JP3849762B2 - Optical unit for liquid detection - Google Patents

Optical unit for liquid detection Download PDF

Info

Publication number
JP3849762B2
JP3849762B2 JP2001267614A JP2001267614A JP3849762B2 JP 3849762 B2 JP3849762 B2 JP 3849762B2 JP 2001267614 A JP2001267614 A JP 2001267614A JP 2001267614 A JP2001267614 A JP 2001267614A JP 3849762 B2 JP3849762 B2 JP 3849762B2
Authority
JP
Japan
Prior art keywords
liquid
detection
housing
liquid receiving
optical unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001267614A
Other languages
Japanese (ja)
Other versions
JP2003075286A (en
Inventor
祥典 簑島
久種 松野
哲夫 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2001267614A priority Critical patent/JP3849762B2/en
Publication of JP2003075286A publication Critical patent/JP2003075286A/en
Application granted granted Critical
Publication of JP3849762B2 publication Critical patent/JP3849762B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、液体検知用光学ユニットに関し、例えば半導体製造設備内で漏液を検知するために受液容器に取り付けて好適な液体検知用光学ユニットに関する。
【0002】
【従来の技術】
例えば、半導体製造設備においては、水、塩酸、引火性の強い液体、腐食性の液体等種々の処理液が使用されており、これらの液体の通路としての配管が多数設けられている。これらの配管は、途中に弁装置が介装されたり、配管同士が継手により接続されている。配管と弁装置との接続部や配管同士の接続部(継目)の下方位置にはステンレス鋼等の耐食性の受液容器が配置されており、接続部から万一処理液が漏れた場合に漏液を受容するようにしている。そして、受液容器には前記接続部の略真下に漏液を検出するためのセンサが配設されており、速やかに漏液を検知するようにしている。
【0003】
図10は、受液容器に取り付けた従来の液体検知用光学ユニットの斜視図、図11は、図10の矢線XI―XIに沿う断面図、図12は、図10の矢線XII―XIIに沿う断面図を示す。図10乃至図12に示すように液体検知用光学ユニット(以下、単に「光学ユニット」という)20は、ハウジング21と固定部22とが透光性及び耐薬品性を有する例えば、フッ素樹脂部材で一体に形成されており、固定部22が耐食性を有する例えば、ステンレスの受液容器40の上面40aに固着された取付ボルト41に装着され、固定ナット42により着脱可能に固定されている。
【0004】
図11及び図12に示すようにハウジング21内には光ファイバ24、レンズ25及び投光用プリズム26から成る投光光学系27と、光ファイバ28、レンズ29及び受光用プリズム30から成る受光光学系31とが収納されており、ハウジング21の下面21cは平面とされて受液容器40の上面40a(以下「受液面40a」という)との間に僅かな間隙を存して並行に離隔対向している。
【0005】
発光素子(図示せず)から光ファイバ24に導入された光は、レンズ25を通して投光用プリズム26に入射され、当該投光用プリズム26により下方に反射され、一部が点線aで示すようにハウジング21の検出面21a、21bで反射されて受光用プリズム30に至り、レンズ29から光ファイバ28を通して受光素子(図示せず)に至り検出されるようになっている。
【0006】
図12に示すように光学ユニット20が受液容器40にセットされた状態において、漏液がなく、検出面21a及び21bに漏液(液体)が接触していないときには、投光用プリズム26から出た光は、一部が点線aで示すようにハウジング21の検出面21a、21bで反射されて受光用プリズム30に至り(以下「反射光a」という)、一部が1点鎖線bで示すように受液面40aで反射されて受光用プリズム30に至り(以下「反射光b」という)、レンズ29から光ファイバ28を通して前記受光素子に検出される。
【0007】
また、漏液があり、ハウジング21の固定部22と反対側近傍に漏液1が滴下して検出面21aに接触すると、投光用プリズム26から出た光は、実線cで示すように検出面21aを透過して漏液(液体)に至り、反射光bのみが検出される。また、固定部22のハウジング21側近傍上面に滴下した漏液2が当該固定部22に貫設された孔22aを通して検出面21bに接触すると、投光用プリズム26から出た光は、検出面21aで反射された後検出面21bを透過して漏液(液体)に至り、反射光bのみが検出される。このようにして、ハウジング21の下部に液体が接触可能な検出面21a、21bが設けられている。尚、図12において、光の経路を分かりやすくするためにハウジング21のハッチングを省いてある。
【0008】
反射光a、bの光量をLa、Lbとすると、前記受光素子の受光量は、光学ユニット20がセット状態で漏液が無いときには(La+Lb)、漏液があるときにはLbとなり、非セット状態のときにはLaとなる。前記受光素子は、受光量に応じた信号を出力し、受光量を判別するための閾値Lhを、(La、Lb)<Lh<(La+Lb)に設定することで、光学ユニット20がセット状態で前記受光素子の受光量が閾値Lhよりも低いとき(Lb<Lh)に漏液があったことを検知することができる。
【0009】
【発明が解決しようとする課題】
上述したように光学ユニット20は、検出面21a、21bを有するハウジング21とこのハウジング21の一側に設けられた固定部22とにより構成されており、固定部22の下面が受液面40aに当接して固定されているために、検出面21a、21bに近い側の漏液1、漏液2は、少量の漏液でもこれらの検出面21a、21bに到達して短時間に検知される。しかしながら、検出面21a、21bから遠い側即ち、固定部22の周囲例えば、側方22f側に滴下した漏液3は、固定部22に阻まれて検出面21a、21bに到達し難く、これらの検出面21a、21bに到達するまでに多量の漏液が必要となる。この結果、漏液を検知するまでに時間が掛かるか、場合によっては検知することができないこともあり得る等の問題がある。
【0010】
本発明は、上述の点に鑑みてなされたもので、液体検知に至るまでの検出液体の量を少なく、且つ検知までの時間を短縮することが可能な液体検知用光学ユニットを提供することを目的とする。
【0011】
【課題を解決するための手段】
上記目的を達成するために請求項1に記載の液体検知用光学ユニットは、
< > 液体が接触可能な透光性の素材からなる検出面を備えたハウジングと、
< > 上記検出面を介する光路を形成して前記ハウジングに支持され、前記検出面への前記液体の接触の有無による屈折率の変化に応じて上記光路を介する伝播光量が変化するように設けられた投光光学系および受光光学系と、
< > 前記ハウジングの一側に突設され、前記液体を受容する受液容器に固定されて前記検出面を上記受液容器の内壁面に対峙させて支持する固定部と、
< > この固定部の前記受液容器に対する固定面側に突設され、前記受液容器に固定されたときに上記固定面側と該受液容器の内壁面との間に隙間を形成するスペーサと、
< > 前記固定部の前記ハウジングに対する付根部に設けられて前記検出面に液体を導く液体導通孔とを備えたことを特徴とする。
【0012】
請求項2に記載した好ましくは前記受液容器は、前記液体に対して耐食性、および濡れ性を有するものであって、前記固定部は、前記液体に対して濡れ性のない素材からなり、前記受液容器の内壁面との間に形成した隙間に、前記液体に対する毛細管現象を生起するものである。また請求項3に記載したように前記スペーサにより前記受液容器の内壁面との間に形成される隙間は、前記固定部周囲から前記検出面近傍に向かって狭くなる構造をなすことを特徴とする。
【0013】
液体検知用光学ユニットは、固定部が受液容器の受液面に固定された状態においてハウジングの液体を検出する検出面と前記受液面とが間隙を存して対向し、且つ、液体導通構造即ち、前記固定部と前記受液面との間に形成された隙間により当該固定部周囲と前記検出面とが導通されている。前記受液面のハウジングの固定部と反対側即ち、検出面に近い側に滴下した液体は、少量でも検出面に到達して短時間に検知される。また、前記受液面の前記検出面から遠い固定部周囲に滴下した液体は、固定部と受液面との間の隙間を通って前記検出面に至る。これにより、少量の液体でも前記検出面に到達可能となり、短時間に検知可能となる(請求項1)。
【0014】
前記固定部と受液面の対向する各面の少なくとも一方の面が液体に対して濡れ性を有することで、前記固定部周囲の液体が少量でも毛細管現象により前記隙間を容易に通り抜けて検出面に至り、検知される(請求項2)。
液体導通構造を構成する固定部と受液面の対向する各面の隙間が、固定部周囲から検出面に向かって狭くなることで、前記隙間を通る液体の流速が、検出面に近づくにつれて速くなり、少量の液体でも検知時間が短くなる(請求項3)。
【0015】
【発明の実施の形態】
以下図面を参照して本発明の実施の形態について説明する。
(第1の実施形態)
図1は、本発明に係る液体検知用光学ユニットの第1実施形態を示す平面図、図2は、図1に示す液体検知用光学ユニットの側面図、図3は、図1に示す液体検知用光学ユニットの正面図、図4は、図1に示す液体検知用光学ユニットの底面図である。
【0016】
図1乃至図4に示すように液体検知用光学ユニット(以下、単に「光学ユニット」という)1は、ハウジング2と、ハウジング2の一側部に設けられた固定部3とから成り、ハウジング2内には図11及び図12に示す従来の液体検知用光学ユニット20と同様の投光光学系27及び受光光学系31が収納されている。尚、これら投光光学系27、受光光学系31の詳細については説明を省略する。ハウジング2の下部には図4に示すように前記投光光学系・受光光学系から成る検出部と対応する位置に液体が接触可能な検出面2a、2bが設けられている。
【0017】
固定部3は、ハウジング2を受液容器の受液面に固定するためのもので、板状をなし、下面3aが平坦をなし、ハウジング2の下面2cと面一をなしている。固定部3の上面3bの略中央に取付用の孔3cが穿設され、補強用の金属製のカラー4がインサートされている。固定部3の下面3aには孔3cと同心的にスペーサ部3dが円板状に膨出して形成されている。
【0018】
スペーサ3dは、固定部3を受液容器の受液面に固定したときに当該受液面とハウジング2の下面2cとの間に僅かな間隔d(例えば、0.5mm程度)を形成すると共に、固定部3の平坦な下面3aと前記受液面との間に隙間5を形成して当該固定部3の周囲即ち、側部3f、前後部3g、3hと検出面2a、2bとを導通させるためのものである(図5)。
【0019】
また、固定部3の上面3bのハウジング2との付根部分には検出面2bと対応する位置に液体導通孔3eが穿設されており、当該上面3bに滴下した液体を検出面2b、2aに導くようになっている。これらのハウジング2と固定部3は、透光性及び耐薬品性を有する例えば、PFA等の透光性のフッ素樹脂部材やポリプロピレンにより形成されている。
