WO2006051723A1 - Method for producing 1-halo-3-aryl-2-propanone - Google Patents

Method for producing 1-halo-3-aryl-2-propanone Download PDF

Info

Publication number
WO2006051723A1
WO2006051723A1 PCT/JP2005/020070 JP2005020070W WO2006051723A1 WO 2006051723 A1 WO2006051723 A1 WO 2006051723A1 JP 2005020070 W JP2005020070 W JP 2005020070W WO 2006051723 A1 WO2006051723 A1 WO 2006051723A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
general formula
acid
enolate
formula
Prior art date
Application number
PCT/JP2005/020070
Other languages
French (fr)
Japanese (ja)
Inventor
Akira Nishiyama
Nobuo Nagashima
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Publication of WO2006051723A1 publication Critical patent/WO2006051723A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/20Unsaturated compounds containing keto groups bound to acyclic carbon atoms
    • C07C49/227Unsaturated compounds containing keto groups bound to acyclic carbon atoms containing halogen
    • C07C49/233Unsaturated compounds containing keto groups bound to acyclic carbon atoms containing halogen containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • C07C45/68Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms

Definitions

  • the present invention relates to a process for producing 1halo3arylo-2propanones useful as pharmaceutical intermediates.
  • Non-patent Document 3 Method for producing phenyl 2 propanone
  • the method (1) uses explosive and difficult-to-use diazomethane, and the production methods (2) and (4) require an ultra-low temperature reaction facility.
  • the method of 3 it is a problem that a highly toxic chromium compound is used.
  • the method of (5) the number of steps is long and inefficient.
  • Patent Document 2 JP 05-286902 A
  • Non-Patent Document 1 Organic Synthesis, 1946, 26, 13-15.
  • Non-Patent Document 2 Eur. J. Med. Chem., 1979, 14 (2), 165-170.
  • Non-Patent Document 3 Tetrahedron Lett., 1984, 25 (8), 835-838.
  • the present invention provides a process for producing 1-halo-3-aryl-propanones that can be easily and efficiently carried out on a commercial scale at low cost and easily available raw materials. For the purpose.
  • the present invention relates to the general formula (1):
  • Ar represents an aryl group having 6 to 20 carbon atoms which may have a substituent, or a heteroaryl group having 3 to 15 carbon atoms which may have a substituent.
  • 1 halo 3 aryl 2 propanones can be easily and efficiently produced on a commercial scale from inexpensive and readily available phenylacetic acid derivatives and haloacetic acid derivatives.
  • the enolate which is the raw material of the present invention has the general formula (1):
  • Ar is an aryl group having 6 to 20 carbon atoms which may have a substituent, or The C3-C15 heteroaryl group which may have a substituent is represented.
  • the aryl group include a phenyl group, a naphthyl group, and a biphenyl group
  • the heteroaryl group include a pyridyl group, a furanyl group, a cheenyl group, a pyrrolyl group, an oxazolyl group, and an isoxazolyl group.
  • Pyrazolyl group benzofuranyl group, benzothiazolyl group, or indolyl group.
  • Examples of the substituent for Ar include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; nitro group; nitroso group; cyano group; amino group; hydroxyamino group; methylamino group; —Alkylamino groups having 1 to 12 carbon atoms such as butylamino groups; Dialkylamino groups having 1 to 12 carbon atoms such as dimethylamino groups and di nbutylamino groups; Aralkylamino groups having 7 to 12 carbon atoms such as benzylamino groups; Dibenzylamino groups and the like A dialkylamino group having 7 to 12 carbon atoms; an alkylsulfolumino group having 1 to 12 carbon atoms such as a methanesulfo-lamino group; a sulfonic acid group; a sulfonamide group; an azido group; a trifluoro
  • Ar is preferably a phenyl group substituted by a halogen atom !, a aryl group having 6 to 20 carbon atoms, or a four-hole phenyl group.
  • Aryl acetic acid used to prepare the enolate is represented by the general formula (4):
  • allyl acetic acid derivative used to prepare the enolate is represented by the general formula ( (ArCH CO) M 1 (5)
  • M 1 represents a metal, a trialkylsilyl group, or ammonium
  • n represents an integer of 1 to 3.
  • M 1 include, for example, alkali metals such as lithium, sodium, potassium, or cesium; alkaline earth metals such as magnesium or calcium; metals such as aluminum, zinc, or copper; trimethylsilyl groups, and triethylsilyl groups.
  • alkali metals such as lithium, sodium, potassium, or cesium
  • alkaline earth metals such as magnesium or calcium
  • metals such as aluminum, zinc, or copper
  • trimethylsilyl groups such as aluminum, zinc, or copper
  • trimethylsilyl groups and triethylsilyl groups.
  • a trialkylsilyl group such as tert-butyldimethylsilyl group
  • an ammonia such as tetramethylammonium, tetran-butylammonium, or benzyltrimethylammonium.
  • M 1 is 1 in the case of the above alkali metal; copper; trialkylsilyl group; ammonium; M 1 is 2 in the case of the above alkaline earth metal; copper or zinc.
  • M 1 is aluminum, it becomes 3.
  • M 1 is an alkali metal such as lithium, sodium, potassium, or cesium, n is a force of 1, or M 1 is an alkaline earth metal such as magnesium or calcium, and n is 2. is there. More preferably, M 1 is lithium, sodium or potassium, and n is 1.
  • the compound (4) and an alkali metal hydroxide an alkali metal hydrogen carbonate, an alkali metal carbonate, an alkaline earth metal hydroxide, an alkali It can be easily prepared by reacting an earth metal carbonate, copper hydroxide, zinc hydroxide, or hydroxyaluminum hydroxide.
  • M 2 represents a metal
  • X 2 represents a halogen atom.
  • M 2 is, for example, an alkaline earth metal such as magnesium or calcium, or zinc, and is preferably magnesium.
  • X 2 is specifically a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom, and preferably a chlorine atom.
  • the compound (4) is reacted with an alkaline earth metal halide by the method described in WO2003Z054034. Can be easily prepared.
  • X 1 represents a halogen atom, and specific examples include a fluorine atom, a chlorine atom, an odor atom, and an iodine atom. Preferably it is a chlorine atom.
  • L represents a leaving group and is not particularly limited. Specifically, for example, a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom; a methanesulfonyloxy group, a p-toluenesulfo group.
  • a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom
  • methanesulfonyloxy group such as a p-toluenesulfo group.
  • Sulfoxy groups such as -loxy group, trifluoromethanesulfo-roxy group; methoxycarbonyloxy group, ethoxycarbonyloxy group, isopropoxy group, carbon atoms such as l-loxy group, tert-butoxycarboloxy group Alkoxycarbonyloxy group of -5; benzyloxycarboxoxy group; phenoxycarboxoxy group; 1 imidazolyl group; methoxy group, ethoxy group, n propoxy group, isopropoxy group, n-butoxy group, sec butoxy group, tert alkoxy group having 1 to 5 carbon atoms such as butoxy group; buroxy group; phenoxy group; chloroacetoxy group; Roiruokishi group; Mechiruchi O radical, n Puchiruchio group alkylthio group of 1 to 5 carbon atoms; carbon number 6 to such phenylene Lucio group: Ariruchio group LO like.
  • alkoxy groups having 1 to 5 carbon atoms such as methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n butoxy group, sec butoxy group, and tert butoxy group; vinyloxy group; phenoxy group, and more preferable.
  • an alkoxy group having 1 to 5 carbon atoms such as a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, a sec butoxy group, and a tert butoxy group.
  • the enolate represented by the general formula (1) is prepared by a known method, for example, by reacting an ⁇ -roaryl acetic acid derivative with a zero-valent metal such as lithium, sodium, magnesium, or zinc.
  • a zero-valent metal such as lithium, sodium, magnesium, or zinc.
  • the base to be used is not particularly limited.
  • an organic lithium reagent such as methyl lithium, n-butyl lithium, sec butyl lithium, tert butyl lithium, or phenol lithium
  • sodium amide, potassium amide, Alkali metal amides such as lithium diisopropylamide, lithium hexamethyldisilazide, sodium diisopropylamide, sodium hexamethyldisilazide, or potassium hexamethyldisilazide
  • Grignard reagents such as magnesium, tert-butylmagnesium bromide, phenolmagnesium bromide, or tert-butylmagnesium iodide
  • Halomagnesium amides alkali metal hydrides such as lithium hydride, sodium hydride, potassium hydride; alkali metal alkoxides such as sodium methoxide, sodium methoxide, lithium tert-butoxide, sodium tert-butoxide, potassium tert-butoxide Etc.
  • alkali metal alkoxides such as sodium methoxide, sodium methoxide, lithium tert-butoxide, sodium tert-butoxide, potassium tert-butoxide Etc.
  • Preferred is lithium diisopropylamide, n-butyllithium, magnesium diisopropylamide, tertbutylmagnesium chloride, or sodium hydride, and more preferred is tert-butylmagnesium chloride. These may be used alone or in combination of two or more.
  • the amount of the base used is preferably 1 to 10 times the molar amount of the allylic acetic acid or allylic acetic acid derivative represented by the general formula (4), (5), or (6), More preferably, the molar amount is 1 to 3 times.
  • the order of addition in this reaction is preferably such that the base can be held in the solution of allylic acetic acid or allylic acetic acid derivative represented by the general formula (4), (5), or (6), or
  • the enolate solution represented by the general formula (1) can be prepared by adding the allylic acetic acid or the allylic acetic acid derivative represented by the general formula (4), (5), or (6) to the above solution.
  • Solvents used at this time are, for example, tetrahydrofuran, jetyl ether, 1, 4- Ether solvents such as dioxane and ethylene glycol dimethyl ether; aromatic hydrocarbon solvents such as benzene and toluene; aliphatic hydrocarbon solvents such as pentane, hexane, heptane and methylcyclohexane; methylene chloride, 1, 2- Halogen solvents such as dichloroethane and black benzene; Amide solvents such as N, N-dimethylacetamide; Urea solvents such as dimethylpropylene urea; Phosphonic acid triamide solvents such as hexamethinorephosphonic acid triamide Can be used.
  • Ether solvents such as dioxane and ethylene glycol dimethyl ether
  • aromatic hydrocarbon solvents such as benzene and toluene
  • aliphatic hydrocarbon solvents such as pentane, hexane
  • tetrahydrofuran, toluene, hexane and the like are used. These may be used alone or in combination of two or more. When two or more kinds are used in combination, the mixing ratio is not particularly limited.
  • the amount of the reaction solvent to be used is preferably 50 times or less, more preferably 5 to 20 times the weight of the enolate (4), (5) or (6).
  • the reaction temperature for preparing the enolate is also from the viewpoint of yield improvement-70 ° C ⁇ : LOO ° C, more preferably no ultra-low temperature reaction equipment-20 ° C-50 ° C range.
  • the reaction time for preparing the enolate is preferably from 5 minutes to 2 minutes from the viewpoint of yield improvement.
  • an enolate represented by the above general formula (1) and a haloacetic acid derivative represented by the above general formula (2) obtained as described above or by other known methods are used. React. In that case, the reaction may be carried out by adding the haloacetic acid derivative to the enolate solution or by adding the enolate solution to the haloacetic acid derivative solution.
  • the amount of the haloacetic acid derivative used in this reaction is preferably relative to the enolate.
  • reaction solvent for this reaction may be the same as or different from the solvent used at the time of forming the enolate, but the reaction solvent at the time of forming the enolate is generally used as it is. .
  • reaction solvent for this reaction examples include ether solvents such as tetrahydrofuran, jetyl ether, 1,4-dioxane, and ethylene glycol dimethyl ether; aromatic hydrocarbon solvents such as benzene and toluene; Aliphatic hydrocarbon solvents such as xane, heptane, methylcyclohexane; methylene chloride, 1,2-dichloroethane, black benzene Halogen solvents such as N; N amide solvents such as dimethylacetamide; urea solvents such as dimethylpropylene urea; phosphonic acid triamide solvents such as hexamethinorephosphonic acid triamide.
  • ether solvents such as tetrahydrofuran, jetyl ether, 1,4-dioxane, and ethylene glycol dimethyl ether
  • aromatic hydrocarbon solvents such as benzene and toluene
  • Aliphatic hydrocarbon solvents such as xane,
  • tetrahydrofuran, toluene, hexane and the like can be mentioned. These may be used alone or in combination of two or more. When using 2 or more types together, the mixing ratio is not particularly limited.
  • the use amount of the reaction solvent is preferably 50 times or less, more preferably 5 to 20 times the weight of the enolate represented by the general formula (1).
  • This reaction is characterized in that it can be carried out at a reaction temperature of 20 ° C or higher, and does not require an ultra-low temperature reaction facility. From the viewpoint of improving yield, it is more preferable to carry out at 20 ° C to 50 ° C.
  • the reaction time of this reaction is preferably 5 minutes to 24 hours, and more preferably 30 minutes to 5 hours, from the viewpoint of improving the yield.
  • examples of the acid used include mineral acids such as hydrogen chloride, hydrogen bromide, sulfuric acid, nitric acid, and phosphoric acid; carboxylic acids such as formic acid, acetic acid, propionic acid, oxalic acid, and citrate; methanesulfonate Examples thereof include sulfonic acids such as acid and p-toluenesulfonic acid, preferably hydrogen chloride, sulfuric acid, and acetic acid. More preferably, it is salty hydrogen, and hydrochloric acid which is an aqueous solution thereof is more preferable in terms of handling.
  • the amount of the acid used is in contrast to the enolate represented by the general formula (1).
  • the molar amount is preferably 1 to 100 times, and more preferably 1 to 10 times the molar amount.
  • This reaction is preferably carried out in the presence of force water that can be carried out in various solutions.
  • the amount of water used is preferably 1 to: LOO times the weight, more preferably 5 to 30 times the weight of the acid.
  • the reaction mixture may be added to the acid or the acid aqueous solution, or the acid or the acid aqueous solution may be added to the reaction mixture.
  • a method of adding an acid after first mixing the reaction mixture and water may be used.
  • this reaction is preferably carried out at -20 ° C or higher, more preferably carried out at -20 ° C to 50 ° C.
  • the reaction time of this reaction is preferably 5 minutes to 24 hours, and more preferably 30 minutes to 5 hours, from the viewpoint of yield improvement.
  • a general treatment for obtaining a reaction fluid product may be performed.
  • an extraction operation is performed by adding a general extraction solvent, for example, ethyl acetate, dimethyl ether, methylene chloride, toluene, hexane, or the like, to the reaction solution after completion of the reaction.
  • the extract is washed with water or an alkaline aqueous solution such as an aqueous sodium hydroxide solution or an aqueous sodium hydrogen carbonate solution, or an aqueous acid solution such as an aqueous hydrochloric acid solution or an aqueous sulfuric acid solution, and then heated under reduced pressure.
  • the target product is obtained by distilling off the reaction solvent and the extraction solvent.
  • the target product thus obtained has a sufficient purity that can be used in the subsequent step, but for the purpose of further increasing the yield of the subsequent step or the purity of the compound obtained in the subsequent step, crystallization,
  • the purity may be further increased by a general purification method such as fractional distillation or column chromatography.
  • n-Butyllithium Z-hexane solution (1.54 mol / l) 14. 29 mL (22 mmol) was cooled to 5 ° C, and diisopropylamine 2.429 g (24 mmol) in tetrahydrofuran (10 mL) was added in 10 minutes. A solution of lithium diisopropylamide was prepared by dropwise addition. Five After stirring at ° C for 20 minutes, a tetrahydrofuran solution (20 mL) of 1.705 g (10 mmol) of 4-chloroacetic acid acetate was added dropwise thereto in 10 minutes. Further, after stirring at 5 ° C.

