WO2006054348A1 - Electric field treatment apparatus and treatment method - Google Patents

Electric field treatment apparatus and treatment method Download PDF

Info

Publication number
WO2006054348A1
WO2006054348A1 PCT/JP2004/017200 JP2004017200W WO2006054348A1 WO 2006054348 A1 WO2006054348 A1 WO 2006054348A1 JP 2004017200 W JP2004017200 W JP 2004017200W WO 2006054348 A1 WO2006054348 A1 WO 2006054348A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric field
electrode
electrodes
field processing
processed
Prior art date
Application number
PCT/JP2004/017200
Other languages
French (fr)
Japanese (ja)
Inventor
Masakazu Washio
Akihiro Oshima
Takaharu Miura
Takehiko Abe
Original Assignee
Waseda University
Ksa:Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University, Ksa:Kk filed Critical Waseda University
Priority to PCT/JP2004/017200 priority Critical patent/WO2006054348A1/en
Publication of WO2006054348A1 publication Critical patent/WO2006054348A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J37/00Baking; Roasting; Grilling; Frying
    • A47J37/12Deep fat fryers, e.g. for frying fish or chips
    • A47J37/1266Control devices, e.g. to control temperature, level or quality of the frying liquid
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J37/00Baking; Roasting; Grilling; Frying
    • A47J37/12Deep fat fryers, e.g. for frying fish or chips
    • A47J37/1276Constructional details
    • A47J37/1285Valves or arrangements to drain used oil or food particles settled at the bottom of the frying vessel

Definitions

  • the present invention relates to an electric field processing apparatus and an electric field processing method. More specifically, an electric field treatment is performed on an object to be processed in the electric field by forming an electric field by applying an alternating voltage of the same polarity to an electrode.
  • the present invention relates to an electric field processing apparatus and an electric field processing method.
  • a thawing container that applies a negative electron to frozen food to thaw the frozen food (see Patent Document 1).
  • the thawing cabinet 100 is connected to the shelf plate 102 made of stainless steel and disposed in the cabinet 101 where external force is also insulated, and is shaded by electrostatic induction.
  • an anion generator 103 for generating electrons in the chamber, and the frozen food F placed on the shelf board 102 is defrosted by application of the anions.
  • an electric field processing chamber 111 provided inside the refrigerator 110 has an upper high voltage electrode 112 in the same figure and a flat plate counter electrode 113 disposed on the lower side so as to face it. And a high voltage power source 115 for applying an alternating voltage having different polarities to the high voltage electrode 112 and the flat plate counter electrode 113.
  • the food F is placed on the plate counter electrode 113, and a high-voltage weak current is applied to both the high-voltage electrode 112 and the plate counter electrode 113. A weak voltage current is applied, and the moisture in the food F can be improved.
  • Patent Document 2 also discloses that a ground is connected to the flat plate electrode 113 from the viewpoint of safety with respect to the configuration of FIG.
  • the fryer 120 includes an oil tank 121 in which the oil L is accommodated, a heating pipe 122 that is disposed in the oil tank 121 and heats the oil L, and a heating tank 122. It is arranged above the heat pipe 122, and includes an energizing electrode 125 to which an AC voltage is applied from the voltage control device 123, and a ground electrode 126 disposed relatively above the energizing electrode 125.
  • Patent Document 1 Japanese Patent Laid-Open No. 2-257867
  • Patent Document 2 JP-A-9-138055
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-142997
  • the frozen food F to be thawed is in direct contact with the energized shelf 102, so that the shelf 102 and the frozen
  • frozen food F cannot be thawed uniformly due to contact resistance with food F. That is, with this structure, the frozen food F cannot be completely aligned and aligned at the molecular level, and can only be unevenly thawed.
  • a container for storing frozen food F there are many types of containers such as metal containers, insulated grease containers, pottery, paper processing containers, etc. In this case, since the frozen food F is directly energized through the shelf 102, there is a disadvantage that the electric effect on the frozen food F varies depending on the material of each container.
  • the occurrence of a discharge phenomenon causes a problem that the applied voltage is limited.
  • containers for storing food F such as metal containers, insulated grease containers, pottery, paper processing containers, etc.
  • the thawing cabinet 100 and the refrigerator 110 are both Since the food F is directly energized, the electric field treatment effect on the food may vary depending on the material of each container.
  • shortening the frying time is the most important requirement from the machining site, but in order to further shorten the machining time, a higher voltage is applied. Even if it is applied to 125, the discharge current increases accordingly, so there is a certain limit to shortening the machining time.
  • the fryer 120 various products such as a hydrolyzate and a heat-modified product generated during the frying process are attached to the electrode, and the force is also extended to the ground electrode 126 side. Since it is fixed, the various products adhere to the fried food F, and the quality of the fried food F after processing is significantly reduced. [0013] Further, in the flyer 120, since the energizing electrode 125 and the ground electrode 126 need to be arranged in parallel upward and downward, the ground electrode 126 closes the opening at the top of the flyer 120. In other words, the ground food 126 cannot be moved and the fried food cannot be taken in and out of the oil tank 121, and the usability is not necessarily good. In addition, even if the energizing electrode 125 and the ground electrode 126 are turned upside down, the same inconvenience is caused.
  • the present invention has been devised by paying attention to such inconveniences, and a first object of the present invention is to provide an electric field processing device and an electric field capable of uniformly applying an electric field process to an object to be processed. It is to provide a processing method.
  • a second object of the present invention is to provide an electric field processing apparatus and an electric field processing method capable of performing highly efficient electric field processing on an object to be processed.
  • a third object of the present invention is to provide an electric field processing apparatus and an electric field processing capable of making it difficult for a discharge phenomenon to occur between electrodes or between an electrode and a workpiece even when a high voltage is applied to the electrodes. Is to provide a method.
  • a fourth object of the present invention is to provide an electric field processing apparatus and an electric field processing method capable of making it difficult to reduce the electric field processing effect on the object to be processed even when the distance between the electrodes is long. .
  • a fifth object of the present invention is to provide an electric field processing apparatus and an electric field processing method capable of performing electric field processing on a target object with high efficiency by positively supplying ions to the target object. It is to provide. Means for solving the problem
  • the present invention includes a plurality of electrodes to which alternating voltages having the same polarity are applied, and an object to be processed in an electric field processing region located between the electrodes.
  • the electrode has at least an inner electrode and an outer electrode disposed around the inner electrode;
  • the object to be processed is a fluid that functions as a dielectric and a substance that functions as Z or a dielectric,
  • a configuration is adopted in which a positive electric field and a negative electric field are alternately generated in the electric field processing region by applying an alternating voltage of the same polarity to the electrodes.
  • the present invention also includes a plurality of electrodes to which alternating voltages having the same polarity are applied to each other, and an electric field treatment is performed on an object to be processed in an electric field treatment region located between the electrodes.
  • an electric field processing device that performs
  • the electrodes include at least a pair of electrodes that are not opposed to each other and have a positional relationship, and the object to be processed is a fluid that functions as a dielectric and a substance that functions as Z or a dielectric,
  • the electric field processing region may be configured such that a fluid functioning as a dielectric and a substance having a dielectric constant different from the fluid exists.
  • an insulating layer may be provided around the electrode.
  • the electrode has a configuration in which an uneven surface portion is formed at least partially.
  • the electric field processing method includes a fluid functioning as a dielectric and a Z or dielectric between a plurality of electrodes having at least an inner electrode and an outer electrode arranged around the inner electrode. And an alternating voltage of the same polarity is applied to each of the electrodes to generate a positive electric field and a negative electric field alternately in the electric field processing region between the electrodes.
  • the electric field treatment is performed on the workpiece. It is.
  • the electric field processing method includes a fluid functioning as a dielectric and Z or an electric charge between a plurality of electrodes including at least a pair of electrodes in a positional relationship that does not face each other.
  • the discharge phenomenon between the electrodes can be suppressed, and the applied power can be reduced.
  • the electric field treatment can be efficiently performed by increasing the pressure.
  • the electrode and the object to be processed are in a non-contact state in which a fluid layer such as air having a low dielectric constant is interposed, so that the state of the voltage from the electrode is reduced.
  • the electric field treatment can be performed on the object to be processed without much lowering, and the electric field treatment can be effectively performed even when the object to be processed is contained in the container.
  • the number of lines of electric force drawn out from the electrodes can be increased, and the electric field treatment effect can be further enhanced.
  • FIG. 1 shows a schematic cross-sectional front view of a water treatment apparatus as an electric field treatment apparatus according to the first embodiment of the present invention
  • FIG. 2 shows the direction of the line AA in FIG.
  • a schematic cross section of the water treatment system is shown.
  • the water treatment apparatus 10 includes a treatment tank 12 in which water as an object to be treated is accommodated, and a voltage supply device 13 that applies an alternating voltage to the treatment tank 12 side.
  • the treatment tank 12 includes a main body tank 15 having a bottomed cylindrical shape, an outer electrode 17 attached to an inner peripheral surface 15A of the main body tank 15, and a cylinder disposed in a central portion of the main body tank 15.
  • a central column 18, an inner electrode 19 attached to the outer peripheral surface 18 A of the central column 18, and an adsorption sheet 21 installed on the bottom inner surface of the main body tank 15 are configured.
  • Water is accommodated inside the main body tank 15 and the central column 18, and in particular, the region between the outer electrode 17 and the inner electrode 19 is an electric field processing region E for electric field processing of water.
  • Reference numeral 23 in the figure is a drain 23 for discharging the water in the main body tank 15 to the outside.
  • the outer electrode 17 is provided in a cylindrical shape with both upper and lower ends open, and has a vertical dimension smaller than the inner peripheral surface 15A.
  • An AC voltage is applied to the outer electrode 17 by the voltage supply device 13.
  • the central column 18 is disposed at a substantially central portion of the main body tank 15, and in the plan view, the main body tank
  • the inner electrode 19 is provided in a cylindrical shape with both upper and lower ends open, and is substantially the same as the outer electrode 17. They have the same vertical dimension, and are arranged so as to face the outer electrode 17 almost exactly.
  • the inner electrode 19 is applied with an AC voltage having the same polarity and the same magnitude as the outer electrode 17 by the voltage supply device 13.
  • the voltage supply device 13 includes an AC power supply 25 that generates an AC voltage having a commercial frequency, and a transformer 26 that is connected to the AC power supply 25.
  • the transformer 26 generates a voltage different from the voltage of the primary side circuit 27 to which the AC voltage from the AC power source 25 is applied, and the primary side circuit 27, and the outer electrode 17 and the inner electrode via the resistor 28.
  • 19 is configured to include a secondary side circuit 29 that applies AC voltages synchronized with each other.
  • the output voltage is adjusted to a high voltage in the range of 3000V—10000V, and the output current is adjusted to a weak current in the range of 10mA—100mA.
  • the voltage supply device 13 is not limited to the circuit configuration described above as long as it can apply a predetermined AC voltage to the outer electrode 17 and the inner electrode 19.
  • the infinity point regions located on the upper and lower sides of the processing tank 12 in FIG. 1 are grounded and have a relatively negative potential.
  • the constituent molecules of water in the electric field treatment region E are induced to polarize, and the positive charges in the constituent molecules are attracted to the infinity point region side where the potential is negative and are aligned in a certain direction. It becomes like this.
  • the electric field processing region E becomes a negative electric field
  • the infinity point region has a relatively brass potential.
  • the constituent molecules of water in the electric field treatment region E are induced to polarize, and the negative charges in the constituent molecules are attracted to the infinity point region side where the potential becomes a positive potential, so that the alignment aligns in a certain direction. become.
  • the electric field processing region E is alternately changed into a positive electric field and a negative electric field, and accordingly, the arrangement of the positive charge and the negative charge in the polarized constituent molecule itself is constant. It will be reversed repeatedly. As a result, the water cluster is micronized, the molecular density of the water is increased, and the phase transition temperature is lowered.
  • the polarity that exists in water and functions as a dielectric is present in almost the same potential state in which the polarity is periodically reversed at any position.
  • the substance functions as a floating electrode whose polarity reverses with the reversal of the electric field polarity, like the constituent molecules of water described above.
  • the electric field processing region E is a positive electric field