【0020】
図5に示すように光学ユニット1は、前述したステンレス製の受液容器40の受液面40aの所定位置に配置され、固定部3が孔3cのカラー4に介して当該位置に設けられた取付ボルト41に取り付けられ、ナット42により締め付け固定される。光学ユニット1は、受液面40aに固定された状態において、スペーサ部3dにより、ハウジング2の下面2cと受液面40aとが前記間隔dを存して対向すると共に、固定部3の下面3aと受液面40aとが間隔dを存して対向して当該固定部3の周囲とハウジング2の検出面2a、2bとを導通させる液体導通構造としての隙間5が形成される。
【0021】
以下、光学ユニット1の液体検知について説明する。
図5に示すように受液面40aのハウジング2の固定部3と反対側即ち、検出面2aに近い側に滴下した漏液1は、受液面40aを流れて検出面2aに到達し、更には下面2cとの間の隙間を通して検出面2bに接触することで検知される。また、固定部3の上面3bに滴下した漏液2は、上面3bを流れて液体導通孔3eを通して検出面2bに到達し、更には、下面2cとの間を通して検出面2aに接触することで検知される。従って、これらの漏液1、2は、少量でも検出面2a、2bに到達して接触可能となり、短時間で検知される。
【0022】
受液面40aのハウジング2の検出面2bから遠い固定部3の周囲例えば、側部3fの近傍に滴下した漏液3は、受液面40aを流れて固定部3の下面3aと受液面40aとの間の隙間5に流れ込み、図4に矢印で示すようにスペーサ部3dの両側を流れてハウジング2の検出面2aと2bとの間の下面2cに至り、その略真ん中で衝突して両側に溢れ、検出面2a、2bに到達して接触する。これにより、漏液3が検知される。
【0023】
ところで、前述したようにハウジング2及び固定部3が、PFA等のフッ素樹脂部材により形成されており、受液容器40がステンレスで形成され、漏液が水である場合、フッ素系樹脂は、水に対して濡れ性がないが、ステンレスが水に対して濡れ性を有していることで、ハウジング2の下面2c及び固定部3の下面3aと受液面40aとの間に形成される隙間5において毛細管現象により移動可能となる。
【0024】
従って、上述したように固定部3の下面3aと受液面40aとの間の隙間5に流れ込んだ漏液3は、毛細管現象により図4に矢印で示すように迅速に移動して、検出面2a、2bに到達して接触する。これにより、漏液3が少量でも検出面2a、2bに到達可能となり、短時間に検知可能となる。前記漏液1、2についても漏液3と同様にハウジング2の下面2cと受液面40aとの間を毛細管現象により迅速に移動して検出面2a、2b接触する。このように、固定部3の下面3aと対向する受液面40aの少なくとも一方の面が液体(漏液)に対して濡れ性を有すれば、固定部3の周囲の漏液(液体)が少量であっても毛細管現象により隙間5を容易に移動して(通り抜けて)検出面2a、2bに到達可能となる。尚、固定部3の下面3aと受液面40aとの間の隙間5の間隔dは、検知する液体の粘性に応じて最適な間隔に設定することが好ましい。
【0025】
(第2の実施形態)
図6乃至図8は、本発明に係る光学ユニットの第2実施形態を示し、図6は、液体検知用光学ユニットの側面図、図7は、図6に示す液体検知用光学ユニットの正面図、図8は、図6に示す液体検知用光学ユニットの底面図である。尚、図1乃至図4に示す第1実施形態における液体検出用光学ユニットの構成要素と同一の構成要素には同一符号を付して説明を省略する。
【0026】
図6乃至図8に示すようにハウジング2の下面2c'は、前後両端部から検出面2a、2b間の下面2c"に向かって僅かに下方に傾斜するテーパ面をなし、これらの検出面2a、2b間の下面2c"が平面とされている。また、固定部3の下面3a'と受液面40aとの間に形成される隙間7(液体導通構造)は、固定部3の下面3a'が、当該固定部3のハウジング2から遠い側の側部3f、及び前後部3g、3hからハウジング2の下面2c"に向かって僅かに下方に傾斜するテーパ面をなし、前記下面2c"と滑らかに連設されて形成されている。この隙間7は、固定部3の側部3fにおける受液面40aからの開口高さが最も高く(広く)例えば、1.5mm程度とされている。即ち、隙間7は、受光面40aからの高さが、固定部3の周囲から検出面2a、2b近傍に向かって狭くなる傾斜面(テーパ面)とされている。
【0027】
図9に示すように、受液面40aのハウジング2の検出面2bから遠い固定部3の例えば、側部3fの近傍に滴下した漏液3は、受液面40aを流れて固定部3の下面3a'と受液面40aとの間の隙間7に流れ込み、図8に矢印で示すようにスペーサ部3dの両側を流れてハウジング2の検出面2aと2bとの間の下面2c"に至り、その略真ん中で衝突して両側に溢れ、検出面2a、2bに到達して接触する。これにより、漏液3が検知される。
【0028】
固定部3の周囲では隙間7は、下面3a'が平坦な場合の隙間5(図5)と比較すると圧力は等しいが、側部3f、前後部3g、3hの開口面積が広いので、より多くの液体が隙間7に供給され、検出面2a、2b近傍では前記平坦な場合と比べると下面2c"と受液面40aとの間隔dは同じであるが液体供給量が多いので、液体の移動速度が速くなり、毛細管現象と相俟って検出までの時間が更に短縮する。
【0029】
【発明の効果】
以上説明したように本発明によれば、液体は、ハウジングを受液容器に固定する固定部に阻まれずに隙間を通して前記ハウジングの検出面に向けて移動することが可能となり、少量の液体であっても検出までの時間を短縮することが可能となる(請求項1)。また、液体は、前記固定部に阻まれずに隙間を通して前記検出面に向けて毛細管現象により移動可能となり、検出までの時間を更に短縮することが可能となる(請求項2)。
【0030】
更に、前記固定部周囲では平坦な場合と比較すると圧力は等しいが、開口面積が広く流体が流れやすいので、より多くの液体が供給され、検出面近傍では平坦な場合と比べると隙間は同じであるが液体供給量が多いので、液体の移動スピードが速くなり、検出までの時間を更に短縮することができる(請求項3)。
【図面の簡単な説明】
【図1】本発明に係る液体検知用光学ユニットの第1実施形態の平面図である。
【図2】図1に示す液体検知用光学ユニットの側面図である。
【図3】図1に示す液体検知用光学ユニットの正面図である。
【図4】図1に示す液体検知用光学ユニットの底面図である。
【図5】図4に示す液体検知用光学ユニットを受液容器に取り付けた状態の矢線V−Vに沿う断面図である。
【図6】本発明に係る液体検知用光学ユニットの第2実施形態を示す側面図である。
【図7】図6に示す液体検知用光学ユニットの正面図である。
【図8】図6に示す液体検知用光学ユニットの底面図である。
【図9】図8に示す液体検知用光学ユニットを受液容器に取り付けた状態の矢線IX―IXに沿う断面図である。
【図10】従来の液体検知用光学ユニットの一例を示し、受液容器に取り付けた状態の斜視図である。
【図11】図10に示す液体検知用光学ユニットの矢線XI―XIに沿う断面図である。
【図12】図10に示す液体検知用光学ユニットの矢線XII-XIIに沿う断面図である。
【符号の説明】
1 液体検知用光学ユニット(光学ユニット)
2 ハウジング
2a、2b 検出面
3 固定部
3a 下面(平面)
3a' 下面(傾斜面)
3d スペーサ部
5、7 隙間(液体導通構造)
27 投光光学系
31 受光光学系
40 受液容器
40a 受液面(受液容器上面)
41 取付ボルト
42 固定ナット
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical unit for liquid detection, for example, an optical unit for liquid detection suitable for being attached to a liquid receiving container in order to detect liquid leakage in a semiconductor manufacturing facility.
[0002]
[Prior art]
For example, various processing liquids such as water, hydrochloric acid, highly flammable liquids, corrosive liquids are used in semiconductor manufacturing equipment, and a large number of pipes are provided as passages for these liquids. In these pipes, a valve device is interposed in the middle, or the pipes are connected by a joint. Corrosion-resistant liquid receiving containers such as stainless steel are placed below the connection between the pipe and the valve device and the connection between the pipes (seam). In the unlikely event that processing liquid leaks from the connection, I try to accept the fluid. The liquid receiving container is provided with a sensor for detecting liquid leakage almost directly below the connecting portion so as to detect liquid leakage promptly.
[0003]
10 is a perspective view of a conventional liquid detection optical unit attached to the liquid receiving container, FIG. 11 is a cross-sectional view taken along the arrow XI-XI in FIG. 10, and FIG. 12 is the arrow XII-XII in FIG. FIG. 10 to 12, the liquid detection optical unit (hereinafter simply referred to as “optical unit”) 20 is made of, for example, a fluororesin member in which the housing 21 and the fixing portion 22 have translucency and chemical resistance. For example, the fixing portion 22 is integrally formed, and is attached to a mounting bolt 41 fixed to the upper surface 40a of a stainless steel liquid receiving container 40 having corrosion resistance, and is detachably fixed by a fixing nut 42.
[0004]
