WO2006049711A1 - Leak detection structure - Google Patents

Leak detection structure Download PDF

Info

Publication number
WO2006049711A1
WO2006049711A1 PCT/US2005/033343 US2005033343W WO2006049711A1 WO 2006049711 A1 WO2006049711 A1 WO 2006049711A1 US 2005033343 W US2005033343 W US 2005033343W WO 2006049711 A1 WO2006049711 A1 WO 2006049711A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink
leak detection
wicking
sensor
leak
Prior art date
Application number
PCT/US2005/033343
Other languages
French (fr)
Inventor
Mark A. Devries
Rhonda L. Wilson
Craig Malik
Original Assignee
Hewlett-Packard Development Company, L.P.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/976,573 external-priority patent/US7454955B2/en
Priority to MX2007005021A priority Critical patent/MX2007005021A/en
Priority to DE602005014803T priority patent/DE602005014803D1/en
Priority to AT05798145T priority patent/ATE432826T1/en
Priority to DE112005002445T priority patent/DE112005002445T5/en
Priority to PL05798145T priority patent/PL1812239T3/en
Application filed by Hewlett-Packard Development Company, L.P. filed Critical Hewlett-Packard Development Company, L.P.
Priority to EP05798145A priority patent/EP1812239B1/en
Priority to AU2005301276A priority patent/AU2005301276B2/en
Priority to BRPI0516672-1A priority patent/BRPI0516672B1/en
Priority to CA2585307A priority patent/CA2585307C/en
Priority to JP2007538914A priority patent/JP4542585B2/en
Publication of WO2006049711A1 publication Critical patent/WO2006049711A1/en
Priority to GB0708130A priority patent/GB2434338B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17503Ink cartridges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17566Ink level or ink residue control

Definitions

  • Printing mechanisms may include a printhead for printing an image on a media.
  • One or more inks are usually supplied to the printhead from one or more ink reservoirs.
  • Certain printing mechanisms therefore include a sensor that is positioned within the printing mechanism to detect an ink leak and in response alert the user in some manner.
  • FIG. 1 is a schematic view of one embodiment of a printing mechanism that includes an exemplary leak detection structure in accordance with an embodiment of the present invention.
  • FIG. 2 is a partial cross-sectional side view of an exemplary embodiment of an ink supply including an exemplary leak detection structure in accordance with an embodiment of the present invention.
  • FIG. 3 is a detailed perspective view of the exemplary leak detection structure shown in FIG. 2.
  • FIG. 4 is a partial cross-sectional side view of the exemplary leak detection structure shown in FIG. 2.
  • FIG. 5 is a partial cross-sectional side view of another exemplary leak detection structure in accordance with another embodiment of the present invention.
  • FIG. 6 is a partial cross-sectional side view of another exemplary leak detection structure in accordance with yet another embodiment of the present invention. Detailed Description of the Drawings
  • FIG. 1 is a schematic view of one embodiment of a printing mechanism 10 for printing an image on one embodiment of a media 12.
  • Printing mechanism 10 may be a printer, a copier, a facsimile machine, a camera or the like, any combination thereof, or any device suitable for imaging.
  • Media 12 may include paper, fabric, mylar, transparency foils, cardboard, or any other medium suitable for imaging thereon.
  • Printing mechanism 10 includes a print cartridge 14 for printing an image on media 12.
  • Print cartridge 14 is operatively connected to an ink supply 16, such as, for example, by a connection tube 18 or the like. In this manner, ink contained within ink supply 16 can then be delivered to print cartridge 14.
  • a sensor 19 is positioned within printing mechanism 10 so as to detect a leakage of ink from ink supply 16.
  • Sensor 19 may be operatively connected to a controller 20 wherein controller 20 may activate a notification device 22, such as a visual or an audible alert device, which may alert a user that an ink leak has occurred. Controller 20 may also function to shut down operation of printing mechanism 10 if a leak is detected.
  • a notification device 22 such as a visual or an audible alert device
  • FIG. 2 is a partial cross-sectional side view of one embodiment of ink supply 16.
  • ink supply 16 includes a chassis 24 that is connected to a first ink container 26, such as a flexible ink container or a bag (shown in a small size for ease of illustration), and a second ink container 28, such as a rigid container or a bottle.
  • Bag 26 is secured on an upwardly extending projection 30 of chassis 24, which includes a support fin 30a, wherein an interior 32 of bag 26 and an interior 34 of projection 30 are in fluidic communication with connection tube 18 (see FIG. 1), and therefore, in connection with print cartridge 14 (see FIG. 1).
  • ink 36 contained within bag 26 is delivered to print cartridge 14.
  • bag 26 is "heat staked," e.g., welded or heat sealed, to projection 30 and fin 30a along a heat sealing region 26a of bag 26.
  • ink supply 16 includes an ink reservoir 38 that is defined by an upwardly extending wall 40 that extends around a perimeter 42 of chassis 24.
  • Ink reservoir 38 is structured to retain at least a portion of ink that leaks from bag 26.
  • Wall 40 includes a securement structure, such as an outwardly extending ridge 44, that is utilized to retain bottle 28 thereon.
  • bottle 28 is secured to chassis 24, with an intervening o- ring 45, by a clamp ring 47 positioned therearound.
  • Bag 26 is secured on chassis 24 and inside bottle 28.
  • Bottle 28 with bag 26 therein functions as a double wall ink supply container which may function to reduce ink leakage to the outside of bottle 28. Accordingly, such a double wall ink supply container may limit ink damage to components of printing mechanism 10 that may be positioned outside of bottle 28. Damage to components of printing mechanism 10 (see FIG. 1) may also be reduced by positioning a sensor within bottle 28 so as to detect an ink leaked from bag 26, before the ink leaks from bottle 28.
  • Ink supply 16 further includes sensor 19 which, in this example, is secured on chassis 24 outside of bag 26 and inside of bottle 28. Sensor 19 is configured to detect the presence of ink. As such, sensor 19 and/or operative components of sensor 19 are positioned within ink reservoir 38 such that if ink leaks from bag 26 and flows downwardly into ink reservoir 38 it is detected. When sensor 19 detects the presence of leaked ink it notifies or otherwise signals controller 20 or other like circuitry (see FIG. 1).
  • sensor 19 includes as operative components first and second contact pads 50 and 52, respectively, that are positioned nearby or adjacent one another. In this embodiment, pads 50 and 52 each define a detection surface 54 and 56, respectively. In the embodiment shown, detection surfaces 54 and 56 are gold contact pads.
  • Detection surfaces 54 and 56 may be positioned in a plane 58 (e.g., as shown in end view in FIG. 4) that is perpendicular to a plane 60 of a base 62 of chassis 24.
  • sensor 19 is a flexible circuit including a plurality of traces that are in electrical contact with detection surfaces 54 and 56 such that an electrical conductivity between surfaces 54 and 56 may be signaled to controller 20.
  • Sensor 19 is configured to measure or otherwise detect changes in one or more electrical parameters using detection surfaces 54 and 56.
  • the electrical parameters will change in some manner when leaked ink contacts detection surfaces 54 and/or 56.
  • the measured/detected electrical parameters may include resistance, impedance, capacitance, etc.
  • sensor 19 will detect an electrical parameter associated with the air.
  • sensor 19 may measure the resistance between detection surfaces 54 and 56 through the air. If the measured resistance is above a predetermined threshold level, such as a resistance level of about 8 mega ohms, then a "no leak" condition may be reported to controller 20 (see FIG. 1).
  • both of detection surfaces 54 and 56 may be in contact with leaked ink which may provide a conductivity path between surfaces 54 and 56.
  • the ink may have a lower electrical resistance value than air, which may be at or below a predetermined threshold level, such as at a resistance level of about 6 mega ohms or lower, such that a "leak" condition may be detected by controller 20.
  • the predetermined threshold measurement level may be set at any value desired and in some embodiments, may be varied during use.
  • ink supply 16 may further include a leak detection structure 64 that may be positioned adjacent to or in contact with sensor 19.
  • Leak detection structure 64 is configured to function to move ink leaked into ink reservoir 38 upwardly onto, and to retain the ink on, detection surfaces 54 and 56 of sensor 19.
  • leak detection structure 64 includes a first rib 66 positioned adjacent first detection surface 54 and a second rib 68 positioned adjacent second detection surface 56. Ribs 66 and 68 may be spaced from detection surfaces 54 and 56, respectively, a predetermined distance, as will be described in more detail below.
  • Ribs 66 and 68 may define a wicking and/or a capillary structure such that ink retained in ink reservoir 38 may be moved by wicking and/or capillary action upwardly between ribs 66 and 68 and detection surfaces 54 and 56, respectively, and into contact with detection surfaces 54 and 56.
  • FIGS. 3 and 4 are a detailed perspective view and a partial cross-sectional side view, respectively, of leak detection structure 64 shown in FIG. 2.
  • ribs 66 and 68 extend upwardly from a base 70 of leak detection structure 64, wherein base 70 is positioned against a lower region 72 of sensor 19.
  • Each of ribs 66 and 68 may include a wicking surface 74 and 76, respectively, positioned adjacent to and spaced from each of detection surfaces 54 and 56, respectively.
  • wicking surfaces 74 and 76 may be inclined with respect to plane 58 so as to define an angle 77 therebetween.
  • Angle 77 may be any angle suited for a particular sensor or detection surface. In the exemplary embodiment shown, angle 77 is about 15 degrees.
  • angle 77 may be a low as zero degrees, i.e., parallel to the detection surfaces, about five degrees from the detection surfaces, and as high or higher than about thirty degrees.
  • one or both of wicking surface 74 and 76 are inclined with respect to plane 58 such that an upper region of the wicking surfaces may be closer to plane 58 than a lower region of wicking surface 74 and 76.
  • plane 58 of detection surfaces 54 and 56 are inclined with respect to a vertical plane.
  • Wicking surfaces 74 and 76 may be spaced from detection surfaces 54 and 56, respectively, a distance 78 in a lower region of surfaces 74 and 76, and may be spaced from detection surfaces 54 and 56, respectively, a distance 80 in an upper region of surfaces 74 and 76.
  • Distances 78 and 80 may be any distance or spacing sufficient to facilitate movement of ink 36 (see FIG. 2) upwardly between wicking surfaces 74 and 76 and detection surfaces 54 and 56, respectively, by capillary or surface tension forces. Accordingly, distances 78 and 80 may vary from one printing mechanism to another based on the surface tension properties of ink 36 (see FIG. 2) contained within ink supply 16 (see FIG. 1), and which may leak into ink reservoir 38 of chassis 24 (see FIG. T).
  • distances 78 and 80 may be in a range of zero to about 20 millimeters. In certain embodiments, distances 78 and 80 are less than about 5 millimeters.
  • level 82 may be contiguous with a floor 92 of ink reservoir 38, or may be positioned at any level as desired.
  • path 90 has a width 94 that may be sufficient to allow ink 36 (see FIG. 2) to move upwardly along path 90 and simultaneously onto detection surfaces 54 and 56 by capillary action and/or surface tension forces. Moreover, width 94 may be sufficient to retain ink 36 (see FIG. 2) within path 90 due to capillary and/or surface tension forces. In the embodiment shown in FIGS. 3 and 4, width 94 of path 90 varies from distance 78 in a lower region of detection surfaces 54 and 56 to distance 80 in an upper region of detection surface 54 and 56.
  • leak detection structure 64 positioned adjacent to or in contact with detection surfaces 54 and 56, an ink leak is detected prior to ink reservoir 38 filling completely to a level as high as detection surfaces 54 and 56, such as a level 88.
  • the difference in a volume of ink at level 82 and a volume of ink at level 88 within ink reservoir 38 can be quite large, such that incorporation of ink detection structure 64 in printing mechanism 10 (see FIG. 1) may significantly reduce the amount of ink present in ink reservoir 38 before a leak may be detected.
  • incorporation of ink detection structure 64 in printing mechanism 10 tends to significantly reduce the amount of time that may pass from an initial leak before a leak may be detected.
  • leak detection structure 64 may allow detection of a leak upon leakage of a significantly smaller amount of ink than devices that do not include ink detection structure 64. Detection of a leak at an earlier time, i.e., after leakage of a lesser amount of ink, may result in preventative measures being taken at an earlier time, thereby potentially reducing damage to printing mechanism 10.
  • FIG. 5 is a side view of another embodiment of a leak detection structure 64.
  • leak detection structure 64 includes a solid wall 96 and sensor 19 includes a pair of detection surfaces 98.
  • wall 96 may define a wicking surface 100 that may define a plane 102 (seen in side view) that may be parallel to a plane 104 (seen in side view) of pair of detection surfaces 98.
  • Wall 96 may be spaced from sensor 19 and from pair of detection surfaces 98 by a spacing 106, wherein spacing 106 may extend downwardly to floor 92 of chassis 24 and ink reservoir 38. Accordingly, an ink wicking pathway 108 extends upwardly directly from floor 92 of chassis 24. Ink leaked into ink reservoir 38 (see FIG.
  • FIG. 6 is a side view of another embodiment of a leak detection structure 64.
  • leak detection structure 64 includes a wicking material, such as an absorbent material 110 that extends upwardly from floor 92 of chassis 24 and is positioned adjacent to and in contact with pair of detection surfaces 98 of sensor 19.
  • a wicking and/or capillary pathway 112 of ink 36 may extend through absorbent material 110 itself.
  • Absorbent material 110 may, for example, include an open cell foam or any other type of material that may facilitate ink being drawn into and upwardly within the material so as to come into contact with detection surfaces 98 of sensor 19.
  • Absorbent material 110 may include a foam, a woven fiber, a plastic fiber, or the like.
  • ink is draw upwardly and into contact with pair of detection surfaces 98 so as to define a conductivity pathway therebetween that may be sensed by controller 20 (FIG. 1).
  • controller 20 In an absence of ink within absorbent material 110, sensor 20 detects a conductivity of air between pair of detection surfaces 98.
  • absorbent material 110 provides wicking pathway 112 through which ink moves by a wicking action. Accordingly, in the exemplary embodiments shown, ink moves upwardly through an air space, such as pathway 90 (FIG. 4), 108 (FIG. 5) or 112 (FIG. 6) and into contact with a detection surface, wherein the pathway is defined by an upwardly extending structure positioned near or adjacent to the detection surfaces.
  • an air space such as pathway 90 (FIG. 4), 108 (FIG. 5) or 112 (FIG. 6) and into contact with a detection surface, wherein the pathway is defined by an upwardly extending structure positioned near or adjacent to the detection surfaces.

Landscapes

  • Ink Jet (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • External Artificial Organs (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

One embodiment of a leak detection structure (64) includes a sensor (19) having a leak detection surface (54) and a wicking structure (66) positioned adjacent the leak detection surface (54), the wicking structure (66) adapted for wicking a fluid onto the leak detection surface (54).

Description

LEAK DETECTION STRUCTURE
Background
Printing mechanisms may include a printhead for printing an image on a media.
One or more inks are usually supplied to the printhead from one or more ink reservoirs.
Unfortunately, if ink leaks from an ink reservoir it may harm components within the printing mechanism. Certain printing mechanisms therefore include a sensor that is positioned within the printing mechanism to detect an ink leak and in response alert the user in some manner.
Brief Description of the Drawings
FIG. 1 is a schematic view of one embodiment of a printing mechanism that includes an exemplary leak detection structure in accordance with an embodiment of the present invention.
FIG. 2 is a partial cross-sectional side view of an exemplary embodiment of an ink supply including an exemplary leak detection structure in accordance with an embodiment of the present invention. FIG. 3 is a detailed perspective view of the exemplary leak detection structure shown in FIG. 2.
FIG. 4 is a partial cross-sectional side view of the exemplary leak detection structure shown in FIG. 2.
FIG. 5 is a partial cross-sectional side view of another exemplary leak detection structure in accordance with another embodiment of the present invention.
FIG. 6 is a partial cross-sectional side view of another exemplary leak detection structure in accordance with yet another embodiment of the present invention. Detailed Description of the Drawings
FIG. 1 is a schematic view of one embodiment of a printing mechanism 10 for printing an image on one embodiment of a media 12. Printing mechanism 10 may be a printer, a copier, a facsimile machine, a camera or the like, any combination thereof, or any device suitable for imaging. Media 12 may include paper, fabric, mylar, transparency foils, cardboard, or any other medium suitable for imaging thereon. Printing mechanism 10 includes a print cartridge 14 for printing an image on media 12. Print cartridge 14 is operatively connected to an ink supply 16, such as, for example, by a connection tube 18 or the like. In this manner, ink contained within ink supply 16 can then be delivered to print cartridge 14. A sensor 19 is positioned within printing mechanism 10 so as to detect a leakage of ink from ink supply 16. Sensor 19 may be operatively connected to a controller 20 wherein controller 20 may activate a notification device 22, such as a visual or an audible alert device, which may alert a user that an ink leak has occurred. Controller 20 may also function to shut down operation of printing mechanism 10 if a leak is detected.
FIG. 2 is a partial cross-sectional side view of one embodiment of ink supply 16. In this example, ink supply 16 includes a chassis 24 that is connected to a first ink container 26, such as a flexible ink container or a bag (shown in a small size for ease of illustration), and a second ink container 28, such as a rigid container or a bottle. Bag 26 is secured on an upwardly extending projection 30 of chassis 24, which includes a support fin 30a, wherein an interior 32 of bag 26 and an interior 34 of projection 30 are in fluidic communication with connection tube 18 (see FIG. 1), and therefore, in connection with print cartridge 14 (see FIG. 1). In this manner, ink 36 contained within bag 26 is delivered to print cartridge 14. In the embodiment shown, bag 26 is "heat staked," e.g., welded or heat sealed, to projection 30 and fin 30a along a heat sealing region 26a of bag 26.
As further illustrated in the example in Fig. 2, ink supply 16 includes an ink reservoir 38 that is defined by an upwardly extending wall 40 that extends around a perimeter 42 of chassis 24. Ink reservoir 38 is structured to retain at least a portion of ink that leaks from bag 26. Here, leaking ink will likely flow downwardly into ink reservoir 38 by the force of gravity. The leaking ink may also flow downwardly as a result of air pressure or the like. Wall 40 includes a securement structure, such as an outwardly extending ridge 44, that is utilized to retain bottle 28 thereon. In the exemplary embodiment shown, bottle 28 is secured to chassis 24, with an intervening o- ring 45, by a clamp ring 47 positioned therearound. Bag 26 is secured on chassis 24 and inside bottle 28. Bottle 28 with bag 26 therein, therefore, functions as a double wall ink supply container which may function to reduce ink leakage to the outside of bottle 28. Accordingly, such a double wall ink supply container may limit ink damage to components of printing mechanism 10 that may be positioned outside of bottle 28. Damage to components of printing mechanism 10 (see FIG. 1) may also be reduced by positioning a sensor within bottle 28 so as to detect an ink leaked from bag 26, before the ink leaks from bottle 28.
Ink supply 16 further includes sensor 19 which, in this example, is secured on chassis 24 outside of bag 26 and inside of bottle 28. Sensor 19 is configured to detect the presence of ink. As such, sensor 19 and/or operative components of sensor 19 are positioned within ink reservoir 38 such that if ink leaks from bag 26 and flows downwardly into ink reservoir 38 it is detected. When sensor 19 detects the presence of leaked ink it notifies or otherwise signals controller 20 or other like circuitry (see FIG. 1). In Fig. 2, sensor 19 includes as operative components first and second contact pads 50 and 52, respectively, that are positioned nearby or adjacent one another. In this embodiment, pads 50 and 52 each define a detection surface 54 and 56, respectively. In the embodiment shown, detection surfaces 54 and 56 are gold contact pads. Detection surfaces 54 and 56 may be positioned in a plane 58 (e.g., as shown in end view in FIG. 4) that is perpendicular to a plane 60 of a base 62 of chassis 24. In the exemplary embodiment sensor 19 is a flexible circuit including a plurality of traces that are in electrical contact with detection surfaces 54 and 56 such that an electrical conductivity between surfaces 54 and 56 may be signaled to controller 20.
Sensor 19 is configured to measure or otherwise detect changes in one or more electrical parameters using detection surfaces 54 and 56. The electrical parameters will change in some manner when leaked ink contacts detection surfaces 54 and/or 56. The measured/detected electrical parameters may include resistance, impedance, capacitance, etc. For example, in a nominal, non-leak state, detection surfaces 54 and 56 would be in contact with air. Accordingly, sensor 19 will detect an electrical parameter associated with the air. For example, sensor 19 may measure the resistance between detection surfaces 54 and 56 through the air. If the measured resistance is above a predetermined threshold level, such as a resistance level of about 8 mega ohms, then a "no leak" condition may be reported to controller 20 (see FIG. 1). In a leak state, for example, both of detection surfaces 54 and 56 may be in contact with leaked ink which may provide a conductivity path between surfaces 54 and 56. The ink may have a lower electrical resistance value than air, which may be at or below a predetermined threshold level, such as at a resistance level of about 6 mega ohms or lower, such that a "leak" condition may be detected by controller 20. The predetermined threshold measurement level may be set at any value desired and in some embodiments, may be varied during use.
Still referring to FIG. 2, ink supply 16 may further include a leak detection structure 64 that may be positioned adjacent to or in contact with sensor 19. Leak detection structure 64 is configured to function to move ink leaked into ink reservoir 38 upwardly onto, and to retain the ink on, detection surfaces 54 and 56 of sensor 19. In the embodiment shown in FIG. 2, leak detection structure 64 includes a first rib 66 positioned adjacent first detection surface 54 and a second rib 68 positioned adjacent second detection surface 56. Ribs 66 and 68 may be spaced from detection surfaces 54 and 56, respectively, a predetermined distance, as will be described in more detail below. Ribs 66 and 68, therefore, may define a wicking and/or a capillary structure such that ink retained in ink reservoir 38 may be moved by wicking and/or capillary action upwardly between ribs 66 and 68 and detection surfaces 54 and 56, respectively, and into contact with detection surfaces 54 and 56.
FIGS. 3 and 4 are a detailed perspective view and a partial cross-sectional side view, respectively, of leak detection structure 64 shown in FIG. 2. In this embodiment, ribs 66 and 68 extend upwardly from a base 70 of leak detection structure 64, wherein base 70 is positioned against a lower region 72 of sensor 19. Each of ribs 66 and 68 may include a wicking surface 74 and 76, respectively, positioned adjacent to and spaced from each of detection surfaces 54 and 56, respectively. In the embodiment shown, wicking surfaces 74 and 76 may be inclined with respect to plane 58 so as to define an angle 77 therebetween. Angle 77 may be any angle suited for a particular sensor or detection surface. In the exemplary embodiment shown, angle 77 is about 15 degrees. In other embodiments, angle 77 may be a low as zero degrees, i.e., parallel to the detection surfaces, about five degrees from the detection surfaces, and as high or higher than about thirty degrees. In another embodiment, one or both of wicking surface 74 and 76 are inclined with respect to plane 58 such that an upper region of the wicking surfaces may be closer to plane 58 than a lower region of wicking surface 74 and 76. In still another embodiment, plane 58 of detection surfaces 54 and 56 are inclined with respect to a vertical plane. Wicking surfaces 74 and 76 may be spaced from detection surfaces 54 and 56, respectively, a distance 78 in a lower region of surfaces 74 and 76, and may be spaced from detection surfaces 54 and 56, respectively, a distance 80 in an upper region of surfaces 74 and 76. Distances 78 and 80 may be any distance or spacing sufficient to facilitate movement of ink 36 (see FIG. 2) upwardly between wicking surfaces 74 and 76 and detection surfaces 54 and 56, respectively, by capillary or surface tension forces. Accordingly, distances 78 and 80 may vary from one printing mechanism to another based on the surface tension properties of ink 36 (see FIG. 2) contained within ink supply 16 (see FIG. 1), and which may leak into ink reservoir 38 of chassis 24 (see FIG. T). In the exemplary embodiment shown, wherein ink 36 (see FIG. 2) includes inkjet ink suited for printing on a sheet of paper, distances 78 and 80 may be in a range of zero to about 20 millimeters. In certain embodiments, distances 78 and 80 are less than about 5 millimeters.
Due to the wicking properties of leak detection structure 64, once ink rises to a level 82 within ink reservoir 38, the ink may be moved by capillary and/or wicking action upwardly in direction 84 between wicking surfaces 74 and 76 and detection surfaces 54 and 56, respectively, to a height 86, for example, such that a conductivity path is created between detection surfaces 54 and 56 through the ink, thereby allowing sensor 19 to detect the presence of leaked ink. In other embodiments, level 82 may be contiguous with a floor 92 of ink reservoir 38, or may be positioned at any level as desired.
The space between wicking surfaces 74 and 76 and detection surfaces 54 and 56, respectively, may be referred to as a wicking and/or capillary path 90. Here, path 90 has a width 94 that may be sufficient to allow ink 36 (see FIG. 2) to move upwardly along path 90 and simultaneously onto detection surfaces 54 and 56 by capillary action and/or surface tension forces. Moreover, width 94 may be sufficient to retain ink 36 (see FIG. 2) within path 90 due to capillary and/or surface tension forces. In the embodiment shown in FIGS. 3 and 4, width 94 of path 90 varies from distance 78 in a lower region of detection surfaces 54 and 56 to distance 80 in an upper region of detection surface 54 and 56. Due to leak detection structure 64 positioned adjacent to or in contact with detection surfaces 54 and 56, an ink leak is detected prior to ink reservoir 38 filling completely to a level as high as detection surfaces 54 and 56, such as a level 88. The difference in a volume of ink at level 82 and a volume of ink at level 88 within ink reservoir 38 can be quite large, such that incorporation of ink detection structure 64 in printing mechanism 10 (see FIG. 1) may significantly reduce the amount of ink present in ink reservoir 38 before a leak may be detected. Thus, incorporation of ink detection structure 64 in printing mechanism 10 (see FIG. 1) tends to significantly reduce the amount of time that may pass from an initial leak before a leak may be detected.
By way of example, in one test case, wherein ink detection structure 64 was not incorporated in printing mechanism 10, ink was detected by sensor 19 when 2.6 cubic centimeters (cc) of ink was leaked from bag 26. After incorporation of leak detection structure 64 into printing mechanism 10 adjacent sensor 19, ink was detected by sensor 19 when 0.6 cc of ink was leaked from bag 26. Accordingly, leak detection structure 64 may allow detection of a leak upon leakage of a significantly smaller amount of ink than devices that do not include ink detection structure 64. Detection of a leak at an earlier time, i.e., after leakage of a lesser amount of ink, may result in preventative measures being taken at an earlier time, thereby potentially reducing damage to printing mechanism 10.
FIG. 5 is a side view of another embodiment of a leak detection structure 64. In this embodiment, leak detection structure 64 includes a solid wall 96 and sensor 19 includes a pair of detection surfaces 98. In this embodiment, wall 96 may define a wicking surface 100 that may define a plane 102 (seen in side view) that may be parallel to a plane 104 (seen in side view) of pair of detection surfaces 98. Wall 96 may be spaced from sensor 19 and from pair of detection surfaces 98 by a spacing 106, wherein spacing 106 may extend downwardly to floor 92 of chassis 24 and ink reservoir 38. Accordingly, an ink wicking pathway 108 extends upwardly directly from floor 92 of chassis 24. Ink leaked into ink reservoir 38 (see FIG. 2) , therefore, may quickly come into contact with pathway 108 such that even a very small amount of leaked ink may generate a volume of ink sufficient to be wicked along pathway 108 to as to allow detection of the ink leak by sensor 19 and controller 20 (see FIG. 1).
FIG. 6 is a side view of another embodiment of a leak detection structure 64. In this embodiment, leak detection structure 64 includes a wicking material, such as an absorbent material 110 that extends upwardly from floor 92 of chassis 24 and is positioned adjacent to and in contact with pair of detection surfaces 98 of sensor 19. In this embodiment, a wicking and/or capillary pathway 112 of ink 36 (see FIG. 2) may extend through absorbent material 110 itself. Absorbent material 110 may, for example, include an open cell foam or any other type of material that may facilitate ink being drawn into and upwardly within the material so as to come into contact with detection surfaces 98 of sensor 19. Absorbent material 110 may include a foam, a woven fiber, a plastic fiber, or the like. In this embodiment, ink is draw upwardly and into contact with pair of detection surfaces 98 so as to define a conductivity pathway therebetween that may be sensed by controller 20 (FIG. 1). In an absence of ink within absorbent material 110, sensor 20 detects a conductivity of air between pair of detection surfaces 98.
Similar to the ink wicking pathway 90 of FIG. 4 and pathway 108 of FIG. 5, absorbent material 110 provides wicking pathway 112 through which ink moves by a wicking action. Accordingly, in the exemplary embodiments shown, ink moves upwardly through an air space, such as pathway 90 (FIG. 4), 108 (FIG. 5) or 112 (FIG. 6) and into contact with a detection surface, wherein the pathway is defined by an upwardly extending structure positioned near or adjacent to the detection surfaces. Other variations and modifications of the concepts described herein may be utilized and fall within the scope of the claims below.

Claims

We claim:
1. A leak detection structure (64), comprising: a sensor (19) including a leak detection surface (54); and a wicking structure (66) positioned adjacent said leak detection surface
(54), said wicking structure (66) adapted for wicking a fluid into contact with said leak detection surface (54).
2. A leak detection structure (64) according to claim 1 wherein said wicking structure (66) includes a wicking surface (74) spaced from said leak detection surface (54) so as to define therebetween a wicking path (90) for said fluid.
3. A leak detection structure (64) according to claim 1 wherein said wicking structure (66) comprises an absorbent material (110) positioned in contact with said leak detection surface (54), said absorbent material (110) adapted for absorbing said fluid therein.
4. A leak detection structure (64) according to claim 2 wherein said wicking structure (66) comprises a rib (66) that includes said wicking surface (74), and wherein said wicking surface (74) defines a plane positioned with respect to a plane of said leak detection surface at an angle (77) in a range of zero to thirty degrees.
5. A leak detection structure (64) according to claim 2 wherein said wicking path (90) defines a width (94) sufficient to retain said fluid within said path due to surface tension forces.
6. A leak detection structure (64) according to claim 1 wherein said leak detection surface (54) comprises first and second contact pads (50, 52), and wherein said wicking structure (66) is adapted for wicking a fluid simultaneously onto said first and second contact pads (50, 52) so as to define an conductively path between said pads and through said fluid.
7. A leak detection structure (64) according to claim 6 further comprising a controller (20), and wherein said sensor (19) indicates to said controller that a leak is detected when a resistance of said conductivity path between said pads reaches a resistance of 8 mega ohms or less.
8. A leak detection structure (64) according to claim 3 wherein said absorbent material (110) is chosen from the group consisting of foam, woven fiber, plastic fiber.
9. A printing mechanism (10), comprising: an ink sensor (19); and a capillary structure (64) positioned adjacent said ink sensor, said capillary structure defining a capillary ink path (90) onto said sensor.
10. A printing mechanism (10) according to claim 9 wherein said sensor (19) includes an ink detection surface (54) and said capillary structure includes a capillary surface (74) spaced from said ink detection surface so as to define said capillary ink path (90) therebetween.
PCT/US2005/033343 2004-10-27 2005-09-19 Leak detection structure WO2006049711A1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2007538914A JP4542585B2 (en) 2004-10-27 2005-09-19 Leak detection structure
DE602005014803T DE602005014803D1 (en) 2004-10-27 2005-09-19 Leak detection structure
AT05798145T ATE432826T1 (en) 2004-10-27 2005-09-19 LEAK COLLECTION STRUCTURE
DE112005002445T DE112005002445T5 (en) 2004-10-27 2005-09-19 Leak detection structure
PL05798145T PL1812239T3 (en) 2004-10-27 2005-09-19 Leak detection structure
MX2007005021A MX2007005021A (en) 2004-10-27 2005-09-19 Leak detection structure.
EP05798145A EP1812239B1 (en) 2004-10-27 2005-09-19 Leak detection structure
AU2005301276A AU2005301276B2 (en) 2004-10-27 2005-09-19 Leak detection structure
BRPI0516672-1A BRPI0516672B1 (en) 2004-10-27 2005-09-19 LEAK DETECTION STRUCTURE AND PRINTING MECHANISM
CA2585307A CA2585307C (en) 2004-10-27 2005-09-19 Leak detection structure
GB0708130A GB2434338B (en) 2004-10-27 2007-04-26 Ink supply with leak detection function

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US62291904P 2004-10-27 2004-10-27
US60/622,919 2004-10-27
US10/976,573 US7454955B2 (en) 2004-10-29 2004-10-29 Leak detection structure
US10/976,573 2004-10-29

Publications (1)

Publication Number Publication Date
WO2006049711A1 true WO2006049711A1 (en) 2006-05-11

Family

ID=35708664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/033343 WO2006049711A1 (en) 2004-10-27 2005-09-19 Leak detection structure

Country Status (12)

Country Link
EP (1) EP1812239B1 (en)
JP (1) JP4542585B2 (en)
AT (1) ATE432826T1 (en)
AU (1) AU2005301276B2 (en)
BR (1) BRPI0516672B1 (en)
CA (1) CA2585307C (en)
DE (2) DE112005002445T5 (en)
ES (1) ES2324358T3 (en)
GB (1) GB2434338B (en)
MX (1) MX2007005021A (en)
PL (2) PL382399A1 (en)
WO (1) WO2006049711A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9676183B1 (en) 2016-07-12 2017-06-13 Hewlett-Packard Development Company, L.P. Drop detection with ribs to align emitters and detectors
US9744768B2 (en) 2014-11-10 2017-08-29 Seiko Epson Corporation Liquid ejecting apparatus with ink receiving tray and detector

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5332835B2 (en) * 2009-04-06 2013-11-06 ブラザー工業株式会社 Ink cartridge and recording apparatus
JP6127654B2 (en) * 2013-03-29 2017-05-17 ブラザー工業株式会社 Liquid cartridge
US10953660B2 (en) 2016-12-27 2021-03-23 Sicpa Holding Sa Inkjet print head device and a method and system for detecting ink leakage

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0768183A2 (en) * 1995-10-13 1997-04-16 Canon Kabushiki Kaisha Ink tank with ink container and waste ink container
EP0882594A1 (en) * 1997-06-04 1998-12-09 Hewlett-Packard Company Ink container with an inductive ink level detection machanism attached to a collapsible ink bag
US5918267A (en) * 1997-06-04 1999-06-29 Raychem Corporation Leak detection
US6402277B1 (en) * 2000-01-31 2002-06-11 Hewlett-Packard Company Ink leak detection system in inkjet printing devices

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01260339A (en) * 1988-04-12 1989-10-17 Tsuuden:Kk Leaked liquid sensor
JP2000314670A (en) * 1999-04-30 2000-11-14 Honda Motor Co Ltd Method for detecting water leakage in cooling piping
JP3684336B2 (en) * 2000-07-31 2005-08-17 サンクス株式会社 Leak sensor
JP3849762B2 (en) * 2001-09-04 2006-11-22 株式会社山武 Optical unit for liquid detection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0768183A2 (en) * 1995-10-13 1997-04-16 Canon Kabushiki Kaisha Ink tank with ink container and waste ink container
EP0882594A1 (en) * 1997-06-04 1998-12-09 Hewlett-Packard Company Ink container with an inductive ink level detection machanism attached to a collapsible ink bag
US5918267A (en) * 1997-06-04 1999-06-29 Raychem Corporation Leak detection
US6402277B1 (en) * 2000-01-31 2002-06-11 Hewlett-Packard Company Ink leak detection system in inkjet printing devices

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9744768B2 (en) 2014-11-10 2017-08-29 Seiko Epson Corporation Liquid ejecting apparatus with ink receiving tray and detector
US9676183B1 (en) 2016-07-12 2017-06-13 Hewlett-Packard Development Company, L.P. Drop detection with ribs to align emitters and detectors

Also Published As

Publication number Publication date
EP1812239A1 (en) 2007-08-01
CA2585307A1 (en) 2006-05-11
GB2434338A (en) 2007-07-25
ES2324358T3 (en) 2009-08-05
JP4542585B2 (en) 2010-09-15
CA2585307C (en) 2013-04-09
GB2434338B (en) 2008-08-13
MX2007005021A (en) 2007-07-09
DE602005014803D1 (en) 2009-07-16
ATE432826T1 (en) 2009-06-15
PL382399A1 (en) 2007-09-03
BRPI0516672B1 (en) 2018-02-14
AU2005301276B2 (en) 2010-06-17
EP1812239B1 (en) 2009-06-03
BRPI0516672A (en) 2008-09-16
DE112005002445T5 (en) 2007-09-20
PL1812239T3 (en) 2009-11-30
AU2005301276A1 (en) 2006-05-11
GB0708130D0 (en) 2007-06-06
JP2008517809A (en) 2008-05-29

Similar Documents

Publication Publication Date Title
US10391778B2 (en) Liquid cartridge provided with deformable member, movable member, and urging member for detection of remaining amount of liquid
JP4009242B2 (en) Fluid storage device
US10029472B2 (en) Liquid cartridge provided with deformable member and movable member for detection of remaining amount of liquid
JP4290771B2 (en) Ink volume sensing and replenishment system
CA2585307C (en) Leak detection structure
US8567931B2 (en) Ink cartridge suppressing internal pressure increase at the time of installation
US7703903B2 (en) Ink reservoir for inkjet printhead
US20050151813A1 (en) Ink pack, ink cartridge and ink supplying device
US7465040B2 (en) Labyrinth seal structure with redundant fluid flow paths
US6302503B1 (en) Inkjet ink level detection
US7454955B2 (en) Leak detection structure
EP0953450B1 (en) Inkjet ink level detection
CN100556700C (en) Leak detection structure and printing mechanism
JP2009119853A (en) Liquid storing container
JP4304518B2 (en) Liquid container and liquid ejecting apparatus
JP5960583B2 (en) Ink supply device
KR100694150B1 (en) Ink level detecting apparatus of ink-jet printer
KR20240039749A (en) Ink storage apparatus with ink storage pouch and ink-jet printer having the same
WO2024096865A1 (en) Printhead sensors
CN105365394A (en) Liquid cartridge

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1258/CHENP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1120050024458

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2007538914

Country of ref document: JP

Ref document number: 2005301276

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2585307

Country of ref document: CA

Ref document number: 200580036682.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 200750027

Country of ref document: ES

Kind code of ref document: A

Ref document number: 0708130

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20050919

WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/005021

Country of ref document: MX

Ref document number: 2005798145

Country of ref document: EP

Ref document number: 0708130.0

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 382399

Country of ref document: PL

ENP Entry into the national phase

Ref document number: 2005301276

Country of ref document: AU

Date of ref document: 20050919

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005798145

Country of ref document: EP

RET De translation (de og part 6b)

Ref document number: 112005002445

Country of ref document: DE

Date of ref document: 20070920

Kind code of ref document: P

ENP Entry into the national phase

Ref document number: PI0516672

Country of ref document: BR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607

WWW Wipo information: withdrawn in national office

Ref document number: 200750027

Country of ref document: ES

Kind code of ref document: A