WO2006049015A1 - 熱可塑性樹脂組成物及びそれを用いた光学素子 - Google Patents

熱可塑性樹脂組成物及びそれを用いた光学素子 Download PDF

Info

Publication number
WO2006049015A1
WO2006049015A1 PCT/JP2005/019301 JP2005019301W WO2006049015A1 WO 2006049015 A1 WO2006049015 A1 WO 2006049015A1 JP 2005019301 W JP2005019301 W JP 2005019301W WO 2006049015 A1 WO2006049015 A1 WO 2006049015A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
resin composition
fine particles
inorganic fine
optical
Prior art date
Application number
PCT/JP2005/019301
Other languages
English (en)
French (fr)
Inventor
Masako Kikuchi
Original Assignee
Konica Minolta Opto, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto, Inc. filed Critical Konica Minolta Opto, Inc.
Priority to US11/666,026 priority Critical patent/US20070265381A1/en
Priority to JP2006543062A priority patent/JPWO2006049015A1/ja
Publication of WO2006049015A1 publication Critical patent/WO2006049015A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds

Definitions

  • the present invention is suitably used as a lens, a filter, a grating, an optical fiber, a flat optical waveguide, etc., and has high refractive index, low dispersion (high Abbe number), transparency and light weight.
  • the present invention relates to an excellent thermoplastic resin composition and an optical element using the same.
  • optical materials that support various developments in optoelectronics, such as optical communications, optical recording, optical processing, optical measurement, and optical computation. That is, high refractive index, low dispersibility (ie, high number of tubes), heat resistance, transparency, colorlessness, cleanliness, easy moldability, light weight, chemical resistance, and solvent resistance.
  • the optical materials that have been applied so far have been mainly inorganic materials such as quartz and optical glass. Although these inorganic materials have excellent optical properties and heat resistance, they have problems such as high heat treatment, high cost, and high density. For example, the density of an optical glass having a refractive index of 1.70 is very large at about 3. OgZcm 3 .
  • Thermoplastic resin materials have many features such as light weight, excellent flexibility, no electrical induction, and easy molding, including optical fiber, optical waveguide, Developments are being made for applications such as optical disk substrates, optical filters, lenses, and optical adhesives.
  • thermoplastic resin material polycarbonate resin is cited, and among these, 2, 2-bis (4-hydroxyphenol) propane (commonly known as bisphenol A) is used as a raw material. It has excellent transparency, light impact resistance compared to glass, is capable of melt molding, and is easily mass-produced, making it applicable as an optical component in many fields. It has been. However, the refractive index is relatively high at about 1.58. However, its application is limited as a resin that constitutes an optical component that has a low Abbe number, which represents the degree of dispersion of the refractive index, and a low balance between the refractive index and the dispersion characteristics. This is the current situation.
  • a spectacle lens that is a representative example of an optical component preferably has an Abbe number of 40 or more for the spectacle lens material in consideration of the visual function (for example, see Non-Patent Document 1).
  • thermosetting resin particularly for eyeglass lenses has been actively conducted.
  • This fine particle filler was used to modify the refractive index of the organic optical material, and was filled without causing light scattering by the filler by using a filler having a sufficiently small particle size. Plastic can maintain sufficient transparency as an optical element.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-183501 (Claims)
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-73559 (Claims)
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-73564 (Claims)
  • Non-Patent Document 1 Quarterly Review of Chemical Chemistry No. 39 Refractive Index Control of Transparent Polymers
  • An object of the present invention is to provide a thermoplastic resin composition having high refractive index, low dispersibility (high Abbe number), excellent transparency and light weight, and an optical element using the same. is there.
  • One of the embodiments for achieving the above-mentioned object of the present invention is a melt-moldable thermoplastic resin composition in which inorganic fine particles are dispersed in a thermoplastic resin, and is suitable for light having a wavelength of 588 nm.
  • the refractive index to be used is n and the Abbe number is V, the condition specified by the following equation (1) must be satisfied. It is in the thermoplastic resin composition characterized.
  • FIG. 1 is a schematic diagram showing an example of a pickup device for an optical disc to which an optical element (optical resin lens) of the present invention is applied as an objective lens.
  • thermoplastic resin composition in which inorganic fine particles are dispersed in a thermoplastic resin, where n is the refractive index for light having a wavelength of 588 nm, and v is the Abbe number. ,
  • n is the refractive index for light having a wavelength of 588 nm
  • v is the Abbe number.
  • thermoplastic resin composition characterized by satisfying the conditions specified in (1).
  • Thermoplastic rosin composition Thermoplastic rosin composition.
  • thermoplastic resin having an inorganic fine particle whose refractive index is n with respect to light having a wavelength of 588 nm.
  • Dispersed melt-moldable thermoplastic resin composition where f is the volume fraction of the inorganic fine particles, n is the refractive index for light having a wavelength of 588 nm, and v is the Abbe number.
  • thermoplastic resin composition characterized by simultaneously satisfying the condition defined by the formula (3).
  • thermoplastic resin composition according to (3) wherein the volume ratio is 0.3 or less.
  • a refractive index n for light having a wavelength of 588 nm is 1.6 or more.
  • thermoplastic resin composition according to (3) or (4).
  • At least one of the inorganic fine particles is aluminum nitride.
  • thermoplastic resin composition in which inorganic fine particles are dispersed in a thermoplastic resin, wherein at least one of the inorganic fine particles is a metal nitride.
  • thermoplastic rosin composition A thermoplastic rosin composition.
  • thermoplastic resin composition as described in (7) above, wherein the metal nitride is aluminum nitride.
  • thermoplastic resin composition according to any one of (1) to (8) above is molded, and the average light transmittance per 3 mm of the optical path length at a wavelength of 588 nm is 70.
  • thermoplastic resin composition in which inorganic fine particles are dispersed in a thermoplastic resin, and has a wavelength of 588 nm.
  • dd is the refractive index for n and Abbe number is V.
  • the inorganic fine particles have a refractive index n of 588 nm.
  • thermoplastic resin composition dispersed in a thermoplastic resin that is 0, where f is the volume fraction of the inorganic fine particles, nd is the refractive index for light with a wavelength of 588 nm, and V Where the conditions specified in the previous formula (2) and formula (3) are satisfied at the same time d
  • thermoplastic resin composition in which the inorganic fine particles of the present invention are dispersed in the thermoplastic resin, when the refractive index with respect to light having a wavelength of 588 nm is n and the Abbe number is v, (1) dd
  • the Abbe number v in the present invention means the refractive index at 588 nm, 486 nm, and 656 nm. When n, n, and n are given, they are given by the following equation (4).
  • V (n — l) / (n — n)
  • the Abbe number v of the thermoplastic resin composition of the present invention is 40 or more, 70
  • the refractive indices n, n, and n at 588 nm, 486 nm, and 656 nm can be measured using a known d FC refractometer, for example, Abbe refractometer (DR-M 2 manufactured by Atago Co., Ltd.). ), Automatic birefringence meter KOBRA-21ADH (manufactured by Oji Scientific Instruments), etc.
  • thermoplastic resin composition having a high refractive index, low dispersibility (high Abbe number) and excellent transparency can be obtained.
  • thermoplastic resin having a specific refractive index and Abbe number as shown in Table 1 described later is appropriately selected. This can be achieved by appropriately selecting the kind and volume ratio of the inorganic fine particles to be dispersed, or by appropriately combining them.
  • the inorganic fine particles of the present invention are thermoplastic having a refractive index n with respect to light having a wavelength of 588 nm.
  • a melt-moldable thermoplastic resin composition dispersed in a resin where the volume fraction of the inorganic fine particles is f, the refractive index for light with a wavelength of 588 nm is n, and the Abbe number is v. (2 dd
  • 0.3 which is a coefficient of the volume fraction f, represents the slope (rate of change) of the refractive index n with respect to the volume fraction f of the inorganic fine particles.
  • the volume fraction f of the inorganic fine particles is preferably 0.3 or less, more preferably 0.2 or less, and still more preferably 0.1 or less.
  • the volume ratio of the inorganic fine particles exceeds 0.3, it becomes difficult to add to the thermoplastic resin, the thermoplastic resin composition becomes hard and difficult to knead and mold, and further, the thermoplastic resin composition. Problems such as an increase in the specific gravity of objects may occur.
  • thermoplastic resin composition of the present invention will be described in detail.
  • the inorganic fine particles are not particularly limited. From the viewpoint that the above-mentioned objective effect of the present invention can be fully exhibited, the composition contains a metal nitride. One characteristic is.
  • the metal element of the metal nitride preferably used in the present invention is not particularly limited as long as it is a metal that can be nitrided.
  • a metal that can be nitrided For example, aluminum, titanium, iron, silicon, boron, gallium, niobium, zirconium, chromium Etc. These metal nitrides may be used alone or in combination.
  • aluminum nitride is particularly preferably used among metal nitrides.
  • As the aluminum nitride fine particles applicable in the present invention for example, Nanomat, Inc. having a force average particle size of 5 to 25 nm is manufactured and provided by a plasma synthesis method, and JP-A-2001-206708. The manufacturing method is also described in Japanese Patent Publication No. Gazette etc., but the manufacturing method is not particularly limited in the present invention.
  • the inorganic fine particles used in the present invention the above-mentioned metal nitrides are preferably used.
  • the inorganic fine particles are not limited to these, and known inorganic fine particles such as oxide fine particles may also be used. Is possible.
  • the metal constituting the metal oxide is Li, Na, Mg, Al, Si, K :, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Y, Nb, Zr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, La, Ta, Hf, W, Ir, Tl, Pb, Metal oxides that are one or more metals selected from the group consisting of Bi and rare earth metals can be used.
  • rare earth oxides can also be used as the oxide fine particles used in the present invention. Specifically, scandium oxide, oxide yttrium, lanthanum oxide, cerium oxide, acid praseodymium, acid oxide. Neodymium, acid samarium, acid gallium, acid terbium, acid dysprosium, acid holmium, acid erbium, acid yttrium, ytterbium oxide, lutetium oxide Um and so on.
  • the metal salt fine