不 活性ガスを用いる直流或 、は高周波スパッタリング法を用いることも可能である。更 に、前記抵抗加熱蒸着法とは、所望の材料を抵抗加熱で蒸着させ、対向して配置さ せた基材の表面上に無機層を形成させる手法であり、前記電子ビーム蒸着法とは、 所望の材料を電子ビーム加熱の手法で蒸着させ、対向して配置させた基材の表面 上に無機層を形成させる手法である。このようにして無機層を形成させることで、得ら れる防湿膜用積層フィルムに高 、透明性、ガスノ リャ性及び防湿性を付与すること が可能となる。そして、本発明においては、 2枚の基材上に無機層を形成させて、無 機層形成基材フィルムを得ることができる。  [0090] Further, the method for forming the inorganic layer on the surface of the substrate is not particularly limited, and an inorganic oxide such as oxide silicon, aluminum oxide, aluminum, silicon nitride, or silicon oxide nitride is used. The method of forming the thin film which consists of a compound and a metal compound by a vapor deposition method is mentioned. Such vapor deposition methods include physical vapor deposition methods such as sputtering, resistance heating vapor deposition, electron beam vapor deposition, and ion plating. Further, as the sputtering method, a direct current or a high frequency sputtering method using a desired material for the target and an inert gas such as argon or neon as the sputtering gas can be used. Furthermore, the resistance heating vapor deposition method is a method in which a desired material is vapor-deposited by resistance heating, and an inorganic layer is formed on the surface of a substrate disposed oppositely. The electron beam vapor deposition method is In this method, a desired material is vapor-deposited by an electron beam heating method, and an inorganic layer is formed on the surface of a substrate disposed oppositely. By forming the inorganic layer in this way, it is possible to impart high moisture, transparency, gas nozzle properties, and moisture resistance to the resulting laminated film for moisture barrier film. And in this invention, an inorganic layer can be formed on two base materials, and an inorganic layer formation base film can be obtained.
[0091] (2)無機層が積層された有機薄膜を 2枚得る工程 (有機無機積層フィルムを得るェ 程)  [0091] (2) Step of obtaining two organic thin films laminated with an inorganic layer (step of obtaining an organic-inorganic laminated film)
無機層が積層された有機薄膜 (有機無機積層フィルム)を 2枚得る工程では、前述 のようにして形成された 2枚の無機層形成基材フィルムの無機層上に、ポリカルボン 酸系重合体 (A)と、多価金属化合物 (B)と、揮発性塩基 (C)又は酸 (D)の 、ずれか 一方と、溶媒とを含む混合物の溶液又は分散液を塗工し、一方の面に無機層が積 層されて!ヽる有機薄膜を 2枚製造する。 In the step of obtaining two organic thin films (organic / inorganic laminated film) on which inorganic layers are laminated, the polycarboxylic acid is formed on the inorganic layers of the two inorganic layer-forming base films formed as described above. Apply a solution or dispersion of a mixture containing the acid polymer (A), the polyvalent metal compound (B), the volatile base (C) or the acid (D), and a solvent. Two organic thin films are produced that have an inorganic layer stacked on one side.
[0092] 塗工液を無機層上に塗工する方法は、公知の塗工方法が特に制限なく使用可能 であり、浸漬 (デイツビング)やスプレー、及びコーター、印刷機、或いは刷毛を用いて 行う。コーター、印刷機の種類、塗工方式としては、ダイレクトグラビア方式、リバース グラビア方式、キスリバースグラビア方式、オフセットグラビア方式等のグラビアコータ 一、リノく一スローノレコーター、マイクログラビアコーター、エアナイフコーター、デイツ プコーター、バーコ一ター、コンマコーター、ダイコーター等を用いることができる。 [0092] As a method of coating the coating liquid on the inorganic layer, a known coating method can be used without any particular limitation, and is performed using dipping or spraying, and a coater, a printing machine, or a brush. . Coaters, types of printing machines, and coating methods include direct gravure method, reverse gravure method, kiss reverse gravure method, offset gravure method, etc. A pecoater, a bar coater, a comma coater, a die coater, or the like can be used.
[0093] 本発明にお 、ては、前記溶液又は分散液を無機層上に塗工した直後の状態 (wet )における塗工厚み (wet)としては、 0. 02 m〜 lmmであることが好ましぐ 0. 5 μ πι〜500 /ζ πιであることがより好ましい。他方、前記塗工層を加熱下で乾燥した場合 には、前記溶液又は分散液の塗工厚み(dry)としては、 0. 001 /z m〜: Lmmであるこ と力 S好ましく、 0. 01 μ m〜100 μ mであることがより好ましい。このような乾燥厚さとな るように 1〜4回繰り返して塗工と乾燥をすることで所望の厚さを得ることができる。  In the present invention, the coating thickness (wet) in a state (wet) immediately after coating the solution or dispersion on the inorganic layer is 0.02 m to lmm. Preferred 0.5 μπι to 500 / ζ πι is more preferable. On the other hand, when the coating layer is dried under heating, the coating thickness (dry) of the solution or dispersion is preferably 0.001 / zm to Lmm. It is more preferable that it is m-100 micrometers. The desired thickness can be obtained by coating and drying repeatedly 1 to 4 times to achieve such a dry thickness.
[0094] 他方、上記した塗工厚み (dry)は、厚みが 5 μ mを越える場合には、オリンノス光 学工業 (株)製、透過ノルマルスキー微分干渉顕微鏡を用い、フィルム断面から実測 した値を用いる。また、該厚みが 5 m以下の場合には、大塚電子 (株)製、瞬間マル チ測光システム商品名称 MCPD— 2000を用いて測定した値を用いる。  [0094] On the other hand, when the thickness exceeds 5 μm, the above-mentioned coating thickness (dry) is a value measured from the film cross section using a transmission normalsky differential interference microscope manufactured by Olynos Hikari Kogyo Co., Ltd. Is used. If the thickness is 5 m or less, use a value measured using Otsuka Electronics Co., Ltd. product name MCPD-2000.
[0095] 本発明においては、前記溶液又は分散液を無機層上に塗工する直前の状態にお ける前記溶液又は分散液は、適宜粘度を調整することができる。  [0095] In the present invention, the viscosity of the solution or dispersion in the state immediately before coating the solution or dispersion on the inorganic layer can be adjusted as appropriate.
[0096] 塗工液を無機層上に塗布後、溶媒を蒸発、乾燥させる方法は特に限定されない。  [0096] The method of evaporating and drying the solvent after applying the coating liquid on the inorganic layer is not particularly limited.
自然乾燥による方法や、所定の温度に設定したオーブン中で乾燥させる方法、前記 コーター付属の乾燥機、例えばアーチドライヤー、フローティングドライヤー、ドラムド ライヤ一、赤外線ドライヤー等を用いることができる。乾燥の条件は、基材、及びポリ カルボン酸系重合体 (A)の多価金属塩、その他の添加剤が熱による損傷を受けな V、範囲で任意に選択できる。  A method using natural drying, a method of drying in an oven set to a predetermined temperature, or a dryer attached to the coater, such as an arch dryer, a floating dryer, a drum dryer, an infrared dryer, or the like can be used. The drying conditions can be arbitrarily selected within the range of V, in which the base material, polyvalent metal salt of the polycarboxylic acid polymer (A), and other additives are not damaged by heat.
[0097] 無機層上のポリカルボン酸系重合体 (A)、多価金属化合物 (B)、揮発性塩基 (C) 又は酸 (D)からなる層中で、多価金属化合物(B)は未反応分子状、ポリカルボン酸 系重合体 (A)との多価金属塩、及びポリカルボン酸との金属錯体塩として存在する。 ここで金属錯体塩とは、コバルト、ニッケル、銅、亜鉛、ジルコニウム等と揮発性塩基と の錯体を意味する。具体的な金属錯体塩としては、亜鉛や銅のテトラアンモ-ゥム錯 体塩を例示することができる。このようにして、前記溶液又は分散液を無機層上に塗 布し、乾燥して有機薄膜を形成せしめ、一方の面に無機層が積層されている有機薄 膜 (有機無機積層フィルム)を 2枚製造することができる。 [0097] Polycarboxylic acid polymer (A), polyvalent metal compound (B), volatile base (C) on inorganic layer Alternatively, in the layer made of the acid (D), the polyvalent metal compound (B) is an unreacted molecular form, a polyvalent metal salt with the polycarboxylic acid polymer (A), and a metal complex salt with the polycarboxylic acid. Exists. Here, the metal complex salt means a complex of cobalt, nickel, copper, zinc, zirconium or the like and a volatile base. Specific examples of the metal complex salt include zinc and copper tetraamonium complex salts. In this way, the solution or dispersion is applied onto the inorganic layer, dried to form an organic thin film, and an organic thin film (organic / inorganic laminated film) having an inorganic layer laminated on one surface is obtained. Sheets can be manufactured.
[0098] (3) 2枚の有機薄膜を密着せしめて本発明の防湿膜用積層フィルムを得る工程 防湿膜用積層フィルムを得る工程にぉ 、ては、前記のようにして得られた2枚の有 機無機積層フィルムの有機薄膜面同士を直接的に対向させ、且つ、密着せしめて防 湿膜用積層フィルムを製造することができる。 [0098] (3) Step of obtaining two layers of organic thin films to obtain a laminated film for moisture-proof membrane of the present invention In the step of obtaining a laminated film for moisture-proof membrane, two pieces obtained as described above were used. The organic thin film surfaces of the organic inorganic laminated film can be directly opposed to each other and brought into close contact with each other to produce a moisture proof laminated film.
[0099] 前記 2枚の有機無機積層フィルムの有機薄膜面同士を直接的に対向させ、且つ密 着せしめる方法としては特に制限されず、適宜公知の方法を用いることができる。こ のような方法としては、具体的には、加熱ロールを使って一方の面に無機層が積層さ れている 2枚の有機薄膜の他方の面同士を直接的に対向させて圧着させる方法が 挙げられる。そして、このような圧着させる方法としては、高周波誘導加熱ロールゃ抵 抗加熱ロールを用いる方法が挙げられ、更に、このような圧着を行う際には、フィルム の平坦性を得るために、加熱ロールの前後にエキスパンドロールやダンサーロール を適宜配することができる。このようにして 2枚の有機薄膜を直接的に対向させること で、基材 Z無機層 Z有機層 (有機薄膜 1Z有機薄膜 2) Z無機層 Z基材の順で積層 された防湿膜用積層フィルムを得ることができる。  [0099] The method of directly facing and bonding the organic thin film surfaces of the two organic-inorganic laminated films is not particularly limited, and a known method can be used as appropriate. Specifically, as such a method, a method in which a heating roll is used and the other surfaces of the two organic thin films in which the inorganic layer is laminated on one surface is directly opposed to each other and pressed. Is mentioned. In addition, as a method for performing such pressure bonding, a method using a high-frequency induction heating roll or a resistance heating roll can be cited. Further, when performing such pressure bonding, a heating roll is used to obtain flatness of the film. Expanding rolls and dancer rolls can be appropriately arranged before and after. By directly facing the two organic thin films in this way, the substrate Z inorganic layer Z organic layer (organic thin film 1Z organic thin film 2) Z inorganic layer Z substrate laminated in order of the moisture barrier film A film can be obtained.
[0100] また、前記 2枚の有機無機積層フィルムの有機薄膜面同士を直接的に対向させて 圧着させる際には、加熱ロール等を用いて、 60〜500°Cの温度条件下、 0. 5KPa〜 I X 106MPaの圧力で圧着させることが好ましぐ 100〜300°Cの温度条件下、 1KP a〜lMPaの圧力で圧着させることがより好ましい。 [0100] Further, when the organic thin film surfaces of the two organic-inorganic laminated films are directly opposed to each other and pressure-bonded, using a heating roll or the like, under a temperature condition of 60 to 500 ° C, 0. It is preferable to perform the pressure bonding at a pressure of 5 KPa to IX 10 6 MPa. It is more preferable to perform the pressure bonding at a pressure of 1 KPa to lMPa under a temperature condition of 100 to 300 ° C.
[0101] そして、得られた防湿膜用積層フィルムを 60°C〜400°C、好ましくは 100〜300°C 、更に好ましくは 150〜250°Cの範囲の温度で熱処理を行う。上記温度範囲内であ れば、熱処理に際し、特別な制限はない。通常、好ましくは、不活性ガス雰囲気下、 0. l〜600MPa、更に好ましくは 0. 1〜: LOOMPaのカロ圧下で、好ましくは 0. 1〜30 00分、更に好ましくは 1〜2000分で熱処理が行われる。熱処理温度が 400°Cを超 えるものや熱処理時間が 3000分を超えるものでは、目的とする酸素ガスバリア性や 防湿性を持つフィルムが得難ぐまた、生産上の観点力もも問題がある。熱処理温度 力 S60°C未満のものや、熱処理時間が 0. 1分未満のものでは、水分の除去が充分で はなぐ特に防湿性の点から問題が生じる傾向にある。また、得られる防湿膜用積層 フィルム中の有機薄膜力 より確実に赤外線吸収スペクトルの面積比 αを 2. 5以下( 好ましくは 0. 01-2. 3、より好ましくは 0. 01-2. 0)とするという観点力らは、 0. 1〜 600MPa下で、 60〜400°Cの条件で熱処理することが好ましい。熱処理温度が前 記下限未満では、十分に水分を除去できない傾向にあり、熱処理温度が前記上限を 超えると、有機層を構成する榭脂の熱分解による黒色乃至褐色の熱分解物を生じる 傾向にある。 [0101] The obtained laminated film for moisture-proof film is subjected to heat treatment at a temperature in the range of 60 ° C to 400 ° C, preferably 100 to 300 ° C, more preferably 150 to 250 ° C. If it is within the above-mentioned temperature range, there is no particular restriction on the heat treatment. Usually, preferably under an inert gas atmosphere, 0.1 to 600 MPa, more preferably 0.1 to: Heat treatment is performed under a LOOMPa caloric pressure, preferably 0.1 to 300 minutes, more preferably 1 to 2000 minutes. If the heat treatment temperature exceeds 400 ° C or if the heat treatment time exceeds 3000 minutes, it will be difficult to obtain the desired oxygen gas barrier property and moisture-proof film, and the production viewpoint will also be problematic. Heat treatment temperature and force Less than S60 ° C and heat treatment time of less than 0.1 minutes tend to cause problems, especially from the viewpoint of moisture resistance, because moisture removal is not sufficient. In addition, the area ratio α of the infrared absorption spectrum is more reliably 2.5 or less (preferably 0.01-2.3, more preferably 0.01-2.0) from the organic thin film strength in the resulting laminated film for moisture-proof film. ) Is preferably heat-treated at a temperature of 60 to 400 ° C. under 0.1 to 600 MPa. If the heat treatment temperature is less than the lower limit, moisture tends not to be removed sufficiently, and if the heat treatment temperature exceeds the upper limit, a black to brown pyrolyzate tends to be generated due to thermal decomposition of the resin constituting the organic layer. is there.
[0102] 熱処理方法については、特別な制限はない。熱処理温度を複数回変えて、段階的 に昇温し熱履歴を与えてもよい。熱処理装置についても、特に制限されない。例えば 、常圧のオーブン、加圧下のオートクレーブ、プレス器、フローティング炉のような連 続的加熱装置等で熱処理できる。また、熱処理の方法としては、例えば、熱風噴射、 エアーフローティング、赤外線放射、マイクロ波照射、高周波誘電加熱等を挙げるこ とができる。尚、熱処理が済んだ段階では、揮発性塩基 (C)又は酸 (D)或いは炭酸 アンモ-ゥム(E)は、揮散している力、或いは塩となりフィルム中に痕跡が残るがフィ ノレムの'性會 こは影響を与えな 、。  [0102] There are no particular restrictions on the heat treatment method. The heat treatment temperature may be changed a plurality of times to raise the temperature step by step to give a heat history. The heat treatment apparatus is not particularly limited. For example, it can be heat-treated with a continuous heating device such as an atmospheric oven, an autoclave under pressure, a press machine, or a floating furnace. Examples of the heat treatment method include hot air injection, air floating, infrared radiation, microwave irradiation, and high frequency dielectric heating. At the stage of heat treatment, the volatile base (C) or acid (D) or ammonium carbonate (E) becomes a volatilizing force or salt, leaving traces in the film, but leaving traces in the film. 'Spontaneous has no effect.
[0103] そして、このような熱処理が済んだ防湿膜用積層フィルムは、ガスバリア性及び防 湿性が優れた本発明の防湿膜用積層フィルムとなる。  [0103] Then, the laminated film for moisture-proof film after such heat treatment is the laminated film for moisture-proof film of the present invention having excellent gas barrier properties and moisture-proof properties.
[0104] 次に、前述の製造方法 (i)における製造工程 (2)及び (3)を実施するために好適な 本発明の防湿膜用積層フィルムを製造するための装置の一実施形態について、図 面を参照しながら詳細に説明する。なお、以下の説明及び図面中、同一又は相当す る要素には同一の符号を付し、重複する説明は省略する。  Next, an embodiment of an apparatus for producing a laminated film for a moisture-proof film of the present invention suitable for carrying out the production steps (2) and (3) in the production method (i) described above, This will be described in detail with reference to the drawing. In the following description and drawings, the same or corresponding elements are denoted by the same reference numerals, and duplicate descriptions are omitted.
[0105] 図 1は、本発明の防湿膜用積層フィルムを製造するための装置の好適な一実施形 態を示す模式図である。 [0106] 図 1に示す製造装置は、繰出し装置 1を備え、かかる繰出し装置 1には、前述の製 造工程(1)に従って製造された無機層形成基材フィルム 3がロール状に巻かれた無 機層形成基材フィルムロール 2が設置されて 、る。 [0105] Fig. 1 is a schematic view showing a preferred embodiment of an apparatus for producing a laminated film for a moisture-proof film of the present invention. [0106] The manufacturing apparatus shown in FIG. 1 includes a feeding apparatus 1. In the feeding apparatus 1, the inorganic layer forming base film 3 manufactured according to the manufacturing process (1) described above is wound in a roll shape. The inorganic layer forming substrate film roll 2 is installed.
[0107] また、図 1に示す製造装置は、繰出し装置 1から繰出された無機層形成基材フィル ム 3が進行する方向にコロナ放電システム 4、及びグラビアロール 5を備えており、か 力るグラビアロール 5の一部は、前述のようにして調整されたポリカルボン酸系重合体 (A)と多価金属化合物 (B)と揮発性塩基 (C)と溶媒とを含む混合物の溶液 6に接触 している。  Further, the manufacturing apparatus shown in FIG. 1 includes a corona discharge system 4 and a gravure roll 5 in the direction in which the inorganic layer forming base film 3 fed from the feeding apparatus 1 travels. Part of the gravure roll 5 is added to a solution 6 of a mixture containing the polycarboxylic acid polymer (A), polyvalent metal compound (B), volatile base (C), and solvent prepared as described above. Touching.
[0108] さら〖こ、図 1に示す製造装置は、溶液 6が塗工された無機層形成基材フィルム 3が 進行する方向に第一の乾燥炉 7、加熱ロール 8、第二の乾燥炉 10、アキユームレー 1 1、及び卷取り装置 12を備えている。  [0108] Sarako, the production apparatus shown in Fig. 1 is composed of a first drying furnace 7, a heating roll 8, and a second drying furnace in the direction in which the inorganic layer forming substrate film 3 coated with the solution 6 proceeds. 10, Akimuley 1 1, and scraper 12.
[0109] このような図 1に示す製造装置を用いて防湿膜用積層フィルムを製造する際には、 先ず、有機無機積層フィルムを得る工程として、繰出し装置 1に無機層形成基材フィ ルムロール 2をセットして、無機層形成基材フィルム 3を繰出していく。そして、繰出さ れた無機層形成基材フィルム 3の無機層の表面は、コロナ放電システム 4を通過する ことで、コロナ放電処理がなされる。このようなコロナ放電処理がなされた無機層形成 基材フィルム 3はグラビアロール 5に導かれ、無機層形成基材フィルム 3の無機層の 表面上に溶液 6が塗工される。なお、無機層形成基材フィルム 3の無機層の表面は、 上述のようなコロナ放電処理がなされていることから、溶液 6を均一に塗工し易い。そ して、溶液 6が塗工された無機層形成基材フィルム 3は第一の乾燥炉 7に導かれ、熱 処理がなされる。このようにして無機層の上に有機薄膜が積層された有機無機積層 フィルムを得ることができる。なお、本実施形態においては、このような有機無機積層 フィルムを得る工程が、図 1に示すような 2つのラインで同時に実施される。  When producing a laminated film for a moisture-proof film using such a production apparatus shown in FIG. 1, first, as a process for obtaining an organic / inorganic laminated film, an inorganic layer-forming substrate film roll 2 is provided in a feeding apparatus 1. Is set and the inorganic layer forming base film 3 is fed out. Then, the surface of the inorganic layer of the fed inorganic layer-forming substrate film 3 passes through the corona discharge system 4 so that a corona discharge treatment is performed. The inorganic layer forming base film 3 subjected to such corona discharge treatment is guided to the gravure roll 5, and the solution 6 is applied on the surface of the inorganic layer of the inorganic layer forming base film 3. In addition, since the surface of the inorganic layer of the inorganic layer forming base film 3 is subjected to the corona discharge treatment as described above, it is easy to apply the solution 6 uniformly. Then, the inorganic layer forming base film 3 coated with the solution 6 is guided to the first drying furnace 7 and subjected to heat treatment. Thus, an organic-inorganic laminated film in which an organic thin film is laminated on an inorganic layer can be obtained. In the present embodiment, the step of obtaining such an organic-inorganic laminated film is simultaneously performed on two lines as shown in FIG.
[0110] 次に、本発明の防湿膜用積層フィルムを得る工程として、前述のようにして得られた 2枚の有機無機積層フィルムの有機薄膜面同士を、加熱ロール 8を用いて圧着し、基 材,無機層,有機薄膜 Z有機薄膜 Z無機層,基材の順に積層された防湿膜用積 層フィルムを得る。このようにして圧着がなされた防湿膜用積層フィルムは、第二の乾 燥炉 10に導かれ、熱処理がなされる。なお、第一の乾燥炉 7と加熱ロール 8との間に 、圧着の効果を高めるために必要に応じて、コロナ放電や常圧プラズマにより圧着さ れる有機無機積層フィルムの有機薄膜面の表面処理 (図示せず)を行うことができる oそして、熱処理後の本発明の防湿膜用積層フィルムは、アキユームレー 11を通過し た後、卷取り装置 12によってロール状に巻き取られる(防湿膜用積層フィルムロール 13)。このようにして、本実施形態においては、本発明の防湿膜用積層フィルムを得 ることがでさる。 [0110] Next, as the step of obtaining the moisture-proof film laminate film of the present invention, the organic thin film surfaces of the two organic-inorganic laminate films obtained as described above are pressure-bonded using a heating roll 8, A layer film for a moisture-proof film is obtained in which the base material, the inorganic layer, the organic thin film Z, the organic thin film Z, the inorganic layer, and the base material are laminated in this order. The laminated film for moisture-proof film thus pressure-bonded is guided to the second drying furnace 10 and subjected to heat treatment. In addition, between the first drying furnace 7 and the heating roll 8 In order to enhance the pressure-bonding effect, surface treatment (not shown) of the organic thin film surface of the organic-inorganic laminated film that is pressure-bonded by corona discharge or atmospheric pressure plasma can be performed as necessary. The laminated film for a moisture-proof film of the present invention passes through the Achille Ray 11, and is wound up into a roll shape by the scooping device 12 (a laminated film roll 13 for the moisture-proof film). Thus, in the present embodiment, the laminated film for moisture-proof film of the present invention can be obtained.
[0111] 以上、前述の製造方法 (i)における製造工程 (2)及び (3)を実施するために好適な 本発明の防湿膜用積層フィルムを製造するための装置の好適な実施形態について 説明したが、このような防湿膜用積層フィルムを製造するための装置は上記実施形 態に限定されるものではない。例えば、前記実施形態は、一連の動作によって本発 明の防湿膜用積層フィルムを製造する装置であつたが、有機無機積層フィルムを製 造する工程とそれを用いて防湿膜用積層フィルムを製造する工程とを分けて、以下 に説明するように別個の装置を用いて実施してもよ 、。  [0111] The preferred embodiment of the apparatus for producing the moisture-proof laminated film of the present invention suitable for carrying out the production steps (2) and (3) in the production method (i) described above is described above. However, the apparatus for producing such a moisture-proof laminated film is not limited to the above embodiment. For example, the embodiment described above is an apparatus for manufacturing a laminated film for a moisture-proof film according to the present invention through a series of operations. It may be performed separately using a separate apparatus as described below.
[0112] 図 2は、本発明の防湿膜用積層フィルムに用いる有機無機積層フィルムを製造する ための装置の一実施形態を示す模式図であり、図 3は、予め製造された有機無機積 層フィルムを用いて本発明の防湿膜用積層フィルムを製造するための装置の一実施 形態を示す模式図である。  [0112] Fig. 2 is a schematic view showing an embodiment of an apparatus for producing an organic-inorganic laminated film used for the moisture-proof laminated film of the present invention, and Fig. 3 is a previously produced organic-inorganic laminated film. It is a schematic diagram showing an embodiment of an apparatus for producing a laminated film for a moisture-proof film of the present invention using a film.
[0113] 図 2に示す製造装置は、無機層形成基材フィルム 3を繰出すための繰出し装置 1を 備え、かかる繰出し装置 1には、前述の製造工程(1)に従って製造された無機層形 成基材フィルム 3がロール状に巻かれた無機層形成基材フィルムロール 2が設置され ている。また、図 2に示す製造装置は、無機層形成基材フィルム 3の進行方向にコロ ナ放電システム 4及び、溶液 6を塗工するためのグラビアロール 5を備えている。また 、図 2に示す製造装置は、溶液 6を塗工後に熱処理をするための第一の乾燥炉 7を 備え、更に、熱処理がなされた有機無機積層フィルムの進行方向にアキユームレー 1 1、及び卷取り装置 14を備えている。  [0113] The manufacturing apparatus shown in FIG. 2 includes a feeding apparatus 1 for feeding out the inorganic layer forming base film 3, and the feeding apparatus 1 includes an inorganic layer shape manufactured according to the manufacturing process (1) described above. An inorganic layer-forming base film roll 2 in which the base film 3 is wound into a roll is installed. The manufacturing apparatus shown in FIG. 2 includes a corona discharge system 4 and a gravure roll 5 for applying the solution 6 in the traveling direction of the inorganic layer forming base film 3. In addition, the manufacturing apparatus shown in FIG. 2 includes a first drying furnace 7 for performing heat treatment after coating the solution 6, and further, an accumulator 11, and a soot cup in the traveling direction of the heat-treated organic-inorganic laminated film. A take-off device 14 is provided.
[0114] このような図 2に示す製造装置を用いて有機無機積層フィルムを製造する工程は、 前述の実施形態に記載された有機無機積層フィルムを得る工程と基本的には同一 であり、本実施形態においては、有機無機積層フィルムが得られた時点でアキユーム レー 11を通過させ、更に卷取り装置 14を用いて有機無機積層フィルムをロール状に 卷取って有機無機積層フィルムロール 15が得られる。 [0114] The process for producing the organic / inorganic laminated film using the production apparatus shown in FIG. 2 is basically the same as the process for obtaining the organic / inorganic laminated film described in the above-described embodiment. In the embodiment, when an organic-inorganic laminated film is obtained, Then, the organic / inorganic laminated film roll 15 is taken up into a roll using the scraping device 14 and the organic / inorganic laminated film roll 15 is obtained.
[0115] また、図 3に示す製造装置は、繰出し装置 1を備え、かかる繰出し装置 1には、前述 のようにして得られた有機無機積層フィルムロール 15が設置されている。また、図 3に 示す製造装置は、 2つの繰出し装置 1から繰出された 2枚の有機無機積層フィルム 1 6の有機薄膜面同士を圧着させるために加熱ロール 8を備え、更に圧着後の防湿膜 用積層フィルムの進行方向には第二の乾燥炉 10、アキユームレー 11、及び卷取り装 置 12が備えられている。  [0115] The manufacturing apparatus shown in FIG. 3 includes a feeding device 1, and the feeding device 1 is provided with the organic-inorganic laminated film roll 15 obtained as described above. Further, the manufacturing apparatus shown in FIG. 3 includes a heating roll 8 for press-bonding the organic thin film surfaces of the two organic-inorganic laminated films 16 fed from the two feeding apparatuses 1, and further a moisture-proof film after the pressure-bonding. In the traveling direction of the laminated film for use, a second drying furnace 10, an Akimulet 11 and a soot removal device 12 are provided.
[0116] このような図 3に示す製造装置を用いた防湿膜用積層フィルムを得る工程は、前述 の実施形態に記載されて ヽる防湿膜用積層フィルムを得る工程と基本的には同一で あり、本実施形態においては、前述のようにして得られた有機無機積層フィルムロー ル 15を 2本用いて、 2つの繰出し装置 1から繰出された有機無機積層フィルム 16の 有機薄膜面同士を圧着させて防湿膜用積層フィルムが得られる。  [0116] The process of obtaining the moisture-proof film laminate film using the manufacturing apparatus shown in FIG. 3 is basically the same as the process of obtaining the moisture-proof film laminate film described in the above-described embodiment. Yes, in this embodiment, using the two organic / inorganic laminated film rolls 15 obtained as described above, the organic thin film surfaces of the organic / inorganic laminated film 16 fed from the two feeding devices 1 are pressure-bonded to each other. Thus, a laminated film for moisture-proof film is obtained.
[0117] 次に、前述の防湿膜用積層フィルムの製造方法 (ii)について説明する。具体的な 防湿膜用積層フィルムの製造方法 (ii)は、(1)基材の表面上に無機層を形成するェ 程 (無機層形成基材フィルムを得る工程)、(2)無機層が積層された有機薄膜を 2枚 得る工程 (有機無機積層フィルムを得る工程)、 (3) 2枚の有機薄膜を接着層を介し て積層せしめて防湿膜用積層フィルムを得る工程、を含む製造方法である。  [0117] Next, the production method (ii) of the above-mentioned laminated film for moisture-proof film will be described. A specific method (ii) for producing a laminated film for a moisture-proof film includes (1) a process of forming an inorganic layer on the surface of a substrate (a step of obtaining an inorganic layer-forming substrate film), and (2) an inorganic layer comprising A process for obtaining two laminated organic thin films (a process for obtaining an organic-inorganic laminated film), and (3) a process for obtaining a laminated film for a moisture-proof film by laminating two organic thin films via an adhesive layer. It is.
[0118] (1)基材の表面上に無機層を形成する工程 (無機層形成基材フィルムを得る工程) 製造方法 (ii)における無機層形成基材フィルムを得る工程は、前述の製造方法 (i) における(1)基材の表面上に無機層を形成する工程と同一の工程である。  [0118] (1) Step of forming an inorganic layer on the surface of a base material (Step of obtaining an inorganic layer-forming base film) Manufacturing method The step of obtaining an inorganic layer-forming base film in (ii) is the above-described manufacturing method This is the same step as the step (1) in (i) of forming an inorganic layer on the surface of the substrate.
[0119] (2)無機層が積層された有機薄膜を 2枚得る工程 (有機無機積層フィルムを得るェ 程)  [0119] (2) Step of obtaining two organic thin films laminated with an inorganic layer (step of obtaining an organic-inorganic laminated film)
製造方法 (ii)における有機無機積層フィルムを得る工程は、前述の製造方法 (i)に おける(2)無機層が積層された有機薄膜を 2枚得る工程 (有機無機積層フィルムを得 る工程)と基本的には同一の工程である力 前述の製造方法 (i)においては、前記溶 液又は分散液を無機層上に塗布し、乾燥して有機薄膜を形成せしめて、一方の面に 無機層が積層されている有機薄膜 (有機無機積層フィルム)を 2枚製造するが、製造 方法 (ii)における有機無機積層フィルムを得る工程においては、前記溶液又は分散 液を無機層上に塗布し、乾燥して有機薄膜を形成せしめた後に、熱処理を施す点で 相違する。 The step of obtaining the organic / inorganic laminated film in the production method (ii) is the step of obtaining the two organic thin films laminated with the inorganic layer in the production method (i) described above (the step of obtaining the organic / inorganic laminated film). In the above production method (i), the solution or dispersion is applied onto the inorganic layer and dried to form an organic thin film, and the inorganic film is formed on one surface. Manufactures two organic thin films (organic / inorganic laminated films) with laminated layers. The step of obtaining the organic / inorganic laminated film in the method (ii) is different in that the solution or dispersion is applied on the inorganic layer and dried to form an organic thin film, followed by heat treatment.
[0120] すなわち、製造方法 (ii)においては、前記溶液又は分散液を無機層上に塗布し、 乾燥して有機薄膜を形成せしめた後、無機層が積層されている有機薄膜を 60°C〜4 00°C、好ましくは 100〜300°C、更に好ましくは 150〜250°Cの範囲の温度で熱処 理を行い、一方の面に無機層が積層されている有機薄膜 (有機無機積層フィルム)を 2枚製造することができる。上記温度範囲内であれば、熱処理に際し、特別な制限は ない。通常、好ましくは、不活性ガス雰囲気下、 0. l〜600MPa、更に好ましくは 0. 1〜: LOOMPaの加圧下で、好ましくは 0. 1〜3000分、更に好ましくは 1〜2000分で 熱処理が行われる。熱処理温度が 400°Cを超えるものや熱処理時間が 3000分を超 えるものでは、目的とする酸素ガスノ リア性や防湿性を持つフィルムが得難ぐまた、 生産上の観点からも問題がある。熱処理温度が 60°C未満のものや、熱処理時間が 0 . 1分未満のものでは、水分の除去が充分ではなぐ特に防湿性の点力 問題が生じ る傾向にある。また、得られる防湿膜用積層フィルム中の有機薄膜が、より確実に赤 外線吸収スペクトルの面積比 αを 2. 5以下 (好ましくは 0. 01-2. 3、より好ましくは 0 . 01〜2. 0)とすると!/ヽぅ観点、力らは、 0. l〜600MPa下、 60〜400°Cの条件で熱 処理することが好ましい。熱処理温度が前記下限未満では、十分に水分を除去でき ない傾向にあり、熱処理温度が前記上限を超えると、有機層を構成する榭脂の熱分 解による黒色乃至褐色の熱分解物を生じる傾向にある。  [0120] That is, in the production method (ii), the solution or dispersion is applied on an inorganic layer, dried to form an organic thin film, and then the organic thin film on which the inorganic layer is laminated is heated to 60 ° C. ~ 400 ° C, preferably 100 ~ 300 ° C, more preferably 150 ~ 250 ° C Two films can be manufactured. If it is within the said temperature range, there will be no special restriction | limiting in the case of heat processing. Usually, preferably in an inert gas atmosphere, 0.1 to 600 MPa, more preferably 0.1 to: under pressure of LOOMPa, preferably 0.1 to 3000 minutes, more preferably 1 to 2000 minutes. Done. If the heat treatment temperature exceeds 400 ° C or if the heat treatment time exceeds 3000 minutes, it will be difficult to obtain the desired film with oxygen gas resistance and moisture resistance, and there is also a problem from the viewpoint of production. When the heat treatment temperature is less than 60 ° C, or when the heat treatment time is less than 0.1 minute, moisture removal is not sufficient, and there is a tendency for a dampproof point problem. In addition, the organic thin film in the resulting laminated film for moisture-proof film more reliably has an infrared absorption spectrum area ratio α of 2.5 or less (preferably 0.01-2.3, more preferably 0.01-2). 0), it is preferable that the heat treatment is performed under conditions of 60 to 400 ° C under 0.1 to 600 MPa. If the heat treatment temperature is less than the lower limit, moisture tends not to be sufficiently removed, and if the heat treatment temperature exceeds the upper limit, a black to brown pyrolysis product tends to be generated due to thermal decomposition of the resin constituting the organic layer. It is in.
[0121] なお、熱処理方法については、特別な制限はない。熱処理温度を複数回変えて、 段階的に昇温し熱履歴を与えてもよい。熱処理装置についても、特に制限されない 。例えば、常圧のオーブン、加圧下のオートクレーブ、プレス器、フローティング炉の ような連続的加熱装置等で熱処理できる。また、熱処理の方法としては、例えば、熱 風噴射、エアーフローティング、赤外線放射、マイクロ波照射、高周波誘電加熱等を 挙げることができる。尚、熱処理が済んだ段階では、揮発性塩基 (C)又は酸 (D)或い は炭酸アンモ-ゥム (E)は揮散している力、或いは塩となりフィルム中に痕跡が残る 力 Sフィルムの性能には影響を与えな 、。 [0122] (3) 2枚の有機薄膜を接着層を介して積層せしめて防湿膜用積層フィルムを得るェ 程 [0121] The heat treatment method is not particularly limited. The heat treatment temperature may be changed a plurality of times, and the temperature may be raised stepwise to give a heat history. The heat treatment apparatus is not particularly limited. For example, the heat treatment can be performed by a continuous heating device such as an atmospheric oven, an autoclave under pressure, a press, or a floating furnace. Examples of the heat treatment method include hot air injection, air floating, infrared radiation, microwave irradiation, high-frequency dielectric heating, and the like. At the stage of heat treatment, the volatile base (C) or acid (D) or ammonium carbonate (E) is a stripping force or a salt that leaves traces in the film. Does not affect the performance of. [0122] (3) Process of obtaining a laminated film for a moisture-proof film by laminating two organic thin films via an adhesive layer
防湿膜用積層フィルムを得る工程では、前記のようにして得られた 2枚の有機無機 積層フィルムの有機薄膜面同士を接着層を介して積層せしめて本発明の防湿膜用 積層フィルムを得る。  In the step of obtaining the moisture-proof laminated film, the organic thin film surfaces of the two organic-inorganic laminated films obtained as described above are laminated with an adhesive layer therebetween to obtain the moisture-proof laminated film of the present invention.
[0123] 前述のようにして得られた無機層が積層されている有機薄膜の有機薄膜面に接着 剤を塗工する方法としては特に制限されず、公知の塗工方法が使用可能であり、浸 漬 (デイツビング)やスプレー、及びコーター、印刷機、或いは刷毛を用いて行うことが 可能である。コーター、印刷機の種類、塗工方式としては、ダイレクトグラビア方式、リ バースグラビア方式、キスリバースグラビア方式、オフセットグラビア方式等のグラビア コーター、リノく一スローノレコーター、マイクログラビアコーター、エアナイフコーター、 ディップコーター、バーコ一ター、コンマコーター、ダイコーター等を用いることができ る。また、接着剤を塗工する際には、前記 2枚の有機薄膜の両方の有機薄膜面に接 着剤を塗工してもよぐ前記 2枚の有機薄膜のうちの 1枚の有機薄膜の面にのみ接着 剤を塗工してもよい。更に、有機薄膜に接着剤を塗工する際の塗工厚みとしては、前 述の接着層の好適な厚みを実現するために十分なものとすることが好まし 、。  [0123] The method of applying the adhesive to the organic thin film surface of the organic thin film on which the inorganic layer obtained as described above is laminated is not particularly limited, and a known coating method can be used, It can be carried out by dipping, spraying, and using a coater, printing machine or brush. Coaters, types of printing machines, and coating methods include direct gravure method, reverse gravure method, kiss reverse gravure method, offset gravure method, etc. A coater, bar coater, comma coater, die coater, etc. can be used. In addition, when the adhesive is applied, one organic thin film of the two organic thin films may be coated on both organic thin film surfaces of the two organic thin films. Adhesive may be applied only to the surface. Furthermore, it is preferable that the coating thickness when the adhesive is applied to the organic thin film be sufficient to realize a suitable thickness of the adhesive layer described above.
[0124] また、前記 2枚の有機薄膜面同士を接着せしめる方法としては特に制限されず、適 宜公知の方法を用いることが可能であり、ドライラミネート法、エタストルージョンラミネ ート法、ホットメルトラミネート法等を用いることが可能である。  [0124] In addition, the method for adhering the two organic thin film surfaces to each other is not particularly limited, and a known method can be used as appropriate, such as a dry laminating method, an etatrusion lamination method, a hot method. A melt lamination method or the like can be used.
[0125] このようにして有機薄膜面同士を接着層を介して積層せしめることで、本発明の防 湿膜用積層フィルムを得ることができる。  [0125] By laminating the organic thin film surfaces through the adhesive layer in this way, the laminated film for moisture-proof film of the present invention can be obtained.
[0126] 次に、前述の製造方法 (ii)における製造工程 (2)及び (3)を実施するために好適 な本発明の防湿膜用積層フィルムを製造するための装置の一実施形態について、 図面を参照しながら詳細に説明する。なお、以下の説明及び図面中、同一又は相当 する要素には同一の符号を付し、重複する説明は省略する。  [0126] Next, an embodiment of an apparatus for producing a laminated film for a moisture-proof film of the present invention suitable for carrying out the production steps (2) and (3) in the production method (ii) described above, This will be described in detail with reference to the drawings. In the following description and drawings, the same or corresponding elements are denoted by the same reference numerals, and duplicate descriptions are omitted.
[0127] 図 4は、本発明の防湿膜用積層フィルムを製造するための装置の一実施形態を示 す模式図である。  FIG. 4 is a schematic view showing an embodiment of an apparatus for producing the laminated film for moisture-proof membrane of the present invention.
[0128] 図 4に示す製造装置の構成は、基本的には図 1に示す製造装置と同様の構成であ る力 図 1に示す製造装置とはラミネート装置 9が配置されている点でその構成が異 なる。すなわち、図 4に示す製造装置は、繰出し装置 1、コロナ放電システム 4、グラビ ァロール 5、第一の乾燥炉 7の順に構成されたラインを 2つ備えており、一方のライン には、第一の乾燥炉 7の後に更にラミネート装置 9が配置されている。 [0128] The configuration of the manufacturing apparatus shown in FIG. 4 is basically the same as that of the manufacturing apparatus shown in FIG. The structure differs from the manufacturing apparatus shown in FIG. 1 in that a laminating apparatus 9 is arranged. That is, the manufacturing apparatus shown in FIG. 4 includes two lines configured in the order of the feeding apparatus 1, the corona discharge system 4, the gravure roll 5, and the first drying furnace 7, and one of the lines includes the first line. A laminator 9 is further disposed after the drying oven 7.
[0129] また、図 4に示す製造装置は、第一の乾燥炉 7を通過した有機無機積層フィルム及 びラミネート装置 9を通過して接着剤が塗工された有機無機積層フィルム (以下「接 着層形成積層フィルム」という)の進行方向に、加熱ロール 8、第二の乾燥炉 10、アキ ユームレー 11、及び卷取り装置 12を備えている。  In addition, the manufacturing apparatus shown in FIG. 4 has an organic / inorganic laminated film that has passed through the first drying furnace 7 and an organic / inorganic laminated film that has been passed through the laminating apparatus 9 and is coated with an adhesive (hereinafter referred to as “contact”). A heating roll 8, a second drying furnace 10, an Akumulet 11, and a wrinkle removing device 12 are provided in the traveling direction of the “laminated layer forming laminated film”.
[0130] このような図 4に示す製造装置を用いて防湿膜用積層フィルムを製造する際におけ る有機無機積層フィルムを得る工程は、前述の図 1に示す製造装置を用いて防湿膜 フィルムを製造する際の有機無機積層フィルムを製造する工程と同一の工程である。  [0130] The process for obtaining the organic / inorganic laminated film in producing the laminated film for moisture-proof film using the production apparatus shown in FIG. 4 is performed using the production apparatus shown in FIG. 1 described above. It is the same process as the process of manufacturing the organic inorganic laminated film at the time of manufacturing.
[0131] 次に、本実施形態において、本発明の防湿膜用積層フィルムを得る工程を説明す る。先ず、前述のようにして得られた 2枚の有機無機積層フィルムのうち、一方の有機 無機積層フィルムの有機薄膜面にラミネート装置 9を用いて接着剤を塗工して接着 層形成積層フィルムを得る。その後、もう一方の有機無機積層フィルムの有機薄膜面 と、接着層形成積層フィルムの接着層面とを加熱ロール 8を用いて圧着する。このよう な圧着を行うことで、基材 Z無機層 Z有機薄膜 Z接着層 Z有機薄膜 Z無機層 Z基 材の順に積層された防湿膜用積層フィルムを得ることができる。そして、加熱ロール 8 によって圧着がなされた防湿膜用積層フィルムは、第二の乾燥炉 10に導かれて熱処 理がなされる。なお、第一の乾燥炉 7と加熱ロール 8との間に、圧着の効果を高める ために必要に応じて、コロナ放電や常圧プラズマにより有機無機積層フィルムの有機 薄膜面の表面処理(図示せず)を行うことができる。更に、このような熱処理がなされ た本発明の防湿膜用積層フィルムはアキユームレー 11を通過し、卷取り装置 12によ つてロール状に巻き取られる(防湿膜用積層フィルムロール 13)。このようにして、本 実施形態においては、本発明の防湿膜用積層フィルムを得ることができる。  [0131] Next, in the present embodiment, a process for obtaining the laminated film for moisture-proof film of the present invention will be described. First, of the two organic / inorganic laminated films obtained as described above, an adhesive is applied to the organic thin film surface of one of the organic / inorganic laminated films using a laminating apparatus 9 to form an adhesive layer-formed laminated film. obtain. Thereafter, the organic thin film surface of the other organic-inorganic laminated film and the adhesive layer surface of the adhesive layer-forming laminated film are pressure-bonded using a heating roll 8. By performing such pressure bonding, it is possible to obtain a laminated film for a moisture-proof film in which the base material Z inorganic layer Z organic thin film Z adhesive layer Z organic thin film Z inorganic layer Z base material are laminated in this order. Then, the moisture-proof laminated film that has been pressure-bonded by the heating roll 8 is guided to the second drying furnace 10 for heat treatment. In order to enhance the effect of pressure bonding between the first drying furnace 7 and the heating roll 8, surface treatment (not shown) of the organic thin film surface of the organic-inorganic laminated film is performed by corona discharge or atmospheric pressure plasma as necessary. )). Furthermore, the laminated film for moisture-proof film of the present invention that has been subjected to such heat treatment passes through Achille Ray 11, and is wound up into a roll by a scissoring device 12 (laminated film roll for moisture-proof film 13). Thus, in this embodiment, the laminated film for moisture-proof film of the present invention can be obtained.
[0132] 以上、前述の製造方法 (ii)における製造工程 (2)及び (3)を実施するために好適 な本発明の防湿膜用積層フィルムを製造するための装置の好適な実施形態につい て説明したが、このような防湿膜用積層フィルムを製造するための装置は上記実施 形態に限定されるものではない。例えば、前記実施形態は、一連の動作によって本 発明の防湿膜用積層フィルムを製造する装置であつたが、接着層形成積層フィルム 及び有機無機積層フィルムを製造する工程とそれを用いて防湿膜用積層フィルムを 製造する工程とを分けて、以下に説明するように別個の装置を用いて実施してもよい [0132] As above, a preferred embodiment of an apparatus for producing a laminated film for a moisture-proof film of the present invention suitable for carrying out the production steps (2) and (3) in the production method (ii) described above. As described above, an apparatus for manufacturing such a laminated film for a moisture-proof film is implemented as described above. The form is not limited. For example, the embodiment described above is an apparatus for producing a laminated film for a moisture-proof film according to the present invention by a series of operations. Separately from the process of manufacturing the laminated film, it may be performed using a separate apparatus as described below.
[0133] 図 5は、本発明の防湿膜用積層フィルムに用いる接着層形成積層フィルムを製造 するための装置の一実施形態を示す模式図であり、図 6は、予め製造された接着層 形成積層フィルムを用いて本発明の防湿膜用積層フィルムを製造するための装置の 一実施形態を示す模式図である。 FIG. 5 is a schematic view showing an embodiment of an apparatus for producing an adhesive layer-forming laminated film used for the moisture-proof laminated film of the present invention, and FIG. 6 is a diagram showing formation of an adhesive layer produced in advance. It is a schematic diagram which shows one Embodiment of the apparatus for manufacturing the laminated | multilayer film for moisture-proof films | membranes of this invention using a laminated | multilayer film.
[0134] 図 5に示す製造装置は、 2つの繰出し装置 1を備え、一方の繰出し装置 1には、前 述の製造工程(1)に従って製造された無機層形成基材フィルム 3がロール状に巻か れた無機層形成基材フィルムロール 2が設置されている。また、図 5に示す製造装置 は、無機層形成基材フィルム 3の進行方向にコロナ放電システム 4及び前述のように して調整されたポリカルボン酸系重合体 (A)と多価金属化合物(B)と揮発性塩基 (C )と溶媒とを含む混合物の溶液 6を塗工するためのグラビアロール 5を備えている。ま た、図 5に示す製造装置は、溶液 6を塗工後に熱処理をするための第一の乾燥炉 7 を備え、更に、熱処理がなされた有機無機積層フィルムの進行方向に接着剤を塗工 するラミネート装置 9を備えて 、る。  [0134] The manufacturing apparatus shown in Fig. 5 includes two feeding apparatuses 1. In one feeding apparatus 1, the inorganic layer forming substrate film 3 manufactured according to the manufacturing process (1) described above is rolled. A rolled inorganic layer forming substrate film roll 2 is installed. In addition, the production apparatus shown in FIG. 5 has a corona discharge system 4 in the traveling direction of the inorganic layer forming base film 3 and a polycarboxylic acid polymer (A) and a polyvalent metal compound (A) prepared as described above. A gravure roll 5 for coating a solution 6 of a mixture containing B), a volatile base (C) and a solvent is provided. Further, the manufacturing apparatus shown in FIG. 5 includes a first drying furnace 7 for performing heat treatment after coating the solution 6, and further applying an adhesive in the traveling direction of the heat-treated organic-inorganic laminated film. A laminating device 9 is provided.
[0135] また、図 5に示す製造装置のもう一方の繰出し装置 1には、剥離紙 21がロール状に 巻かれた剥離紙ロール 20が設置されている。なお、用いられる剥離紙 21としては特 に制限されず、市販の剥離紙等を用いることができる。また、図 5に示す製造装置は 、ラミネート装置 9によって接着剤の塗工された接着層形成積層フィルムと、繰出し装 置 1から繰出された剥離紙 21とを圧着せしめるために加熱ロール 8を備えており、か かる加熱ロール 8で圧着された剥離紙の張り合わされた接着層形成積層フィルムの 進行方向には、アキユームレー 11、及び卷取り装置 22が備えられている。  [0135] Also, the other feeding device 1 of the manufacturing apparatus shown in FIG. 5 is provided with a release paper roll 20 in which a release paper 21 is wound in a roll shape. The release paper 21 used is not particularly limited, and a commercially available release paper or the like can be used. The manufacturing apparatus shown in FIG. 5 includes a heating roll 8 for crimping the adhesive layer-forming laminated film coated with the adhesive by the laminating apparatus 9 and the release paper 21 fed from the feeding apparatus 1. In the advancing direction of the adhesive layer-forming laminated film laminated with the release paper pressure-bonded by the heating roll 8, an Akimulet 11 and a scraping device 22 are provided.
[0136] このような図 5に示す製造装置を用いて接着層形成積層フィルムを製造する工程を 、以下に説明する。先ず、一方の繰出し装置 1から繰出された無機層形成基材フィル ム 3に対し、前述の実施形態に記載された有機無機積層フィルムを得る工程と同一 の操作を行い有機無機積層フィルムを得る。その後、得られた有機無機積層フィル ムの有機薄膜面にラミネート装置 9を用いて接着剤を塗工する。次に、かかる接着剤 の塗工された接着層形成積層フィルムと、もう一方の繰出し装置 1から繰出された剥 離紙 21とを加熱ロール 8によって圧着し、接着層形成積層フィルムの接着層面に剥 離紙 21を張り合わせる。そして、このようにして剥離紙 21が張り合わされた接着層形 成積層フィルムは、アキユームレー 11を通過し、卷取り装置 22によってロール状に卷 取られる(接着層形成積層フィルムロール 23)。このようにして接着層形成積層フィル ムが得られる。 [0136] A process for producing an adhesive layer-formed laminated film using the production apparatus shown in Fig. 5 will be described below. First, it is the same as the step of obtaining the organic-inorganic laminated film described in the above-described embodiment for the inorganic layer forming substrate film 3 fed from one feeding device 1. To obtain an organic-inorganic laminated film. Thereafter, an adhesive is applied to the organic thin film surface of the obtained organic-inorganic laminated film using a laminating apparatus 9. Next, the adhesive layer-formed laminated film coated with such an adhesive and the release paper 21 fed from the other feeding device 1 are pressure-bonded by a heating roll 8 and applied to the adhesive layer surface of the adhesive layer-formed laminated film. Adhere release paper 21. Then, the adhesive layer forming laminated film having the release paper 21 bonded in this manner passes through the Achille tray 11 and is taken up into a roll by the scooping device 22 (adhesive layer forming laminated film roll 23). In this way, an adhesive layer-formed laminated film is obtained.
[0137] また、このような図 5に示す製造装置力も剥離紙ロール 20が設置されている繰出し 装置 1、ラミネート装置 9及び加熱ロール 8を取り除いた装置を用いることで、有機無 機積層フィルム 16がロール状に巻き取られた有機無機積層フィルムロール 15が得ら れる。  [0137] In addition, the manufacturing apparatus shown in FIG. 5 can also be produced by using the apparatus in which the feeding apparatus 1, laminating apparatus 9 and heating roll 8 are removed from which the release paper roll 20 is installed, so that the organic-inorganic laminated film 16 is used. Thus, an organic / inorganic laminated film roll 15 wound in a roll shape is obtained.
[0138] 図 6に示す製造装置は、 2つの繰出し装置 1を備え、一方の繰出し装置 1には、前 述のようにして得られた接着層形成積層フィルムロール 23が設置されて ヽる。そして 、図 6に示す製造装置は、接着層形成積層フィルムに張り合わされた剥離紙 21をは 力 Sしてロール状に巻き取る(剥離紙ロール 24)ための卷取り装置 25を備える。また、 もう一方の繰出し装置 1には、上述のようにして得られた有機無機積層フィルムロー ル 15が設置されている。  [0138] The manufacturing apparatus shown in FIG. 6 includes two feeding apparatuses 1, and one feeding apparatus 1 is provided with an adhesive layer-formed laminated film roll 23 obtained as described above. The manufacturing apparatus shown in FIG. 6 includes a scooping device 25 for taking up the release paper 21 laminated on the adhesive layer-forming laminated film and winding it in a roll shape (release paper roll 24). The other feeding apparatus 1 is provided with the organic / inorganic laminated film roll 15 obtained as described above.
[0139] 更に、図 6に示す製造装置は、接着層形成積層フィルムの接着層面と有機無機積 層フィルム 16の有機薄膜面とを圧着させるための加熱ロール 8を備え、圧着後に得 られる防湿膜用積層フィルムの進行方向には第二の乾燥炉 10、アキユームレー 11、 及び卷取り装置 12を備える。  Furthermore, the manufacturing apparatus shown in FIG. 6 includes a heating roll 8 for press-bonding the adhesive layer surface of the adhesive layer-forming laminated film and the organic thin film surface of the organic-inorganic multilayer film 16, and a moisture-proof film obtained after the press-bonding. In the traveling direction of the laminated film for use, a second drying furnace 10, an Akimulet 11, and a scraping device 12 are provided.
[0140] このような図 6に示す製造装置を用いて防湿膜用積層フィルムを得る工程は、前述 の図 4に示す製造装置を用いた実施形態に記載されている防湿膜用積層フィルムを 得る工程と基本的には同一であり、本実施形態においては、前述のようにして得られ た接着層形成積層フィルムロール 23及び有機無機積層フィルムロール 15を用い、 接着層形成積層フィルムに張り合わされた剥離紙 21をはがした後に、接着層形成積 層フィルムの接着層面と有機無機積層フィルム 16の有機薄膜面を圧着させて本発 明の防湿膜用積層フィルムが得られる。 [0140] The step of obtaining the moisture-proof laminated film using the manufacturing apparatus shown in Fig. 6 obtains the moisture-proof laminated film described in the embodiment using the production apparatus shown in Fig. 4 described above. In this embodiment, the adhesive layer-forming laminated film roll 23 and the organic / inorganic laminated film roll 15 obtained as described above were used and bonded to the adhesive layer-forming laminated film. After peeling off the release paper 21, the adhesive layer surface of the adhesive layer forming laminate film and the organic thin film surface of the organic / inorganic laminated film 16 are pressure-bonded. A bright laminated film for moisture-proof film is obtained.
[0141] 以上、本発明の防湿膜用積層フィルム及びその製造方法を説明したが、本発明の 防湿膜用積層フィルムは、基材の外側に更に他の層を備えていてもよい。このような 他の層としては特に限定されないが、例えば、透明性を有する合成樹脂からなる層、 ヒートシール性榭脂層等が挙げられ、更に本発明に用いられている基材とは別の基 材を積層させて基材を複数層としたもの等も挙げることができる。このような透明性を 有する合成樹脂からなる層としては、例えば、ポリビュルアルコールとポリ(メタ)アタリ ル酸等の混合物から形成させた榭脂層、糖類とポリ (メタ)アクリル酸等の混合物から 形成された榭脂層等が挙げられる。また、前記ヒートシール性榭脂層としては、ポリオ レフイン系ホットメルト型シーラント層、エポキシ系ホットメルト型シーラント層等が挙げ られる。また、このような他の層を積層させる方法としては、積層材料をコーティングに よって積層させる方法やフィルム状又はシート状の積層材料を接着剤を介して、又は 介さずして、公知のラミネート法により、積層させる方法が挙げられる。具体的なラミネ ート方法とは、ドライラミネート法、ウエットラミネート法、押し出しラミネート法が挙げら れる。尚、このようにして他の層を積層させた場合であっても、防湿膜用積層フィルム の性質 (酸素透過度、水蒸気透過度等の性質)は劣ることはなぐ 目的に応じて他の 層の材料を選択することで、他の機能を付加した積層体を得ることが可能となる。  [0141] While the laminated film for a moisture-proof film and the method for producing the same of the present invention have been described above, the laminated film for a moisture-proof film of the present invention may further include another layer on the outside of the substrate. Examples of such other layers include, but are not limited to, a layer made of a synthetic resin having transparency, a heat-sealable resin layer, and the like, which are different from the base material used in the present invention. The thing which laminated | stacked the base material and made the base material into multiple layers can also be mentioned. Examples of such a layer made of a synthetic resin having transparency include, for example, a resin layer formed from a mixture of polybulualcohol and poly (meth) acrylic acid, a mixture of sugars and poly (meth) acrylic acid, and the like. And the like. Examples of the heat-sealable resin layer include a polyolefin hot-melt sealant layer and an epoxy hot-melt sealant layer. In addition, as a method for laminating such other layers, a known laminating method may be employed, in which a laminating material is laminated by coating, or a laminating material in the form of a film or sheet is interposed with or without an adhesive. The method of laminating is mentioned. Specific lamination methods include a dry lamination method, a wet lamination method, and an extrusion lamination method. Even when other layers are laminated in this way, the properties of the moisture-proof laminated film (oxygen permeability, water vapor permeability, etc.) are not inferior. By selecting this material, it is possible to obtain a laminate with other functions added.
[0142] また、本発明の防湿膜用積層フィルムは、エレクト口ルミネッセンス素子用の防湿膜 として用いることができる。なお、本発明の防湿膜用積層フィルムをエレクト口ルミネッ センス素子用の防湿膜に用いる場合には、前記基材としては、透明な榭脂フィルム であって、且つ蒸着あるいはスパッタリングに耐える耐熱性を有するものが好ましい。 このような特性を有する限り、基材材料榭脂としては、任意のものを用いることができ る。このような基材材料榭脂としては、例えば、ポリアリーレート、ポリカーボネート、ポ リエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルスルホン、ポリスノレ ホン、ポリアミド、セルローストリアセテート、アクリル系榭脂、メタクリル系榭脂、ポリエ ステル、ポリイミド、ポリクロ口トリフルォロエチレン、エチレンテトラフルォロエチレン共 重合体、フッ化ビ-リデン、ポリエーテルエーテルケトン、更にこれらの榭脂の組み合 わせ等の他、表面平坦性のよい環状ォレフィン系(共)重合体も好適に用いられる。 [0143] また、本発明の防湿膜用積層フィルムは、以下のようにして用いることが好ましい。 すなわち、本発明の防湿膜用積層フィルムを 2枚用いて、エレクト口ルミネッセンス素 子を正面と背面から挟み込む構成をとる。その際、防湿膜用積層フィルムを十分に 大きくしておき、エレクト口ルミネッセンス素子の周囲で防湿膜用積層フィルムを互い に密着させることが好ましい。また、 2枚の防湿膜用積層フィルムを密着させる際には 、エレクト口ルミネッセンス素子と密着する側の防湿膜用積層フィルムの全面、或いは 端部に接着剤を塗布する。接着剤を用いることで、エレクト口ルミネッセンス素子本体 と防湿膜用積層フィルムとが接着され、更に、エレクト口ルミネッセンス素子の周囲で 防湿膜用積層フィルム同士が接着される。また、このようにして接着されることで、ェ レクト口ルミネッセンス素子の正面側と背面側との絶縁が行われることとなる。また、接 着剤の外気に接する端面カゝら防湿膜用積層フィルムで封止された内部の端面まで の長さは、防湿性の維持という観点からは、塗布された接着剤の厚さに比べて十分 に長くすることが好ましい。このような接着剤としては、紫外線硬化型接着剤、ホットメ ルト型接着剤又は合成樹脂型接着剤が用いられ、特に好ましくはエポキシ系若しく はアクリル系紫外線硬化型接着剤が用いられる。 [0142] Further, the laminated film for moisture-proof film of the present invention can be used as a moisture-proof film for an electoluminescence device. When the laminated film for a moisture-proof film of the present invention is used as a moisture-proof film for an electoluminescence device, the substrate is a transparent resin film and has heat resistance that can withstand vapor deposition or sputtering. What has is preferable. As long as it has such characteristics, any material can be used as the base material resin. Examples of such a base material resin include polyarylate, polycarbonate, polyethylene terephthalate, polyethylene naphthalate, polyethersulfone, polyester resin, polyamide, cellulose triacetate, acrylic resin, methacrylic resin, and polyester. Steal, polyimide, polychlorotrifluoroethylene, ethylene tetrafluoroethylene copolymer, vinylidene fluoride, polyether ether ketone, and combinations of these resins, etc. Cyclic olefin-based (co) polymers are also preferably used. [0143] The laminated film for moisture-proof film of the present invention is preferably used as follows. In other words, the laminate film for moisture-proof film of the present invention is used to sandwich the electret luminescence element from the front and back. In that case, it is preferable to make the laminated film for moisture-proof film sufficiently large and to adhere the laminated film for moisture-proof film to each other around the electoluminescence element. Further, when the two laminated films for the moisture-proof film are brought into close contact with each other, an adhesive is applied to the entire surface or the end of the laminated film for the moisture-proof film on the side to be in close contact with the electoluminescence element. By using the adhesive, the electoric luminescence element body and the laminated film for the moisture-proof film are bonded, and further, the laminated films for the moisture-proof film are bonded around the elect-luminescent element. In addition, by bonding in this way, the front side and the back side of the electoric luminescence element are insulated. Also, the length from the end surface in contact with the outside air of the adhesive to the inner end surface sealed with the laminated film for moisture-proof film is the thickness of the applied adhesive from the viewpoint of maintaining moisture-proof property. It is preferable to make it sufficiently longer than that. As such an adhesive, an ultraviolet curable adhesive, a hot melt adhesive, or a synthetic resin adhesive is used, and an epoxy or acrylic ultraviolet curable adhesive is particularly preferably used.
[0144] さらに、得られた本発明の防湿膜用積層フィルムは、精密電子部品の材料として組 み付けることができ、また医薬品、試験薬等の精密化学品の包装袋や包装容器を形 成させることができる。前記精密電子部品の材料としての利用方法としては、例えば 、電気を印加することによる蛍光体の 1重項励起及び 3重項励起を経ての発光を利 用するエレクト口ルミネッセンス発光素子(以下、 EL素子という)の蛍光体の吸湿を抑 えたり、 EL素子の金属配線の腐食による断線を抑えるために、本発明の防湿膜用積 層フィルムを部品として組み付けることが挙げられる。また、前記精密化学品の包装 袋や包装容器としての利用方法としては、例えば、吸湿により薬の効果が落ちたり、 化学変化により副作用を生じる可能性がある医薬品や試験薬の長期保存のために、 本発明の防湿膜用積層フィルムを医薬品や試験薬の包装袋や包装容器に利用する ことが挙げられる。 [0144] Further, the obtained multilayer film for moisture-proof membrane of the present invention can be assembled as a material for precision electronic parts, and forms packaging bags and packaging containers for fine chemicals such as pharmaceuticals and test drugs. Can be made. As a method of using the precision electronic component as a material, for example, an electroluminescent device (hereinafter referred to as EL) that uses light emission through singlet excitation and triplet excitation of a phosphor by applying electricity. In order to suppress the moisture absorption of the phosphor of the element) or to suppress the disconnection due to the corrosion of the metal wiring of the EL element, it is possible to assemble the moisture-proof multilayer film of the present invention as a part. In addition, as a method of using the fine chemicals as packaging bags or containers, for example, for the long-term storage of pharmaceuticals and test drugs that may reduce the effect of the drug due to moisture absorption or cause side effects due to chemical changes. The use of the laminated film for a moisture-proof film of the present invention for a packaging bag or packaging container for pharmaceuticals or test drugs is mentioned.
[0145] なお、 EL素子は、液晶表示素子と異なり自発光し、また、その薄膜、軽量と!/、ぅ特 徴を活力して、液晶表示素子用バックライト、コンピュータの端末ディスプレイ、テレビ の画像ディスプレイ等として用途が広がりつつある。しかし、発光層を構成する蛍光 体が吸湿するとその発光輝度が著しく損なわれるという短所があり、具体的にはダー クスポット又はパネル全面の輝度が小さくなるという現象を生じることがある。そのため EL素子は、一般的に一対の電極間に発光層が配置された構成であり、これら全体を 透明な防湿膜で封止する構造を有して 、る。 [0145] Note that, unlike a liquid crystal display element, an EL element emits light by itself, and its thin film, light weight,! The application is expanding as an image display. However, when the phosphor constituting the light emitting layer absorbs moisture, the luminance of the emitted light is remarkably impaired. Specifically, a phenomenon may occur in which the luminance of the dark spot or the entire panel becomes small. Therefore, an EL element generally has a structure in which a light emitting layer is disposed between a pair of electrodes, and has a structure in which the whole is sealed with a transparent moisture-proof film.
実施例  Example
[0146] 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は 以下の実施例に限定されるものではない。  [0146] Hereinafter, the present invention will be described more specifically based on Examples and Comparative Examples, but the present invention is not limited to the following Examples.
[0147] 先ず、予備試験、実施例 1及び各比較例で得られた防湿膜用積層フィルムの評価 方法を説明する。 [0147] First, an evaluation method of the laminated film for moisture-proof film obtained in the preliminary test, Example 1 and each comparative example will be described.
[0148] (i)赤外線吸収スペクトルの面積比 α (フィルム中の水分量の測定法)  [0148] (i) Area ratio α of infrared absorption spectrum (Measurement method of water content in film)
予備試験、実施例 1及び各比較例で得られた防湿膜用積層フィルムに関して、前 記の方法の内、 ATR法を用いて、フィルムの赤外線吸収スペクトルの面積比 ex [ピー ク面積 S (3700〜2500cm_1)Zピーク面積 S ( 1800〜1500cm_ 1) ]を求めた。 Regarding the laminated film for moisture-proof film obtained in the preliminary test, Example 1 and each comparative example, the area ratio ex [peak area S (3700 ~2500cm _1) was determined Z peak area S (1800~1500cm _ 1)].
1 2  1 2
[0149] ここでピーク面積 S (3700〜2500cm_ 1)は、 3700cm_ 1の吸光度と 2500cm— 1の 吸光度 2点を結んだ直線を基線として、 3700〜2500cm_ 1の範囲の面積積分により 求めた。また、ピーク面積 S ( 1800〜1500cm_ 1)は、 1800cm_ 1の吸光度と 1500 [0149] Here, the peak area S (3700-2500 cm _ 1 ) is obtained by area integration in the range of 3700-2500 cm _ 1 with a line connecting the absorbance of 3700 cm _ 1 and the absorbance of 2500 cm- 1 as the base line. It was. Also, the peak area S (1800~1500cm _ 1) is, and the absorbance of 1800 cm _ 1 1500
2  2
cm—1の吸光度の 2点を結んだ直線を基線として、 1800〜1500cm_ 1の範囲の面積 積分により求めた。 cm- 1 of the straight line connecting two points of the absorbance as a baseline, was determined by area integration of a range of 1800~1500cm _ 1.
[0150] (ii)赤外線吸収スペクトルのピーク比 β (イオン化度の測定方法)  [0150] (ii) Infrared absorption spectrum peak ratio β (Measurement method of ionization degree)
予備試験、実施例 1及び各比較例で得られた防湿膜用積層フィルムに関して、前 記した方法の内、 ATR法でフィルムの赤外線吸収スペクトルの吸光度のピーク高さ の比からピーク比 j8 [ピーク A ( 1560cm- 1) /ピーク A ( 1700cm_ 1) ]を求めた。 Regarding the laminated film for moisture-proof film obtained in the preliminary test, Example 1 and each comparative example, among the methods described above, the peak ratio j8 [peak] from the ratio of the peak height of the infrared absorption spectrum of the film by the ATR method. a (1560cm - 1) / peak a (1700cm _ 1)] was determined.
1 2  1 2
[0151] ここでピーク A ( 1600cm— の吸光度とは、 1600cm_ 1の吸光度と 1500cm— 1の吸 [0151] Here, the peak A (1600cm- absorbance, 1600 cm _ 1 of absorbance and 1500Cm- 1 of the intake
1  1
光度の 2点を結んだ直線を基線として、 1600〜1500cm_ 1の範囲の吸収極大の高 さ力 求めた。またピーク A ( 1700cm_ 1)は、 1800cm_ 1の吸光度と 1600cm— 1の吸 A straight line connecting two points of the luminous intensity as a baseline, was determined height force of the absorption maximum in the range of 1600~1500cm _ 1. The peak A (1700cm _ 1) is, 1800 cm _ 1 of absorbance and 1600Cm- 1 of the intake
2  2
光度の 2点を結んだ直線を基線としてと 1800〜1600cm_ 1の範囲の吸収極大の高 さから求めた。 [0152] (m)酸素透過度の測定方法 A straight line connecting two points of the luminous intensity was determined from the height of the absorption maximum in the range of and 1800~1600cm _ 1 as the baseline. [0152] (m) Measuring method of oxygen permeability
予備試験、実施例 1及び各比較例で得られた防湿膜用積層フィルムの酸素透過度 を、 Modern Control社製酸素透過試験器の商品名称 OXTRAN2Z20を用いて 、温度 30°C、相対湿度 80% (RH)の条件下で測定した。測定方法は、 JIS K 71 26、 B法(等圧法)、及び ASTM D3985— 81に準拠し、測定値は、単位 cm3 (ST P) / (m2 · day-MPa)で表記した。ここで (STP)は酸素の体積を規定するための標 準条件 (0°C、 1気圧)を意味する。本実施例では、等圧法で測定した。 The oxygen permeability of the moisture-proof laminated film obtained in the preliminary test, Example 1 and each comparative example was measured using a product name OXTRAN2Z20 of an oxygen permeation tester manufactured by Modern Control, at a temperature of 30 ° C and a relative humidity of 80%. It was measured under the condition of (RH). The measurement method conformed to JIS K 7126, B method (isobaric method), and ASTM D3985-81, and the measured value was expressed in the unit cm 3 (ST P) / (m 2 · day-MPa). Here, (STP) means the standard condition (0 ° C, 1 atm) for defining the volume of oxygen. In this example, the measurement was performed by the isobaric method.
[0153] (iv)水蒸気透過度 (WVTR)の測定方法 [Iv] (iv) Method for measuring water vapor transmission rate (WVTR)
予備試験、実施例 1及び各比較例で得られた防湿膜用積層フィルムの防湿性の評 価として、水蒸気透過度の測定を JIS K7129— 1992プラスチックフィルム及びシー トの水蒸気透過度試験方法 (機器測定法)の B法 (赤外センサー法)に則って行った 。具体的には、温度 60°C、相対湿度 90%の条件で予備加湿を行い、加湿開始から 所定時間が経過した後の WVTRを温度 40°C、相対湿度 90%において測定した。測 定機器は、 Modern Control社製水蒸気透過試験機の商品名称 PERMA TRA Nを用いて、水蒸気供給側の相対湿度 90%RHで行った。測定値は、単位 gZm2'd ayで表じした。 In order to evaluate the moisture resistance of the laminated film for moisture-proof membranes obtained in the preliminary test, Example 1 and each comparative example, the water vapor permeability was measured using the JIS K7129-1992 water vapor permeability test method for plastic films and sheets (equipment). The measurement method was performed according to Method B (infrared sensor method). Specifically, preliminary humidification was performed under conditions of a temperature of 60 ° C and a relative humidity of 90%, and WVTR was measured at a temperature of 40 ° C and a relative humidity of 90% after a predetermined time had elapsed since the start of humidification. The measuring equipment was PERMA TRA N, a product name of a water vapor permeation tester manufactured by Modern Control, at a relative humidity of 90% RH on the water vapor supply side. The measured value was expressed in the unit gZm 2 'day.
[0154] (予備試験)有機薄膜の Znオージ 雷子スぺ外ルの測定  [0154] (Preliminary test) Measurement of Zn Auger Lightning Spare of Organic Thin Film
サンプルとして基材(延伸ポリエチレンテレフタレートフィルム [PETフィルム:東レ( 株)製の商品名称ルミラー S10、厚さ 12 m])の上に有機薄膜を形成せしめた防湿 膜用積層フィルムを製造し、前記有機薄膜の Znオージ 電子スペクトルを測定した。 かかる測定に際して、先ず、以下のような条件で、有機薄膜を製造した。なお、防湿 膜用積層フィルム力 有機薄膜の面を露出するように他の層を剥離して、この面を有 機薄膜の検体とすることも可能である。  As a sample, a laminated film for a moisture-proof film in which an organic thin film is formed on a base material (stretched polyethylene terephthalate film [PET film: product name Lumirror S10, Toray Co., Ltd., product name: 12 m]) is manufactured. The Zn Auger electron spectrum of the thin film was measured. In the measurement, first, an organic thin film was produced under the following conditions. It is also possible to peel another layer so as to expose the surface of the organic thin film, and to use this surface as an organic thin film specimen.
[0155] 〈塗工液〉  [0155] <Coating fluid>
ポリアクリル酸固形分濃度: 2. 5wt%、ZnO添カ卩量: 2. 0化学当量、アンモニア添 加量: 5. 0 (ZnOに対する質量比)、炭酸アンモニゥム添カ卩量: 5. 5 (ZnOに対する質 量比)となるように塗工液を調製した。具体的には、ポリアクリル酸 (PAA:東亞合成 社製の商品名称ァロン A— 10H): 200g (2. 74モル)、 ZnO (和光純薬社製) : 55. 7g (2. 74モル)、 28%アンモニア水溶液(和光純薬社製): 223g (3. 67モル)、炭 酸アンモニア (和光純薬社製):306g (3. 19モル)を配合して塗工液を調製した。 Polyacrylic acid solid content concentration: 2.5 wt%, ZnO addition amount: 2.0 chemical equivalent, ammonia addition amount: 5.0 (mass ratio to ZnO), ammonium carbonate addition amount: 5.5 ( The coating solution was prepared so that the mass ratio to ZnO). Specifically, polyacrylic acid (PAA: Toagosei Co., Ltd., trade name AALON A-10H): 200 g (2.74 mol), ZnO (Wako Pure Chemical Industries): 55. 7g (2.74 mol), 28% ammonia aqueous solution (Wako Pure Chemical Industries, Ltd.): 223g (3.67 mol), ammonia carbonate (Wako Pure Chemical Industries, Ltd.): 306g (3.19 mol) A coating solution was prepared.
[0156] 〈塗工方法〉 <Coating method>
ダイレクトグラビア方式 (グラビア版: 45線、深度: 800 μ m、 wet塗布量:約 22g/ m2、 KLマルチコ一ター、基材:ポリエチレンテレフタレート)。 Direct gravure method (gravure version: 45 lines, depth: 800 μm, wet coating amount: about 22 g / m 2 , KL multi-coater, substrate: polyethylene terephthalate).
[0157] 〈乾燥方法〉 <Drying method>
インライン乾燥 (乾燥炉設定:第一ゾーン 60°C 15mZsec、第二ゾーン 60°C 15mZsec、ライン速度: 4mZmin)。  In-line drying (drying oven setting: first zone 60 ° C 15mZsec, second zone 60 ° C 15mZsec, line speed: 4mZmin).
[0158] 〈熱処理〉 [0158] <Heat treatment>
有機薄膜をフエ口板に固定して、 210°Cのギヤオーブン中で 15min熱処理した。  The organic thin film was fixed to the ferrule plate and heat-treated for 15 minutes in a 210 ° C gear oven.
[0159] 次に、得られた前記有機薄膜を研摩法により傾斜をつけて面出しを行った。その後 、有機薄膜の元素の分布状態及び表面側から 0. 2 111の点と0. 4 mの点とにお ける Znのオージ 電子スペクトルにっき測定を行った。測定方法は以下の条件にし たがった。 [0159] Next, the obtained organic thin film was subjected to chamfering with an inclination by a polishing method. After that, the distribution of the elements in the organic thin film and the auger electronic spectrum of Zn at the point of 0.2111 and the point of 0.4 m from the surface side were clearly measured. The measurement method was based on the following conditions.
測定装置: PHI社製の商品名称 Quantera SXM  Measuring device: Product name manufactured by PHI Quantera SXM
X線源: Al mono (1486. 6eV)  X-ray source: Al mono (1486. 6eV)
検出領域 20 /ζ πι φ  Detection area 20 / ζ πι φ
検出深さ 4〜5nm (取り出し角 45° )  Detection depth 4 ~ 5nm (take-off angle 45 °)
測定スペクトル:ワイド(0〜1500eV)、ナロー(Zn— LMNォージェ電子に対応する 490〜505eV)。  Measurement spectrum: Wide (0 to 1500 eV), narrow (490 to 505 eV corresponding to Zn—LMN Auger electrons).
[0160] 測定により確認された元素の分布状態を図 7に示し、 Znのォージェ電子スペクトル 分析による測定結果を図 8に示す。また、図 8中、◊は有機薄膜の表面におけるォー ジェ電子スペクトル分析による亜鉛の結合エネルギーと強度との関係を示し、□は有 機薄膜の表面力 0. 2 mの位置におけるォージェ電子スペクトル分析による亜鉛 の結合エネルギーと強度との関係を示し、△は有機薄膜の表面力 0. の位置 におけるォージェ電子スペクトル分析による亜鉛の結合エネルギーと強度との関係を 示す。図 7及び図 8の関係から、 Znのオージュ電子スペクトル分析による結合エネル ギ一は 496〜498eVにピークを有し、力かるピークが主に亜鉛とアンモニアとの化学 的結合に由来するものであると推測された。 [0160] Fig. 7 shows the distribution of the elements confirmed by the measurement, and Fig. 8 shows the measurement results obtained by the analysis of the Zn Auger electron spectrum. In Fig. 8, ◊ indicates the relationship between the binding energy and the strength of zinc by the Auger electron spectrum analysis on the surface of the organic thin film, and □ indicates the Auger electron spectrum at the surface force of 0.2 m of the organic thin film. Analysis shows the relationship between the binding energy and strength of zinc, and △ shows the relationship between the binding energy and strength of zinc in the position of surface force 0. From the relationship shown in Fig. 7 and Fig. 8, the binding energy by the Auger electron spectrum analysis of Zn has a peak at 496 to 498 eV, and the strong peak is mainly the chemistry of zinc and ammonia. It was presumed to be derived from the mechanical bond.
[0161] なお、前述のようにして得られた有機薄膜の赤外線吸収スペクトルの面積比 ex、赤 外線吸収スペクトルのピーク比 β、酸素透過度及び水蒸気透過度を上記のようにし て測定したところ、面積比 αは 1. 3であり、ピーク比 βは 8であり、酸素透過度は 5cm 3 (STP) Z (m2 ' day MPa)であり、水蒸気透過度は lgZ (m2 ' day)であった。この ような酸素透過度及び水蒸気透過度の測定結果から、上記のようにして製造された 有機薄膜は優れたガスノリャ性及び防湿性を有することが確認された。 [0161] The area ratio ex of the infrared absorption spectrum, the peak ratio β of the infrared absorption spectrum, the oxygen transmission rate and the water vapor transmission rate of the organic thin film obtained as described above were measured as described above. The area ratio α is 1.3, the peak ratio β is 8, the oxygen permeability is 5 cm 3 (STP) Z (m 2 'day MPa), and the water vapor permeability is lgZ (m 2 ' day). there were. From the measurement results of such oxygen permeability and water vapor permeability, it was confirmed that the organic thin film produced as described above has excellent gas nozzle properties and moisture resistance.
[0162] (製造例 1 [溶液 A] )  [0162] (Production Example 1 [Solution A])
有機薄膜の成膜用の溶液 Aを下記のようにして製造した。ポリカルボン酸系重合体 (A)として、東亞合成 (株)製ポリアクリル酸 (PAA)の商品名称ァロン A— 10H (数平 均分子量 200, 000、 25重量%水溶液)を用いた。前記 PAA水溶液に対して、揮発 性塩基としてアンモニア水 (和光純薬工業 (株)製試薬アンモニア 28重量%水溶液) 、酸ィ匕亜鉛 (和光純薬工業 (株)製試薬)、蒸留水を下記組成で順次添加し超音波ホ モジナイザーで混合して溶液 Aを得た。揮発性塩基 (アンモニア)による亜鉛の錯体 形成性を利用し、酸ィ匕亜鉛が完全に溶解した均一な透明溶液であった。  Solution A for forming an organic thin film was produced as follows. As the polycarboxylic acid polymer (A), Tolonsei Co., Ltd. polyacrylic acid (PAA), trade name: AALON A-10H (a few average molecular weight 200, 000, 25 wt% aqueous solution) was used. For the PAA aqueous solution, ammonia water (reagent ammonia 28 wt% aqueous solution manufactured by Wako Pure Chemical Industries, Ltd.), acid zinc (reagent manufactured by Wako Pure Chemical Industries, Ltd.), and distilled water are used as volatile bases. Solution A was obtained by sequentially adding in composition and mixing with an ultrasonic homogenizer. Utilizing the complexing ability of zinc with volatile base (ammonia), it was a homogeneous transparent solution in which zinc oxide was completely dissolved.
溶液 Aの組成  Solution A composition
PAA25重量%水溶液 250g  PAA 25% by weight aqueous solution 250g
28重量0 /0アンモニア水 210g 28 weight 0/0 ammonia water 210g
酸化亜鉛 35g  Zinc oxide 35g
蒸留水 505g  Distilled water 505g
合計 1000g。  Total 1000g.
[0163] 溶液 Aの構成中、アンモニアは PAA中のカルボキシ基に対して 400mol% (4. 0 化学当量)、酸ィ匕亜鉛は 50mol% ( l . 0化学当量)、 PAA濃度は 6. 25重量%であ つた o [0163] In the composition of Solution A, ammonia was 400 mol% (4.0 chemical equivalents) relative to the carboxy group in PAA, acid-zinc was 50 mol% (1.0 chemical equivalents), and the PAA concentration was 6.25. % By weight
[0164] (製造例 2 [溶液 B] )  [0164] (Production Example 2 [Solution B])
有機薄膜の成膜用の溶液 Bを下記のようにして製造した。ポリカルボン酸系重合体 として、東亞合成 (株)製、ポリアクリル酸 (PAA)の商品名称ァロン A— 10H (数平均 分子量 200, 000、 25重量%水溶液)を用い、糖類として、和光純薬工業 (株)製の 可溶性澱粉を用い、各々を水で希釈して水溶液に調製した。このようにして得た PA A水溶液に対して、水酸ィ匕ナトリウム (和光純薬工業 (株)製、試薬一級品)を加えて 溶解させ、部分中和 PAA水溶液を調製した。その後、得られた PAA水溶液と上記 可溶性澱粉水溶液とを混合して溶液 Bを得た。溶液 Bの組成は下記の通りである。 溶液 B組成 Solution B for forming an organic thin film was prepared as follows. As a polycarboxylic acid polymer, Toagosei Co., Ltd., product name AALON A-10H (number average molecular weight 200, 000, 25 wt% aqueous solution) of polyacrylic acid (PAA) is used, and Wako Pure Chemical is used as a saccharide. Made by Kogyo Co., Ltd. Soluble starch was used and each was diluted with water to prepare an aqueous solution. A sodium hydroxide hydroxide (manufactured by Wako Pure Chemical Industries, Ltd., first grade reagent) was added to the PAA aqueous solution thus obtained and dissolved to prepare a partially neutralized PAA aqueous solution. Thereafter, the obtained PAA aqueous solution and the soluble starch aqueous solution were mixed to obtain a solution B. The composition of solution B is as follows. Solution B composition
PAA25重量%水溶液 250g  PAA 25% by weight aqueous solution 250g
水酸化ナトリウム 3g  Sodium hydroxide 3g
可溶性澱粉 42g  Soluble starch 42g
蒸留水 705g  Distilled water 705g
合計 1000g。  Total 1000g.
[0165] 溶液 Bの構成中、ナトリウムは PAA中のカルボキシ基に対して 8. 8mol% (8. 8化 学当量)、 PAA濃度は 6. 25重量%であった。 [0165] In the composition of Solution B, sodium was 8.8 mol% (8.8 chemical equivalents) with respect to the carboxy group in PAA, and the PAA concentration was 6.25 wt%.
[0166] (実施例 1) [Example 1]
実施例 1では、基材 Z無機層 Z有機層 (有機薄膜 Z有機薄膜) Z無機層 Z基材の 順に積層された防湿膜用積層フィルムを製造した。すなわち、基材として 2枚の延伸 ポリエチレンテレフタレートフィルム(PETフィルム:東レ(株)製の商品名称ルミラー S 10、厚さ 12 /z m)を用い、かかる 2枚の基材の上に、それぞれ酸化ケィ素蒸着膜 (無 機層)を形成せしめた。蒸着法としては、電子ビーム蒸着法を用い、基材の上に膜厚 が 0. 025 mとなるように酸ィ匕ケィ素を蒸着せしめた。このようにして、基材に無機層 が積層された無機層形成基材フィルムを 2枚製造した。  In Example 1, a laminated film for a moisture-proof film was produced by laminating the base material Z inorganic layer Z organic layer (organic thin film Z organic thin film) Z inorganic layer Z base material in this order. That is, two stretched polyethylene terephthalate films (PET film: product name Lumirror S10, thickness 12 / zm, manufactured by Toray Industries, Inc.) are used as the base materials, and the oxidation cages are respectively formed on the two base materials. A vapor-deposited film (inorganic layer) was formed. As the vapor deposition method, an electron beam vapor deposition method was used, and an oxide layer was deposited on the substrate so that the film thickness was 0.025 m. In this way, two inorganic layer-forming substrate films in which the inorganic layer was laminated on the substrate were produced.
[0167] 次に、前記 2枚の無機層形成基材フィルムの無機層の上に、製造例 1で得られた溶 液 Aを、それぞれバーコ一ター(RK PRINT -COAT IN STRUMENT社製の 商品名称 K303PROOFER)を用いて塗工し、基材に無機層と有機薄膜とが積層さ れた有機無機積層フィルムを2枚得た。 [0167] Next, on the inorganic layer of the two inorganic layer-forming substrate films, the solution A obtained in Production Example 1 was applied to a bar coater (a product manufactured by RK PRINT-COAT IN STRUMENT). (Name K303PROOFER) to obtain two organic / inorganic laminated films in which an inorganic layer and an organic thin film were laminated on a base material.
[0168] そして、前記 2枚の有機無機積層フィルムの有機薄膜面同士を直接的に対向させ 、加熱ロールを用いて、 90°Cの条件下、圧力 IMPaで圧着せしめ、その後、オーブ ン中、 200°Cの条件下で 60分間熱処理して本発明の防湿膜用積層フィルムを得た。  [0168] Then, the organic thin film surfaces of the two organic-inorganic laminated films are directly opposed to each other and are pressure-bonded with a pressure IMPa under a condition of 90 ° C using a heating roll, and then in an oven, The laminated film for moisture-proof film of the present invention was obtained by heat treatment at 200 ° C. for 60 minutes.
[0169] 得られた防湿膜用積層フィルム中の有機層の厚みは 1. 4 m (有機薄膜 1枚の膜 厚は 0. であった。また、このようにして得られた防湿膜用積層フィルム中の赤 外線吸収スペクトルの面積比 α [ピーク面積 S (3700〜2500cm_1)Zピーク面積 S (1800〜1500cm_1) ]、ピーク比 j8 [ピーク A (1560cm—1) /ピーク A (1700cm[0169] The thickness of the organic layer in the obtained laminated film for moisture-proof membrane is 1.4 m (one organic thin film) The thickness was 0. In addition, the area ratio α [peak area S (3700-2500 cm _1 ) Z peak area S (1800-1500 cm _1 )] and the peak ratio j8 [ Peak A (1560cm— 1 ) / Peak A (1700cm
2 1 2 2 1 2
_1) ]、酸素透過度及び水蒸気透過度 (WVTR)をそれぞれ前述の方法で測定した。 なお、 WVTRの測定は、加湿開始から 0時間後、 24時間後、 250時間後、 500時間 後、 1000時間後に行った。得られた結果を表 1に示す。 _1 )], oxygen permeability and water vapor permeability (WVTR) were measured by the methods described above. WVTR was measured after 0, 24, 250, 500, and 1000 hours from the start of humidification. The results obtained are shown in Table 1.
[0170] (実施例 2)  [0170] (Example 2)
実施例 2では、基材 Z無機層 Z有機薄膜 Z接着層 Z有機薄膜 Z無機層 Z基材の 順に積層された防湿膜用積層フィルムを製造した。すなわち、基材として 2枚の延伸 ポリエチレンテレフタレートフィルム(PETフィルム:東レ(株)製の商品名称ルミラー S 10、厚さ 12 /z m)を用い、かかる 2枚の基材の上に、それぞれ酸化ケィ素蒸着膜 (無 機層)を形成せしめた。蒸着法としては、電子ビーム蒸着法を用い、基材の上に膜厚 が 0. 025 mとなるように酸ィ匕ケィ素を蒸着せしめた。このようにして、基材に無機層 が積層された無機層形成基材フィルムを 2枚製造した。  In Example 2, a laminated film for a moisture-proof film was produced by laminating the base material Z inorganic layer Z organic thin film Z adhesive layer Z organic thin film Z inorganic layer Z base material in this order. That is, two stretched polyethylene terephthalate films (PET film: product name Lumirror S10, thickness 12 / zm, manufactured by Toray Industries, Inc.) are used as the base materials, and the oxidation cages are respectively formed on the two base materials. A vapor-deposited film (inorganic layer) was formed. As the vapor deposition method, an electron beam vapor deposition method was used, and an oxide layer was deposited on the substrate so that the film thickness was 0.025 m. In this way, two inorganic layer-forming substrate films in which the inorganic layer was laminated on the substrate were produced.
[0171] 次に、前記 2枚の無機層形成基材フィルムの無機層の上に、製造例 1で得られた溶 液 Aを、それぞれバーコ一ター(RK PRINT -COAT IN STRUMENT社製の 商品名称 K303PROOFER)を用いて塗工し、その後、オーブン中、 200°Cの条件 下で 60分間熱処理して基材に無機層と有機薄膜とが積層された有機無機積層フィ ルムを 2枚得た。  [0171] Next, on the inorganic layer of the two inorganic layer-forming substrate films, the solution A obtained in Production Example 1 was applied to a bar coater (product of RK PRINT-COAT IN STRUMENT). Name was K303PROOFER), and then heat treated in an oven at 200 ° C for 60 minutes to obtain two organic / inorganic laminated films in which an inorganic layer and an organic thin film were laminated on the substrate. .
[0172] そして、前記 2枚の有機無機積層フィルムの有機薄膜面上に接着剤を塗工してドラ ィラミネート法により接着せしめて本発明の防湿膜用積層フィルムを得た。具体的に は、前記 2枚の有機無機積層フィルムの有機薄膜面上にウレタン系接着剤 (大日本 インキ社製の商品名称ディックドライ LX500 (主剤) /KW75 (硬化剤)、ビカット軟ィ匕 点 100〜105°C)を塗工し、温度 200°Cの条件下で 5秒間乾燥せしめた後、温度 15 0°Cの条件下で圧力 IMPaで圧着させて前記有機無機積層フィルムが接着層を介し て接着された本発明の防湿膜用積層フィルムを得た。  [0172] Then, an adhesive was applied onto the organic thin film surfaces of the two organic / inorganic laminated films and adhered by a dry laminating method to obtain a laminated film for a moisture-proof film of the present invention. Specifically, a urethane adhesive (Dick Dry LX500 (main agent) / KW75 (curing agent), Vicat soft spot, manufactured by Dainippon Ink & Chemicals) on the organic thin film surface of the two organic / inorganic laminated films. 100 ° C. to 105 ° C.) and dried for 5 seconds at a temperature of 200 ° C. and then pressure-bonded at a pressure of IM Pa at a temperature of 150 ° C. Thus, a laminated film for a moisture-proof film of the present invention adhered through the film was obtained.
[0173] 得られた防湿膜用積層フィルム中の有機薄膜の厚みは、それぞれ 0. 7 μ mであり、 接着層の厚みは 1. 5 mであった。また、このようにして得られた防湿膜用積層フィ ルム中の赤外線吸収スペクトルの面積比 α [ピーク面積 S (3700〜2500cm_1)Z ピーク面積 S (1800〜1500cm_1) ]、ピーク比 j8 [ピーク A (1560cm [0173] The thickness of the organic thin film in the obtained laminated film for moisture-proof film was 0.7 μm, and the thickness of the adhesive layer was 1.5 m. The laminated film for moisture-proof film obtained in this way is also used. Area ratio α [peak area S (3700-2500 cm _1 ) Z peak area S (1800-1500 cm _1 )], peak ratio j8 [peak A (1560 cm
2 1 _1)Zピーク2 1 _1 ) Z peak
A (1700cm—1) ]、酸素透過度及び水蒸気透過度 (WVTR)をそれぞれ前述の方A (1700cm- 1 )], oxygen permeability and water vapor permeability (WVTR)
2 2
法で測定した。なお、 WVTRの測定は、加湿開始力 0時間後、 24時間後、 250時 間後、 500時間後、 1000時間後に行った。得られた結果を表 1に示す。  Measured by the method. The WVTR was measured after 0, 24, 250, 500, and 1000 hours of starting humidification. The results obtained are shown in Table 1.
[0174] (実施例 3)  [0174] (Example 3)
実施例 3では、ウレタン系接着剤(大日本インキ社製の商品名称ディックドライ LX5 00 (主剤) /KW75 (硬化剤)、ビカット軟化点 100〜105°C)の代わりにポリエステル 系接着剤 (東洋モートン社製の商品名称 TM250HV (主剤)、商品名称 CAT— RT 86L— 60 (硬化剤)、ビカット軟ィ匕点 95〜98°C)を用いた以外は実施例 2と同様にし て本発明の防湿膜用積層フィルムを得た。  In Example 3, instead of urethane adhesive (product name Dick Dry LX500 (main agent) / KW75 (curing agent) manufactured by Dainippon Ink, Vicat softening point 100 to 105 ° C), polyester adhesive (Toyo The product name TM250HV (main agent), product name CAT-RT 86L-60 (curing agent), Vicat soft spot 95-98 ° C) manufactured by Morton Co., Ltd. A laminated film for moisture-proof film was obtained.
[0175] 得られた防湿膜用積層フィルム中の有機薄膜の厚みは、それぞれ 0. 7 μ mであり、 接着層の厚みは 1. 5 mであった。また、このようにして得られた防湿膜用積層フィ ルム中の赤外線吸収スペクトルの面積比 α [ピーク面積 S (3700〜2500cm_1)Z ピーク面積 S (1800〜1500cm_1) ]、ピーク比 j8 [ピーク A (1560cm—1) /ピーク [0175] The thickness of the organic thin film in the obtained laminated film for moisture-proof film was 0.7 μm, and the thickness of the adhesive layer was 1.5 m. In addition, the area ratio α [peak area S (3700-2500 cm _1 ) Z peak area S (1800-1500 cm _1 )] and peak ratio j8 [ Peak A (1560cm— 1 ) / peak
2 1  twenty one
A (1700cm—1) ]、酸素透過度及び水蒸気透過度 (WVTR)をそれぞれ前述の方A (1700cm- 1 )], oxygen permeability and water vapor permeability (WVTR)
2 2
法で測定した。なお、 WVTRの測定は、加湿開始力 0時間後、 24時間後、 250時 間後、 500時間後、 1000時間後に行った。得られた結果を表 1に示す。  Measured by the method. The WVTR was measured after 0, 24, 250, 500, and 1000 hours of starting humidification. The results obtained are shown in Table 1.
[0176] (実施例 4) [0176] (Example 4)
実施例 4では、ウレタン系接着剤(大日本インキ社製の商品名称ディックドライ LX5 00 (主剤) /KW75 (硬化剤)、ビカット軟ィ匕点 100〜105°C)の代わりにアクリル系接 着剤 (東洋モートン社製の商品名称 BLS— PA3 (主剤) /CAT-RT35 (硬化剤)、 ビカット軟ィ匕点 105〜110°C)を用いた以外は実施例 2と同様にして本発明の防湿膜 用積層フィルムを得た。  In Example 4, acrylic adhesive was used instead of urethane adhesive (product name Dick Dry LX500 (main agent) / KW75 (curing agent), Vicat softening point 100 to 105 ° C, manufactured by Dainippon Ink and Co., Ltd.) Except for using the agent (trade name BLS-PA3 (main agent) / CAT-RT35 (curing agent), Vicat soft spot 105-110 ° C, manufactured by Toyo Morton Co., Ltd.) A laminated film for a moisture-proof film was obtained.
[0177] 得られた防湿膜用積層フィルム中の有機薄膜の厚みは、それぞれ 0. 7 μ mであり、 接着層の厚みは 1. 5 mであった。また、このようにして得られた防湿膜用積層フィ ルム中の赤外線吸収スペクトルの面積比 α [ピーク面積 S (3700〜2500cm_1)Z ピーク面積 S (1800〜1500cm_1) ]、ピーク比 j8 [ピーク A (1560cm—1) /ピーク A (1700cm—1) ]、酸素透過度及び水蒸気透過度 (WVTR)をそれぞれ前述の方[0177] The thickness of the organic thin film in the obtained laminated film for moisture-proof film was 0.7 μm, respectively, and the thickness of the adhesive layer was 1.5 m. In addition, the area ratio α [peak area S (3700-2500 cm _1 ) Z peak area S (1800-1500 cm _1 )] and peak ratio j8 [ Peak A (1560cm— 1 ) / peak A (1700cm- 1 )], oxygen permeability and water vapor permeability (WVTR)
2 2
法で測定した。なお、 WVTRの測定は、加湿開始力 0時間後、 24時間後、 250時 間後、 500時間後、 1000時間後に行った。得られた結果を表 1に示す。  Measured by the method. The WVTR was measured after 0, 24, 250, 500, and 1000 hours of starting humidification. The results obtained are shown in Table 1.
[0178] (比較例 1)  [0178] (Comparative Example 1)
比較例 1では、基材 Z無機層 Z有機薄膜の順で積層された防湿膜用積層フィルム を製造した。すなわち、基材として延伸ポリエチレンテレフタレートフィルム(PETフィ ルム:東レ (株)製の商品名称ルミラー S 10、厚さ 12 /z m)を用い、力かる基材の上に 酸化ケィ素蒸着膜 (無機層)を形成せしめ、基材に無機層が積層された無機層形成 基材フィルムを製造した。なお、蒸着法としては、実施例 1と同様の方法を用いた。次 に、前記無機層形成基材フィルムの無機層の表面上に、製造例 1で得られた溶液 A を、バーコ一ター(RK PRINT -COAT IN STRUMENT社製の商品名称 K3 03PROOFER)を用いて塗工し、オーブン中、 200°Cの条件下で 60分間熱処理し て比較としての防湿膜用積層フィルムを得た。  In Comparative Example 1, a laminated film for a moisture-proof film was produced, which was laminated in the order of base material Z inorganic layer Z organic thin film. That is, a stretched polyethylene terephthalate film (PET film: product name Lumirror S10, thickness 12 / zm, manufactured by Toray Industries, Inc.) is used as the base material, and a silicon oxide vapor deposition film (inorganic layer) is formed on the strong base material. ) To form an inorganic layer-formed base film in which an inorganic layer was laminated on the base material. In addition, as a vapor deposition method, the same method as in Example 1 was used. Next, on the surface of the inorganic layer of the inorganic layer forming substrate film, the solution A obtained in Production Example 1 is used with a bar coater (trade name K3 03PROOFER manufactured by RK PRINT-COAT IN STRUMENT). The coated film was heat-treated in an oven at 200 ° C. for 60 minutes to obtain a laminated film for a moisture-proof film as a comparison.
[0179] 得られた防湿膜用積層フィルム中、無機層の膜厚は 0. 025 μ mであり、有機薄膜 の膜厚は 0. であった。また、このようにして得られた防湿膜用積層フィルムに ついて、実施例 1と同様の測定を行った。なお、 WVTRの測定は、加湿開始力 0時 間後、 250時間後に行った。得られた結果を表 1に示す。  [0179] In the obtained laminated film for moisture-proof film, the film thickness of the inorganic layer was 0.025 µm, and the film thickness of the organic thin film was 0. Further, the same measurement as in Example 1 was performed on the laminated film for moisture-proof film thus obtained. The WVTR was measured after 0 hours and after 250 hours. The results obtained are shown in Table 1.
[0180] (比較例 2)  [0180] (Comparative Example 2)
比較例 2では、基材 Z無機層 Z有機薄膜の順で積層された防湿膜用積層フィルム を製造した。この時、溶液 Bを用いた以外は、比較例 1と同様にして比較としての防湿 膜用積層フィルムを得た。  In Comparative Example 2, a laminated film for a moisture-proof film was produced, which was laminated in the order of base material Z inorganic layer Z organic thin film. At this time, a laminated film for a moisture-proof film was obtained in the same manner as in Comparative Example 1 except that the solution B was used.
[0181] 得られた防湿膜用積層フィルム中、無機層の膜厚は 0. 025 μ mであり、有機薄膜 の膜厚は 0. であった。また、このようにして得られた防湿膜用積層フィルムに ついて、実施例 1と同様の測定を行った。なお、 WVTRの測定は、加湿開始力 0時 間後、 250時間後に行った。得られた結果を表 1に示す。  [0181] In the obtained laminated film for moisture-proof film, the film thickness of the inorganic layer was 0.025 μm, and the film thickness of the organic thin film was 0.0. Further, the same measurement as in Example 1 was performed on the laminated film for moisture-proof film thus obtained. The WVTR was measured after 0 hours and after 250 hours. The results obtained are shown in Table 1.
[0182] (比較例 3)  [0182] (Comparative Example 3)
比較例 3では、基材 Z有機薄膜の順で積層された防湿膜用積層フィルムを製造し た。すなわち、基材として延伸ポリエチレンテレフタレートフィルム(PETフィルム:東レ (株)製の商品名称ルミラー S10、厚さ 12 /z m)を用い、力かる基材の上に製造例 1で 得られた溶液 Aを、バーコ一ター(RK PRINT -COAT IN STRUMENT社製 の商品名称 K303PROOFER)を用いて塗工し、オーブン中、 200°Cの条件下で 60 分間熱処理して比較としての防湿膜用積層フィルムを得た。 In Comparative Example 3, a laminated film for a moisture-proof film was produced in the order of the base material Z organic thin film. That is, stretched polyethylene terephthalate film (PET film: Toray Using the product name Lumirror S10 (thickness: 12 / zm) manufactured by Co., Ltd., the solution A obtained in Production Example 1 was applied on a strong substrate using a bar coater (RK PRINT-COAT IN STRUMENT Product name K303PROOFER) was applied, and heat treatment was performed in an oven at 200 ° C. for 60 minutes to obtain a laminated film for moisture-proof film as a comparison.
[0183] 得られた防湿膜用積層フィルム中、有機薄膜の膜厚は 0. 7 μ mであった。また、こ のようにして得られた防湿膜用積層フィルムについて、実施例 1と同様の測定を行つ た。なお、 WVTRの測定は、加湿開始力 0時間後に行った。得られた結果を表 1に 示す。  [0183] In the obtained laminated film for moisture-proof film, the film thickness of the organic thin film was 0.7 µm. Further, the same measurement as in Example 1 was performed on the laminated film for moisture-proof film thus obtained. WVTR was measured 0 hours after the start of humidification. The results obtained are shown in Table 1.
[0184] (比較例 4)  [0184] (Comparative Example 4)
比較例 4では、基材 Z無機層の順で積層された防湿膜用積層フィルムを製造した。 すなわち、基材として延伸ポリエチレンテレフタレートフィルム(PETフィルム:東レ(株 )製の商品名称ルミラー S10、厚さ 12 111)を用い、力かる基材の上に酸ィ匕ケィ素蒸 着膜 (無機層)を形成せしめ、比較としての防湿膜用積層フィルムを得た。なお、蒸着 法としては実施例 1と同様の方法を用 V、た。  In Comparative Example 4, a laminated film for a moisture-proof film laminated in the order of the base material Z inorganic layer was produced. That is, stretched polyethylene terephthalate film (PET film: product name Lumirror S10, thickness 12 111, manufactured by Toray Industries, Inc.) is used as a base material, and an acid-sealed vapor deposition film (inorganic layer) on a strong base material. ) To obtain a laminated film for moisture-proof film as a comparison. As a vapor deposition method, the same method as in Example 1 was used.
[0185] 得られた防湿膜用積層フィルム中、無機層の膜厚は 0. 025 μ mであった。また、こ のようにして得られた防湿膜用積層フィルムについて、実施例 1と同様の測定を行つ た。なお、 WVTRの測定は、加湿開始力 0時間後、 250時間後に行った。得られた 結果を表 1に示す。  [0185] In the obtained laminated film for moisture-proof film, the film thickness of the inorganic layer was 0.025 μm. Further, the same measurement as in Example 1 was performed on the laminated film for moisture-proof film thus obtained. WVTR was measured after 0 hours and 250 hours after the start of humidification. The results obtained are shown in Table 1.
[0186] (比較例 5)  [0186] (Comparative Example 5)
比較例 5では、基材 Z無機層 Z接着層の順で積層された防湿膜用積層フィルムを 製造した。すなわち、基材として延伸ポリエチレンテレフタレートフィルム(PETフィル ム:東レ (株)製の商品名称ルミラー S 10、厚さ 12 m)を用い、力かる基材の上に酸 化ケィ素蒸着膜 (無機層)を形成せしめ、基材に無機層が積層された無機層形成基 材フィルムを製造した。なお、蒸着法としては実施例 1と同様の方法を用いた。  In Comparative Example 5, a laminated film for a moisture-proof film was produced in the order of the base material Z inorganic layer Z adhesive layer. That is, a stretched polyethylene terephthalate film (PET film: product name Lumirror S 10 manufactured by Toray Industries, Inc., thickness 12 m) is used as the base material, and an oxidized silicon vapor-deposited film (inorganic layer) is applied on the strong base material. ) To produce an inorganic layer forming substrate film in which an inorganic layer is laminated on a substrate. The vapor deposition method was the same as in Example 1.
[0187] 次に、前記無機層形成基材フィルムの無機層の上に接着剤 (東洋モートン社製の 商品名称 TM250HV (主剤)、商品名称 CAT— RT86L— 60 (硬ィ匕剤)、ビカット軟 化点 95〜98°C)を塗工し、ドライヤーを用いて 70°Cの条件下で 1分間乾燥させた後 、オーブン中で 200°Cの条件下で 60分間熱処理して比較としての防湿膜用積層フィ ルムを得た。 [0187] Next, an adhesive (trade name TM250HV (main agent), product name CAT—RT86L-60 (hard hardener), Vicat Soft, manufactured by Toyo Morton Co., Ltd.) was applied on the inorganic layer of the inorganic layer forming substrate film. (Chemical point 95-98 ° C), dried for 1 minute at 70 ° C using a dryer, and then heat treated in an oven at 200 ° C for 60 minutes for comparative moisture-proofing Laminate film for membrane I got Lum.
[0188] 得られた防湿膜用積層フィルム中、無機層の膜厚は 0. 025 μ mであり、接着層の 膜厚は 1. であった。また、このようにして得られた防湿膜用積層フィルムにつ いて、実施例 1と同様の測定を行った。なお、 WVTRの測定は、加湿開始から 0時間 後、 24時間後、 250時間後に行った。得られた結果を表 1に示す。  [0188] In the obtained laminated film for moisture-proof film, the film thickness of the inorganic layer was 0.025 μm, and the film thickness of the adhesive layer was 1. Further, the same measurement as in Example 1 was performed on the laminated film for moisture-proof film thus obtained. WVTR was measured after 0, 24 and 250 hours from the start of humidification. The results obtained are shown in Table 1.
[0189] (比較例 6)  [0189] (Comparative Example 6)
比較例 6では、基材 Z無機層 Z有機層 (有機薄膜 Z有機薄膜) Z無機層 Z基材の 順に積層された防湿膜用積層フィルムを製造した。力かる防湿膜用積層フィルムの 製造に際して、溶液 Aの変わりに溶液 Bを用いた以外は実施例 1と同様にして比較と しての防湿膜用積層フィルムを得た。  In Comparative Example 6, a laminated film for a moisture-proof film was produced by laminating the base material Z inorganic layer Z organic layer (organic thin film Z organic thin film) Z inorganic layer Z base material in this order. A comparative laminated film for a moisture-proof film was obtained in the same manner as in Example 1 except that the solution B was used instead of the solution A in the production of the strong laminated film for the moisture-proof film.
[0190] 得られた防湿膜用積層フィルム中、無機層の膜厚は 0. 025 μ mであり、有機層の 厚みは 1. 4 m (有機薄膜 1枚の膜厚 0. 7 m)であった。また、このようにして得ら れた防湿膜用積層フィルムについて、実施例 1と同様の測定を行った。なお、 WVT Rの測定は、加湿開始力も 0時間後、 24時間後、 250時間後に行った。得られた結 果を表 1に示す。  [0190] In the obtained laminated film for moisture-proof film, the inorganic layer has a thickness of 0.025 μm and the organic layer has a thickness of 1.4 m (the thickness of one organic thin film is 0.7 m). there were. Further, the same measurement as in Example 1 was performed on the laminated film for moisture-proof film thus obtained. WVT R was measured after 0 hours, 24 hours, and 250 hours after the start of humidification. Table 1 shows the results obtained.
[0191] (比較例 7)  [0191] (Comparative Example 7)
比較例 7では、基材 Z無機層 Z有機薄膜 Z接着層 Z有機薄膜 Z無機層 Z基材の 順に積層された防湿膜用積層フィルムを製造した。力かる防湿膜用積層フィルムの 製造に際して、溶液 Aの変わりに溶液 Bを用いた以外は実施例 2と同様にして比較と しての防湿膜用積層フィルムを得た。  In Comparative Example 7, a laminated film for a moisture-proof film was produced by laminating the base material Z inorganic layer Z organic thin film Z adhesive layer Z organic thin film Z inorganic layer Z base material in this order. A comparative laminated film for a moisture-proof film was obtained in the same manner as in Example 2 except that the solution B was used instead of the solution A in the production of the strong laminated film for the moisture-proof film.
[0192] 得られた防湿膜用積層フィルム中、無機層の膜厚は 0. 025 μ mであり、有機薄膜 の膜厚 0. であり、接着層の厚みは 1. 5 mであった。また、このようにして得ら れた防湿膜用積層フィルムについて、実施例 1と同様の測定を行った。なお、 WVT Rの測定は、加湿開始力も 0時間後、 24時間後、 250時間後に行った。得られた結 果を表 1に示す。  [0192] In the obtained laminated film for moisture-proof film, the film thickness of the inorganic layer was 0.025 μm, the film thickness of the organic thin film was 0.0, and the thickness of the adhesive layer was 1.5 m. Further, the same measurement as in Example 1 was performed on the laminated film for moisture-proof film thus obtained. WVT R was measured after 0 hours, 24 hours, and 250 hours after the start of humidification. Table 1 shows the results obtained.
[0193] (比較例 8)  [0193] (Comparative Example 8)
比較例 8では、基材 Z有機層 (有機薄膜 Z有機薄膜) Z基材の順に積層された防 湿膜用積層フィルムを製造した。すなわち、基材として 2枚の延伸ポリエチレンテレフ タレートフィルム(PETフィルム:東レ(株)製の商品名称ルミラー S 10、厚さ 12 m) を用い、かかる 2枚の基材の上に、製造例 1で得られた溶液 Aを、それぞれバーコ一 ター(RK PRINT- COAT IN STRUMENT社製の商品名称 K303PROOFE R)を用いて塗工し、オーブン中、 200°Cの条件下で 60分間乾燥させて基材に有機 薄膜が積層された有機薄膜積層フィルムを 2枚製造した。 In Comparative Example 8, a laminated film for a moisture-proof film was produced by laminating the base material Z organic layer (organic thin film Z organic thin film) Z base material in this order. That is, as a base material, Using a tarate film (PET film: trade name Lumirror S 10 manufactured by Toray Industries, Inc., thickness 12 m), the solution A obtained in Production Example 1 was applied to Barco on each of the two substrates. The organic thin film is coated with a thin film (product name: K303PROOFE R manufactured by RK PRINT-COAT IN STRUMENT), dried in an oven at 200 ° C for 60 minutes, and the organic thin film is laminated on the substrate. Two laminated films were produced.
[0194] そして、前記 2枚の有機薄膜積層フィルムの有機薄膜面同士を直接的に対向させ て、加熱ロールを用いて、 50°Cの条件下、圧力 IMPaで圧着させ、その後、オーブ ン中で 50°Cの条件下で 60分間熱処理して比較としての防湿膜用積層フィルムを得 た。 [0194] Then, the organic thin film surfaces of the two organic thin film laminated films are directly opposed to each other, and are pressure-bonded at a pressure IMPa under a condition of 50 ° C using a heating roll. A heat-resistant laminated film for comparison was obtained by heat treatment at 50 ° C. for 60 minutes.
[0195] 得られた防湿膜用積層フィルム中の有機層の厚みは 1. 4 m (有機薄膜 1枚の膜 厚 0. であった。また、このようにして得られた防湿膜用積層フィルムについて [0195] The thickness of the organic layer in the obtained laminated film for moisture-proof film was 1.4 m (the thickness of one organic thin film was 0. In addition, the laminated film for moisture-proof film thus obtained was about
、実施例 1と同様の測定を行った。なお、 WVTRの測定は、加湿開始から 0時間後、 250時間後に行った。得られた結果を表 1に示す。 The same measurement as in Example 1 was performed. WVTR was measured after 0 hours and 250 hours from the start of humidification. The results obtained are shown in Table 1.
[0196] [表 1] [0196] [Table 1]
Figure imgf000052_0001
Figure imgf000052_0001
表 1の結果力もも明らかなように実施例 1〜4で得られた本発明の防湿膜用積層フ イルムは、加湿開始から 500時間経過しても WVTRが 0. 02以下であり、更には加湿 開始から 1000時間経過後であっても WVTRが 0. 02であった。このこと力 、実施 例 1〜4で得られた本発明の防湿膜用積層フィルムは、長期間に亘つて安定して高 水準の防湿性が維持されることが確認された。これに対して、各比較例で得られた防 湿膜用積層フィルムは、加湿後 250時間経過後には全て WVTRが 0. 04以上の値 を示し、防水性の維持という点では十分なものではな力つた。また、表 1の結果からも 明らかなように実施例 1〜4で得られた本発明の防湿膜用積層フィルムは、高いガス ノ リャ性を示すことが確認された。 As is clear from the results shown in Table 1, the laminated films for moisture-proof membranes of the present invention obtained in Examples 1 to 4 have a WVTR of 0.02 or less even after 500 hours have passed since the start of humidification. Humidification Even after 1000 hours from the start, the WVTR was 0.02. For this reason, it was confirmed that the laminated film for moisture-proof membranes of the present invention obtained in Examples 1 to 4 stably maintained a high level of moisture-proof property over a long period of time. On the other hand, the laminated films for moisture-proof membranes obtained in each comparative example all showed a WVTR value of 0.04 or more after 250 hours after humidification, which is not sufficient in terms of maintaining waterproofness. I helped. Further, as is clear from the results in Table 1, it was confirmed that the laminated films for moisture-proof films of the present invention obtained in Examples 1 to 4 exhibited high gas nozzle properties.
[0198] また、実施例 1〜4及び比較例 1、 6〜8で得られた防湿膜用積層フィルムをそれぞ れエレクト口ルミネッセンス素子に組み付け、多湿である熱帯地方という自然環境の 下での使用を模して、以下のようにして加速試験を行ってエレクト口ルミネッセンス素 子の表示面における非発光部 (ダークスポットともいう)の発生の程度を確認した。す なわち、実施例 1及び比較例 1、 6、 7で得られた防湿膜用積層フィルムを組み付けた 各エレクト口ルミネッセンス素子に対して温度 60°C、相対湿度 90%の条件下で 250 時間予備加湿を施した後、各エレクト口ルミネッセンス素子に電気印加してダークス ポットの発生の程度を観察した。得られた結果を表 2に示す。 [0198] In addition, the laminated films for moisture-proof films obtained in Examples 1 to 4 and Comparative Examples 1 and 6 to 8 were each assembled in an electoluminescence device, and the natural environment of the humid tropical area was Simulating the use, an acceleration test was performed as follows to confirm the degree of occurrence of a non-light emitting portion (also referred to as a dark spot) on the display surface of the electroluminescent device. In other words, each electoluminescence element assembled with the laminated film for moisture-proof film obtained in Example 1 and Comparative Examples 1, 6, and 7 was 250 hours at a temperature of 60 ° C and a relative humidity of 90%. After pre-humidification, electricity was applied to each electroluminescent device, and the degree of dark spot generation was observed. Table 2 shows the results obtained.
[0199] [表 2] [0199] [Table 2]
フィルムの製造の 使用した接着剤 250時間予備加湿(60¾·相対湿度 90%) Adhesive used for film production 250 hours pre-humidification (60¾ · relative humidity 90%)
(括弧内の数値  (Number in parentheses
項目 防湿膜用積層フィルムの構成 際に使用した溶 後の EL素子表示部におけるダークスポット はピカット軟化点  Item Dark spots on the EL display area after melting used for the construction of laminated films for moisture-proof film are Picat softening points
液 の程度  Degree of liquid
を示す) 基材/無機層/有機層(有機薄膜 有機薄  Substrate / inorganic layer / organic layer (organic thin film organic thin film)
実施例 1 溶液 A ― ダークスポットを生じなかった Example 1 Solution A-did not produce dark spots
膜) Z無機層 基材  Membrane) Z inorganic layer Base material
ウレタン系接着  Urethane adhesive
基材 無機層/有機薄膜/接着層 Z有機薄  Base material Inorganic layer / organic thin film / adhesive layer Z organic thin
実施例 2 溶液 A 剤 ダークスポットを生じなかった Example 2 Solution A agent Dark spots did not occur
膜 無機層/基材 (100~ 105°C)  Film Inorganic layer / Base material (100 ~ 105 ° C)
ポリエステル系  Polyester
実施例 3 基材 無機層/有機薄膜/接着層/有機薄 溶液 A 接着剤 ダークスポットを生じなかった Example 3 Substrate Inorganic layer / organic thin film / adhesive layer / organic thin solution A Adhesive No dark spot was produced.
膜ノ無機層ノ基材 (95~98°C)  Membrane-inorganic layer substrate (95-98 ° C)
アクリル系接着  Acrylic adhesive
実施例 4 基材 無機層 有機薄膜 接着層ノ有機薄 溶液 A 剤 ダークスポットを生じなかった Example 4 Substrate Inorganic layer Organic thin film Adhesive layer Organic thin solution Solution A Dark spots did not occur
膜 Z無機層 基材 ( 105- 1 10°C)  Membrane Z Inorganic layer Base material (105-1 10 ° C)
比較例 1 基材 無機層 有機薄膜 溶液 A 表示部の全面にダークスポットを生じた 基材 無機層ノ有機層 (有機薄膜 有機薄 Comparative Example 1 Base material Inorganic layer Organic thin film Solution A Base material that has dark spots on the entire surface of the display area Inorganic layer Organic layer (Organic thin film Organic thin film
比較例 6 溶液 B ― 表示部の周辺にダークスポットを生じた 膜) 無機層/基材 Comparative Example 6 Solution B-Film with dark spots around the display) Inorganic layer / base material
基材/無機層 z有機薄膜/接着層 有機薄 ウレタン系接着  Base material / Inorganic layer z Organic thin film / Adhesive layer Organic thin Urethane adhesive
比較例 7 溶液 B 剤 表示部の周辺にダークスポットを生じた 膜/無機層/基材 ( 100〜105°C) Comparative Example 7 Solution B Agent A film / inorganic layer / base material that has dark spots around the display (100 to 105 ° C)
比較例 8 基材 有機層(有機薄膜 z有機薄膜) /基材 溶液 A 一 表示部の全面にダークスポットを生じた Comparative Example 8 Substrate Organic layer (organic thin film z organic thin film) / Substrate Solution A 1 A dark spot was generated on the entire display area.
[0200] 表 2の結果カゝらも明らかなように実施例 1〜4で得られた本発明の防湿膜用積層フ イルムを組み付けたエレクト口ルミネッセンス素子は、その発光表示面の全体にダー クスポットが無ぐ正常に作動した。これに対して、比較例 1、 6〜8で得られた防湿膜 用積層フィルムを組み付けたエレクト口ルミネッセンス素子は、その発光表示面にダ ークスポットを生じ、正常に作動しな力つた。このことから、本発明の防湿膜用積層フ イルムはエレクト口ルミネッセンス素子用の防湿膜に好適に使用できることが確認され た。 [0200] As is clear from the results of Table 2, the electoluminescence device assembled with the multilayer film for a moisture-proof film of the present invention obtained in Examples 1 to 4 has a light emitting display surface on its entire surface. The cspot worked normally without any spots. In contrast, the electoluminescence device assembled with the laminated film for the moisture-proof film obtained in Comparative Examples 1 and 6 to 8 produced a dark spot on the light emitting display surface, and did not operate normally. From this, it was confirmed that the laminated film for a moisture-proof film of the present invention can be suitably used as a moisture-proof film for an electoluminescence device.
[0201] さらに、実施例 1〜4及び比較例 1、 6〜8で得られた防湿膜用積層フィルムを用い て、それぞれ 3方ピロ一密封包装容器とした。得られた各 3方ピロ一密封包装容器に 精密化学品である酸ィ匕チタン微粉末 (数平均直径 2 m)を 20g詰め、温度 60°C、相 対湿度 90%の条件下で 250時間予備加湿を施した後、 3方ピロ一密封包装容器内 に生じる粉塊 (コアギユレーシヨンとも 、う)の程度を手で振って確認した。得られた結 果を表 3に示す。  [0201] Furthermore, each of the moisture-proof laminated films obtained in Examples 1 to 4 and Comparative Examples 1 and 6 to 8 was used to form a three-way pillow-one sealed packaging container. Each three-way pillow sealed packaging container is packed with 20 g of fine chemical acid titanium dioxide powder (number average diameter 2 m) for 250 hours under conditions of 60 ° C temperature and 90% relative humidity. After pre-humidification, the degree of powder lump (also called core guidance) in the three-way pillow sealed package was shaken by hand. Table 3 shows the results obtained.
[0202] [表 3] [0202] [Table 3]
姽雜入翁翁^^ 3¥wヾ 3 Yゝ 3tμlu=〜i姽 雜 入 翁 翁 ^^ 3 ¥ w ヾ 3 Y ゝ 3tμlu = 〜i
¾¾ *¾P室s;fij¾¾¾iieL: l4O2030i:〜, フィルムの製造の 使用した接着剤  ¾¾ * ¾P chamber s; fij¾¾¾iieL: l4O2030i: ~, adhesive used for film production
(括弧内の数値 250時間予備加湿(60°C_相対湿度 90%) 項目 防湿膜用積層フィルムの構成 際に使用した溶  (Values in parentheses: Pre-humidification for 250 hours (60 ° C_90% relative humidity)) Item Solvent used in the construction of laminated film for moisture barrier film
はビカット軟化点後のコアギユレーシヨンの程度  Is the degree of core guidance after the Vicat softening point
 Liquid
を示す) 基材 Z無機層 Z有機層(有機薄膜/有機薄  Base material Z Inorganic layer Z Organic layer (Organic thin film / Organic thin)
実施例 1 溶液 A ― コアギユレ一シヨンを生じなかった  Example 1 Solution A—no coagulation
膜) 無機層 z基材  Membrane) Inorganic layer z Base material
ウレタン系接着  Urethane adhesive
基材 Z無機層/有機薄膜 接着)!ノ有機薄  Base material Z inorganic layer / organic thin film adhesion)! Organic thin
実施例 2 溶液 A 剤 コアギユレ一シヨンを生じなかった  Example 2 Solution A agent Coagulation was not produced
膜 無機層ノ基材 Membrane Inorganic layer substrate
Figure imgf000056_0001
( 100~ 105°C)
Figure imgf000056_0001
(100 ~ 105 ° C)
ポリエステル系  Polyester
実施例 3 基材ノ無機層ノ有機薄膜ノ接着層ノ有機薄 溶液 A 接着剤 コアギユレ一シヨンを生じなかった  Example 3 Substrate / Inorganic layer / Organic thin film / Adhesive layer / Organic thin solution A Adhesive
膜ノ無機層/基材 (95~98°C)  Membrane non-organic layer / Base material (95 ~ 98 ° C)
アクリル系接着  Acrylic adhesive
基材ノ無機層 有機薄膜/接着屠 有機薄  Substrate no inorganic layer Organic thin film / adhesive slaughter Organic thin
実施例 4 溶液 A 剤 コアギユレ一シヨンを生じなかった  Example 4 Solution A agent Coagulation was not produced
膜/無機層/基材 ( 105~ 1 10°C)  Film / Inorganic layer / Base material (105 ~ 1 10 ° C)
比較例 1 基材 Z無機層 有機薄膜 溶液 A ― 包装容器の中の全領域でコアギュレージョン を生じた  Comparative Example 1 Substrate Z Inorganic layer Organic thin film Solution A ― Coagulation occurred in all areas of the packaging container
基材 無機層/有機層 (有機薄膜/有機薄  Base material Inorganic layer / organic layer (organic thin film / organic thin layer
比較例 6 容器の中の一部の領域でコアギュレー 細 一 包装  Comparative Example 6 Coagulation in a part of the container
膜) /無機層 基材 シヨンを生じた  Membrane) / Inorganic layer Base material
ウレタン系接着  Urethane adhesive
基材 Z無機層 Z有機薄膜/接着層 Z有機薄  Base material Z Inorganic layer Z Organic thin film / Adhesive layer Z Organic thin
比較例 7 包装容器の中の一部の領域でコアギユレ一 溶液 B 剤  Comparative Example 7 Coagile solution B in some areas of the packaging container
膜 無機層ノ基材 ( 1 00— 105°C)シヨンを生じた 比較例 8 中の全領域でコアギユレーシヨン 基材ノ有機層 (有機薄膜ノ有機薄膜)ノ基材 溶液 A ― 包装容器の  Membrane Inorganic layer base material (100-105 ° C) Spilled Comparative Example 8 Coagulation base material organic layer (organic thin film organic thin film) base material Solution A ― Packaging Container
を生じた Produced
じなカゝつた。これに対して、比較例 1、 6〜8で得られた防湿膜用積層フィルムを用い て形成させた 3方ピロ一密封包装容器内においては、いずれもコアギユレーシヨンを 生じていた。このことから、本発明の防湿膜用積層フィルムは、精密化学品の包装容 器に好適に使用できることが確認された。 It ’s true. On the other hand, in each of the three-way pillow sealed packaging containers formed using the moisture-proof laminated films obtained in Comparative Examples 1 and 6 to 8, core guidance was generated. From this, it was confirmed that the laminated film for moisture-proof membranes of the present invention can be suitably used for fine chemical packaging containers.
産業上の利用可能性  Industrial applicability
[0204] 以上説明したように、本発明によれば、有機層の両面に無機層が積層された防湿 膜用積層フィルムであって、前記有機層における膜厚方向のミクロピンホールに起因 するガスバリヤ性や防湿性の低下が十分に防止され、高水準のガスバリヤ性及び防 湿性を長期に亘り安定して発揮することが可能であり、し力も折り曲げや衝撃等の外 部力が加えられてもその高いガスノ リャ性及び防湿性を維持することが可能な防湿 膜用積層フィルム、並びにその製造方法を提供することが可能となる。  [0204] As described above, according to the present invention, there is provided a laminated film for a moisture-proof film in which inorganic layers are laminated on both sides of an organic layer, the gas barrier being caused by micro pinholes in the film thickness direction in the organic layer. It is possible to prevent the deterioration of heat resistance and moisture resistance sufficiently and to stably exhibit a high level of gas barrier properties and moisture resistance over a long period of time, even if external force such as bending or impact is applied. It is possible to provide a laminated film for a moisture-proof film capable of maintaining the high gas nozzle property and moisture-proof property, and a method for producing the same.
[0205] したがって、本発明の防湿膜用積層フィルムは、ガスバリヤ性及び防湿性に優れる ため、精密電子部品の材料に適し、また医薬品、試験薬等の精密化学品の包装体と して用いることができ、特にエレクト口ルミネッセンス素子用の防湿膜として有用である  [0205] Therefore, the laminated film for a moisture-proof film of the present invention is excellent in gas barrier properties and moisture-proof properties, and thus is suitable as a material for precision electronic parts and used as a package for fine chemicals such as pharmaceuticals and test drugs. It is particularly useful as a moisture-proof film for electoluminescence devices

Claims

請求の範囲 The scope of the claims
[1] 有機層と、該有機層の両面に積層されている無機層とを備える防湿膜用積層フィル ムであって、  [1] A moisture-proof laminated film comprising an organic layer and inorganic layers laminated on both sides of the organic layer,
前記有機層が、 2枚の有機薄膜を備えており、  The organic layer comprises two organic thin films;
前記 2枚の有機薄膜が、それぞれ、ポリカルボン酸系重合体 (A)の多価金属塩を 少なくとも含み、赤外線吸収スペクトルの面積比 α [ピーク面積 S (3700〜2500cm  Each of the two organic thin films contains at least a polyvalent metal salt of the polycarboxylic acid polymer (A), and an infrared absorption spectrum area ratio α [peak area S (3700-2500 cm
1  1
_1)Zピーク面積 S (1800〜1500cm_1) ]が 2. 5以下であり、且つ赤外線吸収スぺ _1 ) Z peak area S (1800-1500 cm _1 )] is 2.5 or less, and infrared absorption spectrum
2  2
クトルのピーク比 j8 [ピーク A (1560cm—1) /ピーク A (1700cm—1) ]が 1 · 2以上で The peak ratio j8 [Peak A (1560cm— 1 ) / Peak A (1700cm— 1 )] is 1 or more than 2
1 2  1 2
あるフィルムである、防湿膜用積層フィルム。  A laminated film for a moisture-proof film, which is a film.
[2] 前記有機層が、 2枚の有機薄膜を直接的に対向させ、且つ、密着せしめて形成され たものである、請求項 1に記載の防湿膜用積層フィルム。 [2] The laminated film for a moisture-proof film according to [1], wherein the organic layer is formed by directly opposing and adhering two organic thin films.
[3] 前記有機層が、 2枚の有機薄膜を接着層を介して積層せしめて形成されたものであ る、請求項 1に記載の防湿膜用積層フィルム。 [3] The laminated film for a moisture-proof film according to claim 1, wherein the organic layer is formed by laminating two organic thin films via an adhesive layer.
[4] 前記多価金属が、亜鉛、ジルコニウム、銅及びニッケル力 なる群力 選択される少 なくとも一種の金属である、請求項 1に記載の防湿膜用積層フィルム。 [4] The laminated film for a moisture-proof film according to claim 1, wherein the polyvalent metal is at least one kind of metal selected from a group force consisting of zinc, zirconium, copper, and nickel.
[5] 前記多価金属が亜鉛であり、且つ亜鉛のォージェ電子スペクトル分析による結合ェ ネルギ一力 96〜498eVの間に少なくとも一つのピークを有する、請求項 1に記載 の防湿膜用積層フィルム。 [5] The laminated film for a moisture-proof film according to claim 1, wherein the polyvalent metal is zinc and has at least one peak between 96 to 498 eV of binding energy based on zinc Auger electron spectrum analysis.
[6] 前記無機層が、無機酸化物蒸着膜からなる、請求項 1に記載の防湿膜用積層フィル ム。 6. The laminated film for a moisture-proof film according to claim 1, wherein the inorganic layer comprises an inorganic oxide vapor deposition film.
[7] 前記無機酸化物が、ケィ素酸ィ匕物である、請求項 4に記載の防湿膜用積層フィルム  [7] The laminated film for a moisture-proof film according to claim 4, wherein the inorganic oxide is a silicate.
[8] 前記接着層が、ウレタン系接着剤、アクリル系接着剤、ポリエステル系接着剤及びェ ポキシ系接着剤からなる群から選択される少なくとも 1種の接着剤を用いて形成され た接着層である、請求項 3に記載の防湿膜用積層フィルム。 [8] The adhesive layer is an adhesive layer formed using at least one adhesive selected from the group consisting of urethane adhesives, acrylic adhesives, polyester adhesives, and epoxy adhesives. The laminated film for a moisture-proof film according to claim 3.
[9] 前記接着剤のビカット軟ィ匕点が 50°C〜140°Cである、請求項 8に記載の防湿膜用積 層フィルム。  [9] The laminated film for a moisture-proof film according to claim 8, wherein the Vicat soft spot of the adhesive is 50 ° C to 140 ° C.
[10] 前記防湿膜用積層フィルム力 60°C、相対湿度 90%の予備加湿条件下で 250時間 静置後に、 40°C、相対湿度 90%における水蒸気透過度が 0. 02gZ (m2'day)以下 に維持されるものである、請求項 1に記載の防湿膜用積層フィルム。 [10] The laminated film force for the moisture barrier film is 60 ° C. and the relative humidity is 90% under pre-humidified conditions for 250 hours. The laminated film for a moisture-proof film according to claim 1, wherein the water vapor permeability at 40 ° C and a relative humidity of 90% is maintained at 0.02 gZ (m 2 'day) or less after standing.
[11] 前記防湿膜用積層フィルム力 エレクト口ルミネッセンス素子用の防湿膜である、請求 項 1に記載の防湿膜用積層フィルム。  [11] The laminated film for a moisture-proof film according to [1], which is a moisture-proof film for an electoluminescence device.
[12] ポリカルボン酸系重合体 (A)と、多価金属化合物 (B)と、揮発性塩基 (C)又は酸 (D )のいずれか一方と、溶媒とを含む混合物の溶液又は分散液を、 2枚の無機層上に それぞれ塗工し、一方の面に無機層が積層されている有機薄膜を 2枚得る工程と、 前記 2枚の有機薄膜を積層せしめて防湿膜用積層フィルムを得る工程と、 を含み、前記 2枚の有機薄膜が、それぞれ、ポリカルボン酸系重合体 (A)の多価金 属塩を少なくとも含み、赤外線吸収スペクトルの面積比 α [ピーク面積 S (3700-25  [12] A solution or dispersion of a mixture containing the polycarboxylic acid polymer (A), the polyvalent metal compound (B), one of the volatile base (C) and the acid (D), and a solvent. Are coated on the two inorganic layers, and two organic thin films each having an inorganic layer laminated on one surface are obtained, and the two organic thin films are laminated to form a laminated film for a moisture-proof film. Each of the two organic thin films contains at least a polyvalent metal salt of the polycarboxylic acid polymer (A), and the area ratio α [peak area S (3700- twenty five
1  1
00cm_1)Zピーク面積 S (1800〜1500cm_1) ]が 2· 5以下であり、且つ赤外線吸 00cm _1) Z peak area S (1800~1500cm _1)] is at 2-5 or less, and infrared absorption
2  2
収スペクトルのピーク比 j8 [ピーク A (1560cm—1) /ピーク A (1700cm_1) ]が 1· 2 Peak ratio of yield spectrum j8 [Peak A (1560cm- 1) / Peak A (1700cm _1)] is 1 - 2
1 2  1 2
以上であるフィルムである、防湿膜用積層フィルムの製造方法。  The manufacturing method of the laminated film for moisture-proof films | membranes which is the above film.
[13] 前記防湿膜用積層フィルムを得る工程において、前記 2枚の有機薄膜の他方の面同 士を直接的に対向させ、且つ、密着せしめて前記防湿膜用積層フィルムを得る、請 求項 12に記載の防湿膜用積層フィルムの製造方法。 [13] In the step of obtaining the moisture-proof film laminate film, the other surface of the two organic thin films is directly opposed to each other and closely adhered to obtain the moisture-proof film laminate film. 12. A method for producing a laminated film for a moisture-proof film according to 12.
[14] 前記防湿膜用積層フィルムを得る工程において、前記 2枚の有機薄膜の他方の面同 士を接着層を介して積層せしめて前記防湿膜用積層フィルムを得る、請求項 12に記 載の防湿膜用積層フィルムの製造方法。 [14] The process according to claim 12, wherein in the step of obtaining the laminated film for moisture-proof film, the other surface of the two organic thin films is laminated via an adhesive layer to obtain the laminated film for moisture-proof film. Manufacturing method of laminated film for moisture-proof film.
[15] 前記多価金属が、亜鉛、ジルコニウム、銅及びニッケル力 なる群力も選択される少 なくとも一種の金属である、請求項 12に記載の防湿膜用積層フィルムの製造方法。 15. The method for producing a laminated film for a moisture-proof film according to claim 12, wherein the polyvalent metal is at least one kind of metal for which a group force such as zinc, zirconium, copper and nickel force is also selected.
[16] 前記多価金属が亜鉛であり、且つ亜鉛のオージュ電子スペクトル分析による結合ェ ネルギ一力 96〜498eVの間に少なくとも一つのピークを有する、請求項 12に記載 の防湿膜用積層フィルムの製造方法。 [16] The laminated film for a moisture-proof film according to [12], wherein the polyvalent metal is zinc and has at least one peak between 96 and 498 eV of binding energy by zinc Auger electron spectrum analysis. Production method.
[17] 前記接着層が、ウレタン系接着剤、アクリル系接着剤、ポリエステル系接着剤及びェ ポキシ系接着剤からなる群から選択される少なくとも 1種の接着剤を用いて形成され た接着層である、請求項 14に記載の防湿膜用積層フィルムの製造方法。 [17] The adhesive layer is an adhesive layer formed using at least one adhesive selected from the group consisting of urethane adhesives, acrylic adhesives, polyester adhesives, and epoxy adhesives. The manufacturing method of the laminated | multilayer film for moisture-proof films | membranes of Claim 14 which exists.
[18] 前記接着剤のビカット軟ィ匕点が 50°C〜140°Cである、請求項 17に記載の防湿膜用 積層フィルムの製造方法。 [18] The moisture-proof film according to claim 17, wherein the adhesive has a Vicat soft saddle point of 50 ° C to 140 ° C. A method for producing a laminated film.
[19] 前記無機層が、無機酸化物蒸着膜からなる、請求項 12に記載の防湿膜用積層フィ ルムの製造方法。  19. The method for producing a laminated film for a moisture-proof film according to claim 12, wherein the inorganic layer is made of an inorganic oxide vapor deposition film.
[20] 前記無機酸化物が、ケィ素酸ィ匕物である、請求項 19に記載の防湿膜用積層フィル ムの製造方法。  [20] The method for producing a laminated film for a moisture-proof film according to [19], wherein the inorganic oxide is a silicate.
PCT/JP2005/020834 2004-11-26 2005-11-14 Multilayer film for moisture barrier film and method for producing same WO2006057177A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006547729A JP4765090B2 (en) 2004-11-26 2005-11-14 Laminated film for moisture-proof film and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-341510 2004-11-26
JP2004341494 2004-11-26
JP2004341510 2004-11-26
JP2004-341494 2004-11-26

Publications (1)

Publication Number Publication Date
WO2006057177A1 true WO2006057177A1 (en) 2006-06-01

Family

ID=36497915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/020834 WO2006057177A1 (en) 2004-11-26 2005-11-14 Multilayer film for moisture barrier film and method for producing same

Country Status (2)

Country Link
JP (1) JP4765090B2 (en)
WO (1) WO2006057177A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008068948A1 (en) * 2006-12-01 2008-06-12 Kureha Corporation Coating solution, gas barrier laminate and gas barrier molded article each produced by using the coating solution, and method for production of gas barrier laminate
JP2008248062A (en) * 2007-03-30 2008-10-16 Kureha Corp Method for producing gas-barrier layer-forming coating liquid and method for producing gas-barrier laminated form
JP2009123347A (en) * 2007-11-10 2009-06-04 Tohcello Co Ltd Device sealer, sealed device and method of manufacturing the same
JP2009155563A (en) * 2007-12-27 2009-07-16 Tohcello Co Ltd Method of manufacturing gas barrier film, and film obtained from the same
WO2009154168A1 (en) * 2008-06-17 2009-12-23 株式会社日立製作所 Organic light-emitting element, method for manufacturing the organic light-emitting element, apparatus for manufacturing the organic light-emitting element, and organic light-emitting device using the organic light-emitting element
JP2010015795A (en) * 2008-07-03 2010-01-21 Hitachi Ltd Method and system for manufacturing organic light-emitting element
JP2010146924A (en) * 2008-12-19 2010-07-01 Tohcello Co Ltd Sealed functional element
JP2011023283A (en) * 2009-07-17 2011-02-03 Jsr Corp Organic el device
JP2012121255A (en) * 2010-12-09 2012-06-28 Mitsui Chemicals Tohcello Inc Gas barrier laminated film
WO2013011741A1 (en) * 2011-07-15 2013-01-24 コニカミノルタホールディングス株式会社 Organic electroluminescence panel and method of manufacturing same
JPWO2011102465A1 (en) * 2010-02-18 2013-06-17 三井化学東セロ株式会社 Sealed functional element
EP2682092A1 (en) * 2011-03-01 2014-01-08 Terumo Kabushiki Kaisha Packaging material for blood bag and blood bag packaging
WO2016084791A1 (en) * 2014-11-25 2016-06-02 コニカミノルタ株式会社 Sealing film, function element and method for producing sealing film
WO2016158444A1 (en) * 2015-03-31 2016-10-06 凸版印刷株式会社 Gas barrier packaging material and method for producing same
JP2017024325A (en) * 2015-07-24 2017-02-02 凸版印刷株式会社 Barrier film, protective film for wavelength conversion sheet, wavelength conversion sheet, and backlight unit
JP2019151018A (en) * 2018-03-02 2019-09-12 三井化学東セロ株式会社 Laminated film, packaging material, packaging bag and package
JP7446331B2 (en) 2020-04-01 2024-03-08 住友電気工業株式会社 Flexible printed wiring board and its manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6427947B2 (en) 2014-05-15 2018-11-28 凸版印刷株式会社 Gas barrier packaging materials

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08142256A (en) * 1994-11-25 1996-06-04 Kureha Chem Ind Co Ltd Moistureproof composite vapor deposition film
JP2003191370A (en) * 2001-12-26 2003-07-08 Sumitomo Bakelite Co Ltd Water vapor barrier plastic film and display substrate for electroluminescence using the same
WO2003091317A1 (en) * 2002-04-23 2003-11-06 Kureha Chemical Industry Company, Limited Film and process for producing the same
JP2004009395A (en) * 2002-06-05 2004-01-15 Sumitomo Bakelite Co Ltd Transparent water vapor barrier film and its manufacturing process
JP2004051146A (en) * 2002-07-18 2004-02-19 Kureha Chem Ind Co Ltd Method for manufacturing vessel having gas barrier property, and the vessel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08142256A (en) * 1994-11-25 1996-06-04 Kureha Chem Ind Co Ltd Moistureproof composite vapor deposition film
JP2003191370A (en) * 2001-12-26 2003-07-08 Sumitomo Bakelite Co Ltd Water vapor barrier plastic film and display substrate for electroluminescence using the same
WO2003091317A1 (en) * 2002-04-23 2003-11-06 Kureha Chemical Industry Company, Limited Film and process for producing the same
JP2004009395A (en) * 2002-06-05 2004-01-15 Sumitomo Bakelite Co Ltd Transparent water vapor barrier film and its manufacturing process
JP2004051146A (en) * 2002-07-18 2004-02-19 Kureha Chem Ind Co Ltd Method for manufacturing vessel having gas barrier property, and the vessel

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008068948A1 (en) * 2006-12-01 2008-06-12 Kureha Corporation Coating solution, gas barrier laminate and gas barrier molded article each produced by using the coating solution, and method for production of gas barrier laminate
US8808816B2 (en) 2006-12-01 2014-08-19 Toppan Printing Co., Ltd. Coating liquid, gas-barrier multilayer structure and gas-barrier shaped article therefrom, and process for producing gas-barrier multilayer structure
JP5293188B2 (en) * 2006-12-01 2013-09-18 凸版印刷株式会社 COATING LIQUID, GAS BARRIER LAMINATE AND GAS BARRIER FORMED BODY USING THE SAME, AND METHOD FOR PRODUCING GAS BARRIER LAMINATE
JP2008248062A (en) * 2007-03-30 2008-10-16 Kureha Corp Method for producing gas-barrier layer-forming coating liquid and method for producing gas-barrier laminated form
JP2009123347A (en) * 2007-11-10 2009-06-04 Tohcello Co Ltd Device sealer, sealed device and method of manufacturing the same
JP2009155563A (en) * 2007-12-27 2009-07-16 Tohcello Co Ltd Method of manufacturing gas barrier film, and film obtained from the same
US8536611B2 (en) 2008-06-17 2013-09-17 Hitachi, Ltd. Organic light-emitting element, method for manufacturing the organic light-emitting element, apparatus for manufacturing the organic light-emitting element, and organic light-emitting device using the organic light-emitting element
WO2009154168A1 (en) * 2008-06-17 2009-12-23 株式会社日立製作所 Organic light-emitting element, method for manufacturing the organic light-emitting element, apparatus for manufacturing the organic light-emitting element, and organic light-emitting device using the organic light-emitting element
JP2010015795A (en) * 2008-07-03 2010-01-21 Hitachi Ltd Method and system for manufacturing organic light-emitting element
JP2010146924A (en) * 2008-12-19 2010-07-01 Tohcello Co Ltd Sealed functional element
JP2011023283A (en) * 2009-07-17 2011-02-03 Jsr Corp Organic el device
JP5465316B2 (en) * 2010-02-18 2014-04-09 三井化学東セロ株式会社 Sealed functional element
JPWO2011102465A1 (en) * 2010-02-18 2013-06-17 三井化学東セロ株式会社 Sealed functional element
JP2012121255A (en) * 2010-12-09 2012-06-28 Mitsui Chemicals Tohcello Inc Gas barrier laminated film
US8968879B2 (en) 2011-03-01 2015-03-03 Terumo Kabushiki Kaisha Packaging material for blood bag and blood bag packaging
EP2682092A1 (en) * 2011-03-01 2014-01-08 Terumo Kabushiki Kaisha Packaging material for blood bag and blood bag packaging
EP2682092A4 (en) * 2011-03-01 2014-09-24 Terumo Corp Packaging material for blood bag and blood bag packaging
JPWO2013011741A1 (en) * 2011-07-15 2015-02-23 コニカミノルタ株式会社 Organic electroluminescence panel and manufacturing method thereof
WO2013011741A1 (en) * 2011-07-15 2013-01-24 コニカミノルタホールディングス株式会社 Organic electroluminescence panel and method of manufacturing same
WO2016084791A1 (en) * 2014-11-25 2016-06-02 コニカミノルタ株式会社 Sealing film, function element and method for producing sealing film
JPWO2016084791A1 (en) * 2014-11-25 2017-08-31 コニカミノルタ株式会社 Sealing film, functional element, and method for manufacturing sealing film
WO2016158444A1 (en) * 2015-03-31 2016-10-06 凸版印刷株式会社 Gas barrier packaging material and method for producing same
JP2017024325A (en) * 2015-07-24 2017-02-02 凸版印刷株式会社 Barrier film, protective film for wavelength conversion sheet, wavelength conversion sheet, and backlight unit
JP2019151018A (en) * 2018-03-02 2019-09-12 三井化学東セロ株式会社 Laminated film, packaging material, packaging bag and package
JP7149080B2 (en) 2018-03-02 2022-10-06 三井化学東セロ株式会社 Laminated films, packaging materials, packaging bags and packages
JP7446331B2 (en) 2020-04-01 2024-03-08 住友電気工業株式会社 Flexible printed wiring board and its manufacturing method

Also Published As

Publication number Publication date
JP4765090B2 (en) 2011-09-07
JPWO2006057177A1 (en) 2008-06-05

Similar Documents

Publication Publication Date Title
WO2006057177A1 (en) Multilayer film for moisture barrier film and method for producing same
TWI411618B (en) Air barrier film, gas barrier layered body and manufacturing method thereof
JP4154069B2 (en) Gas barrier film
JP6519974B2 (en) Gas barrier laminate having good moisture barrier properties
JP5298446B2 (en) Gas barrier molded article, coating liquid and method for producing gas barrier molded article using coating liquid
JP2018126971A (en) Laminate film and method for producing the same, and packaging container and method for producing the same
WO2007125741A1 (en) Coating liquid, gas barrier film, gas barrier laminate and gas barrier multilayer film each using the coating liquid, and their production methods
WO2021020401A1 (en) Gas barrier laminate and packaging material using same
JP2021066031A (en) Laminate film, packaging bag, method for producing laminate film, and method for producing packaging bag
JPWO2007020794A1 (en) Gas barrier film and method for producing the same
JP2006264271A (en) Laminate having gas barrier properties and its manufacturing method
WO2020067047A1 (en) Laminated film and packaging container
WO2022168976A1 (en) Gas barrier film
JP2006348106A (en) Method for producing gas barrier film
WO2007125742A1 (en) Coating liquid, gas barrier film using same, gas barrier laminate, gas barrier multilayer film, and their production methods
JP2007131712A (en) Gas barrier film, gas barrier laminate and method for preparation of the same
EP1905582B1 (en) Draw-forming laminated sheet and draw-formed container using the same
JP2006062258A (en) Laminate film
JP7131194B2 (en) packaging material
JP4619133B2 (en) Moisture-proof coverlay film and flexible printed wiring board using the same
JP2007245433A (en) Gas barrier film
JP4690728B2 (en) Moisture-proof coverlay film and flexible printed wiring board using the same
JP2020049679A (en) Laminated film and packaging bag
WO2016093150A1 (en) Gas barrier multilayer film and method for producing same
JP2012143970A (en) Transparent gas barrier film for retort packaging, and manufacturing method for thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006547729

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05806325

Country of ref document: EP

Kind code of ref document: A1