  • the electric field lines from the electrode are spouted toward the infinity point region on both the upper and lower sides in Fig. 1 having zero potential. It is separated from different water, affected by gravity, and descends along the lines of electric force that are directed downward in the figure.
  • the polar substance separated from the water becomes agglomerated by electrical coupling, descends along the lines of electric force directed downward in the figure, and is adsorbed by the adsorption sheet 21 on the bottom side of the main body tank 15. become.
  • the adsorbing sheet 21 is not particularly limited as long as it can adsorb polar substances, such as non-woven paper.
  • the electrodes to which the AC voltage of the same polarity is applied are arranged in a double circle shape.
  • the electrodes are further arranged in a multi-circle shape, and an AC current of the same polarity is provided for each electrode.
  • a configuration in which a voltage is applied may be employed.
  • the shape of the electrode is not limited to a cylindrical shape, and may be another loop-shaped electrode such as an elliptical shape or a polygonal shape, a rod-shaped electrode, a curved plate shape, or the like. In short, the shape of the electrode is not particularly limited as long as another electrode exists around the predetermined electrode.
  • FIG. 4 shows a schematic cross-sectional front view of the supercooled storage as the electric field processing apparatus according to the second embodiment
  • FIG. 5 shows the supercooled storage along the AA line direction of FIG.
  • a schematic cross-sectional view of the storage is shown
  • FIG. 6 shows a schematic cross-sectional view of the supercooled storage along the BB line direction of FIG.
  • the supercooled storage 30 is a hollow box-type storage main body 32 in which food as an object to be processed is housed, and an AC voltage is applied to the storage main body 32 in the first embodiment.
  • a voltage supply device 13 similar to the above.
  • the storage main body 32 has a structure in which the entire inner wall is insulated and a heat insulating material is appropriately arranged to enhance the heat insulation of the inside 33.
  • the storage body 32 includes a top wall 35 on the upper end side, a bottom wall 36 on the lower end side, left and right side walls 37, 38 disposed between the top wall 35 and the left and right ends of the bottom wall 36, and the top walls.
  • each side wall 37 , 38 and the rear wall 39, the left electrode 42, the right electrode 43 and the rear electrode 44 respectively attached to the inner surface side of the rear wall 39 are detachably spanned between the side walls 37 and 38, and upper and lower three stages on which food is placed.
  • each of the electrodes 42 to 44 is supplied with AC voltage having the same polarity from the voltage supply device 13 and supplied with high voltage and weak current.
  • the electrodes 42 and 44 are provided in a flat plate shape and are arranged at the same height position. Accordingly, the electrodes 42 and 43 on both the left and right sides are substantially opposite to each other, and the rear electrode 44 is positioned at the same height between the rear ends of these electrodes 42 and 43. In other words, these electrodes 42-44 are arranged so as to surround the food on the shelf 46 from three sides, and become a space force electric field processing region E surrounded by these electrodes 42-44.
  • each electrode 42-44 a net-like insulating cover as an insulating layer made of a force insulating material (not shown) is provided on the surface of each electrode 42-44.
  • the shelf plate 46 is supported by an insulating frame (not shown), and an insulating state with respect to the electrodes 42 to 44 is secured.
  • an air layer constituting a fluid layer is interposed between each electrode 42-44 and the food placed on the shelf 46, which has a lower dielectric constant than that of the food.
  • each of the electrodes 42- 44 An alternating voltage of the same polarity is applied to As a result, as described in the first embodiment, in the electric field processing region E where the food is present, the positive electric field and the negative electric field are alternately changed. Polarization is induced, and the arrangement of positive charge and negative charge repeats inversion at regular intervals. As a result, the bacteria in the food are electrically shocked, the water in the food also generates bactericidal ozone, and the cells of the bacteria are mutated to restrict proliferation by cell division. . As a result, the growth of bacteria can be suppressed and the food can be prevented from being spoiled.
  • the moisture present in the food is modified as described in the first embodiment, is micro-polished, and the phase transition temperature is lowered, so that the moisture in the food is hardly frozen. It becomes hydrated and can be stored at low temperature and non-frozen supercooled state with food remaining umami.
  • the electric field processing region E is configured by being surrounded by the respective electrodes 42-44 located at the left, right, and rear three locations, so that the high potential state can be made substantially uniform at any position. That is, for example, when only the left and right electrodes 42 and 43 are separated from each other, when the distance between the electrodes 42 and 43 is increased, the electric lines of force from the left and right electrodes 42 and 43 are attenuated at the central portion of the shelf 46. However, this attenuation can be supplemented by electric lines of force from the rear electrode 44, and variations in electric field processing within the electric field processing region E can be reduced.
  • the three electrodes 42-44 are used, the lines of electric force are added in triplicate, and the transmission performance to the object is improved. Therefore, even if the food container is made of any material such as metal, grease, ceramics, glass, and paper products, the electrical processing of the food in the container is not hindered. Even if the container has a lid, electrical processing can be performed on the food, and the limiting conditions for the container become unnecessary.
  • FIG. 7 shows a schematic cross-sectional front view of a steamer as an electric field processing apparatus according to the third embodiment
  • FIG. 8 shows a schematic cross-sectional view of the steamer along the line AA in FIG. It is shown.
  • the steamer 50 is a hollow box type in which food as an object to be processed is accommodated.
  • the steamer main body 51 and the voltage supply device 13 similar to the first embodiment for applying an AC voltage to the steamer main body 51 are provided.
  • This steamer 50 is provided with a steam generation part 53 in the lower part of the steamer main body 51 instead of the supply port 47 and the exhaust port 48 with respect to the supercooled storage 30 of the second embodiment.
  • a feature is that instead of the rear electrode 44 of the rear wall 39, a front electrode 55 having an insulating cover (not shown) similar to that of the second embodiment attached to the inner surface of the door 40 is provided.
  • Other configurations are substantially the same as those of the second embodiment.
  • the steam generating unit 53 includes a steam chamber 57 formed below the electrodes 42, 43, 55 and the shelf plate 46, and a heating device 58 disposed below the steam chamber 57. Being sung.
  • the steam chamber 57 is supplied with water from a water supply port (not shown), and the water is heated by the heating device 58 to generate water vapor.
  • This water vapor is jetted out of the holes formed in the upper partition plate 60 of the steam chamber 57 to the interior 33 where the electrodes 42, 43, 55 and the shelf plate 46 exist.
  • a left electrode 62, a right electrode 63, and a rear electrode 64 are attached to the inner surfaces of the side walls 37, 38 and the rear wall 39.
  • the space surrounded by the left electrode 62, the right electrode 63, and the rear electrode 64 is also an electric field processing region E.
  • the electric field processing region located inside the upper electrodes 42, 4 3, 55 is defined as the first electric field processing region El, and the electric field processing region located inside the lower electrodes 62-6 64. Is called the second electric field processing region E2.
  • the first electric field processing region E1 is surrounded by the three electrodes 42, 43, 55, as in the second embodiment, the first electric field processing region E1 is in a substantially uniform high potential state at any position.
  • the gasification of the high-temperature steam can be performed with high efficiency, and the distribution of the high-temperature steam can be made uniform in the chamber 33.
  • the constant temperature and humidity environment of the inside 33 can be maintained uniformly and stably, the heat transfer effect to the food inside the inside 33 can be enhanced, the steaming time can be shortened, and the food surface can be prevented from drying. You can also In addition, by treating the food with an electric field, browning of the food due to the action of the protein can be prevented.
  • the first electric field treatment region E1 is constituted by the three electrodes 42, 43, 55, so that the food can be handled regardless of the material of the container for storing the food and the presence or absence of the lid.
  • Electric field Electric field treatment can be performed satisfactorily without impairing the rational effect.
  • the weighting of the lines of electric force improves the permeation performance to food, prevents the food surface from drying, and prevents the food from browning due to the action of protein.
  • the reforming is performed so that the phase transition temperature of water is lowered. This can contribute to energy savings.
  • the electrode in the second electric field treatment region E2 is formed in a Hercam shape, and the electrode is arranged in such a direction that the vapor can pass in the upward and downward directions. This can further contribute to saving.
  • FIG. 9 shows a schematic cross-sectional front view of a fryer as an electric field processing apparatus according to the fourth embodiment
  • FIG. 10 shows a schematic cross-section of the fryer along the AA line direction of FIG.
  • the flyer 70 includes an oil tank 71 in which the upper part is opened and the oil is accommodated therein, and a voltage supply device 13 similar to the first embodiment for applying an AC voltage to the oil tank 71. It is configured.
  • reference numeral 73 denotes a drain for discharging the oil in the oil tank 71 to the outside.
  • the entire inner wall of the oil tank 71 is insulated, and fried food is taken in and out at the upper open portion.
  • the to-be-processed object processed by an electric field in a present Example is a deep-fried oil and fried food.
  • the oil tank 71 includes left and right side walls 75, 76, a bottom wall 77 connected to the lower ends of the side walls 75, 76, a front wall 78 and a rear wall 79 located on both the front and rear sides of the left and right side walls 75, 76 and the bottom wall 77.
  • Left side electrode 82, right side electrode 83, and rear side electrode 84 attached to the inner surface side of each side wall 75, 76 and rear wall 79, a heating pipe 85 that is disposed on the lower side to heat the oil, and a heating pipe It is provided with a fall prevention net 86 that is located above 85 and prevents the fall of fried food from the space above it to the heating pipe 85 side.
  • each of the electrodes 82 to 84 is supplied with an AC voltage having the same polarity from the voltage supply device 13 and supplied with a high voltage and a weak current.
  • the electrodes 82 and 84 are provided in a flat plate shape and are arranged at the same height so as to surround the oil-fried food and the fried food. Therefore, the space force electric field processing region surrounded by these electrodes 82-84 It becomes area E.
  • the surfaces of these electrodes 82 to 84 are hermetically shielded by an insulating layer made of a force insulating material (not shown)! /
  • the constituent molecules of the fried food in which the polarization is induced have a strong vibration phenomenon.
  • the arrangement of positive charges and negative charges in the molecule is repeatedly inverted at a constant period.
  • the boiling point of the moisture contained in the fried food drops due to the drop in the phase transition temperature described above, and the puncture phenomenon of the fried food due to the sudden boiling of the water during frying is suppressed.
  • the periphery of the fried food is intensively heated, so that the heating power to the inside of the fried food can be evenly performed.
  • the moisture-modifying action described in the second embodiment allows the moisture in the fried food to be micronized, the water retention of the fried food is improved, and the moisture is contained in the fried food.
  • the loss of the umami component is suppressed, and the flavor of the fried food after processing can be ensured.
  • the electrode is further attached to the inner surface side of the front wall 78 to promote the heating of the fried food.
  • the three electrodes are arranged in a rectangular shape.
  • the present invention is not limited to this, as long as the object to be processed is surrounded by the electrodes.
  • the electrodes are all flat, but the present invention is not limited to this, and various shapes can be applied as long as the above-described effects are exhibited.
  • the electrode has an uneven surface portion at least partially. According to this, the number of lines of electric force drawn out from the electrode can be increased, and the various effects described above can be further enhanced.
  • the substance is modified by the action of electric lines of force generated between each electrode side and the ground at the infinity point region.
  • a ground electrode may be disposed in the apparatus, or an electrode or a region to which a DC voltage or a rectified voltage is applied may be disposed.
  • the present invention can be used for various devices that perform foreign matter removal, sterilization, and the like in addition to water treatment, food storage, food processing, for example, storage, storage, refrigerator, freezer, and thaw. It can be used for hot storage, heating equipment, water treatment equipment, sterilization equipment, etc.
  • FIG. 1 is a schematic sectional front view of a water treatment apparatus according to a first embodiment.
  • FIG. 2 is a schematic cross-sectional view of the water treatment device taken along line AA in FIG.
  • FIG. 3 is a circuit configuration diagram of a voltage supply device.
  • FIG. 4 is a schematic cross-sectional front view of a supercooled storage according to a second embodiment.
  • FIG. 5 is a schematic cross-sectional view of the supercooled storage along line AA in FIG.
  • FIG. 6 is a schematic cross-sectional view of the supercooled storage along line BB in FIG.
  • FIG. 7 is a schematic sectional front view of a steamer according to a third embodiment.
  • FIG. 8 is a schematic cross-sectional view of the supercooled storage along line AA in FIG.
  • FIG. 9 is a schematic sectional front view of a fryer according to a fourth embodiment.
  • FIG. 10 is a schematic cross-sectional view of the supercooled storage along line AA in FIG.
  • FIG. 11 is a schematic sectional front view of a thawing cabinet according to a conventional example.
  • FIG. 12 is a schematic sectional front view of a refrigerator according to a conventional example.
  • FIG. 13 is a schematic sectional front view of a fryer according to a conventional example.