Abstract

1-halo-3-aryl-2-propanone can be produced with ease and with good efficiency without the use of a reagent being difficult to handle or the equipment for a super low temperature reaction, by using a method comprising reacting an enolate prepared from an arylacetic acid or an arylacetic acid derivative, which is inexpensive and easily available, and a base, with a haloacetic acid derivative, which is inexpensive and easily available, followed by the treatment with an acid. 1-halo-3-aryl-2-propanone is useful as a pharmaceutical intermediate or the like.

Description

1 _ハロー 3 _ァリール _ 2 _プロパノン類の製造法  1 _Hello 3 _Areal _ 2 _Propanone production method
技術分野  Technical field
[0001] 本発明は、医薬中間体として有用な 1 ハロー 3 ァリールー2 プロパノン類の製 造法に関する。  [0001] The present invention relates to a process for producing 1halo3arylo-2propanones useful as pharmaceutical intermediates.
背景技術  Background art
[0002] 1 ハロー 3 ァリール 2 プロパノン類の製造法としては、以下の方法が知られ ている。  The following methods are known as methods for producing 1 hello 3 aryl 2 propanones.
[0003] (1)フエ-ルァセチルクロリドとジァゾメタンを反応させ、生成する aージァゾケトン を塩酸で処理することにより、 1—クロ口 3 フエニル 2 プロパノンを製造する方 法 (非特許文献 1)。  [0003] (1) A method for producing 1-claw-mouth 3 phenyl 2-propanone by reacting phenylacetyl chloride with diazomethane and treating the resulting a-diazoketone with hydrochloric acid (Non-patent Document 1).
[0004] (2)クロロアセチルクロリドと塩化べンジルマグネシウムを 60°C以下で反応させる ことにより、 1 クロロー 3 フエニル 2 プロパノンを製造する方法 (特許文献 1)。  [0004] (2) A method for producing 1 chloro-3 phenyl 2 propanone by reacting chloroacetyl chloride and benzylmagnesium chloride at 60 ° C. or lower (Patent Document 1).
[0005] (3)ェピクロロヒドリンと塩化フエ-ルマグネシウムを反応させ、生成する 1 クロロー 3 フエニル— 2 プロパノールをニクロム酸ナトリウムで酸ィ匕する方法 (非特許文献 2)。  [0005] (3) A method in which 1-chloro-3-phenyl-2-propanol produced by reacting epicchlorohydrin and phenylmagnesium chloride is acidified with sodium dichromate (Non-patent Document 2).
[0006] (4)フエ-ル酢酸ェチルとクロロメチルリチウムを 115°Cで反応させて、 1 クロ口  [0006] (4) Reacting ethyl acetate with chloromethyllithium at 115 ° C,
3 フエニル 2 プロパノンを製造する方法 (非特許文献 3)。  3 Method for producing phenyl 2 propanone (Non-patent Document 3).
[0007] (5)フエ-ルァセチルクロリドとメルドラム酸を反応させ、 tert—ブタノールで処理す ることにより、フエ-ルァセト酢酸 tert ブチルを製造し、更に塩化スルフリルで塩素 ィ匕した後に、酸加水分解することにより、 1 クロロー 3 フエ-ルー 2 プロパノンを 製造する方法 (特許文献 2)。  [0007] (5) By reacting ferrocetyl chloride with meldrum acid and treating with tert-butanol, tert-butyl ferroacetoacetate is produced and further chlorinated with sulfuryl chloride. A process for producing 1 chloro-3 ferrue 2 propanone by decomposing (Patent Document 2).
[0008] しかしながら、(1)の方法では爆発性で取り扱!/、困難なジァゾメタンを使用しており 、(2)、(4)の製法の実施には超低温反応設備が必要であり、(3)の方法では猛毒の クロム化合物を使用していることが問題であり、(5)の方法は工程数が長く非効率で あるなど、従来の技術では、いずれの方法も商業的規模での実施に課題を有してい 特許文献 2:特開平 05— 286902 [0008] However, the method (1) uses explosive and difficult-to-use diazomethane, and the production methods (2) and (4) require an ultra-low temperature reaction facility. In the method of 3), it is a problem that a highly toxic chromium compound is used. In the method of (5), the number of steps is long and inefficient. Have issues in implementation Patent Document 2: JP 05-286902 A
非特許文献 1 : Organic Synthesis, 1946, 26, 13-15.  Non-Patent Document 1: Organic Synthesis, 1946, 26, 13-15.
非特許文献 2 : Eur. J. Med. Chem., 1979, 14(2), 165-170.  Non-Patent Document 2: Eur. J. Med. Chem., 1979, 14 (2), 165-170.
非特許文献 3 : Tetrahedron Lett., 1984, 25(8), 835-838.  Non-Patent Document 3: Tetrahedron Lett., 1984, 25 (8), 835-838.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 本発明は上記現状に鑑みて、安価且つ入手容易な原料力 簡便且つ効率的に商 業規模で実施できる、 1—ハロ— 3—ァリール— 2—プロパノン類の製造法を提供す ることを目的とする。 [0009] In view of the above situation, the present invention provides a process for producing 1-halo-3-aryl-propanones that can be easily and efficiently carried out on a commercial scale at low cost and easily available raw materials. For the purpose.
課題を解決するための手段  Means for solving the problem
[0010] 本発明者らは鋭意検討の結果、ァリール酢酸またはァリール酢酸誘導体から調製 されるエノラートとハロ酢酸誘導体を反応させ、続いて酸で処理することにより、 1ーハ 口— 3—ァリール— 2—プロパノン類が簡便に製造できることを見出し、本発明を完成 するに至った。 As a result of intensive studies, the present inventors have reacted enolate prepared from allylacetic acid or allylacetic acid derivative with haloacetic acid derivative, followed by treatment with acid, thereby producing 1 The inventors have found that 2-propanones can be easily produced, and have completed the present invention.
[0011] 即ち、本発明は、一般式(1): That is, the present invention relates to the general formula (1):
[0012] [化 4] [0012] [Chemical 4]
Figure imgf000003_0001
Figure imgf000003_0001
(式中、 Arは置換基を有してもよい炭素数 6〜20のァリール基、又は置換基を有して もよい炭素数 3〜15のへテロアリール基を表す。)で表されるエノラートと、一般式(2) (In the formula, Ar represents an aryl group having 6 to 20 carbon atoms which may have a substituent, or a heteroaryl group having 3 to 15 carbon atoms which may have a substituent.) And the general formula (2)
[0014] [化 5] [0014] [Chemical 5]
Figure imgf000004_0001
Figure imgf000004_0001
[0015] (式中、 X1はハロゲン原子を表し、 Lは脱離基を表す。)で表されるハロ酢酸誘導体を 反応させ、続いて酸で処理することを特徴とする、一般式 (3): [0015] (wherein X 1 represents a halogen atom and L represents a leaving group) is reacted with a haloacetic acid derivative, followed by treatment with an acid, 3):
[0016] [化 6] [0016] [Chemical 6]
Figure imgf000004_0002
Figure imgf000004_0002
[0017] (式中、 Ar、 X1は前記に同じ。)で表される 1 ハロー 3 ァリールー2 プロパノン類 の製造法である。 [0017] (In the formula, Ar and X 1 are the same as described above).
発明の効果  The invention's effect
[0018] 本発明によれば、安価且つ入手容易なフエニル酢酸誘導体とハロ酢酸誘導体から 簡便且つ効率的に商業規模で、 1 ハロー 3 ァリール 2 プロパノン類を製造す ることが可能である。  [0018] According to the present invention, 1 halo 3 aryl 2 propanones can be easily and efficiently produced on a commercial scale from inexpensive and readily available phenylacetic acid derivatives and haloacetic acid derivatives.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0019] まず、本発明で使用する原料並びに生成物について説明する。 [0019] First, the raw materials and products used in the present invention will be described.
本発明の原料であるエノラートは一般式(1):  The enolate which is the raw material of the present invention has the general formula (1):
[0020] [化 7] [0020] [Chemical 7]
Figure imgf000004_0003
Figure imgf000004_0003
[0021] で表される。ここで、 Arは置換基を有してもよい炭素数 6〜20のァリール基、又は置 換基を有してもよい炭素数 3〜 15のへテロアリール基を表す。ァリール基としては例 えば、フエニル基、ナフチル基、又はビフヱ-ル基等が挙げられ、ヘテロァリール基と しては例えば、ピリジル基、フラニル基、チェニル基、ピロ一リル基、ォキサゾリル基、 イソォキサゾリル基、ピラゾリル基、ベンゾフラニル基、ベンゾチアゾリル基、又はイン ドリル基等が挙げられる。 [0021] Here, Ar is an aryl group having 6 to 20 carbon atoms which may have a substituent, or The C3-C15 heteroaryl group which may have a substituent is represented. Examples of the aryl group include a phenyl group, a naphthyl group, and a biphenyl group, and examples of the heteroaryl group include a pyridyl group, a furanyl group, a cheenyl group, a pyrrolyl group, an oxazolyl group, and an isoxazolyl group. , Pyrazolyl group, benzofuranyl group, benzothiazolyl group, or indolyl group.
[0022] 前記 Arの置換基としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等 のハロゲン原子;ニトロ基;ニトロソ基;シァノ基;アミノ基;ヒドロキシァミノ基;メチルアミ ノ基、 n—ブチルァミノ基等の炭素数 1〜12のアルキルアミノ基;ジメチルァミノ基、ジ n ブチルァミノ基等の炭素数 1〜 12のジアルキルアミノ基;ベンジルァミノ基等の炭 素数 7〜 12のァラルキルアミノ基;ジベンジルァミノ基等の炭素数 7〜 12のジァラル キルアミノ基;メタンスルホ -ルァミノ基等の炭素数 1〜12のアルキルスルホ -ルァミノ 基;スルホン酸基;スルホンアミド基;アジド基;トリフルォロメチル基;カルボキシル基; ァセチル基等の炭素数 1〜 12のァシル基;ベンゾィル基等の炭素数 7〜 12のァロイ ル基;水酸基;メトキシ基、 n ブトキシ基等の炭素数 1〜 12のアルキルォキシ基;ベ ンジルォキシ基等の炭素数 7〜 12のァラルキルォキシ基;フエノキシ基等の炭素数 6 〜 12のァリールォキシ基;ァセチルォキシ基等の炭素数 1〜 12のァシルォキシ基; ベンゾィルォキシ等の炭素数 7〜 12のァロイルォキシ基;トリメチルシリルォキシ基等 の炭素数 3〜 12のシリルォキシ基;メタンスルホ -ルォキシ基等の炭素数 1〜 12のァ ルキルスルホ -ルォキシ基;メチルチオ基等の炭素数 1〜12のアルキルチオ基等が 挙げられる。その中でも好ましくはハロゲン原子であり、より好ましくは塩素原子である 。また、置換基の数は 0〜3個が好ましい例として挙げられる。  [0022] Examples of the substituent for Ar include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; nitro group; nitroso group; cyano group; amino group; hydroxyamino group; methylamino group; —Alkylamino groups having 1 to 12 carbon atoms such as butylamino groups; Dialkylamino groups having 1 to 12 carbon atoms such as dimethylamino groups and di nbutylamino groups; Aralkylamino groups having 7 to 12 carbon atoms such as benzylamino groups; Dibenzylamino groups and the like A dialkylamino group having 7 to 12 carbon atoms; an alkylsulfolumino group having 1 to 12 carbon atoms such as a methanesulfo-lamino group; a sulfonic acid group; a sulfonamide group; an azido group; a trifluoromethyl group; a carboxyl group; A C1-12 acyl group such as a group; a 7-12 carbon atom group such as a benzoyl group; a hydroxyl group; a methoxy group, a n-butoxy group, etc. An alkyloxy group having 1 to 12 carbon atoms; a aralkyloxy group having 7 to 12 carbon atoms such as a benzyloxy group; an aralkyloxy group having 6 to 12 carbon atoms such as a phenoxy group; an asiloxy group having 1 to 12 carbon atoms such as an acetyloxy group; C 7-12 allylooxy group such as benzoyloxy; C 3-12 silyloxy group such as trimethylsilyloxy group; C 1-12 alkylsulfo-loxy group such as methanesulfo-loxy group; Carbon such as methylthio group Examples thereof include alkylthio groups of 1 to 12. Among them, preferred is a halogen atom, and more preferred is a chlorine atom. A preferred example of the number of substituents is 0 to 3.
[0023] Arとしては、ハロゲン原子で置換されて!、てもよ!/、炭素数 6〜20のァリール基が好 ましぐフエ-ル基、又は 4 クロ口フエ-ル基が更に好ましい。  [0023] Ar is preferably a phenyl group substituted by a halogen atom !, a aryl group having 6 to 20 carbon atoms, or a four-hole phenyl group.
[0024] 上記エノラートを調製するために用いられる、ァリール酢酸は一般式 (4):  [0024] Aryl acetic acid used to prepare the enolate is represented by the general formula (4):
ArCH CO H (4)  ArCH CO H (4)
2 2  twenty two
で表される。ここで、 Arは一般式(1)における説明と同じである。  It is represented by Here, Ar is the same as described in the general formula (1).
[0025] また、上記エノラートを調製するために用いられる、ァリール酢酸誘導体は一般式( (ArCH CO ) M1 (5) [0025] Further, the allyl acetic acid derivative used to prepare the enolate is represented by the general formula ( (ArCH CO) M 1 (5)
2 2 n  2 2 n
で表される。ここで、 Arは一般式(1)における説明と同じである。 M1は金属、トリアル キルシリル基、又はアンモ-ゥムを表し、 nは 1〜3の整数を表す。 M1として具体的に は例えば、リチウム、ナトリウム、カリウム、又はセシウム等のアルカリ金属;マグネシゥ ム、又はカルシウム等のアルカリ土類金属;アルミニウム、亜鉛、又は銅などの金属;ト リメチルシリル基、トリェチルシリル基、又は tert—ブチルジメチルシリル基等のトリア ルキルシリル基;テトラメチルアンモ-ゥム、テトラ n—ブチルアンモ-ゥム、又はベン ジルトリメチルアンモ -ゥム等のアンモ-ゥム等が挙げられる。 It is represented by Here, Ar is the same as described in the general formula (1). M 1 represents a metal, a trialkylsilyl group, or ammonium, and n represents an integer of 1 to 3. Specific examples of M 1 include, for example, alkali metals such as lithium, sodium, potassium, or cesium; alkaline earth metals such as magnesium or calcium; metals such as aluminum, zinc, or copper; trimethylsilyl groups, and triethylsilyl groups. Or a trialkylsilyl group such as tert-butyldimethylsilyl group; an ammonia such as tetramethylammonium, tetran-butylammonium, or benzyltrimethylammonium.
[0026] また、 nとしては例えば、 M1が上記アルカリ金属;銅;トリアルキルシリル基;アンモ- ゥムの場合は 1となり、 M1が上記アルカリ土類金属;銅、亜鉛の場合は 2となり、 M1がアルミニウムの場合は 3となる。好ましくは、 M1がリチウム、ナトリウム、カリウム、 又はセシウム等のアルカリ金属であり、 nが 1である力、若しくは、 M1がマグネシウム、 又はカルシウム等のアルカリ土類金属であり、 nが 2である。更に好ましくは、 M1がリチ ゥム、ナトリウム、又はカリウムであり、 nが 1である。 [0026] Further, as n, for example, M 1 is 1 in the case of the above alkali metal; copper; trialkylsilyl group; ammonium; M 1 is 2 in the case of the above alkaline earth metal; copper or zinc. When M 1 is aluminum, it becomes 3. Preferably, M 1 is an alkali metal such as lithium, sodium, potassium, or cesium, n is a force of 1, or M 1 is an alkaline earth metal such as magnesium or calcium, and n is 2. is there. More preferably, M 1 is lithium, sodium or potassium, and n is 1.
[0027] なお、前記化合物(5)の入手については例えば、前記化合物 (4)とアルカリ金属水 酸化物、アルカリ金属炭酸水素塩、アルカリ金属炭酸塩、アルカリ土類金属水酸ィ匕 物、アルカリ土類金属炭酸塩、水酸化銅、水酸化亜鉛、又は水酸ィヒアルミニウム等を 反応させることにより、簡便に調製可能である。  [0027] Regarding the acquisition of the compound (5), for example, the compound (4) and an alkali metal hydroxide, an alkali metal hydrogen carbonate, an alkali metal carbonate, an alkaline earth metal hydroxide, an alkali It can be easily prepared by reacting an earth metal carbonate, copper hydroxide, zinc hydroxide, or hydroxyaluminum hydroxide.
[0028] また、上記エノラートを調製するために用いられる、もうひとつのァリール酢酸誘導 体は一般式 (6) :  [0028] Another allyl acetic acid derivative used for preparing the enolate is represented by the general formula (6):
ArCH CO M2X2 (6) ArCH CO M 2 X 2 (6)
2 2  twenty two
で表される。ここで、 Arは一般式(1)における説明と同じである。 M2は金属を表し、 X 2はハロゲン原子を表す。 M2として具体的には、例えば、マグネシウム、カルシウム等 のアルカリ土類金属、若しくは亜鉛であり、好ましくはマグネシウムである。また、 X2と して具体的には、例えば、フッ素原子、塩素原子、臭素原子、又はヨウ素原子であり 、好ましくは塩素原子である。 It is represented by Here, Ar is the same as described in the general formula (1). M 2 represents a metal, and X 2 represents a halogen atom. Specifically, M 2 is, for example, an alkaline earth metal such as magnesium or calcium, or zinc, and is preferably magnesium. X 2 is specifically a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom, and preferably a chlorine atom.
[0029] なお、前記化合物(6)の入手については例えば、 WO2003Z054034に記載され た方法等により、前記化合物 (4)とアルカリ土類金属ハロゲンィ匕物を反応させること により簡便に調製可能である。 [0029] For obtaining the compound (6), for example, the compound (4) is reacted with an alkaline earth metal halide by the method described in WO2003Z054034. Can be easily prepared.
[0030] 次に、もう一方の出発原料であるハロ酢酸誘導体は、一般式(2):  [0030] Next, the haloacetic acid derivative as the other starting material is represented by the general formula (2):
[0031] [化 8] [0031] [Chemical 8]
Figure imgf000007_0001
Figure imgf000007_0001
[0032] で表される。ここで、 X1はハロゲン原子を表し、具体的にはフッ素原子、塩素原子、臭 素原子、ヨウ素原子が挙げられる。好ましくは塩素原子である。 [0032] Here, X 1 represents a halogen atom, and specific examples include a fluorine atom, a chlorine atom, an odor atom, and an iodine atom. Preferably it is a chlorine atom.
[0033] また Lは脱離基を表し、特に限定されないが、具体的には、例えば、フッ素原子、塩 素原子、臭素原子、ヨウ素原子等のハロゲン原子;メタンスルホニルォキシ基、 p ト ルエンスルホ-ルォキシ基、トリフルォロメタンスルホ -ルォキシ基等のスルホ -ルォ キシ基;メトキシカルボニルォキシ基、エトキシカルボニルォキシ基、イソプロポキシ力 ルポ-ルォキシ基、 tert ブトキシカルボ-ルォキシ基等の炭素数 1〜5のアルコキ シカルボニルォキシ基;ベンジロキシカルボ-ルォキシ基;フエノキシカルボ-ルォキ シ基; 1 イミダゾリル基;メトキシ基、エトキシ基、 n プロポキシ基、イソプロポキシ基 、 n—ブトキシ基、 sec ブトキシ基、 tert ブトキシ基等の炭素数 1〜5のアルコキシ 基;ビュルォキシ基;フエノキシ基;クロロアセトキシ基;ビバロイルォキシ基;メチルチ ォ基、 n プチルチオ基等の炭素数 1〜5のアルキルチオ基;フエ二ルチオ基等の炭 素数 6〜: LOのァリールチオ基等が挙げられる。好ましくはメトキシ基、エトキシ基、 n— プロポキシ基、イソプロポキシ基、 n ブトキシ基、 sec ブトキシ基、 tert ブトキシ 基等の炭素数 1〜5のアルコキシ基;ビニルォキシ基;フエノキシ基であり、更に好まし くはメトキシ基、エトキシ基、 n—プロポキシ基、イソプロポキシ基、 n—ブトキシ基、 sec ブトキシ基、 tert ブトキシ基等の炭素数 1〜5のアルコキシ基である。  [0033] L represents a leaving group and is not particularly limited. Specifically, for example, a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom; a methanesulfonyloxy group, a p-toluenesulfo group. Sulfoxy groups such as -loxy group, trifluoromethanesulfo-roxy group; methoxycarbonyloxy group, ethoxycarbonyloxy group, isopropoxy group, carbon atoms such as l-loxy group, tert-butoxycarboloxy group Alkoxycarbonyloxy group of -5; benzyloxycarboxoxy group; phenoxycarboxoxy group; 1 imidazolyl group; methoxy group, ethoxy group, n propoxy group, isopropoxy group, n-butoxy group, sec butoxy group, tert alkoxy group having 1 to 5 carbon atoms such as butoxy group; buroxy group; phenoxy group; chloroacetoxy group; Roiruokishi group; Mechiruchi O radical, n Puchiruchio group alkylthio group of 1 to 5 carbon atoms; carbon number 6 to such phenylene Lucio group: Ariruchio group LO like. Preferred are alkoxy groups having 1 to 5 carbon atoms such as methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n butoxy group, sec butoxy group, and tert butoxy group; vinyloxy group; phenoxy group, and more preferable. Or an alkoxy group having 1 to 5 carbon atoms such as a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, a sec butoxy group, and a tert butoxy group.
[0034] 次に、本発明の生成物である 1 ハロー 3 ァリール 2 プロパノン類は、一般式  [0034] Next, the product of the present invention, 1 halo 3 aryl 2 propanone, has the general formula
(3) :  (3):
[0035] [化 9] [0035] [Chemical 9]
Figure imgf000008_0001
Figure imgf000008_0001
[0036] で表される。ここで、 Arは一般式(1)における説明と同じ、 X1は一般式(2)における 説明と同じである。 [0036] Here, Ar is the same as the description in the general formula (1), and X 1 is the same as the description in the general formula (2).
[0037] 次に、本発明の製造法について説明する。 [0037] Next, the production method of the present invention will be described.
本発明においては、一般式(1):  In the present invention, the general formula (1):
[0038] [化 10] [0038] [Chemical 10]
Figure imgf000008_0002
Figure imgf000008_0002
[0039] で表されるヱノラートと一般式 (2) [0039] ヱ nolate represented by the general formula (2)
[0040] [化 11] [0040] [Chemical 11]
Figure imgf000008_0003
Figure imgf000008_0003
[0041] で表されるハロ酢酸誘導体を反応させ、続いて酸で処理することにより、前期式(3) で表される化合物を製造することができる。 [0041] By reacting the haloacetic acid derivative represented by the following formula, followed by treatment with an acid, the compound represented by the above formula (3) can be produced.
[0042] ここで、一般式(1)で表されるエノラートは、公知の方法、例えば、 α ロアリール 酢酸誘導体とリチウム、ナトリウム、マグネシウム、又は亜鉛等の 0価の金属を反応さ せることにより調製する事も出来るが、本発明において好ましくは一般式 (4):  Here, the enolate represented by the general formula (1) is prepared by a known method, for example, by reacting an α-roaryl acetic acid derivative with a zero-valent metal such as lithium, sodium, magnesium, or zinc. In the present invention, the general formula (4):
ArCH CO H (4)  ArCH CO H (4)
2 2  twenty two
で表されるァリール酢酸、一般式(5): (ArCH CO ) M1 (5) Aryl acetic acid represented by the general formula (5): (ArCH CO) M 1 (5)
2 2 n  2 2 n
で表されるァリール酢酸誘導体、又は一般式 (6):  Aryl acetic acid derivatives represented by the general formula (6):
ArCH CO M2X2 (6) ArCH CO M 2 X 2 (6)
2 2  twenty two
で表されるァリール酢酸誘導体と塩基から調製することができる。  It can be prepared from an aryl acetate derivative represented by
[0043] ここで、用いられる塩基としては特に限定されないが、例えば、メチルリチウム、 n- ブチルリチウム、 sec ブチルリチウム、 tert ブチルリチウム、又はフエ-ルリチウム 等の有機リチウム試薬;ナトリウムアミド、カリウムアミド、リチウムジイソプロピルアミド、 リチウムへキサメチルジシラジド、ナトリウムジイソプロピルアミド、ナトリウムへキサメチ ルジシラジド、又はカリウムへキサメチルジシラジド等のアルカリ金属アミド;塩化 n— ブチルマグネシウム、塩化 tert ブチルマグネシウム、臭化 n ブチルマグネシウム 、臭化 tert ブチルマグネシウム、臭化フエ-ルマグネシウム、又はヨウ化 tert—ブ チルマグネシウム等のグリニャール試薬;塩ィ匕マグネシウムジイソプロピルアミド、臭 化マグネシウムジイソプロピルアミド等のハロマグネシウムアミド;水素化リチウム、水 素化ナトリウム、水素化カリウム等のアルカリ金属水素化物;ナトリウムメトキシド、ナトリ ゥムェトキシド、リチウム tert—ブトキシド、ナトリウム tert—ブトキシド、カリウム tert— ブトキシド等のアルカリ金属アルコキシド等が挙げられる。好ましくは、リチウムジイソ プロピルアミド、 n—ブチルリチウム、塩化マグネシウムジイソプロピルアミド、塩化 tert ブチルマグネシウム、又は水素化ナトリウムであり、更に好ましくは塩化 tert—ブチ ルマグネシウムである。これらは単独で用いてもよいし、 2種以上を組み合わせて用 いても良い。  [0043] Here, the base to be used is not particularly limited. For example, an organic lithium reagent such as methyl lithium, n-butyl lithium, sec butyl lithium, tert butyl lithium, or phenol lithium; sodium amide, potassium amide, Alkali metal amides such as lithium diisopropylamide, lithium hexamethyldisilazide, sodium diisopropylamide, sodium hexamethyldisilazide, or potassium hexamethyldisilazide; n-butylmagnesium chloride, tert-butylmagnesium chloride, n-butyl bromide Grignard reagents such as magnesium, tert-butylmagnesium bromide, phenolmagnesium bromide, or tert-butylmagnesium iodide; magnesium chloride diisopropylamide, magnesium diisopropylamide bromide, etc. Halomagnesium amides; alkali metal hydrides such as lithium hydride, sodium hydride, potassium hydride; alkali metal alkoxides such as sodium methoxide, sodium methoxide, lithium tert-butoxide, sodium tert-butoxide, potassium tert-butoxide Etc. Preferred is lithium diisopropylamide, n-butyllithium, magnesium diisopropylamide, tertbutylmagnesium chloride, or sodium hydride, and more preferred is tert-butylmagnesium chloride. These may be used alone or in combination of two or more.
[0044] 前記塩基の使用量としては、一般式 (4)、 (5)、又は(6)で表されるァリール酢酸又 はァリール酢酸誘導体に対し、好ましくは 1〜10倍モル量であり、更に好ましくは 1〜 3倍モル量である。  [0044] The amount of the base used is preferably 1 to 10 times the molar amount of the allylic acetic acid or allylic acetic acid derivative represented by the general formula (4), (5), or (6), More preferably, the molar amount is 1 to 3 times.
[0045] 本反応の際の添加順序について好ましくは、一般式 (4)、 (5)、又は(6)で表される ァリール酢酸又はァリール酢酸誘導体の溶液に塩基をカ卩える力、又は塩基の溶液に 一般式 (4)、 (5)、又は(6)で表されるァリール酢酸又はァリール酢酸誘導体を加え ることにより、一般式(1)で表されるエノラートの溶液が調製できる。  [0045] The order of addition in this reaction is preferably such that the base can be held in the solution of allylic acetic acid or allylic acetic acid derivative represented by the general formula (4), (5), or (6), or The enolate solution represented by the general formula (1) can be prepared by adding the allylic acetic acid or the allylic acetic acid derivative represented by the general formula (4), (5), or (6) to the above solution.
[0046] このとき用いられる溶媒は、例えば、テトラヒドロフラン、ジェチルエーテル、 1, 4— ジォキサン、エチレングリコールジメチルエーテル等のエーテル系溶媒;ベンゼン、ト ルェン等の芳香族炭化水素系溶媒;ペンタン、へキサン、ヘプタン、メチルシクロへ キサン等の脂肪族炭化水素系溶媒;塩化メチレン、 1, 2—ジクロロエタン、クロ口ベン ゼン等のハロゲン系溶媒; N, N—ジメチルァセトアミド等のアミド系溶媒;ジメチルプ ロピレンウレァ等のウレァ系溶媒;へキサメチノレホスホン酸トリアミド等のホスホン酸トリ アミド系溶媒を用いることができる。好ましくは、テトラヒドロフラン、トルエン、へキサン 等が挙げられる。これらは単独で用いても良ぐ 2種以上を併用してもよい。 2種以上 を併用する場合、その混合比は特に制限されない。前記反応溶媒の使用量としては 、エノラート (4)、 (5)又は(6)に対し、好ましくは 50倍重量以下、更に好ましくは 5〜 20倍重量である。 [0046] Solvents used at this time are, for example, tetrahydrofuran, jetyl ether, 1, 4- Ether solvents such as dioxane and ethylene glycol dimethyl ether; aromatic hydrocarbon solvents such as benzene and toluene; aliphatic hydrocarbon solvents such as pentane, hexane, heptane and methylcyclohexane; methylene chloride, 1, 2- Halogen solvents such as dichloroethane and black benzene; Amide solvents such as N, N-dimethylacetamide; Urea solvents such as dimethylpropylene urea; Phosphonic acid triamide solvents such as hexamethinorephosphonic acid triamide Can be used. Preferably, tetrahydrofuran, toluene, hexane and the like are used. These may be used alone or in combination of two or more. When two or more kinds are used in combination, the mixing ratio is not particularly limited. The amount of the reaction solvent to be used is preferably 50 times or less, more preferably 5 to 20 times the weight of the enolate (4), (5) or (6).
[0047] エノラートを調製する際の反応温度として好ましくは、収率向上の観点力も— 70°C 〜: LOO°Cであり、更に好ましくは超低温反応設備を必要としない— 20°C〜50°Cの範 囲である。  [0047] Preferably, the reaction temperature for preparing the enolate is also from the viewpoint of yield improvement-70 ° C ~: LOO ° C, more preferably no ultra-low temperature reaction equipment-20 ° C-50 ° C range.
[0048] エノラートを調製する際の反応時間として好ましくは、収率向上の観点力 5分〜 2 [0048] The reaction time for preparing the enolate is preferably from 5 minutes to 2 minutes from the viewpoint of yield improvement.
4時間であり、更に好ましくは、 30分〜 5時間である。 4 hours, more preferably 30 minutes to 5 hours.
[0049] 次に、上記のようにして、或いは他の公知の方法で得られた、上記一般式(1)で表 されるエノラートと、上記一般式(2)で表されるハロ酢酸誘導体を反応させる。その場 合、ハロ酢酸誘導体をエノラートの溶液に加えるか、ハロ酢酸誘導体の溶液に、エノ ラートの溶液を加えることにより、反応を行うとよい。 [0049] Next, an enolate represented by the above general formula (1) and a haloacetic acid derivative represented by the above general formula (2) obtained as described above or by other known methods are used. React. In that case, the reaction may be carried out by adding the haloacetic acid derivative to the enolate solution or by adding the enolate solution to the haloacetic acid derivative solution.
[0050] この反応におけるハロ酢酸誘導体の使用量としては、エノラートに対し、好ましくは[0050] The amount of the haloacetic acid derivative used in this reaction is preferably relative to the enolate.
0. 5〜10倍モル量であり、更に好ましくは 1〜3倍モル量である。 0.5 to 10 times the molar amount, more preferably 1 to 3 times the molar amount.
[0051] 本反応の反応溶媒としては、上記エノラート形成時に使用した溶媒と同じであって もよいし、異なっていてもよいが、上記エノラート形成時の反応溶媒をそのまま用いる のが一般的である。 [0051] The reaction solvent for this reaction may be the same as or different from the solvent used at the time of forming the enolate, but the reaction solvent at the time of forming the enolate is generally used as it is. .
[0052] 本反応の反応溶媒として例えば、テトラヒドロフラン、ジェチルエーテル、 1, 4ージ ォキサン、エチレングリコールジメチルエーテル等のエーテル系溶媒;ベンゼン、トル ェン等の芳香族炭化水素系溶媒;ペンタン、へキサン、ヘプタン、メチルシクロへキサ ン等の脂肪族炭化水素系溶媒;塩化メチレン、 1, 2—ジクロロエタン、クロ口ベンゼン 等のハロゲン系溶媒; N, N ジメチルァセトアミド等のアミド系溶媒;ジメチルプロピ レンウレァ等のウレァ系溶媒;へキサメチノレホスホン酸トリアミド等のホスホン酸トリアミ ド系溶媒を用いることができる。 [0052] Examples of the reaction solvent for this reaction include ether solvents such as tetrahydrofuran, jetyl ether, 1,4-dioxane, and ethylene glycol dimethyl ether; aromatic hydrocarbon solvents such as benzene and toluene; Aliphatic hydrocarbon solvents such as xane, heptane, methylcyclohexane; methylene chloride, 1,2-dichloroethane, black benzene Halogen solvents such as N; N amide solvents such as dimethylacetamide; urea solvents such as dimethylpropylene urea; phosphonic acid triamide solvents such as hexamethinorephosphonic acid triamide.
[0053] 好ましくは、テトラヒドロフラン、トルエン、へキサン等が挙げられる。これらは単独で 用いても良ぐ 2種以上を併用してもよい。 2種以上を併用する場合、その混合比は 特に制限されない。前記反応溶媒の使用量としては、一般式(1)で表されるエノラー トに対し、好ましくは 50倍重量以下、更に好ましくは 5〜20倍重量である。  [0053] Preferably, tetrahydrofuran, toluene, hexane and the like can be mentioned. These may be used alone or in combination of two or more. When using 2 or more types together, the mixing ratio is not particularly limited. The use amount of the reaction solvent is preferably 50 times or less, more preferably 5 to 20 times the weight of the enolate represented by the general formula (1).
[0054] 本反応は 20°C以上の反応温度で実施できる点に特徴があり、超低温反応設備 を必要としない。また収率向上の観点から、 20°C〜50°Cで実施するとより好ましい  [0054] This reaction is characterized in that it can be carried out at a reaction temperature of 20 ° C or higher, and does not require an ultra-low temperature reaction facility. From the viewpoint of improving yield, it is more preferable to carry out at 20 ° C to 50 ° C.
[0055] 本反応の反応時間として好ましくは、収率向上の観点から 5分〜 24時間であり、更 に好ましくは、 30分〜 5時間である。 [0055] The reaction time of this reaction is preferably 5 minutes to 24 hours, and more preferably 30 minutes to 5 hours, from the viewpoint of improving the yield.
[0056] 次に、上記反応混合物を酸で処理することにより、一般式(3)で表される 1 ハロー[0056] Next, by treating the reaction mixture with an acid, 1 halo represented by the general formula (3)
3 ァリール一 2 プロパノン類とすることができる。この際、下記式(7): It can be 3 reels or 2 propanones. At this time, the following formula (7):
[0057] [化 12] [0057] [Chemical 12]
Figure imgf000011_0001
Figure imgf000011_0001
[0058] (式中、 Ar、 X1は前記に同じ。)で表される中間体が形成され、これが更に脱炭酸す ることによって、 目的生成物である一般式(3)で表される 1 ハロー 3 ァリール 2 —プロパノン類が生成すると考えられる。 [0058] (wherein Ar and X 1 are the same as defined above) are formed, and this is further decarboxylated to represent the target product represented by the general formula (3) 1 Halo 3 Areal 2 — Propanones are thought to be produced.
[0059] ここで、用いられる酸としては例えば、塩化水素、臭化水素、硫酸、硝酸、リン酸等 の鉱酸;蟻酸、酢酸、プロピオン酸、シユウ酸、クェン酸等のカルボン酸;メタンスルホ ン酸、 p トルエンスルホン酸等のスルホン酸が挙げられ、好ましくは、塩化水素、硫 酸、酢酸である。更に好ましくは塩ィ匕水素であり、その水溶液である塩酸が取り扱い の面でより好ましい。前記酸の使用量としては、一般式(1)で表されるエノラートに対 し、好ましくは 1〜100倍モル量であり、更に好ましくは、 1〜10倍モル量である。 Here, examples of the acid used include mineral acids such as hydrogen chloride, hydrogen bromide, sulfuric acid, nitric acid, and phosphoric acid; carboxylic acids such as formic acid, acetic acid, propionic acid, oxalic acid, and citrate; methanesulfonate Examples thereof include sulfonic acids such as acid and p-toluenesulfonic acid, preferably hydrogen chloride, sulfuric acid, and acetic acid. More preferably, it is salty hydrogen, and hydrochloric acid which is an aqueous solution thereof is more preferable in terms of handling. The amount of the acid used is in contrast to the enolate represented by the general formula (1). The molar amount is preferably 1 to 100 times, and more preferably 1 to 10 times the molar amount.
[0060] 本反応は種々の溶液中で行うことができる力 水存在下で行うことが好ましい。水の 使用量は酸に対し、好ましくは 1〜: LOO倍重量であり、更に好ましくは 5〜30倍重量 である。 [0060] This reaction is preferably carried out in the presence of force water that can be carried out in various solutions. The amount of water used is preferably 1 to: LOO times the weight, more preferably 5 to 30 times the weight of the acid.
[0061] 本反応の添加順序について、酸あるいは酸の水溶液に反応混合液を添加するか、 又は反応混合液に酸あるいは酸の水溶液を添加してもよい。また、反応混合液と水 を先に混合した後に、酸を加える方法であってもよい。  [0061] Regarding the addition order of this reaction, the reaction mixture may be added to the acid or the acid aqueous solution, or the acid or the acid aqueous solution may be added to the reaction mixture. Alternatively, a method of adding an acid after first mixing the reaction mixture and water may be used.
[0062] 本反応は、反応時間短縮及び収率向上の観点から— 20°C以上が好ましぐ - 20 °C〜50°Cで実施すると更に好ましい。  [0062] From the viewpoint of shortening the reaction time and improving the yield, this reaction is preferably carried out at -20 ° C or higher, more preferably carried out at -20 ° C to 50 ° C.
[0063] 本反応の反応時間として好ましくは、収率向上の観点から 5分〜 24時間であり、更 に好ましくは、 30分〜 5時間である。  [0063] The reaction time of this reaction is preferably 5 minutes to 24 hours, and more preferably 30 minutes to 5 hours, from the viewpoint of yield improvement.
[0064] 反応後の処理としては、反応液力 生成物を取得するための一般的な処理を行え ばよい。例えば、反応終了後の反応液に一般的な抽出溶媒、例えば酢酸ェチル、ジ ェチルエーテル、塩化メチレン、トルエン、へキサン等を加えて抽出操作を行う。更に 水、または必要に応じて水酸ィ匕ナトリウム水溶液、炭酸水素ナトリウム水溶液等のァ ルカリ水溶液、或いは塩酸水溶液、硫酸水溶液等の酸水溶液で抽出液を洗浄し、そ の後、減圧加熱等の操作により、反応溶媒及び抽出溶媒を留去すると目的物が得ら れる。このようにして得られた目的物は、後続工程に使用できる十分な純度を有して いるが、後続工程の収率、若しくは後続工程で得られる化合物の純度をさらに高める 目的で、晶析、分別蒸留、カラムクロマトグラフィー等の一般的な精製手法により、さ らに純度を高めてもよい。  [0064] As the treatment after the reaction, a general treatment for obtaining a reaction fluid product may be performed. For example, an extraction operation is performed by adding a general extraction solvent, for example, ethyl acetate, dimethyl ether, methylene chloride, toluene, hexane, or the like, to the reaction solution after completion of the reaction. Further, the extract is washed with water or an alkaline aqueous solution such as an aqueous sodium hydroxide solution or an aqueous sodium hydrogen carbonate solution, or an aqueous acid solution such as an aqueous hydrochloric acid solution or an aqueous sulfuric acid solution, and then heated under reduced pressure. The target product is obtained by distilling off the reaction solvent and the extraction solvent. The target product thus obtained has a sufficient purity that can be used in the subsequent step, but for the purpose of further increasing the yield of the subsequent step or the purity of the compound obtained in the subsequent step, crystallization, The purity may be further increased by a general purification method such as fractional distillation or column chromatography.
実施例  Example
[0065] 以下に実施例を挙げて、本発明を更に具体的に説明するが、本発明はこれら実施 例のみに限定されるものではない。  [0065] The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to these examples.
[0066] (実施例 1) 1 クロロー 3—(4 クロ口フエニル) 2 プロパノンの製诰  [0066] (Example 1) 1 Chloro 3— (4 black mouth phenyl) 2 Propanone production
n—ブチルリチウム Zへキサン溶液(1. 54mol/l) 14. 29mL (22mmol)を 5°Cに 冷却し、ここにジイソプロピルアミン 2. 429g (24mmol)のテトラヒドロフラン溶液(10 mL)を 10分で滴下することにより、リチウムジイソプロピルアミドの溶液を調製した。 5 °C、 20分攪拌後、ここに、 4 クロ口フエ-ル酢酸 1. 705g (10mmol)のテトラヒドロフ ラン溶液(20mL)を 10分で滴下した。更に 5°C、 20分攪拌後、クロ口酢酸ェチル 1. 225g (10mmol)を 5分で滴下し、更に 5°C、 1時間後反応を行った。続いて、 35重 量%塩酸 5mLをカ卩え、室温まで自然昇温させながら 16時間攪拌した。トルエン 20m L、水 10mLをカ卩えて抽出し、有機層を更に飽和炭酸水素ナトリウム溶液 20mL、水 2 OmLで順次洗浄後、減圧下に溶媒を留去することにより、橙色油状物 2. 39gを得た 。ここに、へキサン 10mLを加えると結晶が析出し、 5°C、 30分攪拌後、結晶を減圧 濾別し、真空乾燥することにより、 1 クロロー 3—(4 クロ口フエ-ル)ー2 プロパノ ンを白色結晶として得た (収率: 26%)。n-Butyllithium Z-hexane solution (1.54 mol / l) 14. 29 mL (22 mmol) was cooled to 5 ° C, and diisopropylamine 2.429 g (24 mmol) in tetrahydrofuran (10 mL) was added in 10 minutes. A solution of lithium diisopropylamide was prepared by dropwise addition. Five After stirring at ° C for 20 minutes, a tetrahydrofuran solution (20 mL) of 1.705 g (10 mmol) of 4-chloroacetic acid acetate was added dropwise thereto in 10 minutes. Further, after stirring at 5 ° C. for 20 minutes, 1.225 g (10 mmol) of chloroethyl acetate was added dropwise over 5 minutes, and further reacted at 5 ° C. for 1 hour. Subsequently, 5 mL of 35 wt% hydrochloric acid was added and stirred for 16 hours while allowing the temperature to rise naturally to room temperature. Extract 20 mL of toluene and 10 mL of water, and wash the organic layer successively with 20 mL of saturated sodium bicarbonate solution and 2 OmL of water, and then evaporate the solvent under reduced pressure to obtain 2.39 g of an orange oil. Obtained . When 10 mL of hexane is added, crystals are precipitated. After stirring at 5 ° C for 30 minutes, the crystals are filtered off under reduced pressure and dried under vacuum to give 1 Chloro-3- (4 black mouth phenol) -2 Propanone was obtained as white crystals (yield: 26%).
— NMR(CDC1、 400MHz/ppm): δ 3. 88 (2Η, s)、 4. 11 (2H, s)、 7. 15 (  — NMR (CDC1, 400MHz / ppm): δ 3. 88 (2Η, s), 4.11 (2H, s), 7. 15 (
3  Three
2H, d)、 7. 32 (2H, d)  2H, d), 7.32 (2H, d)
[0067] (実施例 2) 1—クロ口一 3— (4 クロ口フエニル) 2 プロパノンの製诰  [0067] (Example 2) 1—Black mouth 3— (4 Black mouth phenyl) 2 Propanone steelmaking
4 クロ口フエ-ル酢酸 1. 705g (10mmol)のテトラヒドロフラン溶液(20mL)を 5°C に冷却し、ここに、 n—ブチルリチウム Zへキサン溶液(1. 54mol/l) 14. 29mL (22 mmol)を 10分で滴下した。更に 5°C、 20分攪拌後、クロ口酢酸ェチル 1. 225g (10 mmol)を 5分で滴下し、更に 5°C、 1時間後反応を行った。ここに、 35重量%塩酸 5 mLをカ卩え、室温まで自然昇温させて 1時間攪拌した。トルエン 20mL、水 10mLを加 えて抽出し、有機層を更に飽和炭酸水素ナトリウム溶液 20mL、水 20mLで順次洗 浄し、減圧下に溶媒を留去することにより、赤色油状物 1. 6465gを得た。このものを 高速液体クロマトグラフィー(カラム:資生堂 CAPCELLPAK C18 4. 6 X 250m m、溶離液:ァセトニトリル/リン酸緩衝液 = 1/1、流速: 1. OmL/min.、カラム温 度: 40°C、検出器: UV210nm)にて定量分析した結果、 目的の 1 クロ口 3— (4 —クロ口フエ-ル)一 2 プロパノンの収率は 28%であった。  4 A solution of 705 g (10 mmol) in tetrahydrofuran (20 mL) was cooled to 5 ° C, and then n-butyllithium Z-hexane solution (1.54 mol / l) 14. 29 mL (22 mmol) was added dropwise in 10 minutes. Further, after stirring at 5 ° C for 20 minutes, 1.225 g (10 mmol) of black ethyl acetate was added dropwise over 5 minutes, and further reacted at 5 ° C for 1 hour. To this, 5 mL of 35 wt% hydrochloric acid was added, and the mixture was naturally warmed to room temperature and stirred for 1 hour. Extraction was performed by adding 20 mL of toluene and 10 mL of water, and the organic layer was further washed successively with 20 mL of saturated sodium bicarbonate solution and 20 mL of water, and the solvent was distilled off under reduced pressure to obtain 1.4655 g of a red oily substance. . This was analyzed by high performance liquid chromatography (column: Shiseido CAPCELLPAK C18 4.6 X 250 mm, eluent: acetonitrile / phosphate buffer = 1/1, flow rate: 1. OmL / min., Column temperature: 40 ° C As a result of quantitative analysis using a detector (UV210 nm), the yield of the target 1-clog 3-(4 -black-foul) 1 -2 propanone was 28%.
[0068] (実施例 3) 1 クロロー 3—(4 クロ口フエニル) 2 プロパノンの製造  [Example 3] 1 Chloro-3- (4-chlorophenyl) 2 Production of propanone
60重量0 /0水素化ナトリウム 400mg (10mmol)のテトラヒドロフラン懸濁溶液(10m L)を 5°Cに冷却し、ここに 4 クロ口フエ-ル酢酸 1. 705g (10mmol)を 10分で添カロ した。更に、 n—ブチルリチウム Zへキサン溶液(1. 54mol/l) 7. 14mL (l lmmol) を 5分で滴下し、 5°C、 20分攪拌後、クロ口酢酸ェチル 1. 225g (10mmol)を 5分で 滴下、更に 5°C、 1時間後反応を行った。ここに、 35重量%塩酸 5mLをカ卩え、室温ま で自然昇温させて 1時間攪拌した。トルエン 20mL、水 10mLをカ卩えて抽出し、有機 層を更に飽和炭酸水素ナトリウム溶液 20mL、水 20mLで順次洗浄し、減圧下に溶 媒を留去することにより、黄色油状物 1. 4462gを得た。このものを実施例 2に記載の 方法により定量分析を行った結果、 目的の 1—クロ口 3— (4—クロ口フエ-ル) - 2 プロパノンの収率は 20%であった。 60 weight 0/0 tetrahydrofuran suspension of sodium hydride 400 mg (10 mmol) of (10 m L) was cooled to 5 ° C, where the 4 black port Hue - added Caro Le acetate 1. 705 g of (10 mmol) in 10 min did. Further, n-butyllithium Z-hexane solution (1.54 mol / l) 7. 14 mL (l lmmol) was added dropwise over 5 minutes, and the mixture was stirred at 5 ° C for 20 minutes, followed by 1.225 g (10 mmol) In 5 minutes The reaction was carried out dropwise and further after 5 hours at 5 ° C. To this, 5 mL of 35% by weight hydrochloric acid was added, and the mixture was naturally warmed to room temperature and stirred for 1 hour. Extracted with 20 mL of toluene and 10 mL of water, and the organic layer was further washed successively with 20 mL of saturated sodium bicarbonate solution and 20 mL of water, and the solvent was distilled off under reduced pressure to obtain 1.4622 g of a yellow oil. It was. As a result of quantitative analysis of this product by the method described in Example 2, the yield of the target 1-black mouth 3- (4-black mouth fiber) -2 propanone was 20%.
[0069] (実施例 4) 1—クロ口一 3— (4 クロ口フエニル) 2 プロパノンの製造  [Example 4] 1—Black mouth 3— (4 Black mouth phenyl) 2 Production of propanone
4 クロ口フエ-ル酢酸 1. 705g (10mmol)のテトラヒドロフラン溶液(20mL)を 5°C に冷却し、ここに、塩化 tert—ブチルマグネシウム/トルエン/テトラヒドロフラン溶液 (1. 6mol/kg) 13. 8g (22mmol)を 5分で滴下した。更に 5°C、 30分攪拌後、クロ口 酢酸ェチル 1. 225g (10mmol)を 5分で滴下し、更に 5°C、 1時間後反応を行った。 ここに、 35重量%塩酸 5mLをカ卩え、室温まで自然昇温させて 1時間攪拌した。トルェ ン 20mL、水 10mLをカ卩えて抽出し、有機層を更に飽和炭酸水素ナトリウム溶液 20 mL、水 20mLで順次洗浄し、減圧下に溶媒を留去することにより、無色油状物 1. 8 429gを得た。このものを実施例 2に記載の方法により定量分析を行った結果、 目的 の 1—クロ口一 3— (4 クロ口フエ-ル) 2 プロパノンの収率は 57%であった。  4 A solution of 705g (10mmol) in tetrahydrofuran (20mL) was cooled to 5 ° C, and tert-butylmagnesium chloride / toluene / tetrahydrofuran solution (1.6mol / kg) 13.8g (22 mmol) was added dropwise over 5 minutes. After further stirring at 5 ° C. for 30 minutes, 1.225 g (10 mmol) of chloroethyl acetate was added dropwise over 5 minutes, and the reaction was further carried out at 5 ° C. for 1 hour. Here, 5 mL of 35 wt% hydrochloric acid was added, and the mixture was naturally warmed to room temperature and stirred for 1 hour. Extracted with 20 mL of toluene and 10 mL of water, and the organic layer was further washed successively with 20 mL of saturated sodium bicarbonate solution and 20 mL of water, and the solvent was distilled off under reduced pressure to obtain a colorless oily substance. Got. This was quantitatively analyzed by the method described in Example 2, and as a result, the yield of the target 1-black mouth 1- (4-black mouth phenol) 2 propanone was 57%.
[0070] (実施例 5) 1—クロ口一 3— (4 クロ口フエニル) 2 プロパノンの製诰  [Example 5] 1—Black mouth 3— (4 Black mouth phenyl) 2 Propanone steelmaking
4 クロ口フエ-ル酢酸 1. 705g (10mmol)のテトラヒドロフラン溶液(20mL)を 5°C に冷却し、ここに、塩化 tert—ブチルマグネシウム/トルエン/テトラヒドロフラン溶液 (1. 6mol/kg) 13. 8g (22mmol)を 5分で滴下した。更に 5°C、 30分攪拌後、クロ口 酢酸メチル 1. O85g (10mmol)を 5分で滴下し、更に 5°C、 1時間後反応を行った。こ こに、 35重量%塩酸 5mLを加え、室温まで自然昇温させて 1時間攪拌した。トルエン 20mL、水 10mLをカ卩えて抽出し、有機層を更に飽和炭酸水素ナトリウム溶液 20mL 、水 20mLで順次洗浄し、減圧下に溶媒を留去することにより、無色油状物 1. 2609 gを得た。このものを実施例 2に記載の方法により定量分析を行った結果、 目的の 1 —クロ口一 3— (4 クロ口フエ-ル) 2 プロパノンの収率は 35%であった。  4 A solution of 705 g (10 mmol) in tetrahydrofuran (20 mL) was cooled to 5 ° C, and tert-butylmagnesium chloride / toluene / tetrahydrofuran solution (1.6 mol / kg) 13. 8 g (22 mmol) was added dropwise over 5 minutes. After further stirring at 5 ° C. for 30 minutes, 85 g (10 mmol) of methyl acetate 1.O was added dropwise over 5 minutes, and the reaction was further carried out after 5 hours at 5 ° C. To this was added 5 mL of 35 wt% hydrochloric acid, and the mixture was allowed to warm to room temperature and stirred for 1 hour. Extract with 20 mL of toluene and 10 mL of water, and wash the organic layer successively with 20 mL of saturated sodium bicarbonate solution and 20 mL of water, and evaporate the solvent under reduced pressure to give 1. 2609 g of colorless oil. It was. The product was quantitatively analyzed by the method described in Example 2. As a result, the yield of the target 1-black mouth 1- (4 black mouth) 2 propanone was 35%.
[0071] (実施例 6) 1 クロロー 3—(4 クロ口フエニル) 2 プロパノンの製造  (Example 6) 1 Chloro-3- (4-chlorophenyl) 2 Production of propanone
4 クロ口フエ-ル酢酸 1. 705g (10mmol)のテトラヒドロフラン溶液(20mL)を 5°C に冷却し、ここに、塩化 tert ブチルマグネシウム/トルエン/テトラヒドロフラン溶液 (1. 6mol/kg) 13. 8g (22mmol)を 5分で滴下した。更に 5°C、 30分攪拌後、クロ口 酢酸ビュル 1. 215g (10mmol)を 5分で滴下し、更に 5°C、 1時間後反応を行った。 ここに、 35重量%塩酸 5mLをカ卩え、室温まで自然昇温させて 1時間攪拌した。トルェ ン 20mL、水 10mLをカ卩えて抽出し、有機層を更に飽和炭酸水素ナトリウム溶液 20 mL、水 20mLで順次洗浄し、減圧下に溶媒を留去することにより、黒褐色油状物 1. 9463gを得た。このものを実施例 2に記載の方法により定量分析を行った結果、 目的 の 1—クロ口一 3— (4—クロ口フエ-ル) 2 プロパノンの収率は 16%であった。 4 Black-mouthed phenylacetic acid 1. Add 705 g (10 mmol) in tetrahydrofuran (20 mL) at 5 ° C. Then, 13.8 g (22 mmol) of a tert-butylmagnesium chloride / toluene / tetrahydrofuran solution (1.6 mol / kg) was added dropwise over 5 minutes. After further stirring at 5 ° C for 30 minutes, 1.215 g (10 mmol) of black acetate butyl acetate was added dropwise over 5 minutes, and the reaction was further carried out after 5 hours at 5 ° C. Here, 5 mL of 35 wt% hydrochloric acid was added, and the mixture was naturally warmed to room temperature and stirred for 1 hour. Extract 20 mL toluene and 10 mL water, wash the organic layer successively with 20 mL saturated sodium bicarbonate solution and 20 mL water, and evaporate the solvent under reduced pressure. Obtained. As a result of quantitative analysis of this product by the method described in Example 2, the yield of the target 1-black mouth 1- (4-black mouth phenol) 2 propanone was 16%.
(実施例 7) 1 クロロー 3—(4 クロ口フエニル) 2 プロパノンの製造  (Example 7) 1 Chloro 3— (4 black mouth phenyl) 2 Production of propanone
4 クロ口フエ-ル酢酸ナトリウム 1. 926g (10mmol)、テトラヒドロフラン(10mL)、 トルエン(10mL)力もなるスラリー溶液を 5°Cに冷却し、ここに、塩化 tert—ブチルマ グネシゥム Zトルエン Zテトラヒドロフラン溶液(1. 6mol/kg) 7. 3g (12mmol)を 5 分で滴下した。更に 5°C、 30分攪拌後、クロ口酢酸ェチル 1. 225g (10mmol)を 5分 で滴下し、更に 5°C、 1時間後反応を行った。ここに、 35重量%塩酸 5mLをカ卩え、室 温まで自然昇温させて 1時間攪拌した。トルエン 10mL、水 10mLをカ卩えて抽出し、 有機層を更に飽和炭酸水素ナトリウム溶液 20mL、水 20mLで順次洗浄し、減圧下 に溶媒を留去することにより、無色油状物 1. 6661gを得た。このものを実施例 2に記 載の方法により定量分析を行った結果、 目的の 1 クロロー 3—(4 クロ口フエ-ル) 2—プロパノンの収率は 10%であった。  4 Sodium chloroacetate 1.926 g (10 mmol), tetrahydrofuran (10 mL), toluene (10 mL) slurry solution is cooled to 5 ° C, and then tert-butylmagnesium chloride Z toluene Z tetrahydrofuran solution ( 1. 6 mol / kg) 7.3 g (12 mmol) was added dropwise over 5 minutes. After further stirring at 5 ° C. for 30 minutes, 1.225 g (10 mmol) of chloroethyl acetate was added dropwise over 5 minutes, and the reaction was further carried out at 5 ° C. for 1 hour. To this, 5 mL of 35 wt% hydrochloric acid was added, and the mixture was naturally warmed to room temperature and stirred for 1 hour. Toluene 10mL and water 10mL were extracted, and the organic layer was further washed successively with saturated sodium bicarbonate solution 20mL and water 20mL, and the solvent was distilled off under reduced pressure to obtain 1.6611g of colorless oil. . The product was quantitatively analyzed by the method described in Example 2. As a result, the yield of the target 1-chloro-3- (4-chlorophenol) 2-propanone was 10%.

Claims

請求の範囲 一般式 (1) Claim General formula (1)
[化 1]  [Chemical 1]
Figure imgf000016_0001
Figure imgf000016_0001
(式中、 Arは置換基を有してもよい炭素数 6〜20のァリール基、又は置換基を有して もよい炭素数 3〜15のへテロアリール基を表す。)で表されるエノラートと、一般式(2) (In the formula, Ar represents an aryl group having 6 to 20 carbon atoms which may have a substituent, or a heteroaryl group having 3 to 15 carbon atoms which may have a substituent.) And the general formula (2)
[化 2] [Chemical 2]
Figure imgf000016_0002
Figure imgf000016_0002
(式中、 X1はハロゲン原子を表し、 Lは脱離基を表す。)で表されるハロ酢酸誘導体を 反応させ、続いて酸で処理することを特徴とする、一般式 (3): (Wherein X 1 represents a halogen atom, and L represents a leaving group). A haloacetic acid derivative represented by the general formula (3):
[化 3]  [Chemical 3]
Figure imgf000016_0003
Figure imgf000016_0003
(式中、 Ar、 X1は前記に同じ。)で表される 1 ハロー 3 ァリールー2 プロパノン類 の製造法。 (In the formula, Ar and X 1 are the same as above.) 1 Halo 3 Carry 2 Propanone production method.
[2] 前記式(1)で表されるエノラートが、一般式 (4):  [2] The enolate represented by the formula (1) is represented by the general formula (4):
ArCH CO H (4) (式中、 Arは前記に同じ。)で表されるァリール酢酸、一般式(5): ArCH CO H (4) (Wherein Ar is the same as above), allylic acetic acid represented by the general formula (5):
(ArCH CO ) M1 (5) (ArCH CO) M 1 (5)
2 2 n  2 2 n
(式中、 Arは前記に同じ。 M1は金属、トリアルキルシリル基、又はアンモ-ゥムを表し 、 nは 1〜3の整数である。)で表されるァリール酢酸誘導体、又は、一般式 (6): ArCH CO M2X2 (6) (Wherein Ar is the same as above, M 1 represents a metal, a trialkylsilyl group, or ammonia, and n is an integer of 1 to 3), or general Formula (6): ArCH CO M 2 X 2 (6)
2 2  twenty two
(式中、 Arは前記に同じ。 M2は金属を表し、 X2はハロゲン原子を表す。)で表される ァリール酢酸誘導体と塩基力も調製して得られるものであることを特徴とする、請求項 (In the formula, Ar is the same as above. M 2 represents a metal and X 2 represents a halogen atom.) Claim
1に記載の製造法。 The production method according to 1.
[3] エノラートの調製に用いられる塩基が、リチウムジイソプロピルアミド、 n—プチルリチ ゥム、塩化マグネシウムジイソプロピルアミド、塩化 tert ブチルマグネシウム及び水 素化ナトリウム力もなる群より選択される少なくとも 1つである、請求項 2に記載の製造 法。  [3] The base used for the preparation of the enolate is at least one selected from the group consisting of lithium diisopropylamide, n-butyllithium, magnesium chloride diisopropylamide, tert butylmagnesium chloride and sodium hydride. Item 3. The manufacturing method according to Item 2.
[4] エノラートの調製に用いられる塩基力 塩化 tert ブチルマグネシウムである請求項 2に記載の製造法。  [4] The process according to claim 2, wherein the basic force used for the preparation of the enolate is tert-butylmagnesium chloride.
[5] エノラートの調製に、前記式 (4)で表されるァリール酢酸を用いることを特徴とする、 請求項 2〜4の 、ずれかに記載の製造法。  [5] The production method according to any one of [2] to [4], wherein allylic acetic acid represented by the formula (4) is used for the preparation of the enolate.
[6] エノラートの調製に、前記式(5)において M1がリチウム、ナトリウム、又はカリウムであ り、 nが 1であるァリール酢酸誘導体を用いることを特徴とする、請求項 2〜4のいずれ かに記載の製造法。 [6] the preparation of the enolate, the formula (5) M 1 is Ri lithium, sodium, or potassium der in, which comprises using the Ariru acid derivatives n is 1, one of the claims 2 to 4 The manufacturing method of crab.
[7] エノラートの調製に、前記式 (6)において M2がマグネシウムであり、 X2が塩素原子で あるァリール酢酸誘導体を用いることを特徴とする、請求項 2〜4のいずれかに記載 の製造法。 [7] the preparation of the enolate, the formula (6) in a M 2 is magnesium, which comprises using the Ariru acid derivative X 2 is a chlorine atom, according to claim 2 Manufacturing method.
[8] 酸で処理するときに用いられる酸が、塩酸である請求項 1〜7のいずれかに記載の製 造法。  [8] The production method according to any one of [1] to [7], wherein the acid used in the treatment with the acid is hydrochloric acid.
[9] 一般式(1)で表されるエノラートと一般式 (2)で表されるハロ酢酸誘導体を反応させ る時の反応温度が、 20°C以上である、請求項 1〜8のいずれかに記載の製造法。  [9] The reaction temperature according to any one of claims 1 to 8, wherein the reaction temperature when the enolate represented by the general formula (1) and the haloacetic acid derivative represented by the general formula (2) are reacted is 20 ° C or higher. The manufacturing method of crab.
[10] X1が塩素原子であり、 Lが炭素数 1〜5のアルコキシ基である、請求項 1〜9のいずれ かに記載の製造法。 [11] Arがフエ-ル基、又は 4—クロロフヱ-ル基である、請求項 1〜10のいずれかに記載 の製造法。 [10] The production method according to any one of claims 1 to 9, wherein X 1 is a chlorine atom, and L is an alkoxy group having 1 to 5 carbon atoms. [11] The production method according to any one of claims 1 to 10, wherein Ar is a phenol group or a 4-chlorophenol group.
PCT/JP2005/020070 2004-11-09 2005-11-01 Method for producing 1-halo-3-aryl-2-propanone WO2006051723A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004325406 2004-11-09
JP2004-325406 2004-11-09

Publications (1)

Publication Number Publication Date
WO2006051723A1 true WO2006051723A1 (en) 2006-05-18

Family

ID=36336405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/020070 WO2006051723A1 (en) 2004-11-09 2005-11-01 Method for producing 1-halo-3-aryl-2-propanone

Country Status (1)

Country Link
WO (1) WO2006051723A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105367391A (en) * 2015-12-15 2016-03-02 新乡科信化工有限公司 2-chlorine-1,1,1-trimethoxyethane preparing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05286902A (en) * 1992-04-10 1993-11-02 Sumitomo Pharmaceut Co Ltd Production of alpha-chloro-beta-ketoester derivative
WO1996023756A1 (en) * 1995-02-03 1996-08-08 Kaneka Corporation PROCESSES FOR PRODUCING α-HALO KETONES, α-HALOHYDRINS AND EPOXIDES
WO2003027085A2 (en) * 2001-09-26 2003-04-03 Bayer Pharmaceuticals Corporation 3-pyridyl or 4-isoquinolinyl thiazoles as c17,20 lyase inhibitors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05286902A (en) * 1992-04-10 1993-11-02 Sumitomo Pharmaceut Co Ltd Production of alpha-chloro-beta-ketoester derivative
WO1996023756A1 (en) * 1995-02-03 1996-08-08 Kaneka Corporation PROCESSES FOR PRODUCING α-HALO KETONES, α-HALOHYDRINS AND EPOXIDES
WO2003027085A2 (en) * 2001-09-26 2003-04-03 Bayer Pharmaceuticals Corporation 3-pyridyl or 4-isoquinolinyl thiazoles as c17,20 lyase inhibitors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105367391A (en) * 2015-12-15 2016-03-02 新乡科信化工有限公司 2-chlorine-1,1,1-trimethoxyethane preparing method

Similar Documents

Publication Publication Date Title
CN104603098B (en) The synthesis of 2-(3,4-difluorophenyl) cyclopropyl amine derivatives and salt
WO1996020164A1 (en) Process for producing 2-(2-hydroxymethylphenyl)acetamide derivative and intermediate for the production thereof
WO2006051723A1 (en) Method for producing 1-halo-3-aryl-2-propanone
US10562834B2 (en) Process for preparing substituted crotonic acids
CN108069918B (en) Method for preparing 3-difluoromethyl isoxazole compound by one-pot method
EP2203434B1 (en) Method of preparing (6r)-3-hexyl-4-hydroxy-6-undecyl-5,6-dihydropyran-2-one, and intermediate used in the method
JP4258658B2 (en) Method for producing acetylene compound
JP3946521B2 (en) Method for producing simvastatin
WO2006001498A1 (en) Method for producing (z)-1-phenyl-1-diethylaminocarbonyl-2-hydroxymethyl cyclopropane
JP3845977B2 (en) Method for producing 4,4'-bischloromethylbiphenyl
JP7353295B2 (en) Method for producing 2,6-dialkylphenylacetic acid
JP2017149687A (en) O-benzenesulfonyl-acetohydroxamic acid ester derivative and manufacturing method of nitryl compound
JP4123709B2 (en) Preparation of aromatic acrylonitrile derivatives
JP2015017073A (en) Method for producing alkyl grignard reagent using 4-methyltetrahydropyran as solvent
JP3864657B2 (en) Process for producing aromatic acrylonitrile
JP4162891B2 (en) Method for producing tetrahydrothiophene derivative
JP2006052144A (en) METHOD FOR PRODUCING beta-SUBSTITUTED TYPE beta-METHOXYACRYLATE
JP2013151452A (en) Imine derivative containing optically activity trifluoromethyl group, method of manufacturing the same, and method of manufacturing optical activity amine derivative containing trifluoromethyl group using the same
CN113185376A (en) Synthesis method of (Z) -3-methylthio-2-bromoacrylate compound
KR100927242B1 (en) Allyl allene derivatives and preparation methods thereof
JP2021127332A (en) Method for Producing 5-Bromo-2-alkylbenzoic Acid
JP2022011265A (en) Difluoromethylene compound and method for producing the same
JP2006143606A (en) Method for preparing 1-halo-3-aryl-2-propanones
Murai et al. Aldol-type condensation reactions of lithium eneselenolates generated from selenoamides with aldehydes
JP2004323471A (en) Method for producing 3-alkoxymethyl oxetane compound

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase

Ref document number: 05800398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP