WO2006050047A2 - Dispositif et procedes pour mettre en oeuvre une intervention chirurgicale sur le cerveau - Google Patents
Dispositif et procedes pour mettre en oeuvre une intervention chirurgicale sur le cerveau Download PDFInfo
- Publication number
- WO2006050047A2 WO2006050047A2 PCT/US2005/038828 US2005038828W WO2006050047A2 WO 2006050047 A2 WO2006050047 A2 WO 2006050047A2 US 2005038828 W US2005038828 W US 2005038828W WO 2006050047 A2 WO2006050047 A2 WO 2006050047A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cannula
- obturator
- dilating
- brain
- image guidance
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3415—Trocars; Puncturing needles for introducing tubes or catheters, e.g. gastrostomy tubes, drain catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3417—Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3417—Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
- A61B17/3421—Cannulas
- A61B17/3423—Access ports, e.g. toroid shape introducers for instruments or hands
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M29/00—Dilators with or without means for introducing media, e.g. remedies
- A61M29/02—Dilators made of swellable material
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3417—Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
- A61B17/3421—Cannulas
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3417—Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
- A61B17/3421—Cannulas
- A61B17/3431—Cannulas being collapsible, e.g. made of thin flexible material
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3417—Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
- A61B17/3421—Cannulas
- A61B17/3439—Cannulas with means for changing the inner diameter of the cannula, e.g. expandable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00831—Material properties
- A61B2017/00902—Material properties transparent or translucent
- A61B2017/00907—Material properties transparent or translucent for light
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3417—Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
- A61B17/3421—Cannulas
- A61B2017/3445—Cannulas used as instrument channel for multiple instruments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2051—Electromagnetic tracking systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2055—Optical tracking systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B2090/364—Correlation of different images or relation of image positions in respect to the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/39—Markers, e.g. radio-opaque or breast lesions markers
- A61B2090/3937—Visible markers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/39—Markers, e.g. radio-opaque or breast lesions markers
- A61B2090/3954—Markers, e.g. radio-opaque or breast lesions markers magnetic, e.g. NMR or MRI
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/39—Markers, e.g. radio-opaque or breast lesions markers
- A61B2090/397—Markers, e.g. radio-opaque or breast lesions markers electromagnetic other than visible, e.g. microwave
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/39—Markers, e.g. radio-opaque or breast lesions markers
- A61B2090/3983—Reference marker arrangements for use with image guided surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/0021—Catheters; Hollow probes characterised by the form of the tubing
- A61M25/0023—Catheters; Hollow probes characterised by the form of the tubing by the form of the lumen, e.g. cross-section, variable diameter
- A61M2025/0024—Expandable catheters or sheaths
Definitions
- the present disclosure relates to methods of accessing and performing surgery within the brain.
- the brain is a delicate soft tissue structure that controls bodily functions through a complex neural network connected to the rest of the body through the spinal cord.
- the brain and spinal cord are contained within and protected by significant bony structures, e.g., the skull and the spine. Given the difficulty of accessing the brain through the hard bony protective skull the diagnosis and treatment of brain disorders presents unique challenges not encountered elsewhere in the body.
- Imaging technology including stereotactic X-ray imaging, Computerized Axial Tomography (CAT), Position Emission Tomography (PET) and Magnetic Resonance Imaging (MRI). See, for example, Butler U.S. Patent 6,359,959. These imaging devices and techniques permit the surgeon to examine conditions within the brain in a non-invasive manner without opening the skull. If a target lesion or mass is identified through use of one or more imaging techniques, it may be necessary or desirable to biopsy a lesion within the brain. Stereotactic techniques and apparatus for directing a biopsy needle to the site are described and shown, for example, in Cosman U.S. Patents 6,331,180 and 6,416,520.
- a treatment plan must be developed.
- One available method of treatment involves X-ray therapy sudh J d i S"d ⁇ sclds ⁇ i l i ⁇ i
- surgical treatment may be necessary or desired.
- Brain surgery can be highly invasive. In some instances, in order to obtain access to target tissue, a substantial portion of the skull is removed and entire sections of the brain are retracted to obtain access. Of course, such techniques are not appropriate for all situations, and not all patients are able to tolerate and recover from such invasive techniques. It is also known to access certain portions of the brain by forming a hole in the skull, but only limited surgical techniques may be performed through such smaller openings. In addition, some techniques have been developed to enter through the nasal passages, opening an access hole through the occipital bone to remove tumors located, for example, in the area of the pituitary.
- a significant advance in brain surgery is stereotactic surgery involving a stereotactic frame correlated to stereotactic X-ray images to guide a probe or other surgical instrument through an opening formed in the skull through brain tissue to a target lesion or other body. See, for example, U.S. Patents 6,331,180 and 6,416,520.
- a related advance is frameless image guidance, in which an image of the surgical instrument is superimposed on a pre-operative image to demonstrate the location of the instrument to the surgeon and trajectory of further movement of the probe or instrument.
- Image guided surgery is described, for example, in Guthrie U.S. Patents 5,230,623, 5,971,997, 6,120,465, and 6,409,686; Cosman U.S.
- U. S. patent application serial number 60/623,094 proposes alternate methods and devices for performing brain surgery involving inserting a cannula with a dilating obturator into the brain to gently dilate the brain tissue.
- the cannula and dilating obturator may be inserted under image guidance.
- the cannula provides access to tissue within the brain and provides a working space for the surgeon to perform surgery on structures of the brain, preferably using an endoscope partially inserted into the cannula to visualize the operative site at the end of the cannula.
- the image from the endoscope may be projected onto a monitor or screen 1 to l &sSiSttnt H surgeon-'aht ⁇ '!Ot!iei» ⁇ 1 'to visualize the structures of the brain.
- the present disclosure provides alternative structures and techniques useful in performing surgery in accordance with the techniques disclosed, described or shown in the foregoing application.
- Dubrul U.S. Patents 5,183,464 and 5,431 ,676 disclose and describe expandable dilators or trocars useful for accessing hollow body organs. Structures similar to those described by Dubrul have been marketed and sold for laparoscopic access under the trademark STEP by Innerdyne, Inc., and subsequently by the AutoSuture Division of Tyco Healthcare Group, LP (Norwalk, CT). Expandable cannula structures having longitudinal wire also are disclosed and described in Bonutti U.S. Patent 5,320,611.
- the optical trocar includes a movable cutting blade extendable from a rounded optical window at the distal tip as penetration through tissue is observed through an endoscope inserted into a sleeve until the tip of the endoscope is adjacent to the window.
- Optical trocars have been marketed for laparoscopic access under the trademark VISIPORT by the AutoSuture Division of Tyco Healthcare Group, LP (Norwalk, CT). Penetrating optical trocars also are shown and described in Kaali U.S.
- Apparatus and methods are disclosed for atraumatically dilating brain tissue to access target tissue within the brain.
- a first apparatus for accessing brain tissue has a dilating obturator with a blunt rounded distal tip, a substantially cylindrical shaft portion, and a proximal handle portion.
- a cannula is disposed around the shaft portion and preferably is made of a transparent material.
- the obturator and cannula assembly preferably is associated with an image-guided surgery system so that placement of the obturator and cannula assembly can be carefully monitored and controlled as the obturator and cannula assembly is atraumatically inserted into brain tissue.
- the obturator has a longitudinal channel therethrough configured and dimensioned to receive the shaft of a narrow stylet or probe.
- the stylet or probe has attached thereto image guidance means calibrated to indicate the orientation and position of the stylet or probe.
- An image guidance system interacts with the stylet or probe to display for the surgeon on a monitor an image of the stylet or probe superimposed onto an image of the patient s brain, such as an MRI image.
- the image may be a pre-operative MRI image used for surgical planning.
- the superimposed image of the probe also is indicative of the position and orientation of the dilating obturator and the cannula.
- Traditional methods are used to incise and retract soft tissue of the scalp covering the skull.
- a hole is made in the skull, and the dura is opened and retracted to provide access to the brain.
- the stylet or probe is inserted through the obturator longitudinal channel and advanced until a length of the stylet or probe extends out of and beyond the blunt rounded tip of the dilating obturator.
- the dilating obturator and cannula assembly is held back away from the tissue as the stylet or probe is gently advanced through the brain tissue under both direct vision and positional image guidance until the tip of the stylet or probe is adjacent the target tissue.
- the blunt rounded dilating obturator and cannula assembly is slowly and carefully advanced into the brain tissue to atraumatically spread the tissue over the dilating tip and around the cannula while maintaining the position of the stylet or probe as a guide to advancement of the obturator and cannula assembly.
- a gentle back and forth rotation during insertion may facilitate placement of the obturator and cannula assembly.
- the stylet or probe and dilating obturator are removed, leaving the cannula in place to support and protect the dilated brain tissue.
- the cannula is clear so that the dilated brain tissue may be visually inspected through the walls of the cannula to assure that no damage was caused to surrounding brain tissue during insertion of the device.
- the image guidance means may be mounted directly to the dilating obturator and cannula assembly so that the obturator and cannula assembly may be inserted without a separate stylet or probe.
- the obturator and cannula assembly is inserted into the brain tissue under ima ⁇ guMance 5 Hifiiit l ⁇ e'bbt ⁇ riat ⁇ Visf ⁇ djacent the target tissue. Once the obturator and cannula assembly is positioned, the dilating obturator is removed, leaving the cannula in place.
- the dilating obturator and cannula assembly may be inserted into the brain under direct visualization without use of an image guidance system.
- a tissue dilator has an optical window at the tip thereof and is configured and dimensioned to receive an endoscope or like device such that the user may visualize brain tissue as the dilator is inserted directly into the brain.
- the optical dilator is surrounded by a cannula, and may optionally also have a longitudinal channel to receive a stylet or probe.
- the optical dilating obturator and cannula assembly may be inserted into the brain under direct visualization, and progress through brain tissue may be observed during insertion either directly through the endoscope or by projecting the image from the endoscope onto a monitor or screen.
- the optical dilator and cannula assembly may be provided with identifying indicia compatible with an image guidance system such that the optical dilating obturator and cannula may be inserted utilizing both visualization of brain tissue and image guidance.
- the optical dilator may be provided with an auxiliary channel configured and dimensioned to receive a stylet or obturator, such that the stylet may be inserted into the brain to the target tissue under image guidance, with the optical obturator used to visualize the brain tissue as the optical obturator and cannula assembly is inserted over the stylet to reach the target tissue.
- the optical dilator, stylet (if used) and endoscope may be removed, leaving the cannula in place to provide access and a working space to the surgeon.
- the same or another endoscope may thereafter be mounted partially extending through the cannula to provide visualization of the target tissue at the end of the cannula for surgery.
- optics may also be incorporated directly into the optical dilator, or an endoscope may be inserted through the cannula such that the endoscope acts as the dilator.
- surgery may be performed through the cannula, either under direct vision or more preferably using an endoscope and camera system to project an enlarged image of the target tissue onto a monitor to visualize the tissue during surgery.
- Prefe ' rMy* ii ⁇ fcimeter of approximately 10 mm to 20 mm, and more preferably 10 mm to 15 mm.
- An endoscope of a substantially smaller diameter, such as a 4 mm endoscope, is mounted partially inserted into the cannula. The endoscope is mounted to one side of the cannula and inserted so that the image projected onto the monitor is of the target tissue at the end of the cannula.
- a 4 mm endoscope is inserted approximately halfway into the cannula is appropriate to create the desired image display while leaving a substantial portion of the cannula open and available for the insertion of instruments to perform surgery.
- a camera holder may be used to secure the endoscope in the desired position.
- Appropriate surgical instruments are then used to perform surgery upon the target tissue.
- scissors, graspers and suction tools may be inserted through the cannula, visualizing the tips of the instruments to perform the desired procedure either directly with the naked eye or through a microscope, or indirectly through the endoscope using the endoscope eyepiece or more preferably and camera system to display the image on a monitor.
- a preferred instrument for debulking brain tissue is a fluidized ultrasonic instrument, such as CUSA (Valleylab, Boulder Colorado).
- Monitoring equipment may be used to monitor brain function during surgery to assist the surgeon in understanding the effects of the actions taken during surgery on the brain so that the surgery may be terminated in the event an indication of an adverse effect is detected.
- the cannula is gently removed, and the dura, skull and scalp are closed in a traditional fashion.
- a stylet or probe is inserted into the brain, preferably under image guidance, until the tip of the probe is adjacent target tissue within the brain.
- the stylet is surrounded by an expandable sleeve extending substantially the entire length of the stylet or probe which is inserted into the brain together with the stylet or probe.
- An expanding dilator and cannula assembly is then inserted into the expandable sleeve to atraumatically expand the sleeve to the diameter of the cannula, thereby atraumatically dilating the brain tissue surrounding the expandable sleeve to accommodate the cannula.
- the dilator and cannula assembly is inserted over the stylet with the stylet extending through a longitudinal passage provided for that purpose through the dilator.
- the stylet or probe may be removed prior to inserting the dilator and cannula asseMJly, thPe'xpawdablfe 'sleeve remains as placed in the brain using the stylet, ready to receive and guide the dilator and cannula assembly.
- the expandable sleeve may be attached to a hub, with the cannula and dilator inserted through the hub into the expandable sleeve.
- Alternative variations of the dilating tip and cannula are contemplated.
- the dilating obturator may have a blunt conical tip or a semi-spherical, curved or other outer surface configured to expand the expandable sleeve to the diameter of the cannula without requiring undue force or traumatizing surrounding tissue.
- a substantially flat or slightly curved tip surface may suffice depending upon the ratio of the unexpanded sleeve to the cannula diameter.
- a radially dilating structure may be used rather than a dilator that utilizes longitudinal insertion to expand the sleeve.
- segments of cannula wall are moved into a configuration to define a cannula, and may become self-supporting in such configuration or may be locked into such position by one or more locking elements.
- Another radial expansion device involves a braid structure that is compressed so that the resulting decrease in braid angle causes the tubular or other shaped braid to expand.
- a radially expanding braid may be used to expand the expandable sleeve or may be incorporated directly into and become part of the expandable sleeve.
- the cannula is inserted into the expandable sleeve without a dilating obturator.
- the dilating obturator to be inserted into the expandable sleeve may have a clear or transparent window at the tip, with a longitudinal channel configured and dimensioned to receive an endoscope.
- the surgeon may view the brain tissue being dilated, and may immediately visualize the target tissue after the dilating tip has been inserted to the desired depth.
- the optical dilator may optionally include a longitudinal channel to receive the stylet or probe.
- the surgeon is provided with a cannula which is atraumatically inserted and which atraumatically retracts brain tissue to provide access and wo ⁇ iKing s ' paceM*iMiMt'tQ"aM ⁇ w'tM ⁇ surgeon to perform surgery on the target brain tissue.
- the cannula is shown and described as cylinclincal, it is also contemplated that the cannula may have a non-circular cross-section, such as square, rectangular, elliptical, oval or other shape as may be necessary or desirable under particular circumstances.
- the devices and methods disclosed herein provide numerous advantages in performing brain surgery.
- Gentle atraumatic dilation of the brain tissue makes it possible to operate further inside the brain than otherwise would be possible utilizing traditional surgical techniques.
- the disclosed methods and apparatus create an access area to work while simultaneously protecting adjacent brain tissue from inadvertent collateral damage and trauma that might otherwise occur if more traditional surgical techniques were to be utilized.
- accessing target tissue through the cannula as contemplated avoids more invasive techniques that involve removing substantial portions of the skull and retracting large portions of the brain to gain access to operate on target tissues.
- the devices and methods may make it possible to operate on target tissue that would, without these devices and methods, otherwise be regarded as inoperable using previously known techniques.
- Fig. 1 is a perspective view, with parts separated, of an access device in accordance with a first embodiment
- Fig. 2 is a cross-sectional view of an obturator and cannula assembly, with parts separated, in accordance with the first embodiment
- Fig. 3 is a perspective view of an obturator, cannula and stylet assembly in accordance with the first embodiment
- Fig. 4 is a perspective view, with parts separated, of an access device in accordance with a second embodiment
- Fig. 5 is a perspective view, with parts separated, of an access device in accordance with a third embodiment
- Fig. 6A is a partial cross-section view of a first optical dilator with an endoscope disposed in the optical dilator;
- Fig. 6B is a partial cross-section view of a second optical dilator, with a stylet extending through the dilator and an endoscope disposed in the optical dilator;
- Fig. 7 is an illustration of the first embodiment with the stylet inserted to a point adjacent target tissue within the brain;
- Fig. 8 is an illustration of the first embodiment with the obturator and cannula assembly partially inserted into and atraumatically separating brain tissue;
- Fig. 9 is an illustration of the first embodiment, with the obturator and cannula assembly inserted over the stylet to target tissue;
- Fig. 10 is an illustration of a cannula in place holding brain tissue apart to provide access to target tissue
- Fig. 11 is an illustration of an endoscope mounted partially within the cannula and a scissors and suction device inserted to debulk and remove target tissue;
- Fig. 12 is an illustration of a cannula in place after target tissue has been removed
- Fig. 13 is an illustration showing brain tissue having resumed its position occupying the space previously occupied by the cannula during surgery
- Fig. 14 is a perspective view of a stylet with an expandable sleeve
- Fig. 14A is a proximal end view of the expandable sleeve and hub assembly
- Fig. 15 is an illustration of the embodiment of Fig. 14 inserted into brain tissue
- Fig. 16 is an illustration of the embodiment of Figs. 14 and 15, with the stylet removed and a dilating obturator and cannula assembly inserted into and expanding the expandable cannula;
- Fig. 17 is an illustration of the embodiment of Fig. 16 with the dilating obturator removed to provide a cannula in the expandable sleeve to provide access to the target tissue;
- Fig. 18 is a cross-section view of an expandable sleeve device with the stylet disposed within the expandable sleeve and a dilating obturator and cannula assembly mounted over the stylet shaft proximal to the expandable sleeve;
- Figs. 19A and 19B are cross-section views of an expandable Ie sleeve with a balloon- actuated radially expandable cannula;
- Figs. 2OA and 2OB are partial cross section views illustrating an alternative structure for radially expanding an expandable sleeve; and Fig. 21 is a cross section view of a cannula including a proximal annular flange.
- Figure 1 illustrates a first embodiment of an apparatus 10 for accessing target tissue within the brain in order to perform brain surgery.
- Stylet or probe 16 has a small diameter elongated shaft 18, a handle 20 and associated position indicators 22 for a position guidance system.
- Stylet shaft 18 has a blunt tip 24 that can be inserted into and advanced through brain tissue.
- image guidance position indicators are shown as infrared reflectors of the type use in connection with optical image guidance systems, although other position indicating systems could be used.
- the infrared reflectors used with such a system are mounted to the stylet handle in a customary triangular configuration calibrated to identify the tool to the image guidance system.
- imaging systems are available, for example Medtronic Surgical Navigation Technologies (Denver, Colorado), Stryker (Kalamazoo, Michigan), and Radionics (Burlington MA).
- the positioning of the indicator reflector balls is calibrated such that the image guidance system recognizes the particular tool and projects an image of the tool onto a display of images of the patient s brain, such as MRI images used to plan surgery.
- Calibration of instruments to an image guidance system is disclosed, for example, in Costales U.S. Patent 5,921,992. As the instrument is inserted, the surgeon can see the relative position of the instrument relative to the structures of the brain as reflected on images used to plan surgery, particularly with respect to the target tissue.
- Dilating obturator 14 has a proximal handle portion 26, a substantially cylindrical shaft portion 28, and a blunt dilating tip 30.
- Blunt dilating tip 30 is of a rounded atraumatic configuration, such as a semi-spherical dome or other gently curved surface.
- a longitudinal access channel 32 extends through the dilating obturator 14. The longitudinal channel is configured and dimensioned to receive shaft 18 of the stylet or probe 16.
- Cannula 12 is substantially cylindrical and is configured to slide over and mount onto the substantially cylindrical shaft 28 of the dilating obturator 14.
- Leading edge 34 of cannula 12 may be chamfered to reduce insertion force and minimize trauma during insertion into the brain.
- Fig. 2 is a cross-section view of the cannula 12 and dilating obturator 14 of the first embodiment, illustrating blunt rounded dilating tip 30 of the dilating obturator 14, the chamfered lead edge 34 of cannula 12 and the longitudinal access channel 32 extending axially through the entire length of the dilating obturator.
- Fig. 3 is a perspective view of the first embodiment in an assembled condition, with cannula 12 disposed over the shaft of dilating obturator 14 and stylet or probe shaft 18 inserted thrtfugh thelo ⁇ feilUainiFacerefeStliahfifel 32 of the dilating obturator. Stylet 18 is shown projecting from the distal, rounded tip of the dilating obturator.
- Fig. 4 is a perspective view, with parts separated, of a second embodiment of an access device 50 for brain surgery.
- Access device 50 includes a cannula 52 with a chamfered lead edge 54.
- Access device 50 also includes a dilating obturator 56 having a handle portion 58, a substantially cylindrical shaft 60 and an atraumatic blunt dilating tip 62.
- Blunt tip 62 has a rounded distal surface, such as a semi-spherical surface.
- Cannula 52 is configured and dimensioned to mount over shaft 60 of the dilating obturator.
- the obturator shaft is configured and dimensioned to removably fit into the cannula inner diameter and to occupy the open space within the cannula.
- the image guidance identification device 64 with infrared imaging reflectors 66 is attached directly to the dilating obturator, eliminating the stylet or probe of the first embodiment. Accordingly, the dilating obturator of the second embodiment also need not include the longitudinal access channel for the stylet or probe.
- infrared reflectors For illustration purposes devices disclosed herein are shown with infrared reflectors as used with available optical image guidance systems. Other guidance systems, such as magnetic or electromagnetic or radio transmitting systems may also be used, and the illustration of infrared reflectors and discussion of optical image guidance systems are exemplary only and are not intended to be limiting. In addition, currently available image guidance systems superimpose an image of the tool onto a pre-operative image. It is contemplated that as technology continues to progress that real-time imaging capability may become available in the operating room, and that the image of the tool may then be shown in relation to the surrounding tissue structures on a real time image.
- Fig. 5 is a perspective view, with parts separated, of a third embodiment of an access device 70 for brain surgery.
- Access device 70 includes cannula 72 with chamfered lead edge 74, and a dilating obturator 76.
- Dilating obturator 76 includes a handle 78, substantially cylindrical shaft 80 and rounded dilating tip 82, which may be semi-spherical.
- Access device 70 does not include apparatus for calibrating the position of the dilating obturator with an image guidance system or a stylet or probe for aiding insertion of the dilating obturator.
- Figs. 6A and 6B illustrate an alternative dilating obturator and cannula assembly which may be used with the foregoing embodiments. More specifically, Figs. 6A and 6B illustrate an optical ⁇ di!atin'g l ' ⁇ 'l ⁇ Ma ⁇ O ⁇ i wHi ⁇ h ⁇ eiM ⁇ s visualization as the optical dilating obturator and cannula assembly is inserted into the brain.
- the optical dilating obturator and cannula assembly is configured to include a cannula 82 and a dilating obturator 84 having a transparent optical window 86 at the distal end of the obturator.
- the transparent optical window is rounded, such as the semi-spherical window shown in Fig. 6A.
- a longitudinal channel 88 configured and dimensioned to receive an endoscope is provided in the obturator.
- An endoscope 90 is shown inserted into the endoscope channel in the dilating obturator.
- the optical dilating obturator and cannula assembly may be used as in the embodiment of Figs.
- the image acquired by the endoscope through the distal optical window may be observed as the obturator and cannula is inserted into the brain tissue.
- the image may be projected onto a monitor or screen for display for visualization as the obturator is inserted. If the optical dilating obturator and cannula assembly is used together with an image guidance system, the position of the instrumentation may be displayed in one image while the optical view through the endoscope is display in another.
- Fig. 6B illustrates an optical dilating obturator and cannula assembly similar to that of Fig. 6A using like reference numerals for corresponding structures, but configured to accommodate stylet shaft 18 of the embodiment shown in Figs. 1-3.
- optical dilating obturator 84 additionally includes a longitudinal stylet or probe channel 92 configured and dimensioned to receive the stylet or probe shaft 18.
- the stylet or probe is inserted through stylet or probe channel 92 until the stylet or probe 18 extends distally from the optical dilating obturator.
- the stylet or probe is inserted, preferable under image guidance, to a point adjacent to the target tissue.
- the optical dilating obturator and cannula are then moved distally to dilate and spread the brain tissue over the cannula.
- the brain tissue being dilated may be visually observed through the endoscope, preferably by displaying the image on a monitor or screen.
- Figs. 7-11 illustrate the use of the access device 10 of the first embodiment during minimally invasive brain surgery, as will now be described.
- FIG. 7 a partial cross-section view of the access device 10 with probe or stylet 16 inserted through an opening 100 formed in a patient s skull 102 through brain tissue until tip 24 of stylet 16 is adjacent target tissue 104.
- Opening 100 is made in a traditional manner, by incising the prepared and marked scalp, dissecting the scalp away from the underlying bony skull 102, retracting the scalp away from the area where hole 100 is to be formed, and then forming hole 100 using a drill, saw or similar apparatus in a known manner. After an opening has been formed in the skull, the dura overlying and protecting the brain is carefully incised and retracted to provide access to the brain.
- Stylet 16 is approximately 12 cm to 15 cm in length and approximately 3 mm in diameter and may be atraumatically urged through brain tissue until the target tissue is reached. Because stylet handle 20 is associated with imaging targets 22 the position of the stylet may be confirmed one or more times during insertion against pre-operative surgical planning images using an image guidance system. As shown in Fig. 8, once stylet 16 is placed, the dilating obturator with cannula is advanced carefully along the stylet so that the blunt rounded tip 30 atraumatically dilates the brain tissue. In Fig. 8, the dilating obturator is shown partially inserted into the brain, with blunt rounded tip 30 spreading the brain tissue as the obturator is advanced.
- Fig. 9 the access device is shown inserted into brain tissue until the tip of the dilating obturator is adjacent the target tissue. As shown, the brain tissue has been spread apart and surrounds cannula 12. With the access device fully inserted, the stylet and obturator are removed, leaving the open cannula 12 to provide surgical access to the target tissue, as illustrated in Fig. 10. The brain tends to occupy the space available within the skull and, as shown in Fig. 10, after the obturator is removed the target tissue will have a tendency to approach the open end of the cannula.
- cannula lengths of up to about 6 cm may be necessary or desirable, although a cannula length of about 4 cm should be sufficient to reach most areas of the brain where surgery is to be performed using the access device and methods described herein.
- the cannula may have an inner diameter of approximately 10 mm to 20 mm, and more preferably about 10 mm to 15 mm to allow multiple instruments, such as graspers, dissectors, scissors, and suction instruments to be inserted through the cannula to perform surgery.
- the cannula wall thickness may be on the order of from about 1 mm to about 3mm.
- a debulking suction irrigation device such as a CUSA device (Valleylab, Inc., Boulder CO.) may be used. See, for example, Rose U.S. Patent 6,083,191; Stoddard U.S. Patents 6,214,017, 6,256,859, and 6,654,999; and Cimino U.S.
- Patent 6,602,227 Alternatively, a scissor and separate suction tube may be used.
- an endoscope of approximately 4 mm diameter is partially inserted and held to one side of the cannula, and the image of the end of the cannula and the target tissue is projected onto a monitor for viewing by the operating surgeon, assistants and others.
- a recording of the surgery also may be made.
- the endoscope 108 is illustrated inserted into the cannula 12 and held in place by the arm 1 10 of a scope holding device, thereby eliminating the need for the surgeon or assistant to hold the scope.
- Endoscope 108 is attached to a source of illumination 112 by a light cable 114.
- the endoscope can be used under direct vision utilizing the endoscope eyepiece, it is preferred to attach a camera 116 to the endoscope which in turn is attached via a cable 118 to a video device 120 such as a VCR or DVD with an accompanying monitor display 122.
- a video device 120 such as a VCR or DVD with an accompanying monitor display 122.
- Recent advances in operating room display equipment permit large monitoring devices, such as flat panel displays to be used. The latter display is particularly useful for teaching or lecturing purposes, as it allows multiple persons to observe the surgical technique. Without such a display, it would be impractical to have numerous persons in the operating field attempting to observe the surgery. Live telesurgery also is contemplated.
- a scissor 124 and suction tube 126 being used to debulk and remove target tissue 104.
- the patient's brain function and condition is monitored so that the surgeon may be alerted in the event the patient becomes distressed or otherwise is adversely affected by the surgeon's actions. In the event signs of stress or adverse effects are noted, the surgeon may decide to continue the surgery, wait to see if the patient stabilizes, or terminate the procedure. Because of the sensitive nature of b ⁇ a1n'tl i ss l u ⁇ i "M 1 ⁇ ! i kisdciated S 'a ⁇ v' ⁇ s%nd blood vessels, it is not uncommon for a surgeon to terminate a procedure before removing all target tissue in order to avoid the risk of serious adverse effects upon the patient.
- the instruments are removed from the cannula.
- the brain tissue fills the void formed by removing the target tissue so that healthy brain tissue underlying the now removed target tissue is adjacent the end of the cannula, as shown in Fig. 12.
- the cannula is then gently removed and the brain tissue naturally fills the space formerly occupied by the cannula, as shown in Fig. 13. This can take several minutes, but is relatively atraumatic.
- the dura, skull and scalp are closed in a known manner.
- the cannula may be from about 2 cm to about 6 cm in length, although different lengths may be desirable for particular situations.
- the cannula also preferably is clear, and is made to have a smooth outer surface to minimize trauma to the brain tissue.
- An important function of the cannula is to maintain the brain tissue in a separated condition to provide access and room to perform surgery. Just as important, however, is the function of the cannula to protect surrounding brain tissue from trauma due to contact with instruments during surgery.
- the cannula performs the dual functions of maintaining working space created during insertion of the obturator and cannula assembly and protecting surrounding brain tissue from trauma that might otherwise be caused during surgery by contact with surgical instruments.
- Alternate cross-sectional shapes for the cannula and obturator also are contemplated, such as square, oval, or elliptical.
- the dilating tip configuration may need to be altered in order to provide atraumatic dilation of the brain tissue if such alternate cross-sections are used.
- the circular cross-section and rounded tip of the dilating obturator illustrated in the accompanying drawings has been found to be satisfactory, and permits gentle back and forth rotation to be used during insertion to urge the blunt dissecting tip through the brain tissue.
- the proximal end of the cannula may include an annular flange or collar, as shown in fig. 21, to facilitate handling and to prevent the cannula from advancing into the brain during surgery.
- the dilating obturator and cannula may be placed using a guide stylet which has previously been placed into the brain under image guidance. Alternative techniques for placing the stylet are contemplated.
- the stylet may be placed using a stereotactic headframe, such as a Leksell frame (Elekta, of Sweden) or a GTC frame (Radionics, Burlington, Massachusetts).
- a stereotactic headframe such as a Leksell frame (Elekta, of Sweden) or a GTC frame (Radionics, Burlington, Massachusetts).
- the dilating obturator and cannula may be placed using such a headframe and eliminating the need for the stylet.
- stereotactic headframes and associated methods of approaching target tissue within the brain along a predetermined trajectory are shown and described in Cosman U.S. Patent 6,331,180.
- the dilating obturator equipped with image guidance means mounted directly to the obturator may be inserted under guidance without the use the stylet of the first embodiment.
- the scalp and skull are opened in a traditional manner. Once access to the brain is established by opening and retracting the dura, dilating obturator 56 with cannula 52 mounted onto shaft 60 is urged through the brain tissue so that the rounded semi-spherical tip of the obturator atraumatically spreads the brain tissue until the target tissue is reached. As the dilating obturator is advanced, the position of the obturator may be checked using the image guidance system.
- the obturator is pre-calibrated to the image guidance system. See, for example, Costales U.S. Patent 5,921,992.
- the image guidance means could be mounted to the cannula, but such an approach is less preferred because the image guidance means would remain attached to the cannula during surgery or the image guidance means would need to be removed from the cannula prior to surgery, adding another step to be performed. Attaching the image guidance means to the obturator accomplishes the objective of guiding placement of the cannula while also conveniently removing the image guidance means from the surgical field with the obturator after the cannula is placed so that the image guidance means does not obstruct the operative field.
- magnetic image guidance may be well suited for use in the present method.
- a magnetic image guidance system uses magnetic forces to detect the position and orientation of the instrument. Because no direct line of site is require, the magnetic position sensors may be detected even while positioned within the skull. It is therefore contemplated that one or more magnetic position sensors may be positioned at or near the tip of the dilating obturator so that the position of the tip may be more directly detected and displayed.
- One electromagnetic guidance system is available from the Visualization Technologies division of GE Medical Systems. Compare Ferre U.S. Patents 5,676,673, 5,800,352, 5,803,089, 5,829,444, 5,873,822, 5,967,980, 6,175,756, 6,341,231, and 6,445,944.
- the third embodiment of Fig. 5 consists only of a dilating obturator and cannula assembly without any associated image guidance apparatus.
- the dilating obturator 76 with cannula 72 over the shaft 80 is inserted under direct visualization through brain tissue until the blunt rounded, semi-spherical obturator tip is adjacent to the target tissue.
- An experienced surgeon also may find it useful to inspect pre ⁇ operative images displayed on the monitor simultaneous with insertion of the obturator so that the surgeon may compare the pre-operative image to what is visible during insertion of the obturator under direct visualization.
- the obturator and cannula of Fig. 5 After the obturator and cannula of Fig. 5 has been inserted, the obturator is removed as in prior embodiments to leave the cannula in place as shown in Fig. 10.
- an expandable sleeve 200 is mounted to a sleeve hub 202, such as by captti ⁇ g -the tehtf ⁇ f the sleevfe'ttP ⁇ tween two parts of the hub which are snapped or welded together during assembly.
- hub 202 has a bore 204 configured and dimensioned to allow a dilating obturator and cannula assembly to be inserted through the hub into the expandable sleeve 200.
- a stylet or probe 216 having a shaft 218 is inserted through the hub bore 204 and through the sleeve 200 with sleeve 200 in an unexpanded state.
- Stylet 216 preferably includes a handle 220 and image guidance reflectors 222 similar to the embodiment shown in Figs. 1-3.
- sleeve 200 may have an outer diameter on the order of 3mm to 4mm with the stylet shaft 218 inserted therethrough.
- stylet shaft 218 with sleeve 200 mounted thereon is inserted through bore hole 100 in the skull 102 into the brain until tip 224 of shaft 218 is adjacent target tissue 104, preferably using image guidance.
- dilating obturator and cannula assembly 226 is inserted through bore 204 in hub 202, such that the blunt dilating tip 230 of the dilating obturator, which may be conical, rounded, semi-spherical (as shown) or other suitable atraumatic shape, spreads the expandable sleeve 200 to dilate the brain tissue and receive cannula 228.
- the dilating obturator 232 is removed, leaving cannula 228 surrounded by expandable sleeve 200 in place to provide access to target tissue 104 for surgery to be performed as previously described, as shown in Fig. 17.
- dilating obturator 332 is provided with a longitudinal channel 334 configured and dimensioned to receive stylet or probe shaft 318.
- the dilating obturator and cannula assembly is pre-mounted to the stylet or probe shaft 318.
- Shaft 318 is of sufficient length to accommodate both the expandable sleeve assembly and the dilating obturator/cannula assembly in stacked end to end relation.
- the stylet shaft 318 with the surrounding sleeve is inserted into the brain under image guidance (reflectors 322 allow orientation of the entire assembly under image guidance).
- the dilating obturator and cannula assembly may be slid distally over the stylet shaft 318 so that sleeve 200 expands over the dilating tip and cannula, gently spreading the brain tissue sufficiently to receive cannula 328. This may be accomplished by holding hub 302W ⁇ n ⁇ KkAd in the other, and moving the obturator distally while maintaining the position of the stylet and expandable sleeve.
- an advantage of this configuration is that the position of the stylet tip 324 relative to target tissue 104 may be confirmed under image guidance at one or more intervals as the dilating obturator and cannula assembly is inserted into the expandable sleeve, thereby assuring proper cannula placement.
- image guidance reflectors may be mounted to the dilator to be used with the embodiment shown in Fig. 16 either in addition to or in place of image guidance reflectors on the stylet or probe assembly.
- the optical dilating obturator of Figs. 6A — 6B may be used with the expandable sleeve embodiments ofFigs. 14-18.
- the cannula may be inserted in collapsed segments contained within the expandable sleeve and inserted together with the stylet and expandable sleeve.
- a radial force is applied to urge the cannula wall segments radially outward, thereby expanding the expandable sleeve and establishing the full cannula opening.
- the cannula wall segments lock in place in a manner similar to a Roman arch to support the expanded sleeve and create a working space.
- the radial force to expand the cannula segments may be created by a balloon, which desirably may be collapsed to a very low profile and yet may create the desired radial force to expand the sleeve, dilate the brain tissue and lock the cannula wall segments in place.
- a balloon which desirably may be collapsed to a very low profile and yet may create the desired radial force to expand the sleeve, dilate the brain tissue and lock the cannula wall segments in place.
- coil or spring structures may be used to create the desired radial force to expand the sleeve and cannula.
- FIGs. 19A and 19B an example of a balloon expanded cannula/sleeve assembly is shown in cross section at a point along the shaft of the expandable sleeve device.
- stylet shaft 418 is at the center of the structure, surrounded in radially outward order by a collapsed balloon 440, overlapping cannula wall sections 430 and expandable sleeve 400. All components extend the length of the expandable sleeve.
- the tip of stylet shaft 418 is inserted into brain tissue until the stylet tip and, hence, the distal end of the expandable sleeve is placed adjacent the target tissue, preferably using image guidance.
- Balloon 440 is expanded, such as by being filled under pressure with saline.
- the pressure created in the balloon forces the cannula wall segments 430 radially outward until the wall segments lock in place. See Fig. 19B.
- expandable sleeve 400 is in turn expanded outward to dilate surr ⁇ u'Mri ' g.brain ⁇ iss ⁇ e 1 .
- 'Oricfe Ili tfeb"daiEihula walls are locked out, the balloon may be deflated and the stylet and balloon removed, leaving an open cannula to access and perform surgery on target brain tissue.
- the radial expanding sleeve may provide advantages in performing brain surgery.
- FIGs. 2OA and 2OB an alternative structure for radially expanding sleeve 400 is shown in which shortening the length of an expanding structure 442 radially expands sleeve 400.
- expanding structure 42 in a first position expanding structure 42 has a first braid angle and a relatively small radial width.
- Fig. 2OB with the distal end of expanding structure 442 constrained against longitudinal movement, such by tethering the end of the braided structure, the proximal end of the braid is urged distally so that the braid shortens.
- the distal end of the braid could be tethered, for example, by a plurality of longitudinally extending wires or filaments circumferentially disposed around the braid running the length of the braid to the distal end thereof.
- the braid angle decreases and the diameter of the braid increases, thereby expanding the sleeve to create the desired diameter of sleeve for working access to the target tissue.
- shortening the braid may develop sufficient force to radially expand the sleeve, and consequently the surrounding brain tissue. It is also contemplated that the approach of shortening a braid to create radial force could be used to open cannula segments 430 (see Figs. 19A and 19B) to their open, locked position.
- the surgeon is provided an open cannula to access target tissue within the brain.
- the open cannula is placed atraumatically which may allow surgery to be performed deeper in the brain or in areas of the brain previously believed to be inaccessible without high risk of advance consequences for the patient.
- NumeMuS to the embodiments shown or described herein will become apparent to those skilled in the art based on this disclosure, and the disclosure is not intended to be limiting with respect to such additions or modifications.
- the proximal end of the cannula in all embodiments may be mounted to a housing or handle to facilitate control and movement of the cannula.
- such a cannula housing could couple to the expandable cannula housing (see Figs. 14-18) to positively position the cannula with respect to the expandable sleeve housing and, hence, the expandable sleeve.
- the techniques described herein are particularly useful to access tumors, cysts or other conditions which might otherwise be considered inoperable or might require much more invasive transcranial surgery to remove a larger portion of the skull and retract a substantial amount of brain tissue.
- the techniques described herein using dilating obturator and cannula permit brain surgery to be performed in a less invasive manner through an opening in the skull that is substantially smaller then otherwise possible, on the order of a 2 cm to 4 cm in diameter rather than a much larger opening for more traditional surgical techniques.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Hematology (AREA)
- Gastroenterology & Hepatology (AREA)
- Vascular Medicine (AREA)
- Anesthesiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Endoscopes (AREA)
- Surgical Instruments (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/665,667 US9216015B2 (en) | 2004-10-28 | 2005-10-28 | Apparatus and methods for performing brain surgery |
US14/134,360 US9386974B2 (en) | 2004-10-28 | 2013-12-19 | Apparatus and methods for performing brain surgery |
US15/083,940 US9968415B2 (en) | 2004-10-28 | 2016-03-29 | Apparatus and methods for performing brain surgery |
US15/083,916 US9968414B2 (en) | 2004-10-28 | 2016-03-29 | Apparatus and methods for performing brain surgery |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US62309404P | 2004-10-28 | 2004-10-28 | |
US62299104P | 2004-10-28 | 2004-10-28 | |
US60/622,991 | 2004-10-28 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/665,667 A-371-Of-International US9216015B2 (en) | 2004-10-28 | 2005-10-28 | Apparatus and methods for performing brain surgery |
US14/134,360 Continuation US9386974B2 (en) | 2004-10-28 | 2013-12-19 | Apparatus and methods for performing brain surgery |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2006050047A2 true WO2006050047A2 (fr) | 2006-05-11 |
WO2006050047A3 WO2006050047A3 (fr) | 2006-08-24 |
Family
ID=39227003
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2005/039185 WO2006050225A2 (fr) | 2004-10-28 | 2005-10-28 | Appareil et methodes pour la pratique de la chirurgie du cerveau |
PCT/US2005/038828 WO2006050047A2 (fr) | 2004-10-28 | 2005-10-28 | Dispositif et procedes pour mettre en oeuvre une intervention chirurgicale sur le cerveau |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2005/039185 WO2006050225A2 (fr) | 2004-10-28 | 2005-10-28 | Appareil et methodes pour la pratique de la chirurgie du cerveau |
Country Status (1)
Country | Link |
---|---|
WO (2) | WO2006050225A2 (fr) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008066543A1 (fr) | 2006-11-27 | 2008-06-05 | Vycor Medical Llc | Instruments d'accès chirurgicaux pour tissus délicats |
EP2111153A1 (fr) * | 2007-01-25 | 2009-10-28 | Warsaw Orthopedic, Inc. | Procédé et appareil destinés à l'affichage coordonné d'informations de neuromonitorage et d'anatomie |
WO2010145774A1 (fr) * | 2009-06-19 | 2010-12-23 | Olympus Winter & Ibe Gmbh | Port laparoscopique à pièce tubulaire |
WO2013000540A1 (fr) * | 2011-06-30 | 2013-01-03 | Siegfried Riek | Système de trocart |
WO2013063027A1 (fr) * | 2004-10-28 | 2013-05-02 | Nico Incorparation | Système d'accès chirurgical |
US8608650B2 (en) | 2005-06-17 | 2013-12-17 | Vycor Medical, Llc | Surgical access instruments for use with delicate tissues |
US9161820B2 (en) | 2004-10-28 | 2015-10-20 | Nico Corporation | Surgical access assembly and method of using same |
WO2015198032A1 (fr) * | 2014-06-27 | 2015-12-30 | Isis Innovation Limited | Appareil destiné à fournir et à maintenir un accès à un champ opératoire |
US9387010B2 (en) | 2004-10-28 | 2016-07-12 | Nico Corporation | Surgical access assembly and method of using same |
US9486131B2 (en) | 2009-03-26 | 2016-11-08 | Universiti Malaya | Apparatus for surgery |
US9687270B2 (en) | 2012-03-13 | 2017-06-27 | Thomas Gaiselmann | Instrument system for minimally invasive surgery in single port technology |
US9737287B2 (en) | 2014-05-13 | 2017-08-22 | Vycor Medical, Inc. | Guidance system mounts for surgical introducers |
US9757147B2 (en) | 2012-04-11 | 2017-09-12 | Nico Corporation | Surgical access system with navigation element and method of using same |
US9770261B2 (en) | 2004-10-28 | 2017-09-26 | Nico Corporation | Surgical access assembly and method of using same |
EP3171799A4 (fr) * | 2014-07-23 | 2018-04-18 | Trimarche, Robert | Modifications sur des orifices d'accès pour la neurochirurgie minimalement invasive |
US9968414B2 (en) | 2004-10-28 | 2018-05-15 | Vycor Medical, Inc. | Apparatus and methods for performing brain surgery |
AU2014306232B2 (en) * | 2013-08-05 | 2018-12-06 | C2Dx, Inc. | Medical devices having a releasable tubular member and methods of using the same |
US10307183B2 (en) | 2011-10-24 | 2019-06-04 | Nico Corporation | Surgical access system with navigation element and method of using same |
US10376258B2 (en) | 2016-11-07 | 2019-08-13 | Vycor Medical, Inc. | Surgical introducer with guidance system receptacle |
US10456061B2 (en) | 2014-11-12 | 2019-10-29 | Nico Corporation | Holding arrangement for a surgical access system |
US10543016B2 (en) | 2016-11-07 | 2020-01-28 | Vycor Medical, Inc. | Surgical introducer with guidance system receptacle |
US10543057B2 (en) | 2016-03-15 | 2020-01-28 | Nico Corporation | Selectively lockable holding arrangement for a surgical access system |
EP3457921A4 (fr) * | 2016-05-17 | 2020-04-29 | Rebound Therapeutics Corporation | Procédés et dispositifs de détection de couleur pour localiser la masse sanguine d'un hématome intracérébral |
US10765450B2 (en) | 2016-03-15 | 2020-09-08 | Nico Corporation | Selectively lockable holding arrangement for a surgical access system |
US11413066B2 (en) | 2016-03-15 | 2022-08-16 | Nico Corporation | Selectively lockable holding arrangement for a surgical access system |
US11433255B2 (en) | 2018-09-28 | 2022-09-06 | Carl Zeiss Meditec Ag | Applicator for intraoperative radiotherapy |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104771222B (zh) * | 2015-03-17 | 2017-08-25 | 绍兴第二医院 | 一种神经内镜鞘的制作方法及该神经内镜鞘 |
CN105343995A (zh) * | 2015-11-16 | 2016-02-24 | 深圳市擎源医疗器械有限公司 | 脑牵开装置 |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3690323A (en) * | 1970-12-01 | 1972-09-12 | Us Army | Device for draining ventricular fluid in cases of hydrocephalus |
US4638798A (en) * | 1980-09-10 | 1987-01-27 | Shelden C Hunter | Stereotactic method and apparatus for locating and treating or removing lesions |
US5183464A (en) * | 1991-05-17 | 1993-02-02 | Interventional Thermodynamics, Inc. | Radially expandable dilator |
US5320611A (en) * | 1993-02-04 | 1994-06-14 | Peter M. Bonutti | Expandable cannula having longitudinal wire and method of use |
US5431676A (en) * | 1993-03-05 | 1995-07-11 | Innerdyne Medical, Inc. | Trocar system having expandable port |
US5860996A (en) * | 1994-05-26 | 1999-01-19 | United States Surgical Corporation | Optical trocar |
US6047218A (en) * | 1996-10-28 | 2000-04-04 | Ep Technologies, Inc. | Systems and methods for visualizing interior tissue regions |
US6129685A (en) * | 1994-02-09 | 2000-10-10 | The University Of Iowa Research Foundation | Stereotactic hypothalamic obesity probe |
US6293952B1 (en) * | 1997-07-31 | 2001-09-25 | Circon Corporation | Medical instrument system for piercing through tissue |
US6331180B1 (en) * | 1988-05-03 | 2001-12-18 | Sherwood Services Ag | Target-centered stereotaxtic surgical arc system with reorientatable arc axis |
US6374135B1 (en) * | 1990-10-19 | 2002-04-16 | Saint Louis University | System for indicating the position of a surgical probe within a head on an image of the head |
US6416520B1 (en) * | 1999-04-23 | 2002-07-09 | Sherwood Services Ag | Microdrive for probes |
US20030073934A1 (en) * | 2001-10-17 | 2003-04-17 | David A. Putz | Double slotted-cannula device and method of use |
US6669685B1 (en) * | 1997-11-06 | 2003-12-30 | Biolase Technology, Inc. | Tissue remover and method |
US20040024291A1 (en) * | 2002-08-01 | 2004-02-05 | Zinkel John L. | Method and apparatus for spinal surgery |
US20040059375A1 (en) * | 2000-10-06 | 2004-03-25 | Integrated Vascular Systems, Inc. | Apparatus and methods for positioning a vascular sheath |
US20040068172A1 (en) * | 1996-02-27 | 2004-04-08 | Kent Ridge Digital Labs | Curved surgical instruments and method of mapping a curved path for stereotactic surgery |
US20040102804A1 (en) * | 1999-08-10 | 2004-05-27 | Chin Albert K. | Apparatus and methods for endoscopic surgical procedures |
US6942634B2 (en) * | 2002-03-22 | 2005-09-13 | Twin Star Medical, Inc. | System for treating tissue swelling |
-
2005
- 2005-10-28 WO PCT/US2005/039185 patent/WO2006050225A2/fr active Application Filing
- 2005-10-28 WO PCT/US2005/038828 patent/WO2006050047A2/fr active Application Filing
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3690323A (en) * | 1970-12-01 | 1972-09-12 | Us Army | Device for draining ventricular fluid in cases of hydrocephalus |
US4638798A (en) * | 1980-09-10 | 1987-01-27 | Shelden C Hunter | Stereotactic method and apparatus for locating and treating or removing lesions |
US6331180B1 (en) * | 1988-05-03 | 2001-12-18 | Sherwood Services Ag | Target-centered stereotaxtic surgical arc system with reorientatable arc axis |
US6374135B1 (en) * | 1990-10-19 | 2002-04-16 | Saint Louis University | System for indicating the position of a surgical probe within a head on an image of the head |
US5183464A (en) * | 1991-05-17 | 1993-02-02 | Interventional Thermodynamics, Inc. | Radially expandable dilator |
US5320611A (en) * | 1993-02-04 | 1994-06-14 | Peter M. Bonutti | Expandable cannula having longitudinal wire and method of use |
US5431676A (en) * | 1993-03-05 | 1995-07-11 | Innerdyne Medical, Inc. | Trocar system having expandable port |
US6129685A (en) * | 1994-02-09 | 2000-10-10 | The University Of Iowa Research Foundation | Stereotactic hypothalamic obesity probe |
US5860996A (en) * | 1994-05-26 | 1999-01-19 | United States Surgical Corporation | Optical trocar |
US20040068172A1 (en) * | 1996-02-27 | 2004-04-08 | Kent Ridge Digital Labs | Curved surgical instruments and method of mapping a curved path for stereotactic surgery |
US6047218A (en) * | 1996-10-28 | 2000-04-04 | Ep Technologies, Inc. | Systems and methods for visualizing interior tissue regions |
US6293952B1 (en) * | 1997-07-31 | 2001-09-25 | Circon Corporation | Medical instrument system for piercing through tissue |
US6669685B1 (en) * | 1997-11-06 | 2003-12-30 | Biolase Technology, Inc. | Tissue remover and method |
US6416520B1 (en) * | 1999-04-23 | 2002-07-09 | Sherwood Services Ag | Microdrive for probes |
US20040102804A1 (en) * | 1999-08-10 | 2004-05-27 | Chin Albert K. | Apparatus and methods for endoscopic surgical procedures |
US20040059375A1 (en) * | 2000-10-06 | 2004-03-25 | Integrated Vascular Systems, Inc. | Apparatus and methods for positioning a vascular sheath |
US20030073934A1 (en) * | 2001-10-17 | 2003-04-17 | David A. Putz | Double slotted-cannula device and method of use |
US6942634B2 (en) * | 2002-03-22 | 2005-09-13 | Twin Star Medical, Inc. | System for treating tissue swelling |
US20040024291A1 (en) * | 2002-08-01 | 2004-02-05 | Zinkel John L. | Method and apparatus for spinal surgery |
Cited By (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9968415B2 (en) | 2004-10-28 | 2018-05-15 | Vycor Medical, Inc. | Apparatus and methods for performing brain surgery |
US11464539B2 (en) | 2004-10-28 | 2022-10-11 | Nico Corporation | Surgical access assembly and method of using same |
US11412923B2 (en) | 2004-10-28 | 2022-08-16 | Nico Corporation | Surgical access assembly and method of using same |
WO2013063027A1 (fr) * | 2004-10-28 | 2013-05-02 | Nico Incorparation | Système d'accès chirurgical |
US9968414B2 (en) | 2004-10-28 | 2018-05-15 | Vycor Medical, Inc. | Apparatus and methods for performing brain surgery |
US10449340B2 (en) | 2004-10-28 | 2019-10-22 | Nico Corporation | Surgical access assembly and method of using same |
US10143366B2 (en) | 2004-10-28 | 2018-12-04 | Nico Corporation | Surgical access assembly and method of using same |
AU2012329006B2 (en) * | 2004-10-28 | 2018-03-01 | Nico Incorparation | Surgical access system |
US9161820B2 (en) | 2004-10-28 | 2015-10-20 | Nico Corporation | Surgical access assembly and method of using same |
US9186175B2 (en) | 2004-10-28 | 2015-11-17 | Nico Corporation | Surgical access assembly and method of using same |
US11969187B2 (en) | 2004-10-28 | 2024-04-30 | Nico Corporation | Surgical access assembly and method of using same |
US9387010B2 (en) | 2004-10-28 | 2016-07-12 | Nico Corporation | Surgical access assembly and method of using same |
US9770261B2 (en) | 2004-10-28 | 2017-09-26 | Nico Corporation | Surgical access assembly and method of using same |
US9579121B2 (en) | 2004-10-28 | 2017-02-28 | Nico Corporation | Holding arrangement for a surgical access system |
US9622777B2 (en) | 2004-10-28 | 2017-04-18 | Nico Corporation | Surgical access assembly and method of using same |
US11864793B2 (en) | 2004-10-28 | 2024-01-09 | Nico Corporation | Surgical access assembly and method of using same |
US9675331B2 (en) | 2005-06-17 | 2017-06-13 | Vycor Medical, Inc. | Tissue retractor apparatus and methods |
US9782157B2 (en) | 2005-06-17 | 2017-10-10 | Vycor Medical, Inc. | Tissue retractor apparatus and methods |
US8608650B2 (en) | 2005-06-17 | 2013-12-17 | Vycor Medical, Llc | Surgical access instruments for use with delicate tissues |
EP2086388A1 (fr) * | 2006-11-27 | 2009-08-12 | Vycor Medical LLC | Instruments d'accès chirurgicaux pour tissus délicats |
WO2008066543A1 (fr) | 2006-11-27 | 2008-06-05 | Vycor Medical Llc | Instruments d'accès chirurgicaux pour tissus délicats |
EP2086388A4 (fr) * | 2006-11-27 | 2013-04-24 | Vycor Medical Llc | Instruments d'accès chirurgicaux pour tissus délicats |
EP2111153A1 (fr) * | 2007-01-25 | 2009-10-28 | Warsaw Orthopedic, Inc. | Procédé et appareil destinés à l'affichage coordonné d'informations de neuromonitorage et d'anatomie |
US9486131B2 (en) | 2009-03-26 | 2016-11-08 | Universiti Malaya | Apparatus for surgery |
WO2010145774A1 (fr) * | 2009-06-19 | 2010-12-23 | Olympus Winter & Ibe Gmbh | Port laparoscopique à pièce tubulaire |
WO2013000540A1 (fr) * | 2011-06-30 | 2013-01-03 | Siegfried Riek | Système de trocart |
US10307183B2 (en) | 2011-10-24 | 2019-06-04 | Nico Corporation | Surgical access system with navigation element and method of using same |
US11284917B2 (en) | 2011-10-24 | 2022-03-29 | Nico Corporation | Surgical access assembly and method of using same |
US20190239923A1 (en) * | 2011-10-24 | 2019-08-08 | Nico Corporation | Surgical access system with navigation element and method of using same |
US9687270B2 (en) | 2012-03-13 | 2017-06-27 | Thomas Gaiselmann | Instrument system for minimally invasive surgery in single port technology |
US9757147B2 (en) | 2012-04-11 | 2017-09-12 | Nico Corporation | Surgical access system with navigation element and method of using same |
AU2014306232B2 (en) * | 2013-08-05 | 2018-12-06 | C2Dx, Inc. | Medical devices having a releasable tubular member and methods of using the same |
US12059144B2 (en) | 2014-05-13 | 2024-08-13 | Vycor Medical, Inc. | Guidance system mounts for surgical introducers |
US9737287B2 (en) | 2014-05-13 | 2017-08-22 | Vycor Medical, Inc. | Guidance system mounts for surgical introducers |
US11116487B2 (en) | 2014-05-13 | 2021-09-14 | Vycor Medical, Inc. | Guidance system mounts for surgical introducers |
US10327748B2 (en) | 2014-05-13 | 2019-06-25 | Vycor Medical, Inc. | Guidance system mounts for surgical introducers |
WO2015198032A1 (fr) * | 2014-06-27 | 2015-12-30 | Isis Innovation Limited | Appareil destiné à fournir et à maintenir un accès à un champ opératoire |
EP3171799A4 (fr) * | 2014-07-23 | 2018-04-18 | Trimarche, Robert | Modifications sur des orifices d'accès pour la neurochirurgie minimalement invasive |
US10456061B2 (en) | 2014-11-12 | 2019-10-29 | Nico Corporation | Holding arrangement for a surgical access system |
US11413066B2 (en) | 2016-03-15 | 2022-08-16 | Nico Corporation | Selectively lockable holding arrangement for a surgical access system |
US10543057B2 (en) | 2016-03-15 | 2020-01-28 | Nico Corporation | Selectively lockable holding arrangement for a surgical access system |
US10765450B2 (en) | 2016-03-15 | 2020-09-08 | Nico Corporation | Selectively lockable holding arrangement for a surgical access system |
US11980444B2 (en) | 2016-05-17 | 2024-05-14 | Rebound Therapeutics Corporation | Methods and devices for color detection to localize the blood mass of an intracerebral hematoma |
US11633107B2 (en) | 2016-05-17 | 2023-04-25 | Rebound Therapeutics Corporation | Methods and devices for color detection to localize the blood mass of an intracerebral hematoma |
US10874303B2 (en) | 2016-05-17 | 2020-12-29 | Rebound Therapeutics Corporation | Methods and devices for color detection to localize the blood mass of an intracerebral hematoma |
EP3457921A4 (fr) * | 2016-05-17 | 2020-04-29 | Rebound Therapeutics Corporation | Procédés et dispositifs de détection de couleur pour localiser la masse sanguine d'un hématome intracérébral |
US10376258B2 (en) | 2016-11-07 | 2019-08-13 | Vycor Medical, Inc. | Surgical introducer with guidance system receptacle |
US11517347B2 (en) | 2016-11-07 | 2022-12-06 | Vycor Medical, Inc. | Surgical introducer with guidance system receptacle |
US11045182B2 (en) | 2016-11-07 | 2021-06-29 | Vycor Medical, Inc. | Surgical introducer with guidance system receptacle |
US10543016B2 (en) | 2016-11-07 | 2020-01-28 | Vycor Medical, Inc. | Surgical introducer with guidance system receptacle |
US11433255B2 (en) | 2018-09-28 | 2022-09-06 | Carl Zeiss Meditec Ag | Applicator for intraoperative radiotherapy |
Also Published As
Publication number | Publication date |
---|---|
WO2006050225A2 (fr) | 2006-05-11 |
WO2006050047A3 (fr) | 2006-08-24 |
WO2006050225A3 (fr) | 2006-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9968414B2 (en) | Apparatus and methods for performing brain surgery | |
WO2006050047A2 (fr) | Dispositif et procedes pour mettre en oeuvre une intervention chirurgicale sur le cerveau | |
US20080109026A1 (en) | Apparatus and Methods for Performing Brain Surgery | |
US11412923B2 (en) | Surgical access assembly and method of using same | |
US10449340B2 (en) | Surgical access assembly and method of using same | |
US9770261B2 (en) | Surgical access assembly and method of using same | |
US9055936B2 (en) | Over dilation | |
US9579121B2 (en) | Holding arrangement for a surgical access system | |
JP4767252B2 (ja) | 肺のアクセス装置 | |
US10357280B2 (en) | Navigating introducer for tissue access system | |
KR20080042814A (ko) | 외과용 접근 장치, 시스템 및 사용 방법 | |
CA2901425A1 (fr) | Ensemble d'acces chirurgical et son procede d'utilisation | |
US20100217090A1 (en) | Retractor and mounting pad | |
US20030018340A1 (en) | Method and apparatus for installing cannula | |
US9949630B2 (en) | Medical instrument system and method for manipulating target tissue | |
US9427225B2 (en) | Tissue lifting | |
RU227667U1 (ru) | Устройство для удаления ферромагнитных инородных тел из головного мозга с использованием безрамной стереотаксической нейронавигации | |
US20210022769A1 (en) | Selectively lockable holding arrangement for a surgical access system | |
Koos et al. | Case study: Palliative resection of a glioblastoma using intraoperative CT-guided navigation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11665667 Country of ref document: US |
|
NENP | Non-entry into the national phase in: |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |
Ref document number: 05824162 Country of ref document: EP Kind code of ref document: A2 |