Abstract

A water treatment apparatus (10) as an electric field treatment apparatus comprises a cylindrical bottomed tank (15) for containing water, an outer electrode (17) applied to the inner circumferential surface (15A) of the tank (15), a cylindrical central column (18) arranged in the central part of the tank (15), and an inner electrode (19) applied to the outer circumferential surface (18A) of the central column (18). The space between the outer electrode (17) and the inner electrode (19) serves as an electric field treatment area E for treating water with electric field. AC voltages of the same polarity are applied to the electrodes (17, 19) so that a plus electric field and a minus electric field are alternately generated in the electric field treatment area E.

Description

明 細 書  Specification
電場処理装置及び電場処理方法  Electric field processing apparatus and electric field processing method
技術分野  Technical field
[0001] 本発明は、電場処理装置及び電場処理方法に係り、更に詳しくは、同極性の交流 電圧を電極に印加して電界を形成することで、前記電界内の被処理体を電場処理 する電場処理装置及び電場処理方法に関する。  [0001] The present invention relates to an electric field processing apparatus and an electric field processing method. More specifically, an electric field treatment is performed on an object to be processed in the electric field by forming an electric field by applying an alternating voltage of the same polarity to an electrode. The present invention relates to an electric field processing apparatus and an electric field processing method.
背景技術  Background art
[0002] 所定の被処理体を電場処理する電場処理装置として、冷凍食品に陰電子を印加し て当該冷凍食品を解凍させる解凍庫が知られて!/、る(特許文献 1参照)。図 11に示さ れるように、この解凍庫 100は、外部力も絶縁された庫内 101に配置されたステンレ ス製の棚板 102と、この棚板 102に接続されるとともに、静電誘導による陰電子を庫 内に発生させる陰電子発生装置 103とを備えており、陰電子の印加によって棚板 10 2上に置かれた冷凍食品 Fを解凍するようになって 、る。  [0002] As an electric field processing apparatus for performing electric field processing on a predetermined object to be processed, there is known a thawing container that applies a negative electron to frozen food to thaw the frozen food (see Patent Document 1). As shown in FIG. 11, the thawing cabinet 100 is connected to the shelf plate 102 made of stainless steel and disposed in the cabinet 101 where external force is also insulated, and is shaded by electrostatic induction. And an anion generator 103 for generating electrons in the chamber, and the frozen food F placed on the shelf board 102 is defrosted by application of the anions.
[0003] また、他の電場処理装置としては、食品に電場処理をすることで、 5°Cになっても 食品中の水分を凍結させな!/ヽ冷蔵庫が知られて!/ヽる(特許文献 2参照)。図 12に示 されるように、この冷蔵庫 110の内部に設けられた電場処理室 111には、同図中上 側の高圧電極 112と、これに対向して下側に配置された平板対極 113と、これら高圧 電極 112及び平板対極 113に対して、相互に異極となる交流電圧を印加する高圧 電源 115とを備えている。この電場処理室 111は、食品 Fが平板対極 113上に置か れた状態で、高圧電極 112及び平板対極 113の両電極に高電圧微弱電流が通電さ れ、これによつて、食品 Fに高電圧微弱電流が印加され、当該食品 F中の水分を改 質させることができる。  [0003] In addition, as another electric field treatment device, by applying an electric field treatment to food, water in the food is not frozen even at 5 ° C! / Known refrigerator is known! / Speak (see Patent Document 2). As shown in FIG. 12, an electric field processing chamber 111 provided inside the refrigerator 110 has an upper high voltage electrode 112 in the same figure and a flat plate counter electrode 113 disposed on the lower side so as to face it. And a high voltage power source 115 for applying an alternating voltage having different polarities to the high voltage electrode 112 and the flat plate counter electrode 113. In this electric field treatment chamber 111, the food F is placed on the plate counter electrode 113, and a high-voltage weak current is applied to both the high-voltage electrode 112 and the plate counter electrode 113. A weak voltage current is applied, and the moisture in the food F can be improved.
なお、特許文献 2には、図 12の構成に対し、安全性考慮の観点から、平板対極 11 3にアースを接続することも開示されて!ヽる。  Note that Patent Document 2 also discloses that a ground is connected to the flat plate electrode 113 from the viewpoint of safety with respect to the configuration of FIG.
[0004] 更に、他の電場処理装置としては、フライ食品を油で揚げるフライヤ一が知られて いる(特許文献 3参照)。図 13に示されるように、このフライヤ一 120は、揚油 Lが収容 された油槽 121と、油槽 121内に配置されて揚油 Lを加熱する加熱パイプ 122と、加 熱パイプ 122の上方に配置されるとともに、電圧制御装置 123から交流電圧が印加 される通電電極 125と、この通電電極 125の上方に相対配置されたアース電極 126 とを備えている。このフライヤ一 120は、フライ食品 Fをアース電極 126の下面側に接 触させた状態で、通電電極 125に交流電圧を印加すると、通電電極 125とアース電 極 126との間に電場が発生し、通電電極 125からの漏洩電流を制御した状態で、揚 油 Lやフライ食品 Fに高電圧微弱電流が印加され、揚油 Fの酸化が抑制されるととも に、フライ食品 Fの加工時間の短縮が可能となる。 [0004] Further, as another electric field treatment apparatus, a fryer that fries fried food with oil is known (see Patent Document 3). As shown in FIG. 13, the fryer 120 includes an oil tank 121 in which the oil L is accommodated, a heating pipe 122 that is disposed in the oil tank 121 and heats the oil L, and a heating tank 122. It is arranged above the heat pipe 122, and includes an energizing electrode 125 to which an AC voltage is applied from the voltage control device 123, and a ground electrode 126 disposed relatively above the energizing electrode 125. In the fryer 120, when an AC voltage is applied to the energizing electrode 125 while the fried food F is in contact with the lower surface side of the earth electrode 126, an electric field is generated between the energizing electrode 125 and the earth electrode 126. In a state where the leakage current from the energizing electrode 125 is controlled, a high-voltage weak current is applied to the frying oil L and the fried food F to suppress the oxidation of the frying food F and shorten the processing time of the fried food F. Is possible.
特許文献 1:特開平 2 - 257867号公報  Patent Document 1: Japanese Patent Laid-Open No. 2-257867
特許文献 2 :特開平 9— 138055号公報  Patent Document 2: JP-A-9-138055
特許文献 3:特開 2002— 142997号公報  Patent Document 3: Japanese Patent Laid-Open No. 2002-142997
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] し力しながら、図 11の解凍庫 100にあっては、解凍対象となる冷凍食品 Fが、通電 された棚板 102に直接接触する構造になっているため、棚板 102と冷凍食品 Fとの 接触抵抗によって冷凍食品 Fを均一に解凍できないという不都合がある。すなわち、 この構造では、冷凍食品 Fを分子レベルで完全に配向整列させることができず、不均 一な解凍処理しかできない。また、冷凍食品 Fを収容する容器として、金属容器、絶 縁性榭脂容器、陶器、紙加工容器等のように、異なる材質で多くの種類の容器が存 在している力 前記解凍庫 100にあっては、棚板 102を通じて冷凍食品 Fに直接通 電する構成になっているため、各容器の材質によって、冷凍食品 Fに対する電気的 効果にばらつきが生じるという不都合もある。  [0005] However, in the thawing cabinet 100 of Fig. 11, the frozen food F to be thawed is in direct contact with the energized shelf 102, so that the shelf 102 and the frozen There is an inconvenience that frozen food F cannot be thawed uniformly due to contact resistance with food F. That is, with this structure, the frozen food F cannot be completely aligned and aligned at the molecular level, and can only be unevenly thawed. In addition, as a container for storing frozen food F, there are many types of containers such as metal containers, insulated grease containers, pottery, paper processing containers, etc. In this case, since the frozen food F is directly energized through the shelf 102, there is a disadvantage that the electric effect on the frozen food F varies depending on the material of each container.
[0006] また、図 12の冷蔵庫 110にあっては、高圧電極 112及び平板対極 113に高電圧 微弱電流が通電される際に、外部への漏洩電流が高圧電極 112側力もの離間距離 に従って次第に増加するため、食品 Fの外面のうち、高圧電極 112側と平板電極 11 3側とで改質に差が生じ、食品 F全体に均一となる電場処理を施すことができな 、と いう不都合がある。また、平板対極 113をアース接続した場合には、前記漏洩電流は 、高圧電極 112側力 平板対極 113側に向力つて流れるものの、平板対極 113側の 電気のパワーが低下し、この場合も、食品 F全体に均一となる電場処理を施すことが できない。 [0006] In the refrigerator 110 of FIG. 12, when a high voltage weak current is applied to the high voltage electrode 112 and the flat plate counter electrode 113, the leakage current to the outside gradually increases according to the separation distance of the high voltage electrode 112 side force. Therefore, there is a problem that the electric field treatment cannot be applied to the entire food F due to a difference in reforming between the high voltage electrode 112 side and the flat electrode electrode 113 side of the outer surface of the food F. is there. In addition, when the plate counter electrode 113 is connected to the ground, the leakage current flows by force toward the plate counter electrode 113 side, but the electric power on the plate counter electrode 113 side decreases. Applying uniform electric field treatment to the entire food F Can not.
[0007] 前記解凍庫 100及び冷蔵庫 110にあっては、放電現象の発生により、印加電圧が 制限されるという不具合をも招来する。また、食品 Fを収容する容器は、金属容器、絶 縁性榭脂容器、陶器、紙加工容器等のように、異なる材質で多くの種類があり、前記 解凍庫 100及び冷蔵庫 110は、何れも食品 Fに直接通電する構造になって 、るため 、各容器の材質によって、食品に対する電場処理効果にばらつきが生じるという不都 合もある。  [0007] In the thawing cabinet 100 and the refrigerator 110, the occurrence of a discharge phenomenon causes a problem that the applied voltage is limited. There are many types of containers for storing food F, such as metal containers, insulated grease containers, pottery, paper processing containers, etc., and the thawing cabinet 100 and the refrigerator 110 are both Since the food F is directly energized, the electric field treatment effect on the food may vary depending on the material of each container.
[0008] また、前記解凍庫 100及び前記冷蔵庫 110にあっては、前記食品 Fを収容する容 器の一部若しくは全部が絶縁性材質カゝらなる場合等、食品 Fに印加される電流を遮 蔽する要素がある場合に、食品 Fに対する電場処理効果に支障を与えると 、ぅ不都 合もある。  [0008] Further, in the thawing cabinet 100 and the refrigerator 110, when a part or all of the container for storing the food F is made of an insulating material, an electric current applied to the food F is supplied. If there is an element to be shielded, it may be inconvenient if the electric field treatment effect on food F is hindered.
[0009] 更に、前記解凍庫 100及び前記冷蔵庫 110では、不注意によって庫内に水がこぼ れ、この水が放置された場合に、当該水に電場内の電気力線が集中し、食品 Fに対 する電場処理効果が低下する等の不都合もある。  [0009] Further, in the thawing cabinet 100 and the refrigerator 110, water is spilled inadvertently, and when this water is left untreated, the electric lines of force in the electric field concentrate on the water, and the food There are also inconveniences such as reduced electric field treatment effect on F.
[0010] また、図 13のフライヤ一 120にあっては、フライ加工時間の短縮が加工現場からの 最大の要求事項であるが、加工時間を更に短縮するために、より高い電圧を通電電 極 125に印加しても、放電電流がそれだけ多くなることから、加工時間の短縮を図る ことには一定の限界がある。  [0010] In the flyer 120 shown in FIG. 13, shortening the frying time is the most important requirement from the machining site, but in order to further shorten the machining time, a higher voltage is applied. Even if it is applied to 125, the discharge current increases accordingly, so there is a certain limit to shortening the machining time.
[0011] 更に、前記フライヤ一 120では、体積と重量の大きいフライ食品 Fや、表皮の含有 水分が多!、フライ食品 Fに対してフライ加工を行なう場合、フライ食品 Fが通電電極 1 25に密着したときには、フライ食品 Fの上下両面で表皮形成の進行状態が異なると いう不都合がある。つまり、フライ食品 Fが通電電極 125に密着すると、フライ食品 12 5とその周囲の揚油 Lとの誘電率の違いが影響し、通電電極 125に密着した部位とそ れ例外の部位との間で、加温が一様に進行しなくなる。  [0011] Furthermore, in the above-mentioned fryer 120, when the fried food F having a large volume and weight and the skin contains a large amount of moisture! When closely attached, there is an inconvenience that the progress of the formation of the epidermis differs between the upper and lower surfaces of the fried food F. In other words, when the fried food F is in close contact with the current-carrying electrode 125, the difference in permittivity between the fried food 125 and the surrounding oil L affects the difference between the part that is in close contact with the current-carrying electrode 125 and the exception part. , Heating does not progress uniformly.
[0012] また、前記フライヤ一 120では、フライ加工の過程で生成される加水分解物や加熱 変性物などの各種の生成物が電極に付着し、そこ力もアース電極 126側に伸長した 状態して固定されるため、前記各種生成物がフライ食品 Fに付着し、加工後のフライ 食品 Fの品質を著しく低下させるという不都合もある。 [0013] 更に、前記フライヤ一 120にあっては、通電電極 125とアース電極 126とを上下方 向に平行配置する必要があるため、アース電極 126によってフライヤ一 120上部の 開口部が塞がれることになり、アース電極 126の移動を行わずに、油槽 121に対して フライ食品の出し入れを行うことができず、使い勝手が必ずしも良好とは言えない。ま た、通電電極 125とアース電極 126とを上下逆転させても同様の不都合を招来する。 [0012] In the fryer 120, various products such as a hydrolyzate and a heat-modified product generated during the frying process are attached to the electrode, and the force is also extended to the ground electrode 126 side. Since it is fixed, the various products adhere to the fried food F, and the quality of the fried food F after processing is significantly reduced. [0013] Further, in the flyer 120, since the energizing electrode 125 and the ground electrode 126 need to be arranged in parallel upward and downward, the ground electrode 126 closes the opening at the top of the flyer 120. In other words, the ground food 126 cannot be moved and the fried food cannot be taken in and out of the oil tank 121, and the usability is not necessarily good. In addition, even if the energizing electrode 125 and the ground electrode 126 are turned upside down, the same inconvenience is caused.
[0014] また、前記解凍庫 100、前記冷蔵庫 110、及び前記フライヤ一 120では、電極間の 離間距離を長くすると、電場強度は、電極間の離間距離の二乗に減衰して大幅に低 下する。従って、電極間の離間距離を長くするには一定の制限があり、電場処理領 域の大型化に簡単に対応できな 、と 、う不都合もある。  [0014] Further, in the thawing cabinet 100, the refrigerator 110, and the fryer 120, when the separation distance between the electrodes is increased, the electric field strength is attenuated to the square of the separation distance between the electrodes and is greatly reduced. . Accordingly, there is a certain limitation in increasing the separation distance between the electrodes, and there is also a disadvantage that it is not possible to easily cope with the enlargement of the electric field processing area.
[0015] 本発明は、このような不都合に着目して案出されたものであり、その第 1の目的は、 被処理体に対して均一に電場処理を施すことができる電場処理装置及び電場処理 方法を提供することである。  [0015] The present invention has been devised by paying attention to such inconveniences, and a first object of the present invention is to provide an electric field processing device and an electric field capable of uniformly applying an electric field process to an object to be processed. It is to provide a processing method.
[0016] 本発明の第 2の目的は、被処理体に対して高効率の電場処理を施すことができる 電場処理装置及び電場処理方法を提供することである。  [0016] A second object of the present invention is to provide an electric field processing apparatus and an electric field processing method capable of performing highly efficient electric field processing on an object to be processed.
[0017] 本発明の第 3の目的は、高電圧を電極に印加しても、電極間、或いは、電極と被処 理体間で放電現象を起こり難くすることができる電場処理装置及び電場処理方法を 提供することである。  [0017] A third object of the present invention is to provide an electric field processing apparatus and an electric field processing capable of making it difficult for a discharge phenomenon to occur between electrodes or between an electrode and a workpiece even when a high voltage is applied to the electrodes. Is to provide a method.
[0018] 本発明の第 4の目的は、電極間の離間距離が長くなつても、被処理体に対する電 場処理効果を低減し難くできる電場処理装置及び電場処理方法を提供することであ る。  [0018] A fourth object of the present invention is to provide an electric field processing apparatus and an electric field processing method capable of making it difficult to reduce the electric field processing effect on the object to be processed even when the distance between the electrodes is long. .
[0019] 本発明の第 5の目的は、被処理体に対して積極的なイオン供給を行なうことで、被 処理体を高効率に電場処理することができる電場処理装置及び電場処理方法を提 供することである。 課題を解決するための手段  [0019] A fifth object of the present invention is to provide an electric field processing apparatus and an electric field processing method capable of performing electric field processing on a target object with high efficiency by positively supplying ions to the target object. It is to provide. Means for solving the problem
[0020] (1)前記目的を達成するため、本発明は、相互に同極となる交流電圧がそれぞれ 印加される複数の電極を備え、これら電極間に位置する電場処理領域内の被処理 体に対して電場処理を行う電場処理装置にお!、て、 前記電極は、内側電極と、この内側電極の周囲に配置された外側電極とを少なくと も有し、 [0020] (1) In order to achieve the above object, the present invention includes a plurality of electrodes to which alternating voltages having the same polarity are applied, and an object to be processed in an electric field processing region located between the electrodes. In the electric field processing device that performs electric field processing on! The electrode has at least an inner electrode and an outer electrode disposed around the inner electrode;
前記被処理体は、誘電体として機能する流体及び Z又は誘電体として機能する物 体であり、  The object to be processed is a fluid that functions as a dielectric and a substance that functions as Z or a dielectric,
前記各電極に同極性の交流電圧を印加することにより、前記電場処理領域に、プ ラス電場とマイナス電場とを交互に発生させる、という構成を採っている。  A configuration is adopted in which a positive electric field and a negative electric field are alternately generated in the electric field processing region by applying an alternating voltage of the same polarity to the electrodes.
[0021] (2)また、本発明は、相互に同極となる交流電圧がそれぞれ印加される複数の電極 を備え、これら電極間に位置する電場処理領域内の被処理体に対して電場処理を 行う電場処理装置において、  [0021] (2) The present invention also includes a plurality of electrodes to which alternating voltages having the same polarity are applied to each other, and an electric field treatment is performed on an object to be processed in an electric field treatment region located between the electrodes. In the electric field processing device that performs
前記電極は、相互に対畤しな 、位置関係となる一組の電極を少なくとも含み、 前記被処理体は、誘電体として機能する流体及び Z又は誘電体として機能する物 体であり、  The electrodes include at least a pair of electrodes that are not opposed to each other and have a positional relationship, and the object to be processed is a fluid that functions as a dielectric and a substance that functions as Z or a dielectric,
前記各電極に同極性の交流電圧を印加することにより、前記電場処理領域に、プ ラス電場とマイナス電場とを交互に発生させる、という構成を採ることもできる。  It is also possible to adopt a configuration in which a positive electric field and a negative electric field are alternately generated in the electric field processing region by applying an alternating voltage of the same polarity to each electrode.
[0022] (3)更に、前記電極は、前記被処理体に対し、その周囲の少なくとも三箇所に配置 される、という構成を採ることが好ましい。  [0022] (3) Furthermore, it is preferable to adopt a configuration in which the electrode is disposed at least at three locations around the object to be processed.
[0023] (4)また、前記電場処理領域には、誘電体として機能する流体と、当該流体に対し 誘電率の異なる物質が存在する、という構成を採るとよい。  [0023] (4) The electric field processing region may be configured such that a fluid functioning as a dielectric and a substance having a dielectric constant different from the fluid exists.
[0024] (5)更に、前記電極の周囲に絶縁層を設けるとよい。  (5) Furthermore, an insulating layer may be provided around the electrode.
[0025] (6)また、前記電極と前記被処理体との間に、当該被処理体よりも誘電率の低い流 体層を設ける構成を採ることもできる。  (6) Further, it is possible to adopt a configuration in which a fluid layer having a dielectric constant lower than that of the target object is provided between the electrode and the target object.
[0026] (7)更に、前記電極は、少なくとも一部に凹凸面部分が形成される、という構成を採 用するとよい。 [0026] (7) Further, it is preferable that the electrode has a configuration in which an uneven surface portion is formed at least partially.
[0027] (8)また、本発明に係る電場処理方法は、内側電極と、その周囲に配置された外側 電極とを少なくとも有する複数の電極間に、誘電体として機能する流体及び Z又は 誘電体として機能する物体からなる被処理体を配置した上で、前記各電極に同極性 の交流電圧を印加することにより、前記電極間の電場処理領域にプラス電場とマイナ ス電場とを交互に発生させ、前記被処理体に対して電場処理を行う、という手法を採 つている。 [0027] (8) Further, the electric field processing method according to the present invention includes a fluid functioning as a dielectric and a Z or dielectric between a plurality of electrodes having at least an inner electrode and an outer electrode arranged around the inner electrode. And an alternating voltage of the same polarity is applied to each of the electrodes to generate a positive electric field and a negative electric field alternately in the electric field processing region between the electrodes. The electric field treatment is performed on the workpiece. It is.
[0028] (9)また、本発明に係る電場処理方法は、相互に対畤しない位置関係となる一組 の電極を少なくとも含む複数の電極間に、誘電体として機能する流体及び Z又は誘 電体として機能する物体からなる被処理体を配置した上で、前記各電極に同極性の 交流電圧を印加することにより、前記電極間の電場処理領域にプラス電場とマイナス 電場とを交互に発生させ、前記被処理体に対して電場処理を行う、という手法を採る ことちでさる。  [0028] (9) In addition, the electric field processing method according to the present invention includes a fluid functioning as a dielectric and Z or an electric charge between a plurality of electrodes including at least a pair of electrodes in a positional relationship that does not face each other. By placing an object to be processed consisting of an object that functions as a body and applying an alternating voltage of the same polarity to each electrode, a positive electric field and a negative electric field are generated alternately in the electric field processing region between the electrodes. In other words, an electric field process is performed on the object to be processed.
発明の効果  The invention's effect
[0029] 前記(1)、(2)の構成、及び (8)、(9)の手法によれば、各電極に同極性の交流電 圧がそれぞれ印加されると、無限遠点領域がアースとなって、電場処理領域内にプ ラス電場とマイナス電場とが交互に発生するため、それに伴い、電場処理領域内に 存在する被処理体内のプラス電荷とマイナス電荷が交互に繰り返し配向整列される 。その結果、被処理体内の分子の構造を変える等の改質を行うことができ、分子構造 レベルでの電場処理が可能となり、被処理体の設置条件に拘わらず、被処理物に対 して均一な電場処理効果を付与することができる。また、電極に印加される交流電圧 の極性が反転することにより、電極体化した被処理体の構成分子に対し、積極的にィ オン供給が行なわれることになり、被処理体に対して高効率な電場処理を施すことが できる。更に、電極配置の自由度を高めることも可能になる。  [0029] According to the configurations of (1) and (2) and the methods of (8) and (9), when an AC voltage of the same polarity is applied to each electrode, the infinity point region is grounded. Thus, a positive electric field and a negative electric field are alternately generated in the electric field processing region, and accordingly, positive charges and negative charges in the object to be processed existing in the electric field processing region are alternately and repeatedly aligned. As a result, modification such as changing the structure of molecules in the object to be processed can be performed, electric field processing at the molecular structure level becomes possible, and the object to be processed can be processed regardless of the installation conditions of the object to be processed. A uniform electric field treatment effect can be imparted. In addition, by reversing the polarity of the AC voltage applied to the electrode, ion supply is positively performed on the constituent molecules of the object to be processed into an electrode body, resulting in a high charge for the object to be processed. Efficient electric field processing can be performed. Furthermore, it becomes possible to increase the degree of freedom of electrode arrangement.
[0030] また、前記(3)の構成によれば、少なくとも三方向力 被処理体が囲まれるため、電 極間で電場強度を相互に補完し合って、電場処理領域におけるどの位置でも略均 一の高電位状態を保持することができる。従って、電場処理領域内での電場処理の ばらつきを少なくできる。また、電場処理領域内の被処理体には、各電極力もより多く の電気力線が透過することになるため、被処理体に対して高効率の電場処理を施す ことが可能になる。  [0030] According to the configuration of (3), at least the three-direction force object to be processed is surrounded, so that the electric field strengths are mutually complemented between the electrodes, so that any position in the electric field processing region is substantially uniform. One high potential state can be maintained. Therefore, variations in electric field processing within the electric field processing region can be reduced. In addition, since more electric lines of force are transmitted through the object to be processed in the electric field processing region, it is possible to perform highly efficient electric field processing on the object to be processed.
[0031] 更に、前記 (4)の構成によれば、フライヤ一のように、揚油等の流体を使って、揚油 と誘電率の異なるフライ食品を加工する等の場合でも、揚油とフライ食品の電場処理 をそれぞれ効果的に行うことが可能になる。  [0031] Further, according to the configuration of (4), even when frying food having a different dielectric constant from that of frying oil is processed using a fluid such as frying oil as in the case of a fryer, Electric field treatment can be performed effectively.
[0032] また、前記(5)の構成により、電極間での放電現象を抑制することができ、印加電 圧を高めて電場処理を効率的に行うことが可能となる。 [0032] Further, with the configuration of (5), the discharge phenomenon between the electrodes can be suppressed, and the applied power can be reduced. The electric field treatment can be efficiently performed by increasing the pressure.
[0033] 更に、前記(6)の構成により、電極と被処理体との間は、誘電率が低い空気等の流 体層が介在する非接触状態となって、電極からの電圧の状態をさほど低下させずに 、被処理体に対して電場処理を行うことができ、被処理体が容器に収容された状態 であっても、その電場処理を効果的に行うことができる。  [0033] Further, with the configuration of (6), the electrode and the object to be processed are in a non-contact state in which a fluid layer such as air having a low dielectric constant is interposed, so that the state of the voltage from the electrode is reduced. The electric field treatment can be performed on the object to be processed without much lowering, and the electric field treatment can be effectively performed even when the object to be processed is contained in the container.
[0034] また、前記(7)の構成により、電極から振り出される電気力線の数を増大させること ができ、電場処理効果を一層高めることができる。  [0034] Also, with the configuration of (7), the number of lines of electric force drawn out from the electrodes can be increased, and the electric field treatment effect can be further enhanced.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0035] 以下、本発明の実施例について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
第 1実施例  Example 1
[0036] 図 1には、本発明の第 1実施例に係る電場処理装置としての水処理装置の概略断 面正面図が示され、図 2には、図 1の A— A線方向に沿う水処理装置の概略断面図が 示されている。これらの図において、水処理装置 10は、被処理体としての水が収容さ れる処理槽 12と、この処理槽 12側に交流電圧を印加する電圧供給装置 13とを備え て構成されている。  FIG. 1 shows a schematic cross-sectional front view of a water treatment apparatus as an electric field treatment apparatus according to the first embodiment of the present invention, and FIG. 2 shows the direction of the line AA in FIG. A schematic cross section of the water treatment system is shown. In these drawings, the water treatment apparatus 10 includes a treatment tank 12 in which water as an object to be treated is accommodated, and a voltage supply device 13 that applies an alternating voltage to the treatment tank 12 side.
[0037] 前記処理槽 12は、有底円筒状をなす本体槽 15と、この本体槽 15の内周面 15Aに 添設された外側電極 17と、本体槽 15の中央部分に配置された円筒状の中央柱 18と 、この中央柱 18の外周面 18Aに添設された内側電極 19と、本体槽 15の底部内面に 設置された吸着シート 21とを備えて構成されている。本体槽 15と中央柱 18の内側に は、水が収容され、特に、外側電極 17及び内側電極 19の間の領域は、水を電場処 理する電場処理領域 Eとなっている。なお、図中符号 23は、本体槽 15内の水を外部 に排出するためのドレン 23である。  [0037] The treatment tank 12 includes a main body tank 15 having a bottomed cylindrical shape, an outer electrode 17 attached to an inner peripheral surface 15A of the main body tank 15, and a cylinder disposed in a central portion of the main body tank 15. A central column 18, an inner electrode 19 attached to the outer peripheral surface 18 A of the central column 18, and an adsorption sheet 21 installed on the bottom inner surface of the main body tank 15 are configured. Water is accommodated inside the main body tank 15 and the central column 18, and in particular, the region between the outer electrode 17 and the inner electrode 19 is an electric field processing region E for electric field processing of water. Reference numeral 23 in the figure is a drain 23 for discharging the water in the main body tank 15 to the outside.
[0038] 前記外側電極 17は、上下両端側が開放する円筒状に設けられ、内周面 15Aよりも 小さな上下寸法となっている。この外側電極 17には、電圧供給装置 13によって交流 電圧が印加される。  [0038] The outer electrode 17 is provided in a cylindrical shape with both upper and lower ends open, and has a vertical dimension smaller than the inner peripheral surface 15A. An AC voltage is applied to the outer electrode 17 by the voltage supply device 13.
[0039] 前記中央柱 18は、本体槽 15の略中心部分に配置され、平面視において、本体槽 [0039] The central column 18 is disposed at a substantially central portion of the main body tank 15, and in the plan view, the main body tank
15と同心状態で配置される。 It is arranged concentrically with 15.
[0040] 前記内側電極 19は、上下両端側が開放する円筒状に設けられ、外側電極 17と略 同一の上下寸法を有し、外側電極 17に対して略ぴったり向き合うような高さに配置さ れている。この内側電極 19には、電圧供給装置 13によって、外側電極 17に対して 同極で同じ大きさの交流電圧が印加されるようになって!/、る。 [0040] The inner electrode 19 is provided in a cylindrical shape with both upper and lower ends open, and is substantially the same as the outer electrode 17. They have the same vertical dimension, and are arranged so as to face the outer electrode 17 almost exactly. The inner electrode 19 is applied with an AC voltage having the same polarity and the same magnitude as the outer electrode 17 by the voltage supply device 13.
[0041] 前記電圧供給装置 13は、図 3に示されるように、商用周波数の交流電圧を発生す る交流電源 25と、この交流電源 25に繋がる変圧器 26とを備えて構成されている。こ の変圧器 26は、交流電源 25からの交流電圧が印加される一次側回路 27と、一次側 回路 27の電圧と異なる電圧を発生させ、抵抗 28を介して、外側電極 17及び内側電 極 19に対し、相互に同期する交流電圧を印加する二次側回路 29とを備えた構成と なっている。この電圧供給装置 13では、出力電圧が 3000V— 10000Vの範囲内の 高電圧に調整され、出力電流が 10mA— 100mAの範囲内の微弱電流に調整され る。 As shown in FIG. 3, the voltage supply device 13 includes an AC power supply 25 that generates an AC voltage having a commercial frequency, and a transformer 26 that is connected to the AC power supply 25. The transformer 26 generates a voltage different from the voltage of the primary side circuit 27 to which the AC voltage from the AC power source 25 is applied, and the primary side circuit 27, and the outer electrode 17 and the inner electrode via the resistor 28. 19 is configured to include a secondary side circuit 29 that applies AC voltages synchronized with each other. In this voltage supply device 13, the output voltage is adjusted to a high voltage in the range of 3000V—10000V, and the output current is adjusted to a weak current in the range of 10mA—100mA.
なお、この電圧供給装置 13としては、外側電極 17及び内側電極 19に所定の交流 電圧を印加できるものであれば何でもよぐ前述した回路構成に限定されるものでは ない。  The voltage supply device 13 is not limited to the circuit configuration described above as long as it can apply a predetermined AC voltage to the outer electrode 17 and the inner electrode 19.
[0042] 次に、前記水処理装置 10の作用について説明する。  Next, the operation of the water treatment apparatus 10 will be described.
[0043] 電場処理領域 Eに、誘電体として機能する水が収容された状態で、電圧供給装置 13が作動すると、外側電極 17及び内側電極 19に、相互に同極となる交流電圧が印 カロされる。つまり、外側電極 17がプラス電位となったときに、内側電極 19もプラス電 位となる。このため、これら各電極 17, 19の間に位置する電場処理領域 Eは、どの位 置においてもプラスの略同電位状態となる。従って、一方の電極 17 (19)力も離間す る程、当該一方の電極 17 (19)力もたらす電位は下がる力 その分、同極性となる他 方の電極 19 (17)により電位を高めることができ、電場処理領域 E内のどの場所でも 、略同電位状態にすることが可能となる。この際、電場処理領域 Eのプラス電場に対 し、処理槽 12の図 1中上下両側に位置する無限遠点領域は、アースとなって相対的 にマイナス電位となる。これにより、電場処理領域 E内の水の構成分子は分極を誘起 され、当該構成分子内のプラス電荷がマイナス電位となる前記無限遠点領域側に引 き寄せられて、一定方向に配向整列するようになる。  [0043] When the voltage supply device 13 is operated in a state where water that functions as a dielectric is contained in the electric field treatment region E, an AC voltage having the same polarity is applied to the outer electrode 17 and the inner electrode 19. Is done. That is, when the outer electrode 17 has a positive potential, the inner electrode 19 also has a positive potential. For this reason, the electric field processing region E located between these electrodes 17 and 19 is in the substantially same positive potential state at any position. Therefore, the more the one electrode 17 (19) force is separated, the lower the potential caused by the one electrode 17 (19) force, and the other electrode 19 (17) having the same polarity can increase the potential accordingly. Therefore, it is possible to make the electric field processing region E almost the same potential at any location. At this time, in contrast to the positive electric field in the electric field processing region E, the infinity point regions located on the upper and lower sides of the processing tank 12 in FIG. 1 are grounded and have a relatively negative potential. As a result, the constituent molecules of water in the electric field treatment region E are induced to polarize, and the positive charges in the constituent molecules are attracted to the infinity point region side where the potential is negative and are aligned in a certain direction. It becomes like this.
一方、外側電極 17がマイナス電位となったときに、内側電極 19もマイナス電位とな るため、電場処理領域 Eはマイナス電場になり、前記無限遠点領域は、相対的にブラ ス電位となる。このときも、電場処理領域 E内の水の構成分子は分極を誘起され、当 該構成分子内のマイナス電荷がプラス電位となる無限遠点領域側に引き寄せられて 、一定方向に配向整列するようになる。 On the other hand, when the outer electrode 17 becomes negative potential, the inner electrode 19 also becomes negative potential. Therefore, the electric field processing region E becomes a negative electric field, and the infinity point region has a relatively brass potential. Also at this time, the constituent molecules of water in the electric field treatment region E are induced to polarize, and the negative charges in the constituent molecules are attracted to the infinity point region side where the potential becomes a positive potential, so that the alignment aligns in a certain direction. become.
従って、交流電圧の印加によって、電場処理領域 E内は、プラス電場とマイナス電 場とに交互に変わり、それに伴って、分極した構成分子自体も、プラス電荷とマイナ ス電荷の配列が一定周期で繰り返し反転するようになる。これによつて、水のクラスタ 一がミクロ化され、水の分子密度が高まり、相転移温度が低下する等の改質がなされ ることになる。  Therefore, by applying an alternating voltage, the electric field processing region E is alternately changed into a positive electric field and a negative electric field, and accordingly, the arrangement of the positive charge and the negative charge in the polarized constituent molecule itself is constant. It will be reversed repeatedly. As a result, the water cluster is micronized, the molecular density of the water is increased, and the phase transition temperature is lowered.
[0044] また、前述したように、電場処理領域 Eでは、どの位置にぉ 、ても、極性が周期的 に反転する略同電位状態にあるため、水中に存在して誘電体として機能する極性物 質は、当該電場処理領域 E中で、前述した水の構成分子のように、電場の極性の反 転に伴って極性が反転するいわば浮遊電極として機能する。そして、電場処理領域 E内がプラス電場のとき、電極からの電気力線が、ゼロ電位を有する図 1中上下両側 の無限遠点領域に向けて振り出されるため、極性物質は、誘電率の異なる水から分 離され、重力の影響を受け、同図中下方に向力う電気力線に沿って降下する。つまり 、水から分離された極性物質は、電気的結合により凝集状態となり、図中下方に向か う電気力線に沿って降下し、本体槽 15の底部側の吸着シート 21で吸着されることに なる。なお、この吸着シート 21としては、特に限定されるものではなぐ不織紙等、極 性物質を吸着可能なものであれば何でもよ 、。  [0044] Further, as described above, in the electric field processing region E, the polarity that exists in water and functions as a dielectric is present in almost the same potential state in which the polarity is periodically reversed at any position. In the electric field treatment region E, the substance functions as a floating electrode whose polarity reverses with the reversal of the electric field polarity, like the constituent molecules of water described above. When the electric field processing region E is a positive electric field, the electric field lines from the electrode are spouted toward the infinity point region on both the upper and lower sides in Fig. 1 having zero potential. It is separated from different water, affected by gravity, and descends along the lines of electric force that are directed downward in the figure. In other words, the polar substance separated from the water becomes agglomerated by electrical coupling, descends along the lines of electric force directed downward in the figure, and is adsorbed by the adsorption sheet 21 on the bottom side of the main body tank 15. become. The adsorbing sheet 21 is not particularly limited as long as it can adsorb polar substances, such as non-woven paper.
[0045] 本第 1実施例では、同極性の交流電圧が印加される電極を二重円状に配置してい るが、更に多重円状に電極を配置し、各電極に対し同極性の交流電圧を印加する構 成としてもよい。また、電極の形状としては、円筒状に限らず、楕円状、多角形状等の 他のループ状の電極、棒状の電極、曲板状等としても良い。要するに、所定の電極 の周囲に別の電極が存在する限りにお 、て、電極の形状は特に問わな 、。  [0045] In the first embodiment, the electrodes to which the AC voltage of the same polarity is applied are arranged in a double circle shape. However, the electrodes are further arranged in a multi-circle shape, and an AC current of the same polarity is provided for each electrode. A configuration in which a voltage is applied may be employed. Further, the shape of the electrode is not limited to a cylindrical shape, and may be another loop-shaped electrode such as an elliptical shape or a polygonal shape, a rod-shaped electrode, a curved plate shape, or the like. In short, the shape of the electrode is not particularly limited as long as another electrode exists around the predetermined electrode.
[0046] 次に、本発明の他の実施例について説明する。なお、以下の説明において、前記 第 1実施例と同一若しくは同等の構成部分については同一符号を用いるものとし、説 明を省略若しくは簡略にする。 第 2実施例 [0046] Next, another embodiment of the present invention will be described. In the following description, the same reference numerals are used for the same or equivalent components as in the first embodiment, and the description will be omitted or simplified. Second embodiment
[0047] 図 4には、第 2実施例に係る電場処理装置としての過冷却保蔵庫の概略断面正面 図が示され、図 5には、図 4の A— A線方向に沿う過冷却保蔵庫の概略断面図が示さ れている。また、図 6には、図 4の B— B線方向に沿う過冷却保蔵庫の概略断面図が 示されている。これらの図において、過冷却保蔵庫 30は、被処理体としての食品が 内部に収容される中空箱型の保蔵庫本体 32と、この保蔵庫本体 32に交流電圧を印 加する第 1実施例と同様の電圧供給装置 13とを備えて構成されている。  FIG. 4 shows a schematic cross-sectional front view of the supercooled storage as the electric field processing apparatus according to the second embodiment, and FIG. 5 shows the supercooled storage along the AA line direction of FIG. A schematic cross-sectional view of the storage is shown. FIG. 6 shows a schematic cross-sectional view of the supercooled storage along the BB line direction of FIG. In these figures, the supercooled storage 30 is a hollow box-type storage main body 32 in which food as an object to be processed is housed, and an AC voltage is applied to the storage main body 32 in the first embodiment. And a voltage supply device 13 similar to the above.
[0048] 前記保蔵庫本体 32は、その内壁全体が絶縁施工されているともに、断熱材が適宜 配置されて庫内 33の断熱性を高めた構造となっている。この保蔵庫本体 32は、上端 側の頂壁 35と、下端側の底壁 36と、これら頂壁 35及び底壁 36の左右両端間に配 置された左右側壁 37, 38と、これら頂壁 35、底壁 36及び左右側壁 37, 38の後端側 に位置する後壁 39と、これら各壁 35— 39で囲まれた空間を正面側力も開閉自在に 閉塞する扉 40と、各側壁 37, 38及び後壁 39の内面側にそれぞれ添設された左側 電極 42、右側電極 43及び後側電極 44と、各側壁 37, 38間に着脱自在に掛け渡さ れ、食品が載せられる上下三段の棚板 46とを備えている。なお、図中符号 47, 48は 、図示しな!、外部の冷却装置に対する冷気の供給口及び排気口である。  [0048] The storage main body 32 has a structure in which the entire inner wall is insulated and a heat insulating material is appropriately arranged to enhance the heat insulation of the inside 33. The storage body 32 includes a top wall 35 on the upper end side, a bottom wall 36 on the lower end side, left and right side walls 37, 38 disposed between the top wall 35 and the left and right ends of the bottom wall 36, and the top walls. 35, bottom wall 36 and rear wall 39 located on the rear end side of the left and right side walls 37, 38, a door 40 for closing the space enclosed by these walls 35-39 so that the front side force can be opened and closed, and each side wall 37 , 38 and the rear wall 39, the left electrode 42, the right electrode 43 and the rear electrode 44 respectively attached to the inner surface side of the rear wall 39 are detachably spanned between the side walls 37 and 38, and upper and lower three stages on which food is placed. Shelf board 46. Reference numerals 47 and 48 in the figure are not shown! A cold air supply port and an exhaust port for an external cooling device.
[0049] 各電極 42— 44には、第 1実施例と同様に、電圧供給装置 13から、相互に同極性と なる交流電圧が印加され、高電圧微弱電流がそれぞれ供給される。また、各電極 42 一 44は、平板状に設けられ、相互に同じ高さ位置に配置されている。従って、左右 両側の電極 42, 43は略ぴったり相対し、これら電極 42, 43の後端間に後側電極 44 が同じ高さで位置することになる。換言すれば、これら電極 42— 44は、棚板 46上の 食品を三方から囲むように配置され、これら電極 42— 44で囲まれる空間力 電場処 理領域 Eとなる。また、各電極 42— 44の面には、図示省略している力 絶縁材料から なる絶縁層としての網状の絶縁カバーが設けられている。棚板 46は、図示しない絶 縁フレームによって支持され、各電極 42— 44に対する絶縁状態が確保されて 、る。 また、各電極 42— 44と棚板 46上に置かれた食品との間には、食品よりも誘電率の 低 、流体層を構成する空気層が介在して 、る。  [0049] As in the first embodiment, each of the electrodes 42 to 44 is supplied with AC voltage having the same polarity from the voltage supply device 13 and supplied with high voltage and weak current. The electrodes 42 and 44 are provided in a flat plate shape and are arranged at the same height position. Accordingly, the electrodes 42 and 43 on both the left and right sides are substantially opposite to each other, and the rear electrode 44 is positioned at the same height between the rear ends of these electrodes 42 and 43. In other words, these electrodes 42-44 are arranged so as to surround the food on the shelf 46 from three sides, and become a space force electric field processing region E surrounded by these electrodes 42-44. Further, a net-like insulating cover as an insulating layer made of a force insulating material (not shown) is provided on the surface of each electrode 42-44. The shelf plate 46 is supported by an insulating frame (not shown), and an insulating state with respect to the electrodes 42 to 44 is secured. In addition, an air layer constituting a fluid layer is interposed between each electrode 42-44 and the food placed on the shelf 46, which has a lower dielectric constant than that of the food.
[0050] この過冷却保蔵庫 30にあっては、電圧供給装置 13が作動すると、各電極 42— 44 に同極性の交流電圧が印加される。これによつて、前記第 1実施例で説明したよう〖こ 、食品が存在する電場処理領域 E内では、プラス電場とマイナス電場とが交互に変 わり、それに伴って、食品の構成分子は、分極が誘起され、プラス電荷とマイナス電 荷の配列が一定周期で反転を繰り返すようになる。その結果、食品中の雑菌に電気 的衝撃が与えられ、また、食品中の水分力も殺菌性のあるオゾンが生成され、更に、 雑菌の細胞を変異させ細胞分裂による増殖が規制されることになる。これにより、雑 菌の増殖を抑制し、食品の腐敗を防止することができる。 [0050] In this supercooled storage 30, when the voltage supply device 13 is activated, each of the electrodes 42- 44 An alternating voltage of the same polarity is applied to As a result, as described in the first embodiment, in the electric field processing region E where the food is present, the positive electric field and the negative electric field are alternately changed. Polarization is induced, and the arrangement of positive charge and negative charge repeats inversion at regular intervals. As a result, the bacteria in the food are electrically shocked, the water in the food also generates bactericidal ozone, and the cells of the bacteria are mutated to restrict proliferation by cell division. . As a result, the growth of bacteria can be suppressed and the food can be prevented from being spoiled.
[0051] また、食品中に存在する水分は、第 1実施例で説明したように改質されて、ミクロィ匕 され、且つ、相転移温度が下降することになり、食品中の水分が難凍結水化し、食品 に対し、旨みを残した状態で低温非凍結の過冷却保蔵が可能となる。  [0051] Further, the moisture present in the food is modified as described in the first embodiment, is micro-polished, and the phase transition temperature is lowered, so that the moisture in the food is hardly frozen. It becomes hydrated and can be stored at low temperature and non-frozen supercooled state with food remaining umami.
[0052] 更に、電場処理領域 Eは、左右及び後方の三箇所に位置する各電極 42— 44で囲 まれて構成されるため、どの位置においても高電位状態を略均一にすることができる 。つまり、例えば、左右の電極 42, 43だけでは、これら各電極 42, 43の離間距離を 長くしたとき、棚板 46の中央部では、左右両側の電極 42, 43からの電気力線が減衰 してしまうが、この減衰を後側電極 44からの電気力線によって補完し、電場処理領域 E内での電場処理のばらつきを少なくすることができる。  [0052] Furthermore, the electric field processing region E is configured by being surrounded by the respective electrodes 42-44 located at the left, right, and rear three locations, so that the high potential state can be made substantially uniform at any position. That is, for example, when only the left and right electrodes 42 and 43 are separated from each other, when the distance between the electrodes 42 and 43 is increased, the electric lines of force from the left and right electrodes 42 and 43 are attenuated at the central portion of the shelf 46. However, this attenuation can be supplemented by electric lines of force from the rear electrode 44, and variations in electric field processing within the electric field processing region E can be reduced.
[0053] また、 3つの電極 42— 44を用いているため、電気力線が三重に加えられ、物体に 対する透過性能が向上する。従って、食品の収納容器の材質が、金属、榭脂、陶器 、硝子、紙加工製品などのあらゆる材料の容器であっても、その中の食品への電気 的処理が阻害されず、また、収納容器が蓋付きであっても、食品への電気的処理が 可能となり、容器に対する限定条件が不要となる。  [0053] Further, since the three electrodes 42-44 are used, the lines of electric force are added in triplicate, and the transmission performance to the object is improved. Therefore, even if the food container is made of any material such as metal, grease, ceramics, glass, and paper products, the electrical processing of the food in the container is not hindered. Even if the container has a lid, electrical processing can be performed on the food, and the limiting conditions for the container become unnecessary.
[0054] なお、前記扉 40の内側に前記絶縁カバーを付した平板状の電極を設けて、食品 中の水分のミクロ化を強化することで、氷結晶が生成し難い緩慢冷凍庫としてもよい し、相転移温度を一層降下させて解凍庫としてもよい。  [0054] It should be noted that by providing a flat electrode with the insulating cover on the inside of the door 40 and strengthening the micro-ization of moisture in the food, it may be a slow freezer that hardly generates ice crystals. Further, the phase transition temperature may be further lowered to form a defroster.
第 3実施例  Example 3
[0055] 図 7には、第 3実施例に係る電場処理装置としての蒸し器の概略断面正面図が示 され、図 8には、図 7の A— A線方向に沿う蒸し器の概略断面図が示されている。これ らの図において、蒸し器 50は、被処理体としての食品が内部に収容される中空箱型 の蒸し器本体 51と、この蒸し器本体 51に交流電圧を印加する第 1実施例と同様の電 圧供給装置 13とを備えて構成されて ヽる。 FIG. 7 shows a schematic cross-sectional front view of a steamer as an electric field processing apparatus according to the third embodiment, and FIG. 8 shows a schematic cross-sectional view of the steamer along the line AA in FIG. It is shown. In these figures, the steamer 50 is a hollow box type in which food as an object to be processed is accommodated. The steamer main body 51 and the voltage supply device 13 similar to the first embodiment for applying an AC voltage to the steamer main body 51 are provided.
[0056] この蒸し器 50は、第 2実施例の過冷却保蔵庫 30に対し、供給口 47及び排気口 48 がなぐその代わりに、蒸し器本体 51の下側部分に、蒸気生成部 53を設けるとともに 、後壁 39の後側電極 44に代えて、扉 40の内面に、第 2実施例と同様の絶縁カバー( 図示省略)を取り付けた前側電極 55を設けたところに特徴を有する。その他の構成 は、第 2実施例と略同一となっている。  This steamer 50 is provided with a steam generation part 53 in the lower part of the steamer main body 51 instead of the supply port 47 and the exhaust port 48 with respect to the supercooled storage 30 of the second embodiment. A feature is that instead of the rear electrode 44 of the rear wall 39, a front electrode 55 having an insulating cover (not shown) similar to that of the second embodiment attached to the inner surface of the door 40 is provided. Other configurations are substantially the same as those of the second embodiment.
[0057] 前記蒸気生成部 53は、各電極 42, 43, 55及び棚板 46の下方に形成された蒸気 室 57と、この蒸気室 57の下方に配置された加熱装置 58とを備えて構成されて ヽる。 この蒸気室 57は、図示しない給水口から水が供給され、当該水は、加熱装置 58によ つて加熱され、水蒸気を発生させるようになつている。この水蒸気は、蒸気室 57の上 部の仕切り板 60に形成された孔から、各電極 42, 43, 55及び棚板 46の存在する庫 内 33に向力つて噴出される。ここで、蒸気室 57には、各側壁 37, 38及び後壁 39の 内面側に、左側電極 62、右側電極 63及び後側電極 64が添設されており、これら電 極 62— 64には、電圧供給装置 13により、前記各電極 42, 43, 55と同極性となる交 流電圧が印加される。従って、左側電極 62、右側電極 63及び後側電極 64で囲まれ る空間も、電場処理領域 Eとなる。以下、本実施例では、便宜上、上側の電極 42, 4 3, 55の内側に位置する電場処理領域を第 1電場処理領域 El、下側の電極 62— 6 4の内側に位置する電場処理領域を第 2電場処理領域 E2と称する。  The steam generating unit 53 includes a steam chamber 57 formed below the electrodes 42, 43, 55 and the shelf plate 46, and a heating device 58 disposed below the steam chamber 57. Being sung. The steam chamber 57 is supplied with water from a water supply port (not shown), and the water is heated by the heating device 58 to generate water vapor. This water vapor is jetted out of the holes formed in the upper partition plate 60 of the steam chamber 57 to the interior 33 where the electrodes 42, 43, 55 and the shelf plate 46 exist. Here, in the steam chamber 57, a left electrode 62, a right electrode 63, and a rear electrode 64 are attached to the inner surfaces of the side walls 37, 38 and the rear wall 39. Then, an alternating voltage having the same polarity as each of the electrodes 42, 43, 55 is applied by the voltage supply device 13. Therefore, the space surrounded by the left electrode 62, the right electrode 63, and the rear electrode 64 is also an electric field processing region E. Hereinafter, in this embodiment, for the sake of convenience, the electric field processing region located inside the upper electrodes 42, 4 3, 55 is defined as the first electric field processing region El, and the electric field processing region located inside the lower electrodes 62-6 64. Is called the second electric field processing region E2.
[0058] 前記第 1電場処理領域 E1は、三方の電極 42, 43, 55で囲まれるため、前記第 2実 施例と同様に、どの位置でも略均一な高電位状態となる。その結果、高温水蒸気の ガス化を高効率で行うことができ、高温水蒸気の分布を庫内 33で均一にすることが できる。これにより、庫内 33の恒温恒湿環境を均一に安定維持することができ、庫内 33の食品に対する熱伝達効果を高めて、蒸し上げ時間を短縮ィ匕でき、食品表面の 乾燥を防止することもできる。また、食品を電場処理することで、その蛋白質の作用に よる食品の褐変を防止することもできる。  [0058] Since the first electric field processing region E1 is surrounded by the three electrodes 42, 43, 55, as in the second embodiment, the first electric field processing region E1 is in a substantially uniform high potential state at any position. As a result, the gasification of the high-temperature steam can be performed with high efficiency, and the distribution of the high-temperature steam can be made uniform in the chamber 33. As a result, the constant temperature and humidity environment of the inside 33 can be maintained uniformly and stably, the heat transfer effect to the food inside the inside 33 can be enhanced, the steaming time can be shortened, and the food surface can be prevented from drying. You can also In addition, by treating the food with an electric field, browning of the food due to the action of the protein can be prevented.
[0059] また、第 2実施例同様、第 1電場処理領域 E1を三枚の電極 42, 43, 55で構成する ことにより、食品を収納する容器の材質や蓋の有無に拘らず、食品に対する電場処 理効果を損ねずに電場処理を良好に行うことができる。すなわち、電気力線の加重 によって、食品への透過性能が向上し、食品表面の乾燥を防止し、且つ、蛋白質の 作用による食品の褐変を防止することができる。 [0059] Further, as in the second embodiment, the first electric field treatment region E1 is constituted by the three electrodes 42, 43, 55, so that the food can be handled regardless of the material of the container for storing the food and the presence or absence of the lid. Electric field Electric field treatment can be performed satisfactorily without impairing the rational effect. In other words, the weighting of the lines of electric force improves the permeation performance to food, prevents the food surface from drying, and prevents the food from browning due to the action of protein.
[0060] 更に、第 2電場処理領域 E2では、第 2実施例で説明したように、水の相転移温度 が下降するように改質されるため、沸点の降下によって、熱源となる加熱装置 58のェ ネルギー節減に寄与することができる。  [0060] Furthermore, in the second electric field treatment region E2, as described in the second embodiment, the reforming is performed so that the phase transition temperature of water is lowered. This can contribute to energy savings.
[0061] なお、第 2電場処理領域 E2内の電極をハ-カム状に構成し、この電極を蒸気が上 下方向に通過できる向きで配置するとよぐこれによつて、加熱装置 58のエネルギー 節減に一層寄与することができる。 [0061] It is to be noted that the electrode in the second electric field treatment region E2 is formed in a Hercam shape, and the electrode is arranged in such a direction that the vapor can pass in the upward and downward directions. This can further contribute to saving.
第 4実施例  Example 4
[0062] 図 9には、第 4実施例に係る電場処理装置としてのフライヤ一の概略断面正面図が 示され、図 10には、図 9の A— A線方向に沿うフライヤ一の概略断面図が示されてい る。これらの図において、フライヤ一 70は、上部開放して揚油が内部に収容される油 槽 71と、この油槽 71に交流電圧を印加する第 1実施例と同様の電圧供給装置 13と を備えて構成されている。なお、図中符号 73は、油槽 71内の揚油を外部に排出する ためのドレンである。  FIG. 9 shows a schematic cross-sectional front view of a fryer as an electric field processing apparatus according to the fourth embodiment, and FIG. 10 shows a schematic cross-section of the fryer along the AA line direction of FIG. The figure is shown. In these drawings, the flyer 70 includes an oil tank 71 in which the upper part is opened and the oil is accommodated therein, and a voltage supply device 13 similar to the first embodiment for applying an AC voltage to the oil tank 71. It is configured. In the figure, reference numeral 73 denotes a drain for discharging the oil in the oil tank 71 to the outside.
[0063] 前記油槽 71は、その内壁全体が絶縁施工されており、上側の開放部分で、フライ 食品の出し入れが行われるようになつている。ここで、本実施例で電場処理される被 処理体は、揚油とフライ食品である。油槽 71は、左右側壁 75, 76と、これら側壁 75, 76の下端側に連なる底壁 77と、これら左右側壁 75, 76及び底壁 77の前後両端側 に位置する前壁 78及び後壁 79と、各側壁 75, 76及び後壁 79の内面側に添設され た左側電極 82、右側電極 83及び後側電極 84と、下側に配置されて揚油を加熱する 加熱パイプ 85と、加熱パイプ 85の上方に位置し、その上部の空間から加熱パイプ 8 5側へのフライ食品の落下を防止する落下防止網 86とを備えて構成されている。  [0063] The entire inner wall of the oil tank 71 is insulated, and fried food is taken in and out at the upper open portion. Here, the to-be-processed object processed by an electric field in a present Example is a deep-fried oil and fried food. The oil tank 71 includes left and right side walls 75, 76, a bottom wall 77 connected to the lower ends of the side walls 75, 76, a front wall 78 and a rear wall 79 located on both the front and rear sides of the left and right side walls 75, 76 and the bottom wall 77. Left side electrode 82, right side electrode 83, and rear side electrode 84 attached to the inner surface side of each side wall 75, 76 and rear wall 79, a heating pipe 85 that is disposed on the lower side to heat the oil, and a heating pipe It is provided with a fall prevention net 86 that is located above 85 and prevents the fall of fried food from the space above it to the heating pipe 85 side.
[0064] 前記各電極 82— 84は、第 2実施例と同様、電圧供給装置 13から相互に同極性と なる交流電圧が印加され、高電圧微弱電流がそれぞれ供給される。また、各電極 82 一 84は、平板状に設けられ、相互に同じ高さに配置されており、揚油及びフライ食品 を囲むようになつている。従って、これら電極 82— 84で囲まれる空間力 電場処理領 域 Eとなる。また、これら各電極 82— 84の面には、図示省略している力 絶縁材料か らなる絶縁層にて気密シールドされて!/、る。 [0064] As in the second embodiment, each of the electrodes 82 to 84 is supplied with an AC voltage having the same polarity from the voltage supply device 13 and supplied with a high voltage and a weak current. The electrodes 82 and 84 are provided in a flat plate shape and are arranged at the same height so as to surround the oil-fried food and the fried food. Therefore, the space force electric field processing region surrounded by these electrodes 82-84 It becomes area E. The surfaces of these electrodes 82 to 84 are hermetically shielded by an insulating layer made of a force insulating material (not shown)! /
[0065] 前記フライヤ一 70においても、電場処理領域 E内では、プラス電場とマイナス電場 とが交互に変わるため、それに伴って、分極を誘起されたフライ食品の構成分子は、 強力な振動現象が起きるとともに、第 2実施例で説明したように、分子内のプラス電荷 とマイナス電荷の配列が一定周期で繰り返し反転される。これにより、前述した相転 移温度の降下でフライ食品に含有される水分の沸点が降下し、フライ加工時の水分 の突沸によるフライ食品のパンク現象が抑制される。しかも、揚油とフライ食品の誘電 率の違いに起因して、フライ食品の周辺が集中的に加温されることになり、フライ食品 内部への加熱力卩ェを均一に行うことができる。  [0065] Also in the fryer 70, in the electric field processing region E, the positive electric field and the negative electric field are alternately changed. Accordingly, the constituent molecules of the fried food in which the polarization is induced have a strong vibration phenomenon. As this occurs, as described in the second embodiment, the arrangement of positive charges and negative charges in the molecule is repeatedly inverted at a constant period. As a result, the boiling point of the moisture contained in the fried food drops due to the drop in the phase transition temperature described above, and the puncture phenomenon of the fried food due to the sudden boiling of the water during frying is suppressed. Moreover, due to the difference in the dielectric constant between the oil-fried food and the fried food, the periphery of the fried food is intensively heated, so that the heating power to the inside of the fried food can be evenly performed.
[0066] また、フライ加工の過程で生成される加水分解物や加熱変性物などの各種の生成 物は、揚油に対し電気的に分解され、第 1実施例のように、生成物に作用する重力と 下方の無限遠点領域に向力 電気力線とによって、フライ加工領域から、加熱パイプ の存在する非加工領域に移動する。従って、フライ加工領域中における電場処理領 域 E内の揚油の汚濁を抑制することができる。  [0066] In addition, various products such as hydrolyzate and heat-denatured product generated in the process of frying are electrolyzed to the oil and act on the product as in the first embodiment. It moves from the frying region to the non-working region where the heating pipe exists, by gravity and the directional force in the lower infinity point region. Accordingly, it is possible to suppress the oil pollution in the electric field processing area E in the frying process area.
[0067] 更に、第 2実施例で説明した水分改質作用により、フライ食品中の水分がミクロ化さ れて、当該フライ食品の保水性が向上し、水分がフライ食品に封じ込められることで、 旨味成分の流失が抑制され、加工後のフライ食品の風味を確保することができる。  [0067] Furthermore, the moisture-modifying action described in the second embodiment allows the moisture in the fried food to be micronized, the water retention of the fried food is improved, and the moisture is contained in the fried food. The loss of the umami component is suppressed, and the flavor of the fried food after processing can be ensured.
[0068] なお、電極を更に前壁 78の内面側に取り付けて、フライ食品の加温促進を図ること ちでさる。  [0068] It should be noted that the electrode is further attached to the inner surface side of the front wall 78 to promote the heating of the fried food.
[0069] また、前記第 2—第 4実施例では、三枚の電極を矩形状に配置したが、本発明はこ れに限定されるものではなぐ被処理体を電極で囲む態様にする限りにおいて、更に 複数枚の電極を用いたり、二枚の電極を L字状や V字状に配置してもよ 、。  [0069] In the second to fourth embodiments, the three electrodes are arranged in a rectangular shape. However, the present invention is not limited to this, as long as the object to be processed is surrounded by the electrodes. In addition, it is possible to use a plurality of electrodes or arrange two electrodes in an L shape or a V shape.
[0070] 更に、第 2—第 4実施例では、電極を何れも平板状としたが、本発明はこれに限ら ず、前述した作用を奏する限りにおいて、種々の形状を適用可能である。  [0070] Further, in the second to fourth embodiments, the electrodes are all flat, but the present invention is not limited to this, and various shapes can be applied as long as the above-described effects are exhibited.
[0071] 更に、電極には、少なくとも一部に凹凸面部分を形成するとよい。これによれば、電 極から振り出される電気力線の数を増大させることができ、前述した各種効果を一層 高めることができる。 [0072] 前記各実施例は、各電極側と無限遠点領域のアースとの間で発生する電気力線 の作用によって物質の改質を行って 、るが、前述した当該作用を奏する限りにお 、 て、前記アースの代わりに、装置内に、アース電極を配置し、又は、直流電圧や正負 何れか一方に整流された電圧が印加される電極若しくは領域を配置してもよい。 [0071] Further, it is preferable that the electrode has an uneven surface portion at least partially. According to this, the number of lines of electric force drawn out from the electrode can be increased, and the various effects described above can be further enhanced. In each of the above embodiments, the substance is modified by the action of electric lines of force generated between each electrode side and the ground at the infinity point region. However, as long as the above-described action is exhibited, Instead of the ground, a ground electrode may be disposed in the apparatus, or an electrode or a region to which a DC voltage or a rectified voltage is applied may be disposed.
[0073] その他、本発明における装置各部の構成は図示構成例に限定されるものではなく 、実質的に同様の作用を奏する限りにおいて、種々の変更が可能である。  In addition, the configuration of each part of the apparatus according to the present invention is not limited to the illustrated configuration example, and various modifications are possible as long as substantially the same operation is achieved.
産業上の利用可能性  Industrial applicability
[0074] 本発明は、水処理、食品保存、食品加工の他、異物の除去、殺菌等を行う各種装 置に利用することができ、例えば、収納庫、保蔵庫、冷蔵庫、冷凍庫、解凍庫、温蔵 庫、加熱装置、水処理装置、殺菌装置等への利用が可能となる。 [0074] The present invention can be used for various devices that perform foreign matter removal, sterilization, and the like in addition to water treatment, food storage, food processing, for example, storage, storage, refrigerator, freezer, and thaw. It can be used for hot storage, heating equipment, water treatment equipment, sterilization equipment, etc.
図面の簡単な説明  Brief Description of Drawings
[0075] [図 1]第 1実施例に係る水処理装置の概略断面正面図。 FIG. 1 is a schematic sectional front view of a water treatment apparatus according to a first embodiment.
[図 2]図 1の A— A線における水処理装置の概略断面図。  FIG. 2 is a schematic cross-sectional view of the water treatment device taken along line AA in FIG.
[図 3]電圧供給装置の回路構成図。  FIG. 3 is a circuit configuration diagram of a voltage supply device.
[図 4]第 2実施例に係る過冷却保蔵庫の概略断面正面図。  FIG. 4 is a schematic cross-sectional front view of a supercooled storage according to a second embodiment.
[図 5]図 4の A— A線における過冷却保蔵庫の概略断面図。  FIG. 5 is a schematic cross-sectional view of the supercooled storage along line AA in FIG.
[図 6]図 4の B— B線における過冷却保蔵庫の概略断面図。  FIG. 6 is a schematic cross-sectional view of the supercooled storage along line BB in FIG.
[図 7]第 3実施例に係る蒸し器の概略断面正面図。  FIG. 7 is a schematic sectional front view of a steamer according to a third embodiment.
[図 8]図 7の A— A線における過冷却保蔵庫の概略断面図。  FIG. 8 is a schematic cross-sectional view of the supercooled storage along line AA in FIG.
[図 9]第 4実施例に係るフライヤ一の概略断面正面図。  FIG. 9 is a schematic sectional front view of a fryer according to a fourth embodiment.
[図 10]図 9の A— A線における過冷却保蔵庫の概略断面図。  FIG. 10 is a schematic cross-sectional view of the supercooled storage along line AA in FIG.
[図 11]従来例に係る解凍庫の概略断面正面図。  FIG. 11 is a schematic sectional front view of a thawing cabinet according to a conventional example.
[図 12]従来例に係る冷蔵庫の概略断面正面図。  FIG. 12 is a schematic sectional front view of a refrigerator according to a conventional example.
[図 13]従来例に係るフライヤ一の概略断面正面図。  FIG. 13 is a schematic sectional front view of a fryer according to a conventional example.
符号の説明  Explanation of symbols
[0076] 10 水処理装置 (電場処理装置) [0076] 10 Water treatment equipment (electric field treatment equipment)
17 外側電極  17 outer electrode
19 内側電極 30 過冷却保蔵庫 (電場処理装置)19 Inner electrode 30 Supercooled storage (electric field processing equipment)
42 左側電極 42 Left electrode
43 右側電極  43 Right electrode
44 後側電極  44 Rear electrode
50 蒸し器 (電場処理装置) 50 Steamer (electric field treatment equipment)
55 前側電極 55 Front electrode
62 左側電極  62 Left electrode
63 右側電極  63 Right electrode
64 後側電極  64 Rear electrode
70 フライヤ一 (電場処理装置) 70 Flyer I (electric field processing equipment)
82 左側電極 82 Left electrode
83 右側電極  83 Right electrode
84 後側電極  84 Rear electrode
E 電場処理領域  E Electric field treatment area
E1 第 1電場処理領域  E1 First electric field processing area
E2 第 2電場処理領域  E2 Second electric field treatment area

Claims

請求の範囲 The scope of the claims
[1] 相互に同極となる交流電圧がそれぞれ印加される複数の電極を備え、これら電極 間に位置する電場処理領域内の被処理体に対して電場処理を行う電場処理装置に おいて、  [1] In an electric field processing apparatus including a plurality of electrodes to which alternating voltages having the same polarity are applied to each other, and performing electric field processing on an object to be processed in an electric field processing region located between the electrodes,
前記電極は、内側電極と、この内側電極の周囲に配置された外側電極とを少なくと も有し、  The electrode has at least an inner electrode and an outer electrode disposed around the inner electrode;
前記被処理体は、誘電体として機能する流体及び Z又は誘電体として機能する物 体であり、  The object to be processed is a fluid that functions as a dielectric and a substance that functions as Z or a dielectric,
前記各電極に同極性の交流電圧を印加することにより、前記電場処理領域に、プ ラス電場とマイナス電場とを交互に発生させることを特徴とする電場処理装置。  An electric field processing apparatus, wherein a positive electric field and a negative electric field are alternately generated in the electric field processing region by applying an alternating voltage of the same polarity to the electrodes.
[2] 相互に同極となる交流電圧がそれぞれ印加される複数の電極を備え、これら電極 間に位置する電場処理領域内の被処理体に対して電場処理を行う電場処理装置に おいて、  [2] In an electric field processing apparatus that includes a plurality of electrodes to which alternating voltages having the same polarity are applied to each other, and performs electric field processing on a target object in an electric field processing region located between the electrodes.
前記電極は、相互に対畤しな 、位置関係となる一組の電極を少なくとも含み、 前記被処理体は、誘電体として機能する流体及び Z又は誘電体として機能する物 体であり、  The electrodes include at least a pair of electrodes that are not opposed to each other and have a positional relationship, and the object to be processed is a fluid that functions as a dielectric and a substance that functions as Z or a dielectric,
前記各電極に同極性の交流電圧を印加することにより、前記電場処理領域に、プ ラス電場とマイナス電場とを交互に発生させることを特徴とする電場処理装置。  An electric field processing apparatus, wherein a positive electric field and a negative electric field are alternately generated in the electric field processing region by applying an alternating voltage of the same polarity to the electrodes.
[3] 前記電極は、前記被処理体に対し、その周囲の少なくとも三箇所に配置されている ことを特徴とする請求項 2記載の電場処理装置。  [3] The electric field processing device according to [2], wherein the electrodes are arranged at least at three locations around the object to be processed.
[4] 前記電場処理領域には、誘電体として機能する流体と、当該流体に対し誘電率の 異なる物質が存在することを特徴とする請求項 1、 2又は 3記載の電場処理装置。 4. The electric field processing device according to claim 1, wherein the electric field processing region includes a fluid functioning as a dielectric and a substance having a dielectric constant different from that of the fluid.
[5] 前記電極の周囲に絶縁層を設けたことを特徴とする請求項 1一 4の何れかに記載 の電場処理装置。 [5] The electric field processing device according to any one of [1] to [14], wherein an insulating layer is provided around the electrode.
[6] 前記電極と前記被処理体との間に、当該被処理体よりも誘電率の低い流体層を設 けたことを特徴とする請求項 1一 5の何れかに記載の電場処理装置。  6. The electric field processing apparatus according to claim 15, wherein a fluid layer having a dielectric constant lower than that of the object to be processed is provided between the electrode and the object to be processed.
[7] 前記電極は、少なくとも一部に凹凸面部分が形成されていることを特徴とする請求 項 1一 6の何れかに記載の電場処理装置。 7. The electric field processing apparatus according to any one of claims 1 to 6, wherein the electrode has an uneven surface portion formed at least in part.
[8] 内側電極と、その周囲に配置された外側電極とを少なくとも有する複数の電極間に 、誘電体として機能する流体及び Z又は誘電体として機能する物体からなる被処理 体を配置した上で、前記各電極に同極性の交流電圧を印加することにより、前記電 極間の電場処理領域にプラス電場とマイナス電場とを交互に発生させ、前記被処理 体に対して電場処理を行うことを特徴とする電場処理方法。 [8] An object to be processed consisting of a fluid functioning as a dielectric and Z or an object functioning as a dielectric is disposed between a plurality of electrodes having at least an inner electrode and an outer electrode disposed around the inner electrode. Applying an alternating voltage of the same polarity to each electrode to alternately generate a positive electric field and a negative electric field in the electric field processing region between the electrodes, and performing electric field processing on the object to be processed. An electric field processing method.
[9] 相互に対畤しない位置関係となる一組の電極を少なくとも含む複数の電極間に、 誘電体として機能する流体及び Z又は誘電体として機能する物体からなる被処理体 を配置した上で、前記各電極に同極性の交流電圧を印加することにより、前記電極 間の電場処理領域にプラス電場とマイナス電場とを交互に発生させ、前記被処理体 に対して電場処理を行うことを特徴とする電場処理方法。  [9] After disposing a target object composed of a fluid functioning as a dielectric and Z or an object functioning as a dielectric between a plurality of electrodes including at least a pair of electrodes having a positional relationship that does not face each other. And applying an alternating voltage of the same polarity to each of the electrodes to generate a positive electric field and a negative electric field alternately in the electric field processing region between the electrodes, and performing an electric field treatment on the object to be processed. Electric field processing method.
PCT/JP2004/017200 2004-11-18 2004-11-18 Electric field treatment apparatus and treatment method WO2006054348A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/017200 WO2006054348A1 (en) 2004-11-18 2004-11-18 Electric field treatment apparatus and treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/017200 WO2006054348A1 (en) 2004-11-18 2004-11-18 Electric field treatment apparatus and treatment method

Publications (1)

Publication Number Publication Date
WO2006054348A1 true WO2006054348A1 (en) 2006-05-26

Family

ID=36406896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017200 WO2006054348A1 (en) 2004-11-18 2004-11-18 Electric field treatment apparatus and treatment method

Country Status (1)

Country Link
WO (1) WO2006054348A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007190041A (en) * 2006-01-17 2007-08-02 Univ Waseda Electric field processing device
JP2011516173A (en) * 2008-04-04 2011-05-26 スリーエム イノベイティブ プロパティズ カンパニー Apparatus, system and method for extending the useful life of food processing media by inhibiting degradation of the food processing media
JP2012139152A (en) * 2010-12-28 2012-07-26 Naoyuki Yamaguchi Refrigerating/freezing apparatus
JP2012527216A (en) * 2008-03-14 2012-11-08 田中 久雄 Electric field treatment substance storage
CN103223261A (en) * 2013-04-22 2013-07-31 华南理工大学 Apparatus and method for pulsed electric field-assisted countercurrent extraction of grape skin residue polyphenol
WO2014208658A1 (en) * 2013-06-27 2014-12-31 エバートロン ホールディングス ピーティーイー リミテッド Fryer radio wave generation device, and cooking method for food material using fryer radio wave generation device
WO2015122070A1 (en) * 2014-02-17 2015-08-20 錦隆 後藤 Space potential generation device, freshness maintaining device using such space potential generation device, and fryer provided with such space potential generation device
JP2016112205A (en) * 2014-12-15 2016-06-23 エバートロン ホールディングス ピーティーイー リミテッド Radio wave generation device
JP2017047161A (en) * 2015-09-04 2017-03-09 ボミル産業株式会社 Electromagnetic induction heating fryer using high voltage
CN107436069A (en) * 2017-04-18 2017-12-05 迪弗斯科技股份有限公司 Electrostatic refrigeration storage system and electrostatic freezing, defreezing method
US10757960B2 (en) 2017-12-31 2020-09-01 Evertron Holdings Pte Ltd Moisture control apparatus and moisture control method
WO2020195849A1 (en) * 2019-03-27 2020-10-01 株式会社MARS Company Storage cabinet and electrostatic field-forming device
WO2022049860A1 (en) * 2020-09-07 2022-03-10 精一 林 Liquid activation device for various types of liquids

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0561361A (en) * 1991-08-30 1993-03-12 Fuji Xerox Co Ltd Multi transfer device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0561361A (en) * 1991-08-30 1993-03-12 Fuji Xerox Co Ltd Multi transfer device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007190041A (en) * 2006-01-17 2007-08-02 Univ Waseda Electric field processing device
JP2012527216A (en) * 2008-03-14 2012-11-08 田中 久雄 Electric field treatment substance storage
JP2011516173A (en) * 2008-04-04 2011-05-26 スリーエム イノベイティブ プロパティズ カンパニー Apparatus, system and method for extending the useful life of food processing media by inhibiting degradation of the food processing media
JP2012139152A (en) * 2010-12-28 2012-07-26 Naoyuki Yamaguchi Refrigerating/freezing apparatus
CN103223261A (en) * 2013-04-22 2013-07-31 华南理工大学 Apparatus and method for pulsed electric field-assisted countercurrent extraction of grape skin residue polyphenol
CN103223261B (en) * 2013-04-22 2014-12-31 华南理工大学 Apparatus and method for pulsed electric field-assisted countercurrent extraction of grape skin residue polyphenol
WO2014208658A1 (en) * 2013-06-27 2014-12-31 エバートロン ホールディングス ピーティーイー リミテッド Fryer radio wave generation device, and cooking method for food material using fryer radio wave generation device
JP2015027443A (en) * 2013-06-27 2015-02-12 エバートロン ホールディングス ピーティーイー リミテッド Fryer radio wave generation device, and cooking method for food material using fryer radio wave generation device
US10729161B2 (en) 2014-02-17 2020-08-04 Kanetaka GOTO Fryer
US9681677B2 (en) 2014-02-17 2017-06-20 Kanetaka GOTO Storage device using potential generator
KR20170086129A (en) 2014-02-17 2017-07-25 카네타카 고토 Spatial electric potential generator, Freshness keeping device using Spatial electric potential generator and Fryer with Spatial electric potential generator
US10582717B2 (en) 2014-02-17 2020-03-10 Kanetaka GOTO Storage device
WO2015122070A1 (en) * 2014-02-17 2015-08-20 錦隆 後藤 Space potential generation device, freshness maintaining device using such space potential generation device, and fryer provided with such space potential generation device
JP2016112205A (en) * 2014-12-15 2016-06-23 エバートロン ホールディングス ピーティーイー リミテッド Radio wave generation device
JP2017047161A (en) * 2015-09-04 2017-03-09 ボミル産業株式会社 Electromagnetic induction heating fryer using high voltage
CN107436069A (en) * 2017-04-18 2017-12-05 迪弗斯科技股份有限公司 Electrostatic refrigeration storage system and electrostatic freezing, defreezing method
US10757960B2 (en) 2017-12-31 2020-09-01 Evertron Holdings Pte Ltd Moisture control apparatus and moisture control method
WO2020195849A1 (en) * 2019-03-27 2020-10-01 株式会社MARS Company Storage cabinet and electrostatic field-forming device
JP2020159631A (en) * 2019-03-27 2020-10-01 株式会社MARS Company Storage and electric field generation device
JP7244831B2 (en) 2019-03-27 2023-03-23 株式会社MARS Company Storage and electric field generator
WO2022049860A1 (en) * 2020-09-07 2022-03-10 精一 林 Liquid activation device for various types of liquids

Similar Documents

Publication Publication Date Title
WO2006054348A1 (en) Electric field treatment apparatus and treatment method
WO2014030762A1 (en) Electric field processing heat-processing device
EP0553377A1 (en) Energy-efficient electromagnetic elimination of noxious biological organisms
US8071042B2 (en) Method and apparatus for application of electrostatic charges to compounds held within containers
GB2465442A (en) Radio frequency heating
CA2333229A1 (en) Treatment apparatus and method for preserving pumpable food products in a pulsed electric field
CN101272719B (en) Electric field warming and processing device and method
JP2015116148A (en) Thawing device and quality maintenance device
CN113758104A (en) Novel pulse magnetic field assisted freezing fresh-keeping refrigerator
US7255839B2 (en) Device and method for treating a substance containing undesirable organisms using a pulsed electrical field
US20050279112A1 (en) Electronically-frequency-controlled voltage adjustment device and method for retaining freshness of foods by using the same
CN103653200A (en) Cold plasma pesticide degrading instrument
EP3017701B1 (en) Compact equipment for the electrolytic sterilisation of food products and utensils
CN2938682Y (en) Heating processing device for field process
CN105627664A (en) Freshness retaining refrigerator capable of automatically powering off to remove static electricity after door is opened
JP2017527501A (en) System and method for sterilizing the contents in a closed container by electrolysis, and post-packaging sterilization container for enclosing the contents
WO2020218495A1 (en) Electric field treatment device
JP4367984B2 (en) Electrostatic field processing equipment
JP2008267750A (en) Treatment apparatus
JPH11346735A (en) Apparatus for treatment in electrostatic field
EP4159042A1 (en) Compact device for food sanitization
KR200393711Y1 (en) Electronically-frequency-controlled voltage adjustment device
CN103405146A (en) Electric steamer and control method thereof
TWM262017U (en) Electro-modulating and high voltage frequency-changing induction device
US20150173411A1 (en) Apparatus and Method for Disinfection of Packaged Articles

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 04822627

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP