WO2006056430A1 - Pulsoximetrisches messgerät - Google Patents

Pulsoximetrisches messgerät Download PDF

Info

Publication number
WO2006056430A1
WO2006056430A1 PCT/EP2005/012550 EP2005012550W WO2006056430A1 WO 2006056430 A1 WO2006056430 A1 WO 2006056430A1 EP 2005012550 W EP2005012550 W EP 2005012550W WO 2006056430 A1 WO2006056430 A1 WO 2006056430A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring device
filter
sensor
narrow
mhz
Prior art date
Application number
PCT/EP2005/012550
Other languages
English (en)
French (fr)
Inventor
Torsten LÖNNEKER-LAMMERS
Torsten Hertz
Original Assignee
Lmt Lammers Medical Technology Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lmt Lammers Medical Technology Gmbh filed Critical Lmt Lammers Medical Technology Gmbh
Priority to EP05808333A priority Critical patent/EP1814456A1/de
Priority to US11/791,433 priority patent/US20080033264A1/en
Publication of WO2006056430A1 publication Critical patent/WO2006056430A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/18Shielding or protection of sensors from environmental influences, e.g. protection from mechanical damage
    • A61B2562/182Electrical shielding, e.g. using a Faraday cage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging

Definitions

  • the invention relates to a pulse oximetric measuring device with a pulse oximeter sensor and a pulse oximeter module for evaluating and displaying the signals of the sensor.
  • the measurement principle in pulse oximetry is based on the wavelength-dependent optical perfusion of the blood vessels located under the skin.
  • the performance and Corn differences in the pulse oximeters available on the market are due to various algorithms in signal processing and are based on a great experience and knowledge base in the field of pulse oximetry. Therefore, some manufacturers, in addition to their own devices, also offer so-called OEM modules, which to a certain extent represent the core piece of measured value acquisition and processing and are thus outstandingly suitable for installation in other medical devices.
  • OEM modules which to a certain extent represent the core piece of measured value acquisition and processing and are thus outstandingly suitable for installation in other medical devices.
  • such devices can not be used in the vicinity of magnetic resonance tomographs without using the abovementioned long connecting lines, so that the sensitive pulse oximetry module is sufficiently far from the static magnetic fields and electromagnetic high-frequency measuring fields of the magnetic resonance tomography is removed. Because of the strong fields, it was therefore hitherto not possible to arrange the pulse oximetry module close to the patient and the MRI scanner, which
  • the object of the invention is to provide a pulsoximetric measuring device that can be integrated into an existing MR-compatible medical device, for example in a patient monitor or an incubator.
  • the solution according to the invention is that the pulse oximeter module is provided with a shield, that the shielding is grounded at only one point, and that each signal path is provided with a blocking filter with a narrowband passband.
  • the invention is a combination of three measures to integrate an OEM module offered in the market into a medical device. From a metrological point of view, an important role is played by the fact that MRI or the pulse ximetry did not result in any significant interference with regard to imaging or measurement accuracy. Even more important, however, is the exclusion of any endangerment of the patient and the user with regard to heating of the sensor or cable because of the unavoidable coupling of high-frequency energy and the generation of eddy currents caused by temporally and spatially variable magnetic fields.
  • Each enclosing shield ends at a grounding point;
  • the presence of ground loops impairs image formation and measurement accuracy and is therefore avoided according to the invention.
  • the third and most important measure is the filtering of the signals between the sensor and the OEM module.
  • the filter has an LC element (passive 2nd order filter).
  • the pass frequency of the narrowband filter is in the range of 0.1 to 15 MHz.
  • the pass-through frequency and the signal frequencies of the pulse oximeter do not overlap, since the magnetic field strength of 1.5 T is the Larmor frequency of the protons 63.9 MHz.
  • the pass frequency of the narrow-band filter is in the range of 0.1 to 8 MHz.
  • the pass frequency of the narrow-band filter can be substantially less than 10 MHz.
  • its evaluation unit can be integrated into the control electronics of an incubator and supplied by this with electricity.
  • Figure 1 is a schematic of a signal path from source to sink.
  • FIG. 2 shows the signal path of FIG. 1 with a filter according to the invention
  • FIG. 4 schematically shows the structure of a pulse oximetric measuring device according to the invention.
  • each signal is passed between source (Q) and drain (S) along a path (i.d.r., an electrical cable).
  • the source is on the left, the sink on the right.
  • a path i.d.r., an electrical cable.
  • Such a notch filter can be easily and yet effectively realized as an LC element (2nd order passive filter) as shown in FIG.
  • the useful frequency range (“10 MHz) is far enough away from that of MRT (42 ... 130 MHz) that filtering does not cause any negative side effects.
  • the resonance frequency was tuned for an MRT system with 1.5 T magnetic field strength, this corresponds to a Lamor frequency of 63.9 MHz. In this area, the insertion loss is better than 40 dB
  • a sensor 1 is connected via a shielded cable 2 and filter 3 to the OEM module 4, which in turn is connected to an evaluation electronics 5.
  • Filter 3, OEM module 4 and evaluation electronics 5 are arranged within a shielding housing 6, which is grounded at a position at 7.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

Das Pulsoximetrisches Messgerät mit einem Pulsoximeter-Sensor (1) und einem Pulsoximeter-Modul (4) zum Auswer­ten und Anzeigen der Signale des Sensors (1), zeichnet sich dadurch aus, dass der Pulsoximeter-Modul (4) mit einer Abschirmung (6) versehen ist, dass die Abschirmung (6) nur an einem Punkt (bei 7) geerdet ist und dass je­der Signalpfad mit einem Sperrfilter (3) mit einem schmalbandigen Durchlassbereich versehen ist.

Description

Pulsoximetrisches Messgerät:
Die Erfindung betrifft ein pulsoximetrisches Messgerät mit einem Pulsoximeter-Sensor und einem Pulsoximeter-Modul zum Auswerten und Anzeigen der Signale des Sensors.
Die Erfassung und Überwachung von Vitalparametern bei neu- und frühgeborenen Patienten sowohl auf der Intensivstation als auch während des Transports stellt eine Basisanforde¬ rung im alltäglichen Klinikbetrieb dar. Daher gibt es auf dem Markt eine große Anzahl sowohl tragbarer als auch orts¬ fester Patientenmonitore, im speziellen sogenannte Pulsoxi- meter, mit Hilfe derer sich die SauerstoffSättigung und Herzrate des Patienten nicht-invasiv bestimmen lassen.
Im Umfeld von Diagnostik mit magnetischer Resonanz (MR-Re- sonanz) ist die Auswahl an verfügbaren Pulsoximetern be¬ grenzt. Ein Grund dafür ist, dass der störungsfreie Betrieb von elektronischen Geräten in direkter Umgebung von Kern¬ spintomographen aufgrund der starken elektromagnetischen Felder ohne besondere Maßnahmen nicht möglich ist. Die Ge¬ räte weisen daher oft ein schwerfälliges Handling auf, da überwiegend versucht wird, durch Einbringen von langen Ver- bindungsleitungen (elektrisch oder optisch) den Sensor auf der eine Seite patienterinah und auf der anderen Seite die elektronische Auswerte- und Anzeigeeinheit möglichst weit entfernt vom Tomographen zu positionieren.
Das Messprinzip in der Pulsoximetrie liegt in der wellen- längen-abhängigen optischen Perfusion der unter der Haut befindlichen Blutgefäße begründet. Die Leistungs- und Merk- maisunterschiede bei den auf dem Markt angebotenen Pulsoxi- metern sind auf verschiedene Algorithmen bei der Signalver¬ arbeitung zurückzuführen und basieren auf einer großen Er¬ fahrung und Wissensbasis im Bereich der Pulsoximetrie. Da- her bieten einige Hersteller, neben eigenständigen Geräten, auch so genannte OEM-Module an, die gewissermaßen das Kern¬ stück der Messwerterfassung und -Verarbeitung darstellen und sich somit in hervorragender Weise zum Einbau in andere Medizingeräte eignen. Solche Geräte können aber nicht in der Nähe von Kernspintomographen verwendet werden, ohne dass die oben erwähnten langen Verbindungsleitungen verwen¬ det werden, damit der empfindliche Pulsoximetrie-Modul ge¬ nügend weit von den statischen Magnetfeldern und elektro¬ magnetischen Hochfrequenz-Messfeldern des Kernspintomogra- fen entfernt ist. Aufgrund der starken Felder war es daher bisher nicht möglich, den Pulsoximetrie-Modul nahe beim Pa¬ tienten und Kernspintomografen anzuordnen, was ganz offen¬ sichtliche Nachteile für Untersuchung und Behandlung des Patienten bedeutet.
Die Aufgabe der Erfindung besteht in der Schaffung eines pulsoximetrischen Messgerätes, das in ein bestehendes, MR- taugliches Medizingerät, z.B in einen Patientenmonitor oder einen Inkubator integrierbar ist.
Die erfindungsgemäße Lösung besteht darin, dass der Pulso- ximeter-Modul mit einer Abschirmung versehen ist, dass die Abschirmung nur an einem Punkt geerdet ist und dass jeder Signalpfad mit einem Sperrfilter mit einem schmalbandigen Durchlassbereich versehen ist.
Die Erfindung ist eine Kombination von drei Maßnahmen, um ein auf dem Markt angebotenes OEM-Modul in ein Medizingerät zu integrieren. Dabei spielt aus messtechnischer Sicht eine wichtige Rolle, dass sich zwischen der MRT bzw. der Pulso- ximetrie keine signifikanten Interferenzen hinsichtlich Bildgebung respektive Messgenauigkeit ergeben. Noch wichti¬ ger ist aber der Ausschluss jeglicher Gefährdung von Pati¬ ent und Anwender hinsichtlich Erhitzung von Sensor oder Ka- bei, aufgrund der bei der MRT unvermeidlichen Einkopplung von hochfrequenter Energie und Entstehen von Wirbelströmen verursacht durch zeitlich und räumlich veränderliche Mag¬ netfelder.
Daher steht als eine grundlegende Maßnahme die Abschirmung aller beteiligten Komponenten und deren Verbindungen vorne an.
Jede umhüllende Abschirmung endet auf einem Erdungspunkt; das Vorhandensein von Erdungsschleifen beeinträchtigt Bild- gebung und Messgenauigkeit und wird daher erfindungsgemäße vermieden.
Als dritte und wichtigste Maßnahme ist eine Filterung der Signale zwischen Sensor und OEM-Modul vorhanden.
Bei einer vorteilhaften Ausführungsform weist das Filter ein LC-Glied (passives Filter 2. Ordnung) auf.
Vorteilhafter Weise liegt die Durchlassfrequenz des schmal- bandigen Filters im Bereich von 0,1 bis 15 MHz. Die Durch¬ lassfrequenz und die Signalfrequenzen des Pulsoximeters ü- berlappen dann nicht, da Magnetfeldstärke von 1,5 T die Larmorfrequenz der Protonen 63,9 MHz beträgt.
Noch vorteilhafter ist es, wenn die Durchlassfrequenz des schmalbandigen Filters im Bereich von 0,1 bis 8 MHz liegt.
Insbesondere kann die Durchlassfrequenz des schmalbandigen Filters wesentlich weniger als 10 MHz beträgt. Bei einer besonders vorteilhaften Ausführungsform ist ihre Auswerte-Einheit in die Steuerelektronik eines Inkubators integrierbar und von dieser mit Strom zu versorgen.
Die Erfindung wird im Folgenden anhand einer vorteilhaften Ausführungsform unter Bezugnahme auf die beigefügten Zeich¬ nungen beispielsweise beschrieben. Es zeigen:
Fig. 1 das Schema eines Signalpfads vom Quelle zu Senke;
Fig. 2 den Signalpfad von Fig. 1 mit einem erfindungsgemä¬ ßen Filter;
Fig. 3 den Frequenzgang der Signale eines Kernspintomogra- fen einer Magnetfeldstärke von 1,5 T; und
Fig. 4 schematisch den Aufbau eines erfindungsgemäßen pul- soximetrischen Messgerätes.
Wie dies Fig. 1 gezeigt, wird jedes Signal zwischen Quelle (Q) und Senke (S) entlang eines Pfades (i.d.R. ein elektri¬ sches Kabel) geführt. Auf der linken Seite ist die Quelle, rechts die Senke dargestellt. Bei einem exemplarischen Pulsoximetrie-Modul werden minimal vier Signalpfade zwi¬ schen Sensor und OEM-Modul benötigt:
Sensor OEM-Modul Beschreibung
S Q Sende-Leuchtdioden (+) Pol
S Q Sende-Leuchtdioden (-) Pol
Q S Empfangs-Fotodiode (+) Pol
Q S Empfangs-Fotodiode (-) Pol Die von der MRT applizierten Frequenzspektren sind in der jeweiligen Geräteklasse recht schmalbandig, so dass man durch Einschleifen eines selektiven Sperrfilters höherer Ordnung entlang jedes Signalpfades zwischen Sensor und Aus- werte-Einheit nicht nur die o.a. Interferenzen minimiert, ' sondern sowohl HF-Einkopplung als auch Wirbelströme stark reduziert.
Solch ein Sperrfilter lässt sich einfach und dennoch wir- kungs-voll als ein LC-Glied (passives Filter 2. Ordnung), wie dies in Fig. 2 gezeigt ist, realisieren. Im Falle der Pulsoximetrie ist der Nutzfrequenzbereich (« 10 MHz) weit genug von dem der MRT (42 ... 130 MHz) entfernt ist, so dass die Filterung keine negativen Seiteneffekte verursacht.
Fig. 3 zeigt den Frequenzgang bei Verwendung des Sperrfil¬ ters nach Fig. 2. Die Resonanzfrequenz wurde für ein MRT- System mit 1.5 T Magnetfeldstärke abgestimmt, dies ent¬ spricht einer Lamor-Frequenz von 63,9 MHz. In diesem Be- reich ist die Einfüge-Dämpfung besser als 40 dB
Diese Filterung ist auf jeden der vier o.a. Signalpfade zwischen Sensor und OEM-Modul vorhanden. Der prinzipieller Aufbau des pulsoximetrischen Messgerätes ist in' Fig. 4 ge- zeigt.
Ein Sensor 1 ist über ein abgeschirmtes Kabel 2 und Filter 3 mit dem OEM-Modul 4 verbunden, der wiederum mit einer Auswerte-Elektronik 5 verbunden ist. Filter 3, OEM-Modul 4 und Auswerte-Elektronik 5 sind innerhalb eines Abschirm- Gehäuses 6 angeordnet, das an einer Stelle bei 7 geerdet ist.

Claims

Patentansprüche
1. Pulsoximetrisches Messgerät mit einem Pulsoximeter- Sensor (1) und einem Pulsoximeter-Modul (4) zum Aus¬ werten und Anzeigen der Signale des Sensors (1), da¬ durch gekennzeichnet, dass der Pulsoximeter-Modul
(4) mit einer Abschirmung (6) versehen ist, dass die Abschirmung (6) nur an einem Punkt (bei 7) geerdet ist und dass jeder Signalpfad mit einem Sperrfilter
(3) mit einem schmalbandigen Durchlassbereich verse¬ hen ist.
2. Messgerät nach Anspruch 1, dadurch gekennzeichnet, dass der Sperrfilter (3) ein LC-Glied (passives Fil¬ ter 2. Ordnung) aufweist.
3. Messgerät nach Anspruch 1 oder 2, dadurch gekenn¬ zeichnet, dass die Durchlassfrequenz des schmalban- digen Filters (3) im Bereich von 0,1 bis 15 MHz liegt.
4. Messgerät nach Anspruch 3, dadurch gekennzeichnet, dass die Durchlassfrequenz des schmalbandigen FiI- ters (3) im Bereich von 0,1 bis 8 MHz liegt.
5. Messgerät nach Anspruch 3, dadurch gekennzeichnet, dass die Durchlassfrequenz des schmalbandigen Fil¬ ters (3) wesentlich kleiner ist als 10 MHz.
6. Messgerät nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass seine Auswerte-Einheit (5) in die Steuerelektronik eines Inkubators integrierbar ist und von dieser mit Strom zu versorgen ist.
7. Messgerät nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Sperrfilter (3) in der Nähe von Steckverbindern angeordnet sind.
8. Messgerät nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Sperrfilter (3) der in der Abschirmung (6) angeordnet sind.
PCT/EP2005/012550 2004-11-23 2005-11-23 Pulsoximetrisches messgerät WO2006056430A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05808333A EP1814456A1 (de) 2004-11-23 2005-11-23 Pulsoximetrisches messgerät
US11/791,433 US20080033264A1 (en) 2004-11-23 2005-11-23 Pulsoximetry Measuring Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004056587A DE102004056587A1 (de) 2004-11-23 2004-11-23 Pulsoximetrisches Messgerät
DE102004056587.2 2004-11-23

Publications (1)

Publication Number Publication Date
WO2006056430A1 true WO2006056430A1 (de) 2006-06-01

Family

ID=35708427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/012550 WO2006056430A1 (de) 2004-11-23 2005-11-23 Pulsoximetrisches messgerät

Country Status (4)

Country Link
US (1) US20080033264A1 (de)
EP (1) EP1814456A1 (de)
DE (1) DE102004056587A1 (de)
WO (1) WO2006056430A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040116799A1 (en) * 2002-11-29 2004-06-17 Ravi Srinivasan Compatibility of accessory to magnetic resonance
US7657294B2 (en) 2005-08-08 2010-02-02 Nellcor Puritan Bennett Llc Compliant diaphragm medical sensor and technique for using the same
US20090143658A1 (en) * 2006-02-27 2009-06-04 Edwards Lifesciences Corporation Analyte sensor
US20080249385A1 (en) * 2007-04-04 2008-10-09 Luong Ngoc Phan Isolated intravenous analyte monitoring system
US8000918B2 (en) 2007-10-23 2011-08-16 Edwards Lifesciences Corporation Monitoring and compensating for temperature-related error in an electrochemical sensor
KR20100105564A (ko) * 2007-11-02 2010-09-29 에드워즈 라이프사이언시스 코포레이션 시스템의 수송 또는 주 전력 손실에서 이용되는 백업 전원을 갖는 분석물질 모니터링 시스템
US20090188811A1 (en) 2007-11-28 2009-07-30 Edwards Lifesciences Corporation Preparation and maintenance of sensors
US20100072062A1 (en) * 2008-05-05 2010-03-25 Edwards Lifesciences Corporation Membrane For Use With Amperometric Sensors
EP2329255A4 (de) * 2008-08-27 2014-04-09 Edwards Lifesciences Corp Analytsensor
US20100108509A1 (en) * 2008-10-31 2010-05-06 Edwards Lifesciences Corporation Analyte Sensor with Non-Working Electrode Layer
US20110054284A1 (en) * 2009-08-28 2011-03-03 Edwards Lifesciences Corporation Anti-Coagulant Calibrant Infusion Fluid Source

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4651099A (en) * 1984-12-17 1987-03-17 Nmr Associates, Ltd. 1983-I Scan room for magnetic resonance imager
US5159929A (en) * 1990-06-14 1992-11-03 Morris G Ronald Insulated rf shield
US5323776A (en) * 1992-10-15 1994-06-28 Picker International, Inc. MRI compatible pulse oximetry system
WO2003030797A2 (en) * 2001-10-05 2003-04-17 Hill-Rom Services, Inc. Patient-support apparatus having line management system
US20040106844A1 (en) * 2001-04-12 2004-06-03 Torsten Lonneker-Lammers Incubator for newborn and prematurely born patients

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4773422A (en) * 1987-04-30 1988-09-27 Nonin Medical, Inc. Single channel pulse oximeter
US5433196A (en) * 1993-06-02 1995-07-18 The Board Of Trustees Of The University Of Illinois Oxygen-17 NMR spectroscopy and imaging in the human
US5758644A (en) * 1995-06-07 1998-06-02 Masimo Corporation Manual and automatic probe calibration
US5861865A (en) * 1995-08-14 1999-01-19 General Electric Company Audio/visual entertainment system for use with a magnetic resonance imaging device with adjustable video signal
US6697656B1 (en) * 2000-06-27 2004-02-24 Masimo Corporation Pulse oximetry sensor compatible with multiple pulse oximetry systems
US7519413B1 (en) * 2003-02-20 2009-04-14 S.A. Instruments, Inc. Apparatus and method for measuring motion in a strong magnetic field

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4651099A (en) * 1984-12-17 1987-03-17 Nmr Associates, Ltd. 1983-I Scan room for magnetic resonance imager
US5159929A (en) * 1990-06-14 1992-11-03 Morris G Ronald Insulated rf shield
US5323776A (en) * 1992-10-15 1994-06-28 Picker International, Inc. MRI compatible pulse oximetry system
US20040106844A1 (en) * 2001-04-12 2004-06-03 Torsten Lonneker-Lammers Incubator for newborn and prematurely born patients
WO2003030797A2 (en) * 2001-10-05 2003-04-17 Hill-Rom Services, Inc. Patient-support apparatus having line management system

Also Published As

Publication number Publication date
EP1814456A1 (de) 2007-08-08
DE102004056587A1 (de) 2006-05-24
US20080033264A1 (en) 2008-02-07

Similar Documents

Publication Publication Date Title
WO2006056430A1 (de) Pulsoximetrisches messgerät
DE102015203385B4 (de) Verfahren zur Erzeugung einer Bewegungsinformation zu einem zumindest teilweise bewegten Untersuchungsbereich sowie Magnetresonanzanlage und Hybrid-Bildgebungsmodalität
EP0173130B1 (de) Einrichtung für die Kernspin-Tomographie
DE102009052197B4 (de) MR-Signal-Übertragung in einer Lokalspulenanordnung
DE69313915T2 (de) Photoplethysmograph mit Faseroptik verwendet in einer magnetischen Resonanzabbildungsanordnung
DE102011080275B4 (de) Lokalspule, insbesondere Halsspule, mit mehreren separat schaltbaren Lokalspulen- Shimspulen
DE102012211147B4 (de) Automatische Verstimmung nicht angeschlossener Sende-Empfangsspulen für MRI
DE102011077724A1 (de) Lokale Shim- Spule innerhalb einer Lokalspule, als lokale BO -Homogenisierung in einem MRT
EP2946730A1 (de) Verfahren zur vermessung des atemvorgangs eines patienten während einer magnetresonanzuntersuchung, messanordnung und magnetresonanzeinrichtung
DE102011079564B4 (de) MRT Lokalspule
DE102011086288B4 (de) Magnetresonanztomographie-System, Empfangsvorrichtung für ein solches System sowie Verfahren zum Gewinnen eines Bildsignals in dem System
DE60028889T2 (de) Verfahren und Gerät zur Aufnahme von Daten mittels magnetischer Resonanz unter Verwendung eines eingekerbten RF-Sättigungspulses
DE102010004515B4 (de) Wirbelsäulenspulenanordnung (spine coil array) für MRI Anwendungen mit verbesserten Bildgebungsmöglichkeiten für dedizierte Körperregionen
DE102007030629A1 (de) Anordnung zur Lagerung eines Patienten
DE102012206300B3 (de) Shimspulenanordnung für eine Extremität eines Patienten
DE102010004514A1 (de) Dynamische Nachführung der HF-Justage bei parallelem Senden
DE102018208055A1 (de) Sensorvorrichtung mit zumindest einem Sensor zum Erfassen eines Magnetfelds an einer Nervenbahn und Verfahren zum Messen eines Magnetfelds an einer Nervenbahn
DE69628354T2 (de) Sensor besonders zur Abgabe eines Signales zur Darstellung der Atmung eines Patienten
DE102012205629A1 (de) Verfahren und Magnetresonanzanlage zur funktionalen MR-Bildgebung eines vorbestimmten Volumenabschnitts eines Gehirns eines lebenden Untersuchungsobjekts
DE3336694A1 (de) Kernspin- oder nmr-darstellungseinrichtung
DE102012203288B4 (de) Erzeugung von magnetresonanzbasierten Schichtaufnahmen
EP3980800B1 (de) Verwendung eines dipolantennen-arrays in hybrides mr-pet und mr-spect tomographen sowie mr-pet oder mr-spect tomograph mit einem dipolantennen-array
WO1999053836A1 (de) Verfahren und einrichtung zum ableiten eines elektroenzephalogramms im kernspintomograph
DE102014202716B4 (de) Verbesserung des lokalen SAR-Verhaltens von MRT-Sendespulen durch Verwendung orthogonaler Schleifenantennen
DE102013214125A1 (de) Ausführung einer lokalen Shimspulenanordnung zur Kompensation der Magnetinhomogenität eines MR-Systems

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005808333

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11791433

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005808333

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11791433

Country of ref document: US