As shown in FIGS. 11 and 12, in the housing 21, a light projecting optical system 27 comprising an optical fiber 24, a lens 25 and a light projecting prism 26, and a light receiving optical system comprising an optical fiber 28, a lens 29 and a light receiving prism 30 are provided. The system 31 is housed, and the lower surface 21c of the housing 21 is flat and is spaced apart in parallel with a slight gap between the upper surface 40a of the liquid receiving container 40 (hereinafter referred to as “liquid receiving surface 40a”). Opposite.
[0005]
The light introduced from the light emitting element (not shown) into the optical fiber 24 enters the projection prism 26 through the lens 25, is reflected downward by the projection prism 26, and a part thereof is indicated by a dotted line a. The light is reflected by the detection surfaces 21a and 21b of the housing 21 to reach the light receiving prism 30, and from the lens 29 to the light receiving element (not shown) through the optical fiber 28.
[0006]
As shown in FIG. 12, in the state where the optical unit 20 is set in the liquid receiving container 40, when there is no liquid leakage and no liquid leakage (liquid) is in contact with the detection surfaces 21a and 21b, the light projecting prism 26 A part of the emitted light is reflected by the detection surfaces 21a and 21b of the housing 21 as indicated by a dotted line a and reaches the light receiving prism 30 (hereinafter referred to as “reflected light a”), and a part thereof is indicated by a one-dot chain line b. As shown, the light is reflected by the liquid receiving surface 40a and reaches the light receiving prism 30 (hereinafter referred to as “reflected light b”), and is detected by the light receiving element from the lens 29 through the optical fiber 28.
[0007]
Further, when there is liquid leakage and the liquid leakage 1 drops in the vicinity of the opposite side of the fixed portion 22 of the housing 21 and comes into contact with the detection surface 21a, the light emitted from the light projection prism 26 is detected as indicated by the solid line c. Through the surface 21a, the liquid leaks (liquid) and only the reflected light b is detected. Further, when the leaked liquid 2 dropped on the upper surface of the fixing portion 22 near the housing 21 comes into contact with the detection surface 21b through the hole 22a penetrating the fixing portion 22, the light emitted from the light projecting prism 26 is detected on the detection surface. After being reflected by 21a, it passes through the detection surface 21b and reaches a liquid leak (liquid), and only the reflected light b is detected. In this manner, detection surfaces 21 a and 21 b that can contact the liquid are provided at the lower portion of the housing 21. In FIG. 12, hatching of the housing 21 is omitted for easy understanding of the light path.
[0008]
When the light amounts of the reflected light a and b are La and Lb, the light receiving amount of the light receiving element is Lb when the optical unit 20 is in the set state and there is no liquid leakage (La + Lb), Lb when there is liquid leakage, and in the non-set state Sometimes La. The light receiving element outputs a signal corresponding to the amount of received light, and sets the threshold value Lh for determining the amount of received light to (La, Lb) <Lh <(La + Lb), so that the optical unit 20 is in the set state. When the amount of light received by the light receiving element is lower than the threshold value Lh (Lb <Lh), it can be detected that there has been leakage.
[0009]
[Problems to be solved by the invention]
As described above, the optical unit 20 includes the housing 21 having the detection surfaces 21a and 21b and the fixing portion 22 provided on one side of the housing 21, and the lower surface of the fixing portion 22 is the liquid receiving surface 40a. Due to the contact and fixation, the leakage 1 and leakage 2 on the side close to the detection surfaces 21a and 21b reach these detection surfaces 21a and 21b and are detected in a short time even with a small amount of leakage. . However, the leaked liquid 3 dropped on the side far from the detection surfaces 21a and 21b, that is, around the fixed portion 22, for example, on the side 22f side, is blocked by the fixed portion 22 and hardly reaches the detection surfaces 21a and 21b. A large amount of liquid leakage is required before reaching the detection surfaces 21a and 21b. As a result, there is a problem that it takes time to detect the liquid leakage, or it may not be detected in some cases.
[0010]
The present invention has been made in view of the above points, and provides a liquid detection optical unit that can reduce the amount of detection liquid until liquid detection and can shorten the time until detection. Objective.
[0011]
[Means for Solving the Problems]
The liquid detecting optical unit as claimed in claim 1 in order to achieve the object,
<A> A housing having a detection surface made of a translucent material that can be contacted with liquid ;
< b > An optical path passing through the detection surface is formed and supported by the housing, and the amount of light propagating through the optical path is changed according to a change in refractive index depending on whether or not the liquid is in contact with the detection surface. A projected optical system and a received optical system,
