WO2006054404A1 - Exhaust gas purification catalyst and method for production thereof - Google Patents

Exhaust gas purification catalyst and method for production thereof Download PDF

Info

Publication number
WO2006054404A1
WO2006054404A1 PCT/JP2005/018605 JP2005018605W WO2006054404A1 WO 2006054404 A1 WO2006054404 A1 WO 2006054404A1 JP 2005018605 W JP2005018605 W JP 2005018605W WO 2006054404 A1 WO2006054404 A1 WO 2006054404A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
exhaust gas
noble metal
ceria
substrate
Prior art date
Application number
PCT/JP2005/018605
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroto Kikuchi
Masanori Nakamura
Hironori Wakamatsu
Toru Sekiba
Katsuo Suga
Original Assignee
Nissan Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co., Ltd. filed Critical Nissan Motor Co., Ltd.
Publication of WO2006054404A1 publication Critical patent/WO2006054404A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20746Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0248Coatings comprising impregnated particles

Definitions

  • the present invention relates to an exhaust gas purification catalyst for purifying exhaust gas from a vehicle and a method for producing the same.
  • Vehicles that contain harmful components such as unburned hydrocarbons (HC) or carbon monoxide (CO) in the exhaust gas have a purification mechanism that removes those harmful components and purifies the exhaust gas. Equipped exhaust gas purifier is provided.
  • carrier particles such as alumina (A1 0) carrying noble metal particles are exhausted.
  • An exhaust gas purification device having a purification mechanism dispersedly supported on the wall surface of a passage has been developed.
  • the carrier particle has both a side surface as a supporting element and a side surface as a supported element, and is also called a "base material" in order to prevent confusion.
  • base material a member that defines the exhaust gas passage is called a “carrier”.
  • the base material supporting the noble metal particles, the carrier supporting the base material, the purification mechanism including them, and the exhaust gas purification device are collectively referred to as “exhaust gas purification catalyst”. In either case, the noble metal particles are supported on the base material.
  • the noble metal is adjusted to an ultrafine particle size of several nm or less.
  • the present invention was made to solve this problem, and an exhaust gas purification catalyst that suppresses sintering of noble metal particles even when exposed to a high-temperature oxidizing atmosphere, and maintains the purification performance correspondingly. It is an object to provide a manufacturing method thereof.
  • An exhaust gas purifying catalyst includes a base material containing alumina and ceria that achieves the above-mentioned problem, and a noble metal selected from platinum, nodium and rhodium, It has noble metal particles carried on the substrate, and a metal oxide covering at least a part of the noble metal particles.
  • a method for producing an exhaust gas purifying catalyst according to another aspect of the present invention provides a base material containing alumina and ceria that can achieve the above-mentioned problems, and a precious metal in which the intermediate forces of platinum, noradium and rhodium are also selected.
  • the noble metal particles containing are supported on the base material, and at least a part of the noble metal particles is covered with a metal oxide.
  • Fig. 1 is a cross-sectional view of the main part of an exhaust gas purification catalyst according to an embodiment of the present invention
  • Fig. 1 (b) is a detailed view of the lb portion of Fig. 1 (a)
  • 1 (c) is a cross-sectional view of Ic Ic of FIG. 1 (b).
  • Fig. 2 (a) is a cross-sectional view of Ila-Ila in Fig. 1 (c), and Fig. 2 (b) is a cross-sectional view of lib-lib in Fig. 1 (c).
  • FIG. 3 is a flowchart showing a method for manufacturing the exhaust gas purification catalyst of FIGS. 1 and 2.
  • FIG. 4 is a graph showing the results of the purification performance test of the exhaust gas purification catalyst according to the example of the production method of FIG. 3 and the comparative example.
  • FIG. 5 (a) is a TEM observation photograph of the alumina substrate of the exhaust gas purification catalyst according to the embodiment of FIG. 4, and FIGS. 5 (b) and 5 (c) are EDX (energy) of the substrate. (Dispersive X-ray fluorescence analyzer) Analysis image.
  • the exhaust gas purification catalyst 1 includes a carrier 2 as a ceramic monolith that defines a number of exhaust gas passages 2a communicating with exhaust gas pipes (not shown) of a vehicle, It is composed of at least a single-layer coating layer 3 that uniformly covers the inner surface of the exhaust gas passage 2a. If necessary, different types of coating layers are formed on the coating layer 3 (for example, slurry R described later). (Not shown) is applied.
  • the coating layer 3 is a coating material as a binder having a net-like shape, a porous shape, a film shape, or a shape in which they are mixed and fixed on the inner surface of the exhaust gas passage 2a. 3a and a large number of base materials 4 as spongy porous fine particles dispersed and held by the coating material 3a.
  • Each base material 4 is formed as a catalyst carrier 4a having an embedded portion fixed by being embedded in the coating material 3a and a protruding portion protruding from the outer surface 3b of the coating material 3a to the exhaust gas passage 2a.
  • Ultra-thin exhaust gas purification catalyst active layer 4b is formed on the body
  • the catalytically active layer 4b has a part of the surface 13a of the noble metal particle 13 in a net-like shape, a porous shape, a membrane shape, or a mixture thereof.
  • the catalyst exposed part 10 is mostly composed of a metal oxide 14 shaped like this, and the remainder of the surface 13a is exposed to the exhaust gas passage 2a, as shown in Fig. 1 (c) and Fig. 2 (b).
  • the surface 23a of the noble metal particle 23 It also includes a catalyst coating portion 20 in which the body is covered with a metal oxide 24 having a net shape, a porous shape, a film shape, or a shape in which they are mixed.
  • the oxides 14 and 24 are scattered in the form of archipelago or connected to the surface of the base material 4 (that is, the outer surface of the carrier 4a). As a layer, it is fixed on the base material 4 and covers and holds at least a part of the corresponding noble metal particles 13 and 23 as shown in FIGS. 2 (a) and 2 (b). As a result, a large number of noble metal particles 13 and 23 are dispersed and arranged relatively uniformly over the entire surface of the base material 4, and are anchored and supported on the base material 4 through the oxide 14 and 24 layers.
  • the exhaust gas purification catalyst 1 is used for a long period of time in a high-temperature acid atmosphere, with the advantage that the uniform dispersion of the noble metal particles 13 and 23 contributes to the improvement of the catalyst performance of the entire catalytic active layer 4b. Even in this case, since the sintering between adjacent noble metal particles 13, 13; 13, 23; or 23, 23 is greatly suppressed, the initial specific surface area of the noble metal particles 13, 23 is effectively maintained, and the catalyst There are advantages to maintaining performance.
  • the base material 4 may be a composition or composite containing alumina and ceria, and the noble metal particles 13, 23 may be made of one or more kinds of noble metals selected from platinum, palladium, and rhodium.
  • the metal oxides 14, 24 comprise the medium strength of one or more metals selected from Co, Ni, Fe, Cu, Sn, Mn, Ce and Zr.
  • the catalytically active layer 4b has an average molar ratio of metal in the metal oxides 14 and 24 to the noble metal particles 13 and 23 (atomic ratio in the case of atomic ratio) in the range of 0.005 to 6. It is desirable to set the material mixing ratio so that When this value is less than 0.005, the sintering suppressing effect of the noble metal particles 13 and 23 is weakened. Conversely, when the value exceeds 6, the catalyst activity of the noble metal particles 13 and 23 is lowered from the useful range.
  • the average value of the molar ratio is more preferably set such that the material mixing ratio is in the range of 0.1 to 3.
  • At least a part of the noble metal particles 13, 23 is covered with island-shaped metal oxides 14, 24 as shown in Fig. 2 (a) and Fig. 2 (b), and is simply anchored on the substrate 4.
  • the metal oxides 14 and 24 are formed as a continuous layer as illustrated in Fig. 1 (c). When fixed on material 4, it acts as a physical barrier, preventing the relative displacement of precious metal particles 13, 23 and suppressing sintering. Complement effectively.
  • the coating layer 3 of the exhaust gas purification catalyst 1 shown in FIG. 1 (a) may be laminated by applying a plurality of layers to the carrier 2 and firing the substrate. 4b may be laminated with a coating layer 3 having a different composition or structure.
  • FIG. 3 is a flowchart showing a method for manufacturing the exhaust gas purification catalyst 1.
  • the adjustment step S1 the adjustment of the alumina base material containing alumina and the adjustment of the ceria base material containing ceria are performed separately.
  • noble metal particles 13 and 23 are supported on the adjusted alumina base material and ceria base material by an impregnation method, and dried and fired.
  • a predetermined metal is deposited on the surfaces 13a, 23a of the supported noble metal particles 13, 23 or a part thereof by a selective deposition method, and baked to oxidize the deposited metal and oxidize its metal. Cover at least part of the noble metal particles 13 and 23 with the objects 14 and 24.
  • the selective deposition method is preferably an electroless plating method.
  • the electroless plating method uses Co, Ni, Fe, Cu, or Sn as a selective metal among the forces applicable to the selective deposition of Co, Ni, Fe, Cu, Sn, Mn, Ce, and Zr. Is preferred. More preferably, an individual base material is prepared (S1), and Pt particles are supported by the impregnation method (S2), pulverized, immersed in a Co solution, stirred, and then sodium borohydride is added. By reducing Co, it is deposited on the Pt particles, and the precipitated Co is baked and oxidized to cover at least a part of the Pt particles (S3).
  • the ceria base material (hereinafter referred to as “1S1-ceria base material”) was individually adjusted (Sl).
  • the alumina substrate -1S1 is impregnated with a dinitrodiammine platinum aqueous solution, dried, calcined at 400 ° C, and loaded with 0.44% Pt (hereinafter referred to as "1S2-alumina substrate”) Was obtained (S2).
  • slurry R a slurry having an average particle size of 3 ⁇ m
  • Example 2 A 36-millimeter, 400-cell, 6-mil Hercam carrier (capacity 0.04 L) was coated with 141 g / L of slurry B and dried, and further coated with 59 g / L of slurry R (see Example 1). After drying, baking was performed at 400 ° C. to obtain a sample of Example 2 (S4).
  • This sample is a catalyst that supports Pt at 0.587 g / L, Rh at 0.236 g / L, and contains Co in an atomic ratio of 0.05 with respect to Pt.
  • Example 3 A 36-millimeter, 400-cell, 6-mil Hercam carrier (capacity 0.04 L) was coated with 141 g / L of slurry C and dried, and further coated with slurry R (see Example 1) 59 g / L. After drying, baking was performed at 400 ° C. to obtain a sample of Example 3 (S4).
  • This sample is a catalyst that carries 0.587 g / L of Pt, 0.236 g / L of Rh, and contains Co in an atomic ratio of 0.1 with respect to Pt.
  • Example 2 Using the same method as in Example 1, a quantitative operation was performed to obtain an alumina base material supporting 0.441% Pt (hereinafter referred to as “4S2-alumina base material”) and a ceria base material supporting 0.3756% Pt ( Hereinafter, referred to as “4S2-ceria substrate”) (S2).
  • 4S2-alumina base material alumina base material supporting 0.441% Pt
  • 4S2-ceria substrate a ceria base material supporting 0.3756% Pt
  • Cobalt nitrate hexahydrate was dissolved in 200 g of water and cobalt solution containing 0.20 g of cobalt was charged with 149.72 g of 4S2-alumina substrate (Pt 0.441% alumina substrate). After stirring for a period of time, add 0.0102 mol of sodium borohydride, stir for an additional hour, and filter, wash, dry this condensate solution, calcinate at 400 ° C, and contain Co in an atomic ratio of 1 to Pt. A Pt 0.44% alumina substrate (hereinafter referred to as “4S3-alumina substrate”) was obtained (S3).
  • 4S2-ceria base material (Pt 0.3756% ceria base material) was added to a cobalt solution containing cobalt nitrate 0.1132 g dissolved in water 200 g of cobalt nitrate, and room temperature. After stirring for 1 hour, add 0.0058 mol of sodium borohydride and stir for an additional hour. The cobalt solution is filtered, washed, dried, calcined at 400 ° C, and contains Co in an atomic ratio of 1 to Pt. A Pt 0.375% ceria substrate (hereinafter referred to as “4S3-ceria substrate”) was obtained (S3).
  • Example 4 A 36 mm diameter, 400 cell, 6 mil Hercame carrier (capacity 0.04 L) was coated with 141 g / L of slurry D and dried, and further coated with 59 g / L of slurry R (see Example 1). After drying, baking was performed at 400 ° C. to obtain a sample of Example 4 (S4).
  • This sample is a catalyst that carries 0.587 g / L of Pt, 0.236 g / L of Rh, and contains Co in an atomic ratio of 1 to Pt.
  • Example 2 Using the same method as in Example 1, a quantitative operation was performed to obtain an alumina base material supporting 0.442% Pt (hereinafter referred to as “5S2-alumina base material”) and a ceria base material supporting 0.3762% Pt ( Hereinafter, it is referred to as “5S2-ceria substrate”) (S2).
  • 5S2-ceria base material (Pt 0.3762% ceria base material) was added to a cobalt solution containing cobalt nitrate hexahydrate dissolved in 200 g of water and 0.2265 g of cobalt at room temperature. After stirring for 1 hour, add 0.012 mol of sodium borohydride and stir for an additional hour. This cobalt solution is filtered, washed, dried, calcined at 400 ° C, and contains Co in an atomic ratio of 2 to Pt. Pt 0.375% ceria base material (hereinafter referred to as “5S3-ceria base material”) was obtained (S3).
  • Example 5 A 36-millimeter, 400-cell, 6-mil Hercam carrier (capacity 0.04 L) was coated with 141 g / L of slurry E, dried, and then coated with 59 g / L of slurry R (see Example 1). After drying, baking was performed at 400 ° C. to obtain a sample of Example 5 (S4). This sample is a catalyst that carries 0.587 g / L of Pt, 0.236 g / L of Rh, and contains Co in an atomic ratio of 2 with respect to Pt. [0066] Example 6
  • Example 2 Using the same method as in Example 1, a quantitative operation was performed to obtain an alumina substrate supporting 0.4425% Pt (hereinafter referred to as “6S2-alumina substrate”) and a ceria substrate supporting 0.3768% Pt ( Hereinafter, referred to as “6S2-ceria substrate”) (S2).
  • 6S2-alumina substrate alumina substrate supporting 0.4425% Pt
  • 6S2-ceria substrate a ceria substrate supporting 0.3768% Pt
  • 6S2-alumina base material Pt 0.4425% alumina base material
  • a cobalt solution in which cobalt nitrate hexahydrate was dissolved in 200g of water and 0.5981g of cobalt was added.
  • 0.0304 mol of sodium borohydride was added, and the mixture was further stirred for 1 hour, and this solution was filtered, washed and dried, calcined at 400 ° C, and Co contained in an atomic ratio of 3 to Pt. .4
  • a 4% alumina substrate hereinafter referred to as “6S3-alumina substrate” was obtained (S3).
  • 6S2-ceria base material Pt 0.3768% ceria base material
  • a cobalt solution containing 0.3396g of cobalt dissolved in 200g of water.
  • 0.0173 mol of sodium borohydride was added, and further stirred for 1 hour.
  • This cobalt solution was filtered, washed, dried, calcined at 400 ° C, and Co contained in an atomic ratio of 3 to Pt.
  • a Pt 0.375% ceria substrate (hereinafter referred to as “6S3-ceria substrate”) was obtained (S3).
  • Example 6 36 g diameter, 400 cell, 6 mil Hercame carrier (capacity 0.04L) was coated with 141g / L of slurry F, dried, and then coated with slurry R (see Example 1) 59g / L. After drying, baking was performed at 400 ° C. to obtain a sample of Example 6 (S4).
  • This sample is a catalyst that supports 0.587 g / L of Pt, 0.236 g / L of Rh, and contains Co in an atomic ratio of 3 with respect to Pt.
  • Example 2 Using the same method as in Example 1, a quantitative operation was performed to obtain an alumina substrate carrying 0.443% Pt (hereinafter referred to as “7S2-alumina substrate”) and a ceria substrate carrying 0.3774% Pt ( Hereinafter, referred to as “7S2-ceria substrate”) was obtained (S2).
  • 7S2-alumina substrate alumina substrate carrying 0.443% Pt
  • 7S2-ceria substrate a ceria substrate carrying 0.3774% Pt
  • Example 7 A 36-millimeter, 400-cell, 6-mil Hercam carrier (capacity 0.04 L) was coated with 141 g / L of slurry G and dried, and further coated with 59 g / L of slurry R (see Example 1). After drying, baking was performed at 400 ° C. to obtain a sample of Example 7 (S4).
  • This sample is a catalyst that carries 0.587 g / L of Pt, 0.236 g / L of Rh, and contains Co in an atomic ratio of 4 with respect to Pt.
  • Example 2 Using the same method as in Example 1, a quantitative operation was performed to obtain an alumina base material supporting 0.444% Pt (hereinafter referred to as “8S2-alumina base material”) and a ceria base material supporting 0.378% Pt ( Hereinafter, referred to as “8S2-ceria substrate”) was obtained (S2).
  • 8S2-alumina base material alumina base material supporting 0.444% Pt
  • 8S2-ceria substrate a ceria base material supporting 0.378% Pt
  • 8S2-ceria base material (Pt 0.378% ceria base material) was added to a cobalt solution in which cobalt nitrate hexahydrate was dissolved in 200 g of water and 0.566 g of cobalt was contained, and at room temperature. After stirring for 1 hour, 0.029 mol of sodium borohydride was added and further stirred for 1 hour, and this cobalt solution was filtered, washed, dried, calcined at 400 ° C, and Co contained in an atomic ratio of 5 to Pt. A Pt 0.375% Celer substrate (hereinafter referred to as “8S3-ceria substrate”) was obtained (S3).
  • Example 9 A 36-millimeter, 400-cell, 6-mil Hercam carrier (capacity 0.04 L) was coated with 141 g / L of slurry I and dried, and further coated with 59 g / L of slurry R (see Example 1). After drying, baking was performed at 400 ° C. to obtain a sample of Example 9 (S4).
  • This sample is a catalyst that supports 0.587 g / L of Pt, 0.236 g / L of Rh, and contains Co in an atomic ratio of 0.005 to Pt.
  • Example 2 Using the same method as in Example 1, a quantitative operation was performed to obtain an alumina substrate carrying 0.445% Pt (hereinafter referred to as “10S2-alumina substrate”) and a ceria substrate carrying 0.3786% Pt ( Less than Hereinafter referred to as “10S2-ceria substrate”. ) was obtained (S2).
  • 10S2-ceria base material Pt 0.3786% ceria base material
  • a cobalt solution in which cobalt nitrate hexahydrate was dissolved in 200 g of water and 0.679 g of cobalt was contained.
  • After stirring for 1 hour add 0.035 mol of sodium borohydride and stir for an additional hour. Filter, wash, and dry this conorate solution, calcinate at 400 ° C, and contain Co in an atomic ratio of 6 to Pt.
  • a Pt 0.375% ceria substrate hereinafter referred to as “10S3-ceria substrate” was obtained (S3).
  • Example 10 A 36 mm diameter, 400 cell, 6 mil Hercame carrier (capacity 0.04 L) was coated with 141 g / L of slurry J, dried, and further coated with 59 g / L of slurry R (see Example 1). After drying, baking was performed at 400 ° C. to obtain a sample of Example 10 (S4).
  • This sample is a catalyst that supports 0.587 g / L of Pt, 0.23 6 g / L of Rh, and contains Co in an atomic ratio of 6 with respect to Pt.
  • 1S2-alumina substrate see Example 1 124.8g, 1S2-ceria substrate (see Example 1) 48.6g, and bermite alumina 1.6g are added to the ball mill, followed by 307.5g water and 10% aqueous nitric acid solution 17.5 g was added and the powder was pulverized to obtain a slurry having an average particle size of 3 / zm (hereinafter referred to as “slurry X”).
  • a 36-millimeter, 400-cell, 6-mil Hercam carrier (capacity 0.04L) was coated with 141g / L of slurry X and dried, and further coated with 59g / L of slurry R (see Example 1). After drying, the sample of Comparative Example 1 was obtained by baking at 400 ° C. This sample is a normal catalyst in which Pt is supported on a substrate at 0.587 g / L and Rh is 0.23 6 g / L, and it is not coated with a metal oxide.
  • Each of the catalysts obtained as samples in Examples 1 to 10 and Comparative Example 1 was subjected to the durability test described below, and then the purification performance of each catalyst was examined.
  • each catalyst is incorporated into a simulated exhaust gas distribution device, and simulated exhaust gas as a reaction gas is circulated through this device at a space velocity (SV) of 60000 / h, and the catalyst temperature is set at a rate of 30 ° C / min.
  • Purification temperature T (° C) at which NOx, HC (CH and CO purification rate is 50% when the temperature is raised
  • the Pt particles are not coated with Co oxide, that is, the atomic ratio of Co to Pt is 0.
  • the conversion temperature is also higher than other catalysts.
  • each catalyst of Examples 1 to 10 containing Co in an atomic ratio with respect to Pt in the range of 0.005 to 6 covers at least a part of the Pt particles is NOx, HC ( CH) and CO
  • the displacement purification temperature was also lower than that of Comparative Example 1.
  • the catalysts of Examples 3 to 6 containing Co in an atomic ratio of 0.1 to 3 with respect to Pt have a purification temperature lower than those of Examples 1-2 and 7-10. Excellent performance.
  • the amount of 0 was quantified by ICP (plasma emission spectroscopy).
  • the sample of Comparative Example 1 is a catalyst in which a base material is impregnated with a Pt solution, but the samples of Examples 1 to 10 are selectively coated with Co on a base material impregnated with Pt.
  • This is a catalyst supported by precipitation. That is, in Examples 1 to 10, after adding Pt-supported powder to a solution in which Co is dissolved and stirring, sodium borohydride is added and Co is reduced and precipitated.
  • Figure 5 shows a 4S3-alumina substrate (Pt 0.441% alumina containing Co in an atomic ratio of 1 to Pt). Substrate: See Example 4) TEM observation result (HAADF image: x800K times) is shown.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

A method for producing an exhaust gas clarification catalyst, which comprises providing a substrate (4) containing alumina and ceria, allowing the substrate (4) to carry noble metal particles (13, 23) containing a noble metal selected from platinum, palladium and rhodium, and then covering at least a part of the above noble metal particles (13, 23) with a metal oxide (14, 24). The method can be suitably used for inhibiting the sintering of noble metal particles and for retaining high catalyst activity also under a high temperature and oxidizing circumstance.

Description

明 細 書  Specification
排ガス浄化触媒及びその製造方法  Exhaust gas purification catalyst and method for producing the same
技術分野  Technical field
[0001] 本発明は車両の排ガスを浄化する排ガス浄化触媒及びその製造方法に関する。  TECHNICAL FIELD [0001] The present invention relates to an exhaust gas purification catalyst for purifying exhaust gas from a vehicle and a method for producing the same.
背景技術  Background art
[0002] 未燃焼炭化水素 (HC)、或いは一酸ィ匕炭素 (CO)といった有害な成分が排ガスに含 まれる車両には、そうした有害成分を除去して排ガスを浄ィ匕する浄化機構を備えた 排ガス浄ィヒ装置が設けられる。  [0002] Vehicles that contain harmful components such as unburned hydrocarbons (HC) or carbon monoxide (CO) in the exhaust gas have a purification mechanism that removes those harmful components and purifies the exhaust gas. Equipped exhaust gas purifier is provided.
[0003] 一方、白金 (Pt)、パラジウム (Pd)、ロジウム (Rh)といった貴金属には、車両の排ガスに 接触して、その中の有害成分を無害のガス、或いは水(H 0)等の成分に変換するこ  [0003] On the other hand, noble metals such as platinum (Pt), palladium (Pd), and rhodium (Rh) come into contact with the exhaust gas of a vehicle, and harmful components therein are harmless gas or water (H 0). Convert to component
2  2
とにより排ガスを浄ィ匕する触媒作用がある。  And has a catalytic action to purify the exhaust gas.
[0004] そこで、貴金属の粒子を担持する例えばアルミナ (A1 0 )等のキャリア粒子を排ガス [0004] Therefore, carrier particles such as alumina (A1 0) carrying noble metal particles are exhausted.
2 3  twenty three
通路の壁面に分散担持した浄化機構を有する排ガス浄化装置が開発されている。  An exhaust gas purification device having a purification mechanism dispersedly supported on the wall surface of a passage has been developed.
[0005] この点、キャリア粒子は、担持要素としての側面と被担持要素としての側面とを併せ 持ち、その混同を防ぐ意味で「基材」とも呼ばれる。キャリア粒子を基材と呼ぶ場合、 排ガス通路を画成する部材を「担体」と呼ぶ。そして、貴金属粒子を担持する基材、こ の基材を担持する担体、それらを含む浄化機構、及び排ガス浄化装置を「排ガス浄 化触媒」と総称する。いずれの場合も、貴金属粒子を基材に担持した構成を有する。 [0005] In this respect, the carrier particle has both a side surface as a supporting element and a side surface as a supported element, and is also called a "base material" in order to prevent confusion. When the carrier particles are called a base material, a member that defines the exhaust gas passage is called a “carrier”. The base material supporting the noble metal particles, the carrier supporting the base material, the purification mechanism including them, and the exhaust gas purification device are collectively referred to as “exhaust gas purification catalyst”. In either case, the noble metal particles are supported on the base material.
[0006] 排ガス浄化触媒は、その貴金属粒子の単位量当たりの総表面積、つまり、比表面 積を増すと、排ガス浄ィ匕性能が向上する。 [0006] When the total surface area per unit amount of the noble metal particles, that is, the specific surface area of the exhaust gas purification catalyst is increased, the exhaust gas purification performance is improved.
[0007] 貴金属粒子は、これを微粒ィ匕することにより、比表面積を増すことができる。 [0007] Precious metal particles can be increased in specific surface area by being finely divided.
[0008] 特開 2000— 42411号公報に、貴金属粒子を微粒ィ匕する技術として、逆ミセル法 が開示されている。 [0008] Japanese Unexamined Patent Application Publication No. 2000-42411 discloses a reverse micelle method as a technique for forming fine particles of noble metal particles.
[0009] この逆ミセル法は、貴金属含有水溶液と界面活性剤とを有機溶媒に混入して、この 溶媒中に界面活性剤の逆ミセルを分散させるとともに、それら逆ミセルの内部に、貴 金属含有水溶液のェマルジヨンをつくり、その貴金属を沈殿、還元、又は不溶ィ匕して 逆ミセル内に析出させ、貴金属を微粒化する。 発明の開示 [0009] In this reverse micelle method, a noble metal-containing aqueous solution and a surfactant are mixed in an organic solvent, and the reverse micelle of the surfactant is dispersed in the solvent, and the noble metal-containing is contained inside the reverse micelle. An emulsion of an aqueous solution is prepared, and the noble metal is precipitated, reduced, or insoluble, and precipitated in reverse micelles to atomize the noble metal. Disclosure of the invention
[0010] この方法により、貴金属が数 nm以下の超微粒サイズに調整される。  [0010] By this method, the noble metal is adjusted to an ultrafine particle size of several nm or less.
[0011] し力しながら、排ガス浄ィ匕触媒を高温 (約 500°C〜600°C)の酸ィ匕雰囲気に長期間さ らすと、貴金属粒子の面が酸化するだけでなぐ近傍の粒子が互いにシンタリングし て合体する。合体した貴金属粒子は、粒径が約数 10應に肥大し、その分、比表面積 が低下して、排ガス浄ィ匕性能が落ちる。  [0011] However, when the exhaust gas purification catalyst is exposed to a high-temperature (about 500 ° C to 600 ° C) acid atmosphere for a long time, the surface of the precious metal particles is not only oxidized but also in the vicinity. Particles sinter together and coalesce. The combined precious metal particles are enlarged to about several tens of particles, and the specific surface area is reduced accordingly, and the exhaust gas purification performance is reduced.
[0012] 本発明は、この問題を解決するためになされたもので、高温の酸化雰囲気にさらさ れても貴金属粒子のシンタリングが抑制され、その分、浄化性能が保持される排ガス 浄化触媒及びその製造方法を提供することを課題とする。 [0012] The present invention was made to solve this problem, and an exhaust gas purification catalyst that suppresses sintering of noble metal particles even when exposed to a high-temperature oxidizing atmosphere, and maintains the purification performance correspondingly. It is an object to provide a manufacturing method thereof.
[0013] 本発明の一側面に係る排ガス浄ィ匕触媒は、上記課題を達成すベぐアルミナ及び セリアを含む基材と、白金、ノ ジウム及びロジウムの中から選択された貴金属を含 み、前記基材に担持された貴金属粒子と、前記貴金属粒子の少なくとも一部を覆う 金属酸化物とを有する。 [0013] An exhaust gas purifying catalyst according to one aspect of the present invention includes a base material containing alumina and ceria that achieves the above-mentioned problem, and a noble metal selected from platinum, nodium and rhodium, It has noble metal particles carried on the substrate, and a metal oxide covering at least a part of the noble metal particles.
[0014] 本発明の別の側面に係る排ガス浄化触媒の製造方法は、上記課題を達成すベぐ アルミナ及びセリアを含む基材を用意し、白金、ノラジウム及びロジウムの中力も選 択された貴金属を含む貴金属粒子を前記基材に担持し、前記貴金属粒子の少なくと も一部を金属酸化物で覆う。 [0014] A method for producing an exhaust gas purifying catalyst according to another aspect of the present invention provides a base material containing alumina and ceria that can achieve the above-mentioned problems, and a precious metal in which the intermediate forces of platinum, noradium and rhodium are also selected. The noble metal particles containing are supported on the base material, and at least a part of the noble metal particles is covered with a metal oxide.
[0015] 本発明の以上の側面によれば、貴金属粒子の少なくとも一部が金属酸ィ匕物で覆わ れたので、貴金属粒子のシンタリングが抑制され、その分、排ガス浄ィ匕触媒の浄ィ匕性 能が保持される。 [0015] According to the above aspects of the present invention, since at least a part of the noble metal particles is covered with the metal oxide, sintering of the noble metal particles is suppressed, and accordingly, the purification of the exhaust gas purification catalyst.匕 performance is maintained.
[0016] 本発明の上記その他の課題、特徴、及び効果は、次の添付図面を参照して為され る、発明を実施するための最良の形態の説明を読むことによりすべて明ら力となる。 図面の簡単な説明  The above-mentioned and other problems, features, and effects of the present invention will be clarified by reading the description of the best mode for carrying out the invention made with reference to the accompanying drawings. . Brief Description of Drawings
[0017] [図 1]図 1 (a)は本発明の実施の形態に係る排ガス浄ィ匕触媒の要部断面図、図 1 (b) は図 1 (a)の lb部詳細図、図 1 (c)は図 1 (b)の Ic Ic断面図である。  [0017] [Fig. 1] Fig. 1 (a) is a cross-sectional view of the main part of an exhaust gas purification catalyst according to an embodiment of the present invention, Fig. 1 (b) is a detailed view of the lb portion of Fig. 1 (a), 1 (c) is a cross-sectional view of Ic Ic of FIG. 1 (b).
[図 2]図 2 (a)は図 1 (c)の Ila— Ila断面図、図 2 (b)は図 1 (c)の lib— lib断面図である  [Fig.2] Fig. 2 (a) is a cross-sectional view of Ila-Ila in Fig. 1 (c), and Fig. 2 (b) is a cross-sectional view of lib-lib in Fig. 1 (c).
[図 3]図 3は、図 1及び図 2の排ガス浄化触媒の製造方法を示すフローチャートである [図 4]図 4は、図 3の製造方法の実施例及び比較例に係る排ガス浄化触媒の浄化性 能試験の結果を示すグラフである。 FIG. 3 is a flowchart showing a method for manufacturing the exhaust gas purification catalyst of FIGS. 1 and 2. [FIG. 4] FIG. 4 is a graph showing the results of the purification performance test of the exhaust gas purification catalyst according to the example of the production method of FIG. 3 and the comparative example.
[図 5]図 5 (a)は図 4の実施例に係る排ガス浄ィ匕触媒のアルミナ基材の TEM観察写真 、図 5(b)及び図 5(c)は同基材の EDX (エネルギ分散型蛍光 X線分析装置)分析画像 である。  [FIG. 5] FIG. 5 (a) is a TEM observation photograph of the alumina substrate of the exhaust gas purification catalyst according to the embodiment of FIG. 4, and FIGS. 5 (b) and 5 (c) are EDX (energy) of the substrate. (Dispersive X-ray fluorescence analyzer) Analysis image.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 次に、図 1及び図 2を参照して、本発明の実施の形態に係る排ガス浄化触媒を説明 する。 Next, an exhaust gas purification catalyst according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2.
[0019] 本発明の実施の形態に係る排ガス浄ィ匕触媒 1の要部の断面を図 1 (a)に示し、その lb部の詳細を図 1 (b)に示し、その Ic Ic断面を図 1 (c)に示す。そして、この図 1 (c) の11& 11&断面及び111 111)断面を、それぞれ、図 2 (a)及び図 2 (b)に示す。  [0019] Fig. 1 (a) shows a cross section of the main part of the exhaust gas purification catalyst 1 according to the embodiment of the present invention, and Fig. 1 (b) shows details of its lb portion, and shows its Ic Ic cross section. It is shown in Fig. 1 (c). The cross sections 11 & 11 & and 111 111) of FIG. 1 (c) are shown in FIGS. 2 (a) and 2 (b), respectively.
[0020] 排ガス浄化触媒 1は、図 1 (a)に示すように、車両の排ガス管路 (不図示)に連通し た多数の排ガス通路 2aを画成するセラミックモノリスとしての担体 2と、その排ガス通 路 2aの内面を一様に被覆する少なくとも単層の被覆層 3とで構成され、必要に応じ、 この被覆層 3の上に(例えば後述するスラリー Rのように)異なる種類の被覆層(不図 示)が塗布される。  [0020] As shown in Fig. 1 (a), the exhaust gas purification catalyst 1 includes a carrier 2 as a ceramic monolith that defines a number of exhaust gas passages 2a communicating with exhaust gas pipes (not shown) of a vehicle, It is composed of at least a single-layer coating layer 3 that uniformly covers the inner surface of the exhaust gas passage 2a. If necessary, different types of coating layers are formed on the coating layer 3 (for example, slurry R described later). (Not shown) is applied.
[0021] 被覆層 3は、図 1 (b)に示すように、排ガス通路 2aの内面に固定され着床する網状 、多孔状、ないしは膜状、或いはそれらが混在する形状のバインダーとしてのコート 材 3aと、このコート材 3aにより分散保持された海綿状多孔質微粒子としての多数の 基材 4とを含む。各基材 4は、コート材 3aに埋没し固定された埋没部とコート材 3aの 外面 3bから排ガス通路 2aに突出する突出部とを有する触媒キャリア 4aとして形成さ れ、その外面全体に亘り、極薄の排ガス浄ィ匕触媒活性層 4bがー体に形成されている  [0021] As shown in FIG. 1 (b), the coating layer 3 is a coating material as a binder having a net-like shape, a porous shape, a film shape, or a shape in which they are mixed and fixed on the inner surface of the exhaust gas passage 2a. 3a and a large number of base materials 4 as spongy porous fine particles dispersed and held by the coating material 3a. Each base material 4 is formed as a catalyst carrier 4a having an embedded portion fixed by being embedded in the coating material 3a and a protruding portion protruding from the outer surface 3b of the coating material 3a to the exhaust gas passage 2a. Ultra-thin exhaust gas purification catalyst active layer 4b is formed on the body
[0022] この触媒活性層 4bは、図 1 (c)及び図 2 (a)に示すように、貴金属粒子 13の表面 13 aの一部を網状、多孔状、ないしは膜状、或いはそれらが混在する形状の金属酸ィ匕 物 14で覆い、同表面 13aの残部を排ガス通路 2aに露出させた触媒露出部 10として 大半構成されるが、図 1 (c)及び図 2 (b)に示すように、貴金属粒子 23の表面 23a全 体を網状、多孔状、ないしは膜状、或いはそれらが混在する形状の金属酸化物 24で 覆った触媒被覆部 20も含む。 [0022] As shown in Fig. 1 (c) and Fig. 2 (a), the catalytically active layer 4b has a part of the surface 13a of the noble metal particle 13 in a net-like shape, a porous shape, a membrane shape, or a mixture thereof. The catalyst exposed part 10 is mostly composed of a metal oxide 14 shaped like this, and the remainder of the surface 13a is exposed to the exhaust gas passage 2a, as shown in Fig. 1 (c) and Fig. 2 (b). In addition, the surface 23a of the noble metal particle 23 It also includes a catalyst coating portion 20 in which the body is covered with a metal oxide 24 having a net shape, a porous shape, a film shape, or a shape in which they are mixed.
[0023] 酸化物 14, 24は、図 1 (c)に例示するように、基材 4の表面(即ち、キャリア 4aの外 面)にそれぞれ群島状に散在ないしは連丘状に連結延在する層として、基材 4に固 定着床され、図 2 (a)及び図 2 (b)に示すように、対応する貴金属粒子 13, 23の少な くとも一部を被覆保持する。これにより多数の貴金属粒子 13, 23が基材 4表面全体 に亘り比較的一様に分散配置され、酸化物 14, 24の層を介して基材 4に係留担持さ れる。 [0023] As illustrated in FIG. 1 (c), the oxides 14 and 24 are scattered in the form of archipelago or connected to the surface of the base material 4 (that is, the outer surface of the carrier 4a). As a layer, it is fixed on the base material 4 and covers and holds at least a part of the corresponding noble metal particles 13 and 23 as shown in FIGS. 2 (a) and 2 (b). As a result, a large number of noble metal particles 13 and 23 are dispersed and arranged relatively uniformly over the entire surface of the base material 4, and are anchored and supported on the base material 4 through the oxide 14 and 24 layers.
[0024] 従って、貴金属粒子 13, 23の一様分散が触媒活性層 4b全体の触媒性能の向上 に寄与するという利点だけでなぐ排ガス浄ィ匕触媒 1を高温酸ィ匕雰囲気下で長期間 使用した場合でも、隣接する貴金属粒子 13, 13 ; 13, 23 ;または 23, 23間のシンタ リングが大きく抑制されるので、貴金属粒子 13, 23の当初の比表面積が効果的に保 たれ、その触媒性能が維持されると 、う利点がある。  [0024] Therefore, the exhaust gas purification catalyst 1 is used for a long period of time in a high-temperature acid atmosphere, with the advantage that the uniform dispersion of the noble metal particles 13 and 23 contributes to the improvement of the catalyst performance of the entire catalytic active layer 4b. Even in this case, since the sintering between adjacent noble metal particles 13, 13; 13, 23; or 23, 23 is greatly suppressed, the initial specific surface area of the noble metal particles 13, 23 is effectively maintained, and the catalyst There are advantages to maintaining performance.
[0025] 上記構成において、基材 4はアルミナ及びセリアを含む組成物もしくは複合物であ ればよぐ貴金属粒子 13, 23は白金、パラジウム及びロジウムの中から選択された一 種以上の貴金属から成り、金属酸化物 14, 24は Co、 Ni、 Fe、 Cu、 Sn、 Mn、 Ce及び Zr の中力 選択された一種以上の金属の酸ィ匕物力 成る。  [0025] In the above configuration, the base material 4 may be a composition or composite containing alumina and ceria, and the noble metal particles 13, 23 may be made of one or more kinds of noble metals selected from platinum, palladium, and rhodium. The metal oxides 14, 24 comprise the medium strength of one or more metals selected from Co, Ni, Fe, Cu, Sn, Mn, Ce and Zr.
[0026] 触媒活性層 4bは、貴金属粒子 13, 23に対する金属酸化物 14, 24中の金属のモ ル比 (原子数の比で表せる場合は原子比)が平均値で 0.005〜6の範囲となるように 材料混合比を設定することが望ましい。この値が 0.005未満になると、貴金属粒子 13 , 23のシンタリング抑制効果が薄れ、逆に 6を超えると、貴金属粒子 13, 23の触媒活 性が有用域より低下する。この点、上記モル比の平均値は、より望ましくは、それが 0. 1〜3の範囲になるように材料混合比を設定する。  [0026] The catalytically active layer 4b has an average molar ratio of metal in the metal oxides 14 and 24 to the noble metal particles 13 and 23 (atomic ratio in the case of atomic ratio) in the range of 0.005 to 6. It is desirable to set the material mixing ratio so that When this value is less than 0.005, the sintering suppressing effect of the noble metal particles 13 and 23 is weakened. Conversely, when the value exceeds 6, the catalyst activity of the noble metal particles 13 and 23 is lowered from the useful range. In this regard, the average value of the molar ratio is more preferably set such that the material mixing ratio is in the range of 0.1 to 3.
[0027] 貴金属粒子 13, 23の少なくとも一部を、図 2 (a)、図 2 (b)のように、島状の金属酸 化物 14, 24で被覆して基材 4に係留担持するだけでも、貴金属粒子 13, 23の個別 の変位を妨げ、そのシンタリングを抑制する力 上記金属酸化物 14, 24を、図 1 (c) に例示するように連続した層として形成し、これを基材 4に着床固定すると、それが物 理的障壁となって貴金属粒子 13, 23の相対的変位をも妨げ、シンタリングの抑制を 効果的に補完する。 [0027] At least a part of the noble metal particles 13, 23 is covered with island-shaped metal oxides 14, 24 as shown in Fig. 2 (a) and Fig. 2 (b), and is simply anchored on the substrate 4. However, the ability to prevent the individual displacements of the noble metal particles 13 and 23 and suppress their sintering. The metal oxides 14 and 24 are formed as a continuous layer as illustrated in Fig. 1 (c). When fixed on material 4, it acts as a physical barrier, preventing the relative displacement of precious metal particles 13, 23 and suppressing sintering. Complement effectively.
[0028] なお、図 1 (a)に示す排ガス浄化触媒 1の被覆層 3は、これを担体 2に複数層塗布' 焼成して積層しても良ぐその際、基材 4または触媒活性層 4bの組成若しくは構造が 異なる被覆層 3を積層しても良 、。  [0028] Note that the coating layer 3 of the exhaust gas purification catalyst 1 shown in FIG. 1 (a) may be laminated by applying a plurality of layers to the carrier 2 and firing the substrate. 4b may be laminated with a coating layer 3 having a different composition or structure.
[0029] 次に、図 3を参照して、排ガス浄化触媒 1の製造方法を説明する。 Next, a method for manufacturing the exhaust gas purification catalyst 1 will be described with reference to FIG.
[0030] 図 3は排ガス浄化触媒 1の製造方法を示すフローチャートである。 FIG. 3 is a flowchart showing a method for manufacturing the exhaust gas purification catalyst 1.
[0031] 排ガス浄化触媒 1は、基材 4を調整する調整工程 S1と、調整した基材 4に貴金属粒 子 13, 23を担持する担持工程 S2と、担持した貴金属粒子 13, 23の少なくとも一部 を金属酸化物 14, 24で覆う被覆工程 S3と、金属酸化物 14, 24で覆われた貴金属 粒子 13, 23を担持する基材 4をスラリー化して担体 2に塗布する塗布工程 S4とを含 む方法により製造される。 [0031] The exhaust gas purification catalyst 1 includes at least one of an adjustment step S1 for adjusting the base material 4, a support step S2 for supporting the noble metal particles 13 and 23 on the adjusted base material 4, and the noble metal particles 13 and 23 supported. Coating step S3 for covering the part with metal oxides 14, 24, and coating step S4 for slurrying base material 4 supporting noble metal particles 13, 23 covered with metal oxides 14, 24 and applying them to carrier 2 Manufactured by the method of inclusion.
[0032] 調整工程 S1では、アルミナを含むアルミナ基材の調整と、セリアを含むセリア基材 の調整とを個別に行う。 [0032] In the adjustment step S1, the adjustment of the alumina base material containing alumina and the adjustment of the ceria base material containing ceria are performed separately.
[0033] 担持工程 S2では、調整したアルミナ基材及びセリア基材に含浸法により貴金属粒 子 13, 23を担持させ、乾燥、焼成する。  [0033] In the supporting step S2, noble metal particles 13 and 23 are supported on the adjusted alumina base material and ceria base material by an impregnation method, and dried and fired.
[0034] 被覆工程 S3では、担持した貴金属粒子 13, 23の表面 13a, 23a若しくはその一部 に選択析出法により所定の金属を析出させ、焼成して、析出金属を酸化し、その金 属酸化物 14, 24で貴金属粒子 13, 23の少なくとも一部を覆う。  [0034] In the coating step S3, a predetermined metal is deposited on the surfaces 13a, 23a of the supported noble metal particles 13, 23 or a part thereof by a selective deposition method, and baked to oxidize the deposited metal and oxidize its metal. Cover at least part of the noble metal particles 13 and 23 with the objects 14 and 24.
[0035] 選択析出法は無電解めつき法によることが望ま 、。無電解めつき法は、 Co、 Ni、 F e、 Cu、 Sn、 Mn、 Ce、及び Zrの選択析出に適用できる力 中でも、 Co、 Ni、 Fe、 Cu、又 は Snを選択金属とすることが好ましい。より好ましくは、個別の基材を調整し (S1)、こ れに含浸法により Pt粒子を担持して (S2)、粉末化し、 Co溶液に浸け、攪拌後、水素 化ホウ素ナトリウムを添加して Coを還元することにより、 Pt粒子上に析出させ、析出し た Coを焼成酸ィ匕して、 Pt粒子の少なくとも一部を覆う(S3)。  [0035] The selective deposition method is preferably an electroless plating method. The electroless plating method uses Co, Ni, Fe, Cu, or Sn as a selective metal among the forces applicable to the selective deposition of Co, Ni, Fe, Cu, Sn, Mn, Ce, and Zr. Is preferred. More preferably, an individual base material is prepared (S1), and Pt particles are supported by the impregnation method (S2), pulverized, immersed in a Co solution, stirred, and then sodium borohydride is added. By reducing Co, it is deposited on the Pt particles, and the precipitated Co is baked and oxidized to cover at least a part of the Pt particles (S3).
[0036] 塗布工程 S4では、種類の異なる基材を担体 2に重ね塗りする。  [0036] In the coating step S4, different types of substrates are overcoated on the carrier 2.
[0037] 以下、より詳細な実施例を示すが、本発明は、それらの実施例に限定されない。  [0037] Hereinafter, more detailed examples will be shown, but the present invention is not limited to these examples.
実施例  Example
[0038] ¾細 γ—アルミナに酸ィ匕セリウム 9%、酸ィ匕ジルコニウム 6%、酸化ランタン 6%を複合化し たアルミナ基材 (以下、第 1実施例の工程 S1におけるアルミナ基材という意味で「1S1 -アルミナ基材」と呼ぶ。)と、セリア基材 (以下、「1S1-セリア基材」と呼ぶ。)とを個別 に調整した (Sl)。 [0038] ¾fine Alumina base material composed of γ-alumina compounded with 9% acid cerium, 6% acid zirconium, and 6% lanthanum oxide (hereinafter referred to as “1S1-alumina” in the sense of the alumina base in step S1 of the first embodiment) The ceria base material (hereinafter referred to as “1S1-ceria base material”) was individually adjusted (Sl).
[0039] 上記アルミナ基材 -1S1にジニトロジァミン白金水溶液を含浸し、乾燥後、 400°Cで焼 成して、 Ptを 0.44%担持するアルミナ基材 (以下、「1S2-アルミナ基材」と呼ぶ。)を得 た (S2)。  [0039] The alumina substrate -1S1 is impregnated with a dinitrodiammine platinum aqueous solution, dried, calcined at 400 ° C, and loaded with 0.44% Pt (hereinafter referred to as "1S2-alumina substrate") Was obtained (S2).
[0040] 硝酸コバルト 6水和物を水 200gに溶解してコバルトを 0.002g含ませたコバルト溶液 に 1S2-アルミナ基材を 150gカ卩え、室温で 1時間攪拌後、水素化ホウ素ナトリウムを 0.0 OOlmolカ卩えて、更に 1時間攪拌し、このコバルト溶液をろ過、洗浄、乾燥し、 400°Cで 焼成して、 Coを Ptに対する原子比で 0.01含む PtO.44%アルミナ基材(以下、「1S3-ァ ルミナ基材」と呼ぶ。 )を得た (S3)。  [0040] 150 g of 1S2-alumina substrate was added to a cobalt solution containing 0.002 g of cobalt nitrate dissolved in 200 g of water and stirred for 1 hour at room temperature, and then 0.0% of sodium borohydride was added. Stir OOlmol, stir for another hour, filter, wash, dry this cobalt solution, calcinate at 400 ° C, PtO.44% alumina base material containing 0.01 atomic ratio of Co to Pt. This was called “1S3-Alumina substrate” (S3).
[0041] また上記 1S1-セリア基材にジニトロジァミン白金水溶液を含浸し、乾燥後、 400°Cで 焼成して、 Ptを 0.375%担持するセリア基材 (以下、「1S2-セリア基材」と呼ぶ。)を得た (S2)。  [0041] Further, the above 1S1-ceria base material is impregnated with a dinitrodiammine platinum aqueous solution, dried, calcined at 400 ° C, and loaded with 0.375% Pt (hereinafter referred to as "1S2-ceria base material"). Was obtained (S2).
[0042] 硝酸コバルト 6水和物を水 200gに溶解してコバルトを 0.001 lg含ませたコバルト溶液 に 1S2-セリア基材を 100gカ卩え、室温で 1時間攪拌後、水素化ホウ素ナトリウムを 0.000 058molカ卩えて、更に 1時間攪拌し、このコバルト溶液をろ過、洗浄、乾燥し、 400°Cで 焼成して、 Coを Ptに対する原子比で 0.01含む Pt 0.375%セリア基材(以下、「1S3-セリ ァ基材」と呼ぶ。 )を得た (S3)。  [0042] 100 g of 1S2-ceria base material was added to a cobalt solution containing 0.001 lg of cobalt dissolved in 200 g of water in cobalt nitrate hexahydrate, stirred at room temperature for 1 hour, and then sodium borohydride was added to 0.000. Stir 058mol, stir for another hour, filter, wash, dry this cobalt solution, calcinate at 400 ° C, and contain Pt 0.375% ceria substrate (hereinafter referred to as "1S3 -Called “Celer base material.”) (S3).
[0043] 1S3-アルミナ基材 124.8g、 1S3-セリア基材 48.6g、及びべ一マイトアルミナ 1.6gをボ ールミルにカ卩え、さらに水 307.5g及び 10%硝酸水溶液 17.5gを加えて、粉末を粉砕し 、平均粒径 3 μ mのスラリー(以下、「スラリー A」と呼ぶ。)を得た (S4)。  [0043] 124.8 g of 1S3-alumina base material, 48.6 g of 1S3-ceria base material, and 1.6 g of bermite alumina are placed in a ball mill, and 307.5 g of water and 17.5 g of 10% nitric acid aqueous solution are added to form a powder. Was pulverized to obtain a slurry having an average particle size of 3 μm (hereinafter referred to as “slurry A”) (S4).
[0044] 次に、ジルコニウムを 3%含む γ -アルミナと酸ィ匕ジルコニウムとの複合ィ匕合物に硝 酸ロジウムを含浸し、ロジウムを 0.6%担持する粉末基材を得た。  [0044] Next, a composite of γ-alumina containing 3% zirconium and zirconium oxide was impregnated with rhodium nitrate to obtain a powder base material carrying 0.6% rhodium.
[0045] また、酸ィ匕ジルコニウムに酸ィ匕セリウムを 24%複合ィ匕したジルコユア基材を得た。  [0045] Further, a zirconium base material obtained by combining 24% of cerium oxide with zirconium oxide was obtained.
[0046] これらロジウム 0.6%基材 116.55g及びジルコ二ァ基材 44.45gと、アルミナ基材 llgと 、ベーマイトアルミナ 3gとをボールミルに加え、さらに水 307.5g及び 10%硝酸水溶液 1 7.5gをカ卩えて粉砕し、平均粒径 3 μ mのスラリー(以下、「スラリー R」と呼ぶ。)を得た。 (S4)このスラリー Rでは、基材に担持した貴金属を金属酸ィ匕物が被覆してない。 [0046] 116.55 g of the rhodium 0.6% base material, 44.45 g of the zirconia base material, llg of the alumina base material, and 3 g of boehmite alumina were added to a ball mill, and further 307.5 g of water and a 10% nitric acid aqueous solution 1 7.5 g was added and pulverized to obtain a slurry having an average particle size of 3 μm (hereinafter referred to as “slurry R”). (S4) In this slurry R, the noble metal supported on the base material is not covered with the metal oxide.
[0047] 直径 36 φ、 400セル 6ミルのハ-カム担体(容量 0.04L)にスラリー Aを 141g/Lコーティ ングして乾燥し、さらにスラリー Rを 59g/Lコーティングし、乾燥後、 400°Cで焼成して、 実施例 1の試料を得た(S4)。この試料は、 Ptを 0.587g/L、 Rhを 0.236g/L担持し、 Co を Ptに対する原子比で 0.01含む触媒である。  [0047] 36 mm diameter, 400 cell, 6 mil Hercame carrier (capacity 0.04L), coated with 141g / L of slurry A and dried, and further coated with 59g / L of slurry R, dried, 400 ° The sample of Example 1 was obtained by baking with C (S4). This sample is a catalyst which carries Pt 0.587g / L, Rh 0.236g / L and contains Co in an atomic ratio of 0.01 with respect to Pt.
[0048] 実施例 2  [0048] Example 2
硝酸コバルト 6水和物を水 200gに溶解させてコバルトを O.Olg含ませたコバルト溶液 に 1S2-アルミナ基材 (Pt 0.44%アルミナ基材)を 150gカ卩え、室温で 1時間攪拌後、水 素化ホウ素ナトリウムを 0.0005mol加えて、更に 1時間攪拌し、このコバルト溶液をろ過 、洗浄、乾燥し、 400°Cで焼成して、 Coを Ptに対する原子比で 0.05含む PtO.44%アル ミナ基材 (以下、「2S3-アルミナ基材」と呼ぶ。)を得た (S3)。  Add 150 g of 1S2-alumina substrate (Pt 0.44% alumina substrate) to cobalt solution containing cobalt nitrate hexahydrate dissolved in 200 g of water and cobalt in O.Olg, and stir at room temperature for 1 hour. Add 0.0005 mol of sodium borohydride and stir for an additional hour. The cobalt solution is filtered, washed, dried, calcined at 400 ° C, and PtO.44% Al containing 0.05 by atomic ratio of Co to Pt. A Mina base material (hereinafter referred to as “2S3-alumina base material”) was obtained (S3).
[0049] また、硝酸コバルト 6水和物を水 200gに溶解してコバルトを 0.0057g含ませたコバル ト溶液に 1S2-セリア基材 (Pt 0.375%セリア基材)を 100gカ卩え、室温で 1時間攪拌後、 水素化ホウ素ナトリウムを 0.00029molを加えて、更に 1時間攪拌し、このコバルト溶液 をろ過、洗浄、乾燥し、 400°Cで焼成して、 Coを Ptに対する原子比で 0.05含む Pt 0.37 5%セリア基材 (以下、「2S3-セリア基材」と呼ぶ。)を得た (S3)。  [0049] Further, 100 g of 1S2-ceria base material (Pt 0.375% ceria base material) was added to a cobalt solution in which cobalt nitrate hexahydrate was dissolved in 200 g of water and 0.0057 g of cobalt was added. After stirring for 1 hour, 0.00029 mol of sodium borohydride was added, and the mixture was further stirred for 1 hour, and this cobalt solution was filtered, washed, dried, calcined at 400 ° C, and Co contained in an atomic ratio of 0.05 to Pt. Pt 0.37 5% ceria base material (hereinafter referred to as “2S3-ceria base material”) was obtained (S3).
[0050] 2S3-アルミナ基材 124.8g、 2S3-セリア基材 48.6g、及びべ一マイトアルミナ 1.6gをボ ールミルにカ卩え、さらに水 307.5g及び 10%硝酸水溶液 17.5gを加えて、粉末を粉砕し 、平均粒径 3 μ mのスラリー(以下、「スラリー B」と呼ぶ。)を得た。 (S4)。  [0050] 124.8 g of 2S3-alumina base material, 48.6 g of 2S3-ceria base material, and 1.6 g of bermite alumina are placed in a ball mill, and 307.5 g of water and 17.5 g of a 10% nitric acid aqueous solution are added to the powder. Was pulverized to obtain a slurry having an average particle size of 3 μm (hereinafter referred to as “slurry B”). (S4).
[0051] 直径 36 φ、 400セル 6ミルのハ-カム担体(容量 0.04L)にスラリー Bを 141g/Lコーティ ングして乾燥し、さらにスラリー R (実施例 1参照)を 59g/Lコーティングし、乾燥後、 40 0°Cで焼成して実施例 2の試料を得た(S4)。この試料は、 Ptを 0.587g/L、 Rhを 0.236 g/L担持し、 Coを Ptに対する原子比で 0.05含む触媒である。  [0051] A 36-millimeter, 400-cell, 6-mil Hercam carrier (capacity 0.04 L) was coated with 141 g / L of slurry B and dried, and further coated with 59 g / L of slurry R (see Example 1). After drying, baking was performed at 400 ° C. to obtain a sample of Example 2 (S4). This sample is a catalyst that supports Pt at 0.587 g / L, Rh at 0.236 g / L, and contains Co in an atomic ratio of 0.05 with respect to Pt.
[0052] 実施例 3  [0052] Example 3
硝酸コバルト 6水和物を水 200gに溶解させてコバルトを 0.02g含ませたコバルト溶液 に 1S2-アルミナ基材 (Pt 0.44%アルミナ基材)を 150gカ卩え、室温で 1時間攪拌後、水 素化ホウ素ナトリウムを O.OOlmol力!]えて、更に 1時間攪拌し、このコバルト溶液をろ過 、洗浄、乾燥し、 400°Cで焼成して、 Coを Ptに対する原子比で 0.1含む PtO.44%アルミ ナ基材 (以下、「3S3-アルミナ基材」と呼ぶ。)を得た(S3)。 Add 150 g of 1S2-alumina substrate (Pt 0.44% alumina substrate) to a cobalt solution containing cobalt nitrate hexahydrate dissolved in 200 g of water and 0.02 g of cobalt, and stir at room temperature for 1 hour. O.OOlmol power of sodium boronide! ] Stir for an additional hour and filter this cobalt solution , Washed, dried, and fired at 400 ° C to obtain a PtO.44% alumina substrate (hereinafter referred to as "3S3-alumina substrate") containing Co in an atomic ratio of 0.1 to Pt (S3). ).
[0053] また、硝酸コバルト 6水和物を水 200gに溶解してコバルトを 0.0113g含ませたコバル ト溶液に 1S2-セリア基材 (Pt 0.375%セリア基材)を 100gカ卩え、室温で 1時間攪拌後、 水素化ホウ素ナトリウムを 0.00058molを加えて、更に 1時間攪拌し、このコバルト溶液 をろ過、洗浄、乾燥し、 400°Cで焼成して、 Coを Ptに対する原子比で 0.1含む Pt 0.375 %セリア基材 (以下、「3S3-セリア基材」と呼ぶ。)を得た (S3)。  [0053] Further, 100 g of 1S2-ceria base material (Pt 0.375% ceria base material) was added to a cobalt solution containing 0.0113 g of cobalt dissolved in 200 g of water and dissolved in 200 g of water at room temperature. After stirring for 1 hour, 0.00058 mol of sodium borohydride was added, and the mixture was further stirred for 1 hour. The cobalt solution was filtered, washed, dried, and calcined at 400 ° C. Co contained in an atomic ratio of 0.1 to Pt. A Pt 0.375% ceria substrate (hereinafter referred to as “3S3-ceria substrate”) was obtained (S3).
[0054] 3S3-アルミナ基材 124.8g、 3S3-セリア基材 48.6g、及びべ一マイトアルミナ 1.6gをボ ールミルにカ卩え、さらに水 307.5g及び 10%硝酸水溶液 17.5gを加えて、粉末を粉砕し 、平均粒径 3 μ mのスラリー(以下、「スラリー C」と呼ぶ。)を得た。 (S4)。  [0054] 124.8 g of 3S3-alumina base material, 48.6 g of 3S3-ceria base material, and 1.6 g of bermite alumina are placed in a ball mill, and 307.5 g of water and 17.5 g of a 10% nitric acid aqueous solution are added to form a powder. Was pulverized to obtain a slurry having an average particle size of 3 μm (hereinafter referred to as “slurry C”). (S4).
[0055] 直径 36 φ、 400セル 6ミルのハ-カム担体(容量 0.04L)にスラリー Cを 141g/Lコーティ ングして乾燥し、さらにスラリー R (実施例 1参照)を 59g/Lコーティングし、乾燥後、 40 0°Cで焼成して実施例 3の試料を得た(S4)。この試料は、 Ptを 0.587g/L、 Rhを 0.236 g/L担持し、 Coを Ptに対する原子比で 0.1含む触媒である。  [0055] A 36-millimeter, 400-cell, 6-mil Hercam carrier (capacity 0.04 L) was coated with 141 g / L of slurry C and dried, and further coated with slurry R (see Example 1) 59 g / L. After drying, baking was performed at 400 ° C. to obtain a sample of Example 3 (S4). This sample is a catalyst that carries 0.587 g / L of Pt, 0.236 g / L of Rh, and contains Co in an atomic ratio of 0.1 with respect to Pt.
[0056] 実施例 4  [0056] Example 4
実施例 1と同じ方法を用い、定量的操作を行って、 Ptを 0.441%担持するアルミナ基 材(以下、「4S2-アルミナ基材」と呼ぶ。)及び Ptを 0.3756%担持するセリア基材(以 下、「4S2-セリア基材」と呼ぶ。)を得た(S2)。  Using the same method as in Example 1, a quantitative operation was performed to obtain an alumina base material supporting 0.441% Pt (hereinafter referred to as “4S2-alumina base material”) and a ceria base material supporting 0.3756% Pt ( Hereinafter, referred to as “4S2-ceria substrate”) (S2).
[0057] 硝酸コバルト 6水和物を水 200gに溶解させてコバルトを 0.20g含ませたコバルト溶液 に、 4S2-アルミナ基材 (Pt 0.441%アルミナ基材)を 149.72gカ卩え、室温で 1時間攪拌 後、水素化ホウ素ナトリウムを 0.0102molカロえて、更に 1時間攪拌し、このコノ レト溶 液をろ過、洗浄、乾燥し、 400°Cで焼成して、 Coを Ptに対する原子比で 1含む Pt0.44 %アルミナ基材 (以下、「4S3-アルミナ基材」と呼ぶ。)を得た(S3)。  [0057] Cobalt nitrate hexahydrate was dissolved in 200 g of water and cobalt solution containing 0.20 g of cobalt was charged with 149.72 g of 4S2-alumina substrate (Pt 0.441% alumina substrate). After stirring for a period of time, add 0.0102 mol of sodium borohydride, stir for an additional hour, and filter, wash, dry this condensate solution, calcinate at 400 ° C, and contain Co in an atomic ratio of 1 to Pt. A Pt 0.44% alumina substrate (hereinafter referred to as “4S3-alumina substrate”) was obtained (S3).
[0058] また、硝酸コバルト 6水和物を水 200gに溶解してコバルトを 0.1132g含ませたコバル ト溶液に 4S2-セリア基材 (Pt 0.3756%セリア基材)を 99.84gカ卩え、室温で 1時間攪拌 後、水素化ホウ素ナトリウムを 0.0058mol加えて、更に 1時間攪拌し、このコバルト溶液 をろ過、洗浄、乾燥し、 400°Cで焼成して、 Coを Ptに対する原子比で 1含む Pt 0.375% セリア基材 (以下、「4S3-セリア基材」と呼ぶ。)を得た (S3)。 [0059] 4S3-アルミナ基材 124.8g、 4S3-セリア基材 48.6g、及びべ一マイトアルミナ 1.6gをボ ールミルにカ卩え、さらに水 307.5g及び 10%硝酸水溶液 17.5gを加えて、粉末を粉砕し 、平均粒径 3 μ mのスラリー(以下、「スラリー D」と呼ぶ。)を得た。 (S4)。 [0058] Further, 99.84 g of 4S2-ceria base material (Pt 0.3756% ceria base material) was added to a cobalt solution containing cobalt nitrate 0.1132 g dissolved in water 200 g of cobalt nitrate, and room temperature. After stirring for 1 hour, add 0.0058 mol of sodium borohydride and stir for an additional hour. The cobalt solution is filtered, washed, dried, calcined at 400 ° C, and contains Co in an atomic ratio of 1 to Pt. A Pt 0.375% ceria substrate (hereinafter referred to as “4S3-ceria substrate”) was obtained (S3). [0059] 4S3-alumina base material 124.8g, 4S3-ceria base material 48.6g, and bermite alumina 1.6g were placed in a ball mill, and further water 307.5g and 10% nitric acid aqueous solution 17.5g were added. Was pulverized to obtain a slurry having an average particle size of 3 μm (hereinafter referred to as “slurry D”). (S4).
[0060] 直径 36 φ、 400セル 6ミルのハ-カム担体(容量 0.04L)にスラリー Dを 141g/Lコーティ ングして乾燥し、さらにスラリー R (実施例 1参照)を 59g/Lコーティングし、乾燥後、 40 0°Cで焼成して実施例 4の試料を得た(S4)。この試料は、 Ptを 0.587g/L、 Rhを 0.236 g/L担持し、 Coを Ptに対する原子比で 1含む触媒である。  [0060] A 36 mm diameter, 400 cell, 6 mil Hercame carrier (capacity 0.04 L) was coated with 141 g / L of slurry D and dried, and further coated with 59 g / L of slurry R (see Example 1). After drying, baking was performed at 400 ° C. to obtain a sample of Example 4 (S4). This sample is a catalyst that carries 0.587 g / L of Pt, 0.236 g / L of Rh, and contains Co in an atomic ratio of 1 to Pt.
[0061] 実施例 5  [0061] Example 5
実施例 1と同じ方法を用い、定量的操作を行って、 Ptを 0.442%担持するアルミナ基 材(以下、「5S2-アルミナ基材」と呼ぶ。)及び Ptを 0.3762%担持するセリア基材(以 下、「5S2-セリア基材」と呼ぶ。)を得た(S2)。  Using the same method as in Example 1, a quantitative operation was performed to obtain an alumina base material supporting 0.442% Pt (hereinafter referred to as “5S2-alumina base material”) and a ceria base material supporting 0.3762% Pt ( Hereinafter, it is referred to as “5S2-ceria substrate”) (S2).
[0062] 硝酸コバルト 6水和物を水 200gに溶解させてコバルトを 0.3987g含ませたコバルト溶 液に、 5S2-アルミナ基材 (Pt 0.442%アルミナ基材)を 149.44gカ卩え、室温で 1時間攪 拌後、水素化ホウ素ナトリウムを 0.0203molカロえて、更に 1時間攪拌し、このコノ レト 溶液をろ過、洗浄、乾燥し、 400°Cで焼成して、 Coを Ptに対する原子比で 2含む Pt0.4 4%アルミナ基材 (以下、「5S3-アルミナ基材」と呼ぶ。)を得た(S3)。  [0062] Cobalt nitrate hexahydrate dissolved in 200 g of water and cobalt solution containing 0.3987 g of cobalt was added 149.44 g of 5S2-alumina substrate (Pt 0.442% alumina substrate) at room temperature. After stirring for 1 hour, add 0.0203 mol of sodium borohydride, stir for an additional hour, filter, wash, dry this Conoleto solution, calcinate at 400 ° C, and Co at an atomic ratio of 2 to Pt. A Pt0.4 containing 4% alumina substrate (hereinafter referred to as “5S3-alumina substrate”) was obtained (S3).
[0063] また、硝酸コバルト 6水和物を水 200gに溶解してコバルトを 0.2265g含ませたコバル ト溶液に 5S2-セリア基材 (Pt 0.3762%セリア基材)を 99.68gカ卩え、室温で 1時間攪拌 後、水素化ホウ素ナトリウムを 0.012mol加えて、更に 1時間攪拌し、このコバルト溶液 をろ過、洗浄、乾燥し、 400°Cで焼成して、 Coを Ptに対する原子比で 2含む Pt 0.375% セリア基材 (以下、「5S3-セリア基材」と呼ぶ。)を得た (S3)。  [0063] Further, 99.68 g of 5S2-ceria base material (Pt 0.3762% ceria base material) was added to a cobalt solution containing cobalt nitrate hexahydrate dissolved in 200 g of water and 0.2265 g of cobalt at room temperature. After stirring for 1 hour, add 0.012 mol of sodium borohydride and stir for an additional hour. This cobalt solution is filtered, washed, dried, calcined at 400 ° C, and contains Co in an atomic ratio of 2 to Pt. Pt 0.375% ceria base material (hereinafter referred to as “5S3-ceria base material”) was obtained (S3).
[0064] 5S3-アルミナ基材 124.8g、 5S3-セリア基材 48.6g、及びべ一マイトアルミナ 1.6gをボ ールミルにカ卩え、さらに水 307.5g及び 10%硝酸水溶液 17.5gを加えて、粉末を粉砕し 、平均粒径 3 μ mのスラリー(以下、「スラリー E」と呼ぶ。)を得た。 (S4)。  [0064] 12Sg of 5S3-alumina base material, 48.6g of 5S3-ceria base material, and 1.6g of bermite alumina are placed in a ball mill, and 307.5g of water and 17.5g of 10% nitric acid aqueous solution are added to the powder. Was pulverized to obtain a slurry having an average particle size of 3 μm (hereinafter referred to as “slurry E”). (S4).
[0065] 直径 36 φ、 400セル 6ミルのハ-カム担体(容量 0.04L)にスラリー Eを 141g/Lコーティ ングして乾燥し、さらにスラリー R (実施例 1参照)を 59g/Lコーティングし、乾燥後、 40 0°Cで焼成して実施例 5の試料を得た(S4)。この試料は、 Ptを 0.587g/L、 Rhを 0.236 g/L担持し、 Coを Ptに対する原子比で 2含む触媒である。 [0066] 実施例 6 [0065] A 36-millimeter, 400-cell, 6-mil Hercam carrier (capacity 0.04 L) was coated with 141 g / L of slurry E, dried, and then coated with 59 g / L of slurry R (see Example 1). After drying, baking was performed at 400 ° C. to obtain a sample of Example 5 (S4). This sample is a catalyst that carries 0.587 g / L of Pt, 0.236 g / L of Rh, and contains Co in an atomic ratio of 2 with respect to Pt. [0066] Example 6
実施例 1と同じ方法を用い、定量的操作を行って、 Ptを 0.4425%担持するアルミナ 基材 (以下、「6S2-アルミナ基材」と呼ぶ。)及び Ptを 0.3768%担持するセリア基材( 以下、「6S2-セリア基材」と呼ぶ。)を得た(S2)。  Using the same method as in Example 1, a quantitative operation was performed to obtain an alumina substrate supporting 0.4425% Pt (hereinafter referred to as “6S2-alumina substrate”) and a ceria substrate supporting 0.3768% Pt ( Hereinafter, referred to as “6S2-ceria substrate”) (S2).
[0067] 硝酸コバルト 6水和物を水 200gに溶解させてコバルトを 0.5981g含ませたコバルト溶 液に、 6S2-アルミナ基材(Pt 0.4425%アルミナ基材)を 149.16g加え、室温で 1時間攪 拌後、水素化ホウ素ナトリウムを 0.0304molカロえて、更に 1時間攪拌し、このコノ レト 溶液をろ過、洗浄、乾燥し、 400°Cで焼成して、 Coを Ptに対する原子比で 3含む Pt0.4 4%アルミナ基材 (以下、「6S3-アルミナ基材」と呼ぶ。)を得た(S3)。  [0067] 149.16g of 6S2-alumina base material (Pt 0.4425% alumina base material) was added to a cobalt solution in which cobalt nitrate hexahydrate was dissolved in 200g of water and 0.5981g of cobalt was added. After stirring, 0.0304 mol of sodium borohydride was added, and the mixture was further stirred for 1 hour, and this solution was filtered, washed and dried, calcined at 400 ° C, and Co contained in an atomic ratio of 3 to Pt. .4 A 4% alumina substrate (hereinafter referred to as “6S3-alumina substrate”) was obtained (S3).
[0068] また、硝酸コバルト 6水和物を水 200gに溶解してコバルトを 0.3396g含ませたコバル ト溶液に 6S2-セリア基材 (Pt 0.3768%セリア基材)を 99.52gカ卩え、室温で 1時間攪拌 後、水素化ホウ素ナトリウムを 0.0173mol加えて、更に 1時間攪拌し、このコバルト溶液 をろ過、洗浄、乾燥し、 400°Cで焼成して、 Coを Ptに対する原子比で 3含む Pt 0.375% セリア基材 (以下、「6S3-セリア基材」と呼ぶ。)を得た (S3)。  [0068] Also, 99.52g of 6S2-ceria base material (Pt 0.3768% ceria base material) was added to a cobalt solution containing 0.3396g of cobalt dissolved in 200g of water. After stirring for 1 hour, 0.0173 mol of sodium borohydride was added, and further stirred for 1 hour. This cobalt solution was filtered, washed, dried, calcined at 400 ° C, and Co contained in an atomic ratio of 3 to Pt. A Pt 0.375% ceria substrate (hereinafter referred to as “6S3-ceria substrate”) was obtained (S3).
[0069] 6S3-アルミナ基材 124.8g、 6S3-セリア基材 48.6g、及びべ一マイトアルミナ 1.6gをボ ールミルにカ卩え、さらに水 307.5g及び 10%硝酸水溶液 17.5gを加えて、粉末を粉砕し 、平均粒径 3 μ mのスラリー(以下、「スラリー F」と呼ぶ。)を得た。 (S4)。  [0069] 12Sg of 6S3-alumina base material, 48.6g of 6S3-ceria base material, and 1.6g of bermite alumina were placed in a ball mill, and 307.5g of water and 17.5g of 10% nitric acid aqueous solution were added to powder. Was pulverized to obtain a slurry having an average particle size of 3 μm (hereinafter referred to as “slurry F”). (S4).
[0070] 直径 36 φ、 400セル 6ミルのハ-カム担体(容量 0.04L)にスラリー Fを 141g/Lコーティ ングして乾燥し、さらにスラリー R (実施例 1参照)を 59g/Lコーティングし、乾燥後、 40 0°Cで焼成して実施例 6の試料を得た(S4)。この試料は、 Ptを 0.587g/L、 Rhを 0.236 g/L担持し、 Coを Ptに対する原子比で 3含む触媒である。  [0070] 36 g diameter, 400 cell, 6 mil Hercame carrier (capacity 0.04L) was coated with 141g / L of slurry F, dried, and then coated with slurry R (see Example 1) 59g / L. After drying, baking was performed at 400 ° C. to obtain a sample of Example 6 (S4). This sample is a catalyst that supports 0.587 g / L of Pt, 0.236 g / L of Rh, and contains Co in an atomic ratio of 3 with respect to Pt.
[0071] 実施例 7  [0071] Example 7
実施例 1と同じ方法を用い、定量的操作を行って、 Ptを 0.443%担持するアルミナ基 材(以下、「7S2-アルミナ基材」と呼ぶ。)及び Ptを 0.3774%担持するセリア基材(以 下、「7S2-セリア基材」と呼ぶ。)を得た(S2)。  Using the same method as in Example 1, a quantitative operation was performed to obtain an alumina substrate carrying 0.443% Pt (hereinafter referred to as “7S2-alumina substrate”) and a ceria substrate carrying 0.3774% Pt ( Hereinafter, referred to as “7S2-ceria substrate”) was obtained (S2).
[0072] 硝酸コバルト 6水和物を水 200gに溶解させてコバルトを 0.7974g含ませたコバルト溶 液に、 7S2-アルミナ基材 (Pt 0.443%アルミナ基材)を 148.88gカ卩え、室温で 1時間攪 拌後、水素化ホウ素ナトリウムを 0.041molカロえて、更に 1時間攪拌し、このコノ レト溶 液をろ過、洗浄、乾燥し、 400°Cで焼成して、 Coを Ptに対する原子比で 4含む Pt0.44 %アルミナ基材 (以下、「7S3-アルミナ基材」と呼ぶ。)を得た(S3)。 [0072] Cobalt nitrate hexahydrate dissolved in 200 g of water and 0.7974 g of cobalt was added to a cobalt solution containing 148.88 g of 7S2-alumina substrate (Pt 0.443% alumina substrate) at room temperature. After stirring for 1 hour, add 0.041 mol of sodium borohydride and stir for another 1 hour. The liquid was filtered, washed, dried, and fired at 400 ° C. to obtain a Pt 0.44% alumina base material (hereinafter referred to as “7S3-alumina base material”) containing Co in an atomic ratio of 4 to Pt. (S3).
[0073] また、硝酸コバルト 6水和物を水 200gに溶解してコバルトを 0.4528g含ませたコバル ト溶液に 7S2-セリア基材 (Pt 0.3774%セリア基材)を 99.36gカ卩え、室温で 1時間攪拌 後、水素化ホウ素ナトリウムを 0.0231mol加えて、更に 1時間攪拌し、このコバルト溶液 をろ過、洗浄、乾燥し、 400°Cで焼成して、 Coを Ptに対する原子比で 4含む Pt 0.375% セリア基材 (以下、「7S3-セリア基材」と呼ぶ。)を得た (S3)。  [0073] Also, 99.36g of 7S2-ceria base material (Pt 0.3774% ceria base material) was added to a cobalt solution containing cobalt nitrate hexahydrate dissolved in 200g of water and 0.4528g of cobalt at room temperature. After stirring for 1 hour, add 0.0231 mol of sodium borohydride and stir for an additional hour. This cobalt solution is filtered, washed, dried, calcined at 400 ° C, and contains Co in an atomic ratio of 4 to Pt. A Pt 0.375% ceria substrate (hereinafter referred to as “7S3-ceria substrate”) was obtained (S3).
[0074] 7S3-アルミナ基材 124.8g、 7S3-セリア基材 48.6g、及びべ一マイトアルミナ 1.6gをボ ールミルにカ卩え、さらに水 307.5g及び 10%硝酸水溶液 17.5gを加えて、粉末を粉砕し 、平均粒径 3 μ mのスラリー(以下、「スラリー G」と呼ぶ。)を得た。 (S4)。  [0074] 7S3-alumina base material 124.8g, 7S3-ceria base material 48.6g, and bermite alumina 1.6g were placed in a ball mill, and water 307.5g and 10% nitric acid aqueous solution 17.5g were added, and powdered. Was pulverized to obtain a slurry having an average particle size of 3 μm (hereinafter referred to as “slurry G”). (S4).
[0075] 直径 36 φ、 400セル 6ミルのハ-カム担体(容量 0.04L)にスラリー Gを 141g/Lコーティ ングして乾燥し、さらにスラリー R (実施例 1参照)を 59g/Lコーティングし、乾燥後、 40 0°Cで焼成して実施例 7の試料を得た(S4)。この試料は、 Ptを 0.587g/L、 Rhを 0.236 g/L担持し、 Coを Ptに対する原子比で 4含む触媒である。  [0075] A 36-millimeter, 400-cell, 6-mil Hercam carrier (capacity 0.04 L) was coated with 141 g / L of slurry G and dried, and further coated with 59 g / L of slurry R (see Example 1). After drying, baking was performed at 400 ° C. to obtain a sample of Example 7 (S4). This sample is a catalyst that carries 0.587 g / L of Pt, 0.236 g / L of Rh, and contains Co in an atomic ratio of 4 with respect to Pt.
[0076] 実施例 8  [0076] Example 8
実施例 1と同じ方法を用い、定量的操作を行って、 Ptを 0.444%担持するアルミナ基 材 (以下、「8S2-アルミナ基材」と呼ぶ。)及び Ptを 0.378%担持するセリア基材 (以下 、「8S2-セリア基材」と呼ぶ。)を得た(S2)。  Using the same method as in Example 1, a quantitative operation was performed to obtain an alumina base material supporting 0.444% Pt (hereinafter referred to as “8S2-alumina base material”) and a ceria base material supporting 0.378% Pt ( Hereinafter, referred to as “8S2-ceria substrate”) was obtained (S2).
[0077] 硝酸コバルト 6水和物を水 200gに溶解させてコバルトを 0.997g含ませたコバルト溶 液に、 8S2-アルミナ基材(Pt 0.444%アルミナ基材)を 148.60g加え、室温で 1時間攪 拌後、水素化ホウ素ナトリウムを 0.051molカロえて、更に 1時間攪拌し、このコノ レト溶 液をろ過、洗浄、乾燥し、 400°Cで焼成して、 Coを Ptに対する原子比で 5含む Pt0.44 %アルミナ基材 (以下、「8S3-アルミナ基材」と呼ぶ。)を得た(S3)。  [0077] Add 148.60g of 8S2-alumina base material (Pt 0.444% alumina base material) to cobalt solution containing 0.997g of cobalt nitrate dissolved in 200g of water for 1 hour at room temperature. After stirring, add 0.051 mol of sodium borohydride and stir for an additional hour. Filter, wash and dry this solution of condensate, calcinate at 400 ° C, and contain Co in an atomic ratio of 5 to Pt. A Pt0.44% alumina substrate (hereinafter referred to as “8S3-alumina substrate”) was obtained (S3).
[0078] また、硝酸コバルト 6水和物を水 200gに溶解してコバルトを 0.566g含ませたコバルト 溶液に 8S2-セリア基材 (Pt 0.378%セリア基材)を 99.20gカ卩え、室温で 1時間攪拌後、 水素化ホウ素ナトリウムを 0.029mol加えて、更に 1時間攪拌し、このコバルト溶液をろ 過、洗浄、乾燥し、 400°Cで焼成して、 Coを Ptに対する原子比で 5含む Pt 0.375%セリ ァ基材 (以下、「8S3-セリア基材」と呼ぶ。)を得た (S3)。 [0079] 8S3-アルミナ基材 124.8g、 8S3-セリア基材 48.6g、及びべ一マイトアルミナ 1.6gをボ ールミルにカ卩え、さらに水 307.5g及び 10%硝酸水溶液 17.5gを加えて、粉末を粉砕し 、平均粒径 3 μ mのスラリー(以下、「スラリー H」と呼ぶ。)を得た。 (S4)。 [0078] Further, 99.20 g of 8S2-ceria base material (Pt 0.378% ceria base material) was added to a cobalt solution in which cobalt nitrate hexahydrate was dissolved in 200 g of water and 0.566 g of cobalt was contained, and at room temperature. After stirring for 1 hour, 0.029 mol of sodium borohydride was added and further stirred for 1 hour, and this cobalt solution was filtered, washed, dried, calcined at 400 ° C, and Co contained in an atomic ratio of 5 to Pt. A Pt 0.375% Celer substrate (hereinafter referred to as “8S3-ceria substrate”) was obtained (S3). [0079] 124.8 g of 8S3-alumina base material, 48.6 g of 8S3-ceria base material, and 1.6 g of bermite alumina were placed in a ball mill, and 307.5 g of water and 17.5 g of a 10% nitric acid aqueous solution were added to form a powder. Was pulverized to obtain a slurry having an average particle size of 3 μm (hereinafter referred to as “slurry H”). (S4).
[0080] 直径 36 φ、 400セル 6ミルのハ-カム担体(容量 0.04L)にスラリー Hを 141g/Lコーティ ングして乾燥し、さらにスラリー R (実施例 1参照)を 59g/Lコーティングし、乾燥後、 40 0°Cで焼成して実施例 8の試料を得た(S4)。この試料は、 Ptを 0.587g/L、 Rhを 0.236 g/L担持し、 Coを Ptに対する原子比で 5含む触媒である。  [0080] A 36-millimeter, 400-cell, 6-mil Herkam carrier (capacity 0.04 L) was coated with 141 g / L of slurry H and dried, and further coated with slurry R (see Example 1) 59 g / L. After drying, baking was performed at 400 ° C. to obtain a sample of Example 8 (S4). This sample is a catalyst that supports Pt at 0.587 g / L, Rh at 0.236 g / L, and contains Co in an atomic ratio of 5 to Pt.
[0081] 実施例 9  [0081] Example 9
硝酸コバルト 6水和物を水 200gに溶解させてコバルトを O.OOlg含ませたコバルト溶 液に 1S2-アルミナ基材 (Pt 0.44%アルミナ基材)を 150gカ卩え、室温で 1時間攪拌後、 水素化ホウ素ナトリウムを 0.00005molカ卩えて、更に 1時間攪拌し、このコバルト溶液を ろ過、洗浄、乾燥し、 400°Cで焼成して、 Coを Ptに対する原子比で 0.005含む Pt0.44 %アルミナ基材 (以下、「9S3-アルミナ基材」と呼ぶ。)を得た(S3)。  Add 150 g of 1S2-alumina base (Pt 0.44% alumina base) to a cobalt solution containing cobalt nitrate hexahydrate dissolved in 200 g of water and cobalt in O.OOlg, and stir at room temperature for 1 hour. Add 0.00005 mol of sodium borohydride and stir for an additional hour, then filter, wash, dry this cobalt solution, calcinate at 400 ° C, and contain Co in an atomic ratio of 0.005 to Pt 0.44% An alumina substrate (hereinafter referred to as “9S3-alumina substrate”) was obtained (S3).
[0082] また、硝酸コバルト 6水和物を水 200gに溶解してコバルトを 0.0006g含ませたコバル ト溶液に 1S2-セリア基材 (Pt 0.375%セリア基材)を 100gカ卩え、室温で 1時間攪拌後、 水素化ホウ素ナトリウムを 0.00003molを加えて、更に 1時間攪拌し、このコバルト溶液 をろ過、洗浄、乾燥し、 400°Cで焼成して、 Coを Ptに対する原子比で 0.005含む Pt 0.3 75%セリア基材 (以下、「9S3-セリア基材」と呼ぶ。)を得た (S3)。  [0082] Further, 100 g of 1S2-ceria base material (Pt 0.375% ceria base material) was added to a cobalt solution containing 0.0006 g of cobalt dissolved in 200 g of water and cobalt nitrate hexahydrate at room temperature. After stirring for 1 hour, add 0.00003mol of sodium borohydride and stir for an additional hour, then filter, wash, dry this cobalt solution, calcinate at 400 ° C and contain Co in an atomic ratio of 0.005 to Pt Pt 0.3 75% ceria base material (hereinafter referred to as “9S3-ceria base material”) was obtained (S3).
[0083] 9S3-アルミナ基材 124.8g、 9S3-セリア基材 48.6g、及びべ一マイトアルミナ 1.6gをボ ールミルにカ卩え、さらに水 307.5g及び 10%硝酸水溶液 17.5gを加えて、粉末を粉砕し 、平均粒径 3 μ mのスラリー(以下、「スラリー I」と呼ぶ。)を得た。 (S4)。  [0083] 124.8 g of 9S3-alumina base material, 48.6 g of 9S3-ceria base material, and 1.6 g of bermite alumina were placed in a ball mill, and 307.5 g of water and 17.5 g of a 10% nitric acid aqueous solution were added to form a powder. Was pulverized to obtain a slurry having an average particle size of 3 μm (hereinafter referred to as “slurry I”). (S4).
[0084] 直径 36 φ、 400セル 6ミルのハ-カム担体(容量 0.04L)にスラリー Iを 141g/Lコーティ ングして乾燥し、さらにスラリー R (実施例 1参照)を 59g/Lコーティングし、乾燥後、 40 0°Cで焼成して実施例 9の試料を得た(S4)。この試料は、 Ptを 0.587g/L、 Rhを 0.236 g/L担持し、 Coを Ptに対する原子比で 0.005含む触媒である。  [0084] A 36-millimeter, 400-cell, 6-mil Hercam carrier (capacity 0.04 L) was coated with 141 g / L of slurry I and dried, and further coated with 59 g / L of slurry R (see Example 1). After drying, baking was performed at 400 ° C. to obtain a sample of Example 9 (S4). This sample is a catalyst that supports 0.587 g / L of Pt, 0.236 g / L of Rh, and contains Co in an atomic ratio of 0.005 to Pt.
[0085] 実施例 10  [0085] Example 10
実施例 1と同じ方法を用い、定量的操作を行って、 Ptを 0.445%担持するアルミナ基 材(以下、「10S2-アルミナ基材」と呼ぶ。)及び Ptを 0.3786%担持するセリア基材(以 下、「10S2-セリア基材」と呼ぶ。)を得た(S2)。 Using the same method as in Example 1, a quantitative operation was performed to obtain an alumina substrate carrying 0.445% Pt (hereinafter referred to as “10S2-alumina substrate”) and a ceria substrate carrying 0.3786% Pt ( Less than Hereinafter referred to as “10S2-ceria substrate”. ) Was obtained (S2).
[0086] 硝酸コバルト 6水和物を水 200gに溶解させてコバルトを 1.196g含ませたコバルト溶 液に、 10S2-アルミナ基材 (Pt 0.445%アルミナ基材)を 148.32gカ卩え、室温で 1時間攪 拌後、水素化ホウ素ナトリウムを 0.061molカロえて、更に 1時間攪拌し、このコノ レト溶 液をろ過、洗浄、乾燥し、 400°Cで焼成して、 Coを Ptに対する原子比で 6含む Pt0.44 %アルミナ基材 (以下、「10S3-アルミナ基材」と呼ぶ。)を得た(S3)。  [0086] Cobalt nitrate hexahydrate was dissolved in 200 g of water and 1.196 g of cobalt was added, and 148.32 g of 10S2-alumina substrate (Pt 0.445% alumina substrate) was added at room temperature. After stirring for 1 hour, add 0.061 mol of sodium borohydride, stir for an additional hour, filter, wash, dry this condensate solution, calcinate at 400 ° C, and Co in atomic ratio to Pt. A Pt 0.44% alumina substrate containing 6 (hereinafter referred to as “10S3-alumina substrate”) was obtained (S3).
[0087] また、硝酸コバルト 6水和物を水 200gに溶解してコバルトを 0.679g含ませたコバルト 溶液に 10S2-セリア基材 (Pt 0.3786%セリア基材)を 99.04gカ卩え、室温で 1時間攪拌 後、水素化ホウ素ナトリウムを 0.035mol加えて、更に 1時間攪拌し、このコノ レト溶液 をろ過、洗浄、乾燥し、 400°Cで焼成して、 Coを Ptに対する原子比で 6含む Pt 0.375% セリア基材 (以下、「10S3-セリア基材」と呼ぶ。)を得た (S3)。  [0087] Further, 99.04 g of 10S2-ceria base material (Pt 0.3786% ceria base material) was added to a cobalt solution in which cobalt nitrate hexahydrate was dissolved in 200 g of water and 0.679 g of cobalt was contained. After stirring for 1 hour, add 0.035 mol of sodium borohydride and stir for an additional hour. Filter, wash, and dry this conorate solution, calcinate at 400 ° C, and contain Co in an atomic ratio of 6 to Pt. A Pt 0.375% ceria substrate (hereinafter referred to as “10S3-ceria substrate”) was obtained (S3).
[0088] 10S3-アルミナ基材 124.8g、 10S3-セリア基材 48.6g、及びべ一マイトアルミナ 1.6gを ボールミルに加え、さらに水 307.5g及び 10%硝酸水溶液 17.5gをカ卩えて、粉末を粉砕 し、平均粒径 3 mのスラリー(以下、「スラリー J」と呼ぶ。)を得た。(S4)。  [0088] Add 124.8 g of 10S3-alumina base material, 48.6 g of 10S3-ceria base material, and 1.6 g of bermite alumina to the ball mill, and then add 307.5 g of water and 17.5 g of 10% nitric acid aqueous solution to grind the powder. Thus, a slurry having an average particle diameter of 3 m (hereinafter referred to as “slurry J”) was obtained. (S4).
[0089] 直径 36 φ、 400セル 6ミルのハ-カム担体(容量 0.04L)にスラリー Jを 141g/Lコーティ ングして乾燥し、さらにスラリー R (実施例 1参照)を 59g/Lコーティングし、乾燥後、 40 0°Cで焼成して実施例 10の試料を得た(S4)。この試料は、 Ptを 0.587g/L、 Rhを 0.23 6g/L担持し、 Coを Ptに対する原子比で 6含む触媒である。  [0089] A 36 mm diameter, 400 cell, 6 mil Hercame carrier (capacity 0.04 L) was coated with 141 g / L of slurry J, dried, and further coated with 59 g / L of slurry R (see Example 1). After drying, baking was performed at 400 ° C. to obtain a sample of Example 10 (S4). This sample is a catalyst that supports 0.587 g / L of Pt, 0.23 6 g / L of Rh, and contains Co in an atomic ratio of 6 with respect to Pt.
[0090] 比較例 1  [0090] Comparative Example 1
1S2-アルミナ基材 (実施例 1参照) 124.8g、 1S2-セリア基材 (実施例 1参照) 48.6g、 及びべ一マイトアルミナ 1.6gをボールミルに加え、さらに水 307.5g及び 10%硝酸水溶 液 17.5gをカ卩えて、粉末を粉砕し、平均粒径 3 /z mのスラリー(以下、「スラリー X」と呼ぶ 。)を得た。  1S2-alumina substrate (see Example 1) 124.8g, 1S2-ceria substrate (see Example 1) 48.6g, and bermite alumina 1.6g are added to the ball mill, followed by 307.5g water and 10% aqueous nitric acid solution 17.5 g was added and the powder was pulverized to obtain a slurry having an average particle size of 3 / zm (hereinafter referred to as “slurry X”).
[0091] 直径 36 φ、 400セル 6ミルのハ-カム担体(容量 0.04L)にスラリー Xを 141g/Lコーティ ングして乾燥し、さらにスラリー R (実施例 1参照)を 59g/Lコーティングし、乾燥後、 40 0°Cで焼成して比較例 1の試料を得た。この試料は、基材に Ptを 0.587g/L、 Rhを 0.23 6g/L担持させただけで、それを金属酸ィ匕物により被覆していない通常の触媒である [0092] 以上の実施例 1〜実施例 10及び比較例 1で試料として得られた各触媒に対し、次 に述べる耐久試験を行い、その後、各触媒の浄化性能を調べた。 [0091] A 36-millimeter, 400-cell, 6-mil Hercam carrier (capacity 0.04L) was coated with 141g / L of slurry X and dried, and further coated with 59g / L of slurry R (see Example 1). After drying, the sample of Comparative Example 1 was obtained by baking at 400 ° C. This sample is a normal catalyst in which Pt is supported on a substrate at 0.587 g / L and Rh is 0.23 6 g / L, and it is not coated with a metal oxide. [0092] Each of the catalysts obtained as samples in Examples 1 to 10 and Comparative Example 1 was subjected to the durability test described below, and then the purification performance of each catalyst was examined.
[0093] (耐久試験) [0093] (Durability test)
上記実施例 1〜実施例 10及び比較例 1の各触媒を排気量 3500ccの V型エンジン の排気系に、片バンクあたり各 5個装着して、 日本のレギュラーガソリンを用い、触媒 入口温度を 650°Cに設定して 30時間運転したときの熱履歴を観察する耐久試験を行 つた o  Each of the catalysts in Examples 1 to 10 and Comparative Example 1 above was installed in a 3500cc V-type engine exhaust system, 5 each per bank, using Japanese regular gasoline, and the catalyst inlet temperature was 650 Durability test was performed to observe the thermal history when operating at 30 ° C for 30 hours o
[0094] (浄化性能の評価)  [0094] (Evaluation of purification performance)
上記耐久試験後、各触媒を模擬排ガス流通装置に組込み、この装置に反応ガスと しての模擬排ガスを空間速度 (SV)60000/hで流通させ、触媒温度を 30°C/分の速度 で昇温させたとき、 NOx、 HC(C H 及び COの浄化率が 50%になる浄化温度 T (°C)  After the endurance test, each catalyst is incorporated into a simulated exhaust gas distribution device, and simulated exhaust gas as a reaction gas is circulated through this device at a space velocity (SV) of 60000 / h, and the catalyst temperature is set at a rate of 30 ° C / min. Purification temperature T (° C) at which NOx, HC (CH and CO purification rate is 50% when the temperature is raised
3 6  3 6
を測定する浄ィ匕性能試験を行った。反応ガスの組成を表 1に示し、各触媒の浄化温 度の測定結果を表 2に示し、各触媒の HC(C H )浄ィ匕温度 (HCT50)を図 4に示す。な  A purification performance test was conducted. The composition of the reaction gas is shown in Table 1, the measurement results of the purification temperature of each catalyst are shown in Table 2, and the HC (CH) purification temperature (HCT50) of each catalyst is shown in FIG. Na
3 6  3 6
お、表 2中、 HCは HC(C H )を意味する。  In Table 2, HC means HC (C H).
3 6  3 6
[表 1] [table 1]
Figure imgf000016_0001
Figure imgf000016_0001
空間速度 SV=60000/h  Space velocity SV = 60000 / h
[表 2] 浄化温度 T(°C) [Table 2] Purification temperature T (° C)
Goの Ptに対する原子比  Atomic ratio of Go to Pt
NOx 50% HC 50% CO 50%  NOx 50% HC 50% CO 50%
実施例 1 0.01 288 291 251 実施例 2 0.05 286 287 247 実施例 3 0.1 283 285 245 実施例 4 1 279 280 240 実施例 5 2 275 278 238 実施例 6 3 280 281 244 実施例 7 4 285 287 249 実施例 8 5 288 291 252 実施例 9 0.005 289 291 253 実施例 10 6 289 292 254 比較例 1 - 290 293 255  Example 1 0.01 288 291 251 Example 2 0.05 286 287 247 Example 3 0.1 283 285 245 Example 4 1 279 280 240 Example 5 2 275 278 238 Example 6 3 280 281 244 Example 7 4 285 287 249 Example Example 8 5 288 291 252 Example 9 0.005 289 291 253 Example 10 6 289 292 254 Comparative Example 1-290 293 255
[0095] 比較例 1の触媒は、 Pt粒子が Coの酸化物で被覆されていない、つまり、 Coの Ptに 対する原子比が 0であり、表 2から分力るように、 NOx、 HC(C H )及び COいずれの浄 [0095] In the catalyst of Comparative Example 1, the Pt particles are not coated with Co oxide, that is, the atomic ratio of Co to Pt is 0. As shown in Table 2, NOx, HC ( CH) and CO
3 6  3 6
化温度も他の触媒より高い。  The conversion temperature is also higher than other catalysts.
[0096] この点、 Ptに対する原子比で 0.005〜6の範囲の Coを含み、これが Pt粒子の少なくと も一部を覆っている実施例 1〜実施例 10の各触媒は、 NOx、 HC(C H )及び COのい  [0096] In this regard, each catalyst of Examples 1 to 10 containing Co in an atomic ratio with respect to Pt in the range of 0.005 to 6 covers at least a part of the Pt particles is NOx, HC ( CH) and CO
3 6  3 6
ずれの浄化温度も比較例 1より低かった。  The displacement purification temperature was also lower than that of Comparative Example 1.
[0097] 特に、 Coを Ptに対する原子比で 0.1〜3含む実施例 3〜実施例 6の触媒は、他の実 施例 1— 2, 7—10に比べても、浄化温度が低ぐ浄化性能に優れていた。 [0097] In particular, the catalysts of Examples 3 to 6 containing Co in an atomic ratio of 0.1 to 3 with respect to Pt have a purification temperature lower than those of Examples 1-2 and 7-10. Excellent performance.
[0098] これは、 Pt粒子を少なくとも一部覆うと共に基材に着床する Co酸ィ匕物の層が Pt粒子 の移動を物理的に妨げ、 Pt粒子のシンタリングを抑制した結果と考えられる。 [0098] This is considered to be the result of the Co oxide layer that covers at least a part of the Pt particles and that is deposited on the substrate physically hinders the movement of the Pt particles and suppresses sintering of the Pt particles. .
[0099] なお、実施例 9の触媒は、他の実施例に較べて Ptに対する Coの量が少なぐ Pt粒 子が Co酸ィ匕物で十分被覆されず、シンタリングにより浄ィ匕性能が低下したものと考え られる。 [0099] The catalyst of Example 9 has a smaller amount of Co relative to Pt than the other examples. Pt particles are not sufficiently covered with Co oxide, and purification performance is improved by sintering. This is thought to have declined.
[0100] また実施例 10の触媒は、他の実施例に較べて Ptに対する Coの量が多ぐ Pt粒子が Co酸化物で過度に被覆され、これがバリアとなって反応ガスの拡散が阻害され、従つ て、反応ガスが Pt粒子に十分接触できず、触媒の浄ィ匕性能をうまく引き出せな力 た ものと考えられる。  [0100] Further, in the catalyst of Example 10, the amount of Co relative to Pt is larger than in the other examples. Pt particles are excessively coated with Co oxide, which acts as a barrier to inhibit diffusion of the reaction gas. Therefore, it is considered that the reaction gas could not sufficiently contact the Pt particles, and it was a force that did not bring out the catalyst purification performance well.
[0101] (還元剤の量)  [0101] (Amount of reducing agent)
工程 S3で Coを析出させるための還元剤として水素化ホウ素ナトリウムを用いたが、 その添加量の好適範囲を定める実験を行った。 Although sodium borohydride was used as a reducing agent for precipitating Co in step S3, An experiment was conducted to determine a suitable range of the addition amount.
[0102] この実験では、 6S2-アルミナ基材 (Pt 0.4425%担持アルミナ基材:実施例 6参照)を 規準基材とし、その Pt担持量に対する Coの析出目標量を原子比で 3と規定した。そし て、工程 S3で還元剤の添加量を変えた触媒を調製し、得られた各触媒について、 C [0102] In this experiment, a 6S2-alumina substrate (Pt 0.4425% supported alumina substrate: see Example 6) was used as a reference substrate, and the target amount of precipitation of Co relative to the amount of Pt supported was defined as 3 in atomic ratio. . Then, in Step S3, a catalyst was prepared by changing the addition amount of the reducing agent.
◦の析出量が上記規定量に達しているか定量的に調査した。 ◦ Quantitative investigation was conducted to determine whether the amount of precipitation reached the specified amount.
[0103] より詳細には、水素化ホウ素ナトリウムの添カ卩量を、 Coの規定 mol数の 0.5倍、 1倍、 2 倍、 3倍、 4倍、 5倍と次第に増量した触媒を調整し、そのアルミナ基材に担持される C[0103] More specifically, the amount of sodium borohydride added was adjusted to 0.5, 1, 2, 3, 4, and 5 times the specified mol number of Co. C supported on the alumina substrate
0の量を ICP (プラズマ発光分光分析法)により定量した。 The amount of 0 was quantified by ICP (plasma emission spectroscopy).
[0104] その結果、還元剤の量が Coの 3倍 mol以上の範囲では、 Coの担持量が上記規定量 に対する百分率で 100%に達し、 2倍 molで 97%と若干不足し、 1倍 molでは 65%程度 に下がり、 0.5倍 molで 23%になった。 [0104] As a result, when the amount of the reducing agent is in the range of 3 times mol or more of Co, the amount of Co supported reaches 100% as a percentage of the above specified amount, and slightly less than 97% at 2 times mol. In mol, it dropped to about 65%, and it became 23% in 0.5 times mol.
[0105] 上記実験から、工程 S3で水素化ホウ素ナトリウムを還元剤とする場合、その添加量 を、 Coの目標析出量の 3倍 mol以上、従って、 4倍 molあるいは 5倍 molとしても良いこと が分かる。 [0105] From the above experiment, when sodium borohydride is used as the reducing agent in step S3, the addition amount should be 3 times mol or more of the target amount of Co precipitation, and therefore 4 mol or 5 times mol. I understand.
[0106] し力しながら、多量の水素化ホウ素ナトリウムを添加すると、 Co析出後の基材洗浄 時に、水素化ホウ素ナトリウムの分解物(例:ホウ素、ナトリウム)が基材に残留し、好ま しくない。  [0106] If a large amount of sodium borohydride is added while pressing, the decomposition product of sodium borohydride (eg, boron, sodium) remains on the substrate when the substrate is washed after Co deposition. Absent.
[0107] 従って、水素化ホウ素ナトリウムの添加量は、 Coの目標析出量の 3倍 molに設定す ることが望ましい。  [0107] Therefore, it is desirable to set the amount of sodium borohydride added to 3 times the target amount of Co precipitation.
[0108] この点、実施例 1〜10の工程 S3では、 Coの目標析出量の 3倍 molの水素化ホウ素 ナトリウムが添加されている。  In this regard, in Step S3 of Examples 1 to 10, 3 times mol of sodium borohydride as a target amount of Co precipitation is added.
[0109] なお、比較例 1の試料は Pt溶液を基材に含浸させただけの触媒だが、実施例 1〜1 0の試料は、 Ptを含浸担持させた基材に更に Coを選択的に析出担持させた触媒で ある。つまり、実施例 1〜10では、 Coを溶解した溶液に Pt担持粉末を加えて攪拌した 後、水素化ホウ素ナトリウムを添加 Coを還元して析出させて 、る。  [0109] Note that the sample of Comparative Example 1 is a catalyst in which a base material is impregnated with a Pt solution, but the samples of Examples 1 to 10 are selectively coated with Co on a base material impregnated with Pt. This is a catalyst supported by precipitation. That is, in Examples 1 to 10, after adding Pt-supported powder to a solution in which Co is dissolved and stirring, sodium borohydride is added and Co is reduced and precipitated.
[0110] その確認のため、実施例 1〜: LOの試料を TEM (透過電子顕微鏡)で観察したら、 Pt の担持箇所に Coが存在して 、た。  [0110] For confirmation, Example 1 to: When a LO sample was observed with a TEM (transmission electron microscope), Co was present at the place where Pt was supported.
[0111] 図 5(a)に、 4S3-アルミナ基材(Coを Ptに対する原子比で 1含む Pt 0.441%アルミナ 基材:実施例 4参照) TEM観察結果 (HAADF像: x800K倍)を示す。 [0111] Figure 5 (a) shows a 4S3-alumina substrate (Pt 0.441% alumina containing Co in an atomic ratio of 1 to Pt). Substrate: See Example 4) TEM observation result (HAADF image: x800K times) is shown.
[0112] また図 5 (b)及び図 5 (c)に、 EDX (エネルギ分散型蛍光 X線分析装置)による実施 例 4の試料の分析結果を示す。白点の Pt粒子 6 (図 5 (b)参照)が多数存在する領域 に、 Co粒子 7 (図 5 (c)参照)が併存している。より詳細には、 Ptの存在箇所に Coが併 存している。これは、 Coの還元時、基材に担持された Pt粒子が核となり、この Pt粒子 の表面に Coが選択的に析出した結果と考えられる。工程 S3では Co析出後に基材を 焼成するため、上記アルミナ基材中の Coは酸ィ匕物になっているものと考えられる。  [0112] FIGS. 5 (b) and 5 (c) show the analysis results of the sample of Example 4 using EDX (energy dispersive X-ray fluorescence spectrometer). Co particles 7 (see Fig. 5 (c)) coexist in a region where many white-pointed Pt particles 6 (see Fig. 5 (b)) exist. More specifically, Co is present at the location where Pt exists. This is thought to be a result of the Pt particles supported on the substrate becoming nuclei during the reduction of Co, and the Co being selectively deposited on the surface of the Pt particles. In step S3, since the base material is fired after the Co deposition, Co in the alumina base material is considered to be an oxide.
[0113] なお、従来の逆ミセル法は、貴金属の微粒ィ匕に好適だが、貴金属粒子の量産化に 馴染まない。この点、以上に述べた実施の形態は、貴金属粒子の量産化にも対応可 能なこと理解できるだろう。  [0113] Although the conventional reverse micelle method is suitable for precious metal fine particles, it is not suitable for mass production of precious metal particles. In this respect, it will be understood that the embodiment described above can be applied to mass production of precious metal particles.
[0114] 本願は、 2004年 11月 16日に出願された特願 2004— 332196号に基づく優先権 を主張しており、これを参照し、その内容をすベて含む。  [0114] This application claims priority based on Japanese Patent Application No. 2004-332196 filed on Nov. 16, 2004, which is incorporated herein by reference in its entirety.
[0115] 以上に本発明を実施するための最良の形態及び実施例を説明したが、この説明は 例示的なものであって、当業者であれば容易に変更可能であり、本発明はそれに限 定されず、請求の範囲の記載に従い解釈されるもとする。  [0115] Although the best mode and embodiments for carrying out the present invention have been described above, this description is illustrative and can be easily changed by those skilled in the art, and the present invention is not limited thereto. It is not limited, and shall be interpreted according to the description of the claims.
産業上の利用の可能性  Industrial applicability
[0116] 本発明によれば、貴金属粒子のシンタリングが抑制され、高温酸化環境下におい ても高い触媒活性を維持できる排ガス浄ィ匕触媒が得られる。 [0116] According to the present invention, it is possible to obtain an exhaust gas purification catalyst in which sintering of noble metal particles is suppressed and high catalytic activity can be maintained even in a high-temperature oxidizing environment.

Claims

請求の範囲 The scope of the claims
[1] アルミナ及びセリアを含む基材 (4)と、  [1] a substrate (4) containing alumina and ceria;
白金、ノラジウム及びロジウムの中から選択された貴金属を含み、前記基材 (4)に 担持された貴金属粒子(13, 23)と、  Noble metal particles (13, 23) comprising a noble metal selected from platinum, noradium and rhodium and supported on the substrate (4);
前記貴金属粒子(13, 23)の少なくとも一部を覆う金属酸化物(14, 24)と、 を有する排ガス浄化触媒。  An exhaust gas purifying catalyst comprising: a metal oxide (14, 24) covering at least a part of the noble metal particles (13, 23).
[2] 前記金属酸化物(14, 24)は、 Co、 Ni、 Fe、 Cu、 Sn、 Mn、 Ce及び Zrの中力 選択さ れた金属の酸化物から成る請求項 1に記載の排ガス浄化触媒。 [2] The exhaust gas purification according to claim 1, wherein the metal oxide (14, 24) is made of a selected metal oxide of Co, Ni, Fe, Cu, Sn, Mn, Ce and Zr. catalyst.
[3] 前記貴金属粒子(13, 23)に対する前記金属酸ィ匕物(14, 24)の金属のモル比が[3] The metal molar ratio of the metal oxide (14, 24) to the noble metal particles (13, 23) is
0.005〜6の範囲にある請求項 1に記載の排ガス浄ィ匕触媒。 The exhaust gas purification catalyst according to claim 1, which is in the range of 0.005 to 6.
[4] 前記基材 (4)に着床する前記金属酸ィ匕物(14, 24)の層を有する請求項 1に記載 の排ガス浄化触媒。 [4] The exhaust gas purifying catalyst according to claim 1, comprising a layer of the metal oxide (14, 24) to be deposited on the base material (4).
[5] アルミナ及びセリアを含む基材 (4)を用意し、 [5] Prepare a substrate (4) containing alumina and ceria,
白金、パラジウム及びロジウムの中から選択された貴金属を含む貴金属粒子(13, 23)を前記基材 (4)に担持し、  Carrying the noble metal particles (13, 23) containing a noble metal selected from platinum, palladium and rhodium on the substrate (4);
前記貴金属粒子(13, 23)の少なくとも一部を金属酸化物(14, 24)で覆う排ガス 浄化触媒の製造方法。  A method for producing an exhaust gas purification catalyst, wherein at least a part of the noble metal particles (13, 23) is covered with a metal oxide (14, 24).
[6] 前記金属酸化物(14, 24)は Co、 Ni、 Fe、 Cu、 Sn、 Mn、 Ce及び Zrの中力 選択され た金属の酸ィ匕物力 成り、  [6] The metal oxide (14, 24) is a medium force selected from the group consisting of Co, Ni, Fe, Cu, Sn, Mn, Ce and Zr.
前記選択された金属を前記貴金属粒子(13, 23)上に選択的に析出させ、前記貴 金属粒子(13, 23)を担持した前記基材 (4)を焼成することにより、前記析出した金 属を酸化する  By selectively depositing the selected metal on the noble metal particles (13, 23) and firing the base material (4) supporting the noble metal particles (13, 23), the deposited gold Oxidize genus
請求項 5記載の排ガス浄化触媒の製造方法。  6. A method for producing an exhaust gas purifying catalyst according to claim 5.
[7] 前記基材 (4)は、アルミナ及びセリアを含む粉末力 なる請求項 5記載の排ガス浄ィ匕 触媒の製造方法。 7. The method for producing an exhaust gas purification catalyst according to claim 5, wherein the base material (4) is a powder power containing alumina and ceria.
PCT/JP2005/018605 2004-11-16 2005-10-07 Exhaust gas purification catalyst and method for production thereof WO2006054404A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-332196 2004-11-16
JP2004332196A JP2006142137A (en) 2004-11-16 2004-11-16 Catalyst for cleaning exhaust gas and its production method

Publications (1)

Publication Number Publication Date
WO2006054404A1 true WO2006054404A1 (en) 2006-05-26

Family

ID=36406950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018605 WO2006054404A1 (en) 2004-11-16 2005-10-07 Exhaust gas purification catalyst and method for production thereof

Country Status (2)

Country Link
JP (1) JP2006142137A (en)
WO (1) WO2006054404A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009530497A (en) * 2006-03-20 2009-08-27 コミツサリア タ レネルジー アトミーク Coated nanoparticles, especially coated nanoparticles with a core-shell structure
CN106560595A (en) * 2015-10-05 2017-04-12 通用汽车环球科技运作有限责任公司 Catalytic Converters With Age-supressing Catalysts

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4715294B2 (en) * 2005-05-11 2011-07-06 トヨタ自動車株式会社 Metal oxide-supported metal oxide support and method for producing the same
JP2009297628A (en) * 2008-06-12 2009-12-24 Babcock Hitachi Kk APPARATUS AND METHOD FOR CLEANING EXHAUST GAS OF HEAT ENGINE AND NOx CLEANING CATALYST

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62140643A (en) * 1985-12-17 1987-06-24 Matsushita Electric Ind Co Ltd Production of porous catalyst for purifying exhaust gas
JPS63310615A (en) * 1987-06-12 1988-12-19 Toyota Motor Corp Particulate collecting filter
JPH10501728A (en) * 1994-07-01 1998-02-17 モンサント・カンパニー Method for producing carboxylate and catalyst useful in the method
JP2002273239A (en) * 2001-03-14 2002-09-24 Toyota Motor Corp Method of manufacturing for alloy catalyst and catalyst for purifying exhaust gas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62140643A (en) * 1985-12-17 1987-06-24 Matsushita Electric Ind Co Ltd Production of porous catalyst for purifying exhaust gas
JPS63310615A (en) * 1987-06-12 1988-12-19 Toyota Motor Corp Particulate collecting filter
JPH10501728A (en) * 1994-07-01 1998-02-17 モンサント・カンパニー Method for producing carboxylate and catalyst useful in the method
JP2002273239A (en) * 2001-03-14 2002-09-24 Toyota Motor Corp Method of manufacturing for alloy catalyst and catalyst for purifying exhaust gas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TANAKA K ET AL: "A new catalysis for selective oxidation of CO in H2: Part 1, activation by depositing a large amount of FeOx on Pt/Al2O3 and Pt/CeO2 catalysts.", CATALYSIS LETTERS., vol. 92, February 2004 (2004-02-01), pages 115 - 121, XP002994001 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009530497A (en) * 2006-03-20 2009-08-27 コミツサリア タ レネルジー アトミーク Coated nanoparticles, especially coated nanoparticles with a core-shell structure
CN106560595A (en) * 2015-10-05 2017-04-12 通用汽车环球科技运作有限责任公司 Catalytic Converters With Age-supressing Catalysts
CN106560595B (en) * 2015-10-05 2019-07-26 通用汽车环球科技运作有限责任公司 Inhibit the catalytic converter of catalyst with aging

Also Published As

Publication number Publication date
JP2006142137A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
JP5613219B2 (en) Exhaust gas purification system for internal combustion engine
JP5348135B2 (en) Exhaust gas purification catalyst
JP4715556B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2006326554A (en) Catalyst for purifying exhaust gas, and method for producing it
JP2005238027A (en) Catalyst, exhaust gas cleaning catalyst, and catalyst production method
JP6514112B2 (en) Exhaust gas purification catalyst
WO2006054404A1 (en) Exhaust gas purification catalyst and method for production thereof
JP4720545B2 (en) Exhaust gas purification catalyst and method for producing the same
JP5975104B2 (en) Exhaust gas purification catalyst and method for producing the same
JP4507717B2 (en) Exhaust gas purification catalyst
CN110139710A (en) Exhaust gas purifying catalyst
CN110167670A (en) Exhaust gas purifying catalyst delafossite type oxide and the exhaust gas purifying catalyst for using the delafossite type oxide
CN103732324A (en) Device for the purification of exhaust gases from a heat engine, comprising a ceramic carrier and an active phase chemically and mechanically anchored in the carrier
JP5854262B2 (en) Exhaust gas purification catalyst
JP3722060B2 (en) Catalyst body, method for producing catalyst body, and exhaust gas purification catalyst using the catalyst body
JP2008221217A (en) Catalyst for cleaning exhaust gas and method of manufacturing the same
JP5131053B2 (en) Precious metal supported catalyst and catalyst device
JP4306625B2 (en) Catalyst for purifying automobile exhaust gas and method for producing the same
JP5104009B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2003088757A (en) Catalyst
JP2007136327A (en) Exhaust gas purification catalyst and method for preparing the same
JP2005230780A (en) Exhaust gas cleaning catalyst and manufacturing method therefor
CN117098602A (en) Catalyst composition for exhaust gas purification and catalyst for exhaust gas purification
JP2022150376A (en) oxygen storage material
CN117136099A (en) Catalyst for purifying exhaust gas and exhaust gas purifying system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05790619

Country of ref document: EP

Kind code of ref document: A1