< c > A fixing portion that protrudes from one side of the housing, is fixed to a liquid receiving container that receives the liquid, and supports the detection surface against the inner wall surface of the liquid receiving container ;
< d > Projecting on the fixed surface side of the fixing portion with respect to the liquid receiving container, and forming a gap between the fixed surface side and the inner wall surface of the liquid receiving container when fixed to the liquid receiving container. A spacer;
< e > A liquid conduction hole provided at a base portion of the fixed portion with respect to the housing and guiding the liquid to the detection surface .
[0012]
Preferably, the liquid receiving container according to claim 2 has corrosion resistance and wettability with respect to the liquid, and the fixing portion is made of a material having no wettability with respect to the liquid, A capillary phenomenon with respect to the liquid is caused in a gap formed between the inner wall surface of the liquid receiving container. The gap formed between the inner wall surface of the liquid receiving vessel by the spacer as described in claim 3, and characterized by forming a narrow structure toward the vicinity of the detection plane from the periphery the fixing part To do.
[0013]
The optical unit for liquid detection is configured such that the detection surface for detecting the liquid in the housing and the liquid receiving surface face each other with a gap in a state where the fixing portion is fixed to the liquid receiving surface of the liquid receiving container, and the liquid conduction In other words, the periphery of the fixed portion and the detection surface are electrically connected by a gap formed between the fixed portion and the liquid receiving surface. Even if a small amount of the liquid dropped on the opposite side of the liquid receiving surface to the fixed portion of the housing, that is, the side close to the detection surface, reaches the detection surface and is detected in a short time. In addition, the liquid dripped around the fixed portion of the liquid receiving surface that is far from the detection surface reaches the detection surface through a gap between the fixed portion and the liquid receiving surface. As a result, even a small amount of liquid can reach the detection surface and can be detected in a short time.
[0014]
Since at least one of the opposing surfaces of the fixing portion and the liquid receiving surface has wettability with respect to the liquid, the detection surface can easily pass through the gap by capillary action even with a small amount of liquid around the fixing portion. To be detected (claim 2).
The gap between the opposing surfaces of the fixed portion and the liquid receiving surface constituting the liquid conduction structure becomes narrower from the periphery of the fixed portion toward the detection surface, so that the flow velocity of the liquid passing through the gap increases as the detection surface approaches. Therefore, the detection time is shortened even with a small amount of liquid (claim 3).
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
(First embodiment)
FIG. 1 is a plan view showing a first embodiment of a liquid detection optical unit according to the present invention, FIG. 2 is a side view of the liquid detection optical unit shown in FIG. 1, and FIG. 3 is a liquid detection shown in FIG. FIG. 4 is a bottom view of the liquid detection optical unit shown in FIG.
[0016]
As shown in FIGS. 1 to 4, a liquid detection optical unit (hereinafter simply referred to as “optical unit”) 1 includes a housing 2 and a fixed portion 3 provided on one side of the housing 2. Housed therein are a light projecting optical system 27 and a light receiving optical system 31 similar to those of the conventional liquid detecting optical unit 20 shown in FIGS. The details of the light projecting optical system 27 and the light receiving optical system 31 are not described here. As shown in FIG. 4, detection surfaces 2 a and 2 b are provided at the lower portion of the housing 2 so that the liquid can come into contact with the detection unit composed of the light projecting optical system and the light receiving optical system.
[0017]
The fixing portion 3 is for fixing the housing 2 to the liquid receiving surface of the liquid receiving container, has a plate shape, the lower surface 3 a is flat, and is flush with the lower surface 2 c of the housing 2. A mounting hole 3c is formed in the approximate center of the upper surface 3b of the fixed portion 3, and a reinforcing metal collar 4 is inserted. On the lower surface 3a of the fixed portion 3, a spacer portion 3d is formed concentrically with the hole 3c so as to bulge into a disk shape.
[0018]
The spacer 3d forms a slight gap d (for example, about 0.5 mm) between the liquid receiving surface and the lower surface 2c of the housing 2 when the fixing portion 3 is fixed to the liquid receiving surface of the liquid receiving container. A gap 5 is formed between the flat lower surface 3a of the fixed portion 3 and the liquid receiving surface, and the periphery of the fixed portion 3, that is, the side portions 3f, the front and rear portions 3g, 3h, and the detection surfaces 2a, 2b are electrically connected. (FIG. 5).
[0019]
In addition, a liquid conduction hole 3e is formed at a position corresponding to the detection surface 2b at a base portion of the upper surface 3b of the fixed portion 3 with respect to the housing 2, and the liquid dropped on the upper surface 3b is applied to the detection surfaces 2b and 2a. It comes to lead. The housing 2 and the fixing portion 3 are made of a light-transmitting fluororesin member such as PFA or polypropylene having light-transmitting properties and chemical resistance.
[0020]
As shown in FIG. 5, the optical unit 1 is disposed at a predetermined position on the liquid receiving surface 40a of the stainless steel liquid receiving container 40 described above, and the fixing portion 3 is provided at the position via the collar 4 of the hole 3c. It is attached to the mounting bolt 41 and is fastened and fixed by a nut 42. In the state where the optical unit 1 is fixed to the liquid receiving surface 40a, the lower surface 2c of the housing 2 and the liquid receiving surface 40a are opposed to each other with the gap d by the spacer portion 3d, and the lower surface 3a of the fixing unit 3 And the liquid receiving surface 40a are opposed to each other with a gap d, and a gap 5 is formed as a liquid conduction structure that conducts the periphery of the fixed portion 3 and the detection surfaces 2a and 2b of the housing 2.
[0021]
Hereinafter, the liquid detection of the optical unit 1 will be described.
As shown in FIG. 5, the leaked liquid 1 dropped on the opposite side of the liquid receiving surface 40 a to the fixed portion 3 of the housing 2, that is, the side close to the detecting surface 2 a, flows through the liquid receiving surface 40 a and reaches the detecting surface 2 a, Furthermore, it detects by contacting the detection surface 2b through the clearance gap between the lower surface 2c. Further, the leaked liquid 2 dropped on the upper surface 3b of the fixed portion 3 flows through the upper surface 3b, reaches the detection surface 2b through the liquid conduction hole 3e, and further contacts the detection surface 2a through the lower surface 2c. Detected. Accordingly, these leaked liquids 1 and 2 reach the detection surfaces 2a and 2b even if a small amount can be contacted, and are detected in a short time.
[0022]
The liquid leakage 3 dropped around the fixing portion 3 of the liquid receiving surface 40a far from the detection surface 2b of the housing 2, for example, in the vicinity of the side portion 3f, flows through the liquid receiving surface 40a and the lower surface 3a of the fixing portion 3 and the liquid receiving surface. 40a, flows into both sides of the spacer portion 3d as shown by arrows in FIG. 4, reaches the lower surface 2c between the detection surfaces 2a and 2b of the housing 2, and collides substantially in the middle. It overflows on both sides, reaches the detection surfaces 2a and 2b, and comes into contact. Thereby, the liquid leakage 3 is detected.
[0023]
By the way, as described above, when the housing 2 and the fixing portion 3 are formed of a fluororesin member such as PFA, the liquid receiving container 40 is formed of stainless steel, and the leakage is water, However, the gap formed between the lower surface 2c of the housing 2 and the lower surface 3a of the fixing portion 3 and the liquid receiving surface 40a because stainless steel has wettability to water. In 5, it becomes movable by capillary action.
[0024]
Therefore, as described above, the leakage 3 that has flowed into the gap 5 between the lower surface 3a of the fixed portion 3 and the liquid receiving surface 40a rapidly moves as shown by the arrow in FIG. 2a and 2b are reached and contacted. As a result, even when the amount of the liquid leakage 3 is small, it can reach the detection surfaces 2a and 2b, and can be detected in a short time. Similarly to the liquid leak 3, the liquid leaks 1 and 2 are rapidly moved between the lower surface 2c of the housing 2 and the liquid receiving surface 40a by capillary action to come into contact with the detection surfaces 2a and 2b. Thus, if at least one surface of the liquid receiving surface 40a facing the lower surface 3a of the fixing portion 3 has wettability with respect to the liquid (leakage), the leakage (liquid) around the fixing portion 3 is reduced. Even a small amount can easily move (pass through) the gap 5 by capillary action and reach the detection surfaces 2a and 2b. In addition, it is preferable to set the space | interval d of the clearance gap 5 between the lower surface 3a of the fixing | fixed part 3 and the liquid receiving surface 40a to an optimal space | interval according to the viscosity of the liquid to detect.
[0025]
(Second Embodiment)
6 to 8 show a second embodiment of the optical unit according to the present invention, FIG. 6 is a side view of the liquid detection optical unit, and FIG. 7 is a front view of the liquid detection optical unit shown in FIG. FIG. 8 is a bottom view of the liquid detection optical unit shown in FIG. In addition, the same code | symbol is attached | subjected to the component same as the component of the optical unit for liquid detection in 1st Embodiment shown in FIG. 1 thru | or FIG. 4, and description is abbreviate | omitted.
[0026]
As shown in FIGS. 6 to 8, the lower surface 2c ′ of the housing 2 forms a tapered surface slightly inclined downward from the front and rear end portions toward the lower surface 2c ″ between the detection surfaces 2a and 2b. The lower surface 2c "between 2b is a plane. Further, the gap 7 (liquid conduction structure) formed between the lower surface 3a ′ of the fixed portion 3 and the liquid receiving surface 40a is such that the lower surface 3a ′ of the fixed portion 3 is located on the side far from the housing 2 of the fixed portion 3. The side surface 3f and the front and rear portions 3g, 3h form a tapered surface that is slightly inclined downward toward the lower surface 2c "of the housing 2, and is formed so as to be smoothly connected to the lower surface 2c". The gap 7 has the highest (wide) opening height from the liquid receiving surface 40a in the side portion 3f of the fixed portion 3, for example, about 1.5 mm. That is, the gap 7 is an inclined surface (tapered surface) whose height from the light receiving surface 40a becomes narrower from the periphery of the fixed portion 3 toward the vicinity of the detection surfaces 2a and 2b.
[0027]
As shown in FIG. 9, the leaked liquid 3 dropped on, for example, the vicinity of the side portion 3 f of the fixing portion 3 far from the detection surface 2 b of the housing 2 of the liquid receiving surface 40 a flows through the liquid receiving surface 40 a and flows into the fixing portion 3. It flows into the gap 7 between the lower surface 3a ′ and the liquid receiving surface 40a, flows on both sides of the spacer portion 3d as shown by arrows in FIG. 8, and reaches the lower surface 2c ″ between the detection surfaces 2a and 2b of the housing 2. In the middle of the collision, it overflows on both sides and reaches and comes into contact with the detection surfaces 2a and 2b, whereby the leakage 3 is detected.
[0028]
The gap 7 around the fixed portion 3 has the same pressure as the gap 5 (FIG. 5) when the lower surface 3a ′ is flat, but more because the opening area of the side portion 3f and the front and rear portions 3g and 3h is wide. Liquid is supplied to the gap 7, and the distance d between the lower surface 2c "and the liquid receiving surface 40a is the same in the vicinity of the detection surfaces 2a and 2b as compared with the flat surface, but the liquid supply amount is large, so the movement of the liquid The speed is increased, and the time until detection is further shortened in combination with the capillary phenomenon.
[0029]
【The invention's effect】
As described above, according to the present invention, the liquid can move toward the detection surface of the housing through the gap without being blocked by the fixing portion that fixes the housing to the liquid receiving container. However, the time until detection can be shortened (claim 1). In addition, the liquid can move by capillarity through the gap toward the detection surface without being blocked by the fixed portion, and the time until detection can be further shortened.
[0030]
In addition, the pressure around the fixed part is the same as that in the flat case, but the opening area is large and the fluid flows easily. However, since the liquid supply amount is large, the moving speed of the liquid is increased, and the time until detection can be further shortened.
[Brief description of the drawings]
FIG. 1 is a plan view of a first embodiment of an optical unit for liquid detection according to the present invention.
FIG. 2 is a side view of the optical unit for liquid detection shown in FIG.
FIG. 3 is a front view of the optical unit for liquid detection shown in FIG.
4 is a bottom view of the liquid detection optical unit shown in FIG. 1; FIG.
FIG. 5 is a cross-sectional view taken along the arrow line VV in a state where the liquid detection optical unit shown in FIG. 4 is attached to the liquid receiving container.
FIG. 6 is a side view showing a second embodiment of the optical unit for liquid detection according to the present invention.
7 is a front view of the liquid detection optical unit shown in FIG. 6. FIG.
8 is a bottom view of the liquid detection optical unit shown in FIG. 6. FIG.
9 is a cross-sectional view taken along arrows IX-IX in a state in which the liquid detection optical unit shown in FIG. 8 is attached to a liquid receiving container.
FIG. 10 is a perspective view showing an example of a conventional liquid detection optical unit attached to a liquid receiving container.
11 is a sectional view taken along arrows XI-XI of the liquid detection optical unit shown in FIG.
12 is a cross-sectional view of the liquid detection optical unit shown in FIG. 10 along the arrow XII-XII.
[Explanation of symbols]
1 Optical unit for liquid detection (optical unit)
2 Housing 2a, 2b Detection surface 3 Fixed portion 3a Lower surface (plane)
3a 'bottom surface (inclined surface)
3d Spacers 5 and 7 Gap (Liquid conduction structure)
27 Light projection optical system 31 Light reception optical system 40 Liquid receiving container 40a Liquid receiving surface (liquid receiving container upper surface)
41 Mounting bolt 42 Fixing nut

Claims (3)

液体が接触可能な透光性の素材からなる検出面を備えたハウジングと、
上記検出面を介する光路を形成して前記ハウジングに支持され、前記検出面への前記液体の接触の有無による屈折率の変化に応じて上記光路を介する伝播光量が変化するように設けられた投光光学系および受光光学系と、
前記ハウジングの一側に突設され、前記液体を受容する受液容器に固定されて前記検出面を上記受液容器の内壁面に対峙させて支持する固定部と、
この固定部の前記受液容器に対する固定面側に突設され、前記受液容器に固定されたときに上記固定面側と該受液容器の内壁面との間に隙間を形成するスペーサと、
前記固定部の前記ハウジングに対する付根部に設けられて前記検出面に液体を導く液体導通孔と
を備えたことを特徴とする液体検知用光学ユニット。
A housing having a detection surface made of a translucent material that can be contacted with liquid;
An optical path through the detection surface is formed and supported by the housing, and a projection light amount is provided so that the amount of light transmitted through the optical path changes according to a change in refractive index depending on the presence or absence of liquid contact with the detection surface. A light optical system and a light receiving optical system;
A fixing portion that protrudes from one side of the housing, is fixed to a liquid receiving container that receives the liquid, and supports the detection surface against the inner wall surface of the liquid receiving container ;
A spacer that protrudes on the fixed surface side of the fixing portion with respect to the liquid receiving container and forms a gap between the fixed surface side and the inner wall surface of the liquid receiving container when fixed to the liquid receiving container;
An optical unit for liquid detection, comprising: a liquid conduction hole provided at a base portion of the fixed portion with respect to the housing to guide the liquid to the detection surface .
前記受液容器は、前記液体に対して耐食性、および濡れ性を有するものであって、
前記固定部は、前記液体に対して濡れ性のない素材からなり、前記受液容器の内壁面との間に形成した隙間に、前記液体に対する毛細管現象を生起するものである請求項1に記載の液体検知用光学ユニット。
The liquid receiving container has corrosion resistance and wettability with respect to the liquid,
The said fixing | fixed part consists of a material which does not wet to the said liquid, and produces the capillary phenomenon with respect to the said liquid in the clearance gap formed between the inner wall surfaces of the said liquid receiving container. Liquid detection optical unit.
前記スペーサにより前記受液容器の内壁面との間に形成される隙間は、前記固定部周囲から前記検出面近傍に向かって狭くなる構造をなす請求項1に記載の液体検知用光学ユニット。 Gap formed between the inner wall surface of the liquid receiving vessel by the spacer, the liquid detecting optical unit according to claim 1 which forms a narrow structure toward the vicinity of the detection plane from the periphery the fixing unit.
JP2001267614A 2001-09-04 2001-09-04 Optical unit for liquid detection Expired - Fee Related JP3849762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001267614A JP3849762B2 (en) 2001-09-04 2001-09-04 Optical unit for liquid detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001267614A JP3849762B2 (en) 2001-09-04 2001-09-04 Optical unit for liquid detection

Publications (2)

Publication Number Publication Date
JP2003075286A JP2003075286A (en) 2003-03-12
JP3849762B2 true JP3849762B2 (en) 2006-11-22

Family

ID=19093720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001267614A Expired - Fee Related JP3849762B2 (en) 2001-09-04 2001-09-04 Optical unit for liquid detection

Country Status (1)

Country Link
JP (1) JP3849762B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4542585B2 (en) * 2004-10-27 2010-09-15 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Leak detection structure

Also Published As

Publication number Publication date
JP2003075286A (en) 2003-03-12

Similar Documents

Publication Publication Date Title
JP4241561B2 (en) Raindrop detector
JP6303900B2 (en) Liquid detection sensor
US20050236591A1 (en) Optical transducer for detecting liquid level
US4844870A (en) Liquid monitoring
US20020145121A1 (en) System for detecting fluids in a microfluidic component
JP3849762B2 (en) Optical unit for liquid detection
US20150160252A1 (en) Method and apparatus for detecting position of liquid surface, liquid supply apparatus, and analyzing system
FI118864B (en) refractometer
JP5773770B2 (en) Liquid sensor
JP5904578B2 (en) Optical liquid leak detection apparatus and method
JP3501178B2 (en) Liquid particle concentration detector
CN212410445U (en) Liquid detection device
JP6644329B2 (en) Light guide path built-in chip, light guide member and light guide method
JP2012093232A (en) Photosensor and level sensor
JP5199083B2 (en) Flow path sensor and tube fixture used therefor
JP3818366B2 (en) Optical unit for liquid detection
JP4081036B2 (en) Liquid detector and liquid container used therefor
JP3987213B2 (en) Optical measurement probe
JP3477429B2 (en) Liquid leak sensor
US20070263955A1 (en) Method and apparatus for improving accuracy of optic sensors used in capillary tube instruments
WO2016136300A1 (en) Liquid-level detection device
JP4192587B2 (en) Device for detecting the presence or absence of liquid in a light transmissive container
JP4852573B2 (en) Flow cell
CN217605655U (en) Wireless probe type liquid concentration measuring device
JP2020173141A (en) Surface shape measuring system and surface shape measuring method using surface shape measuring instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060816

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060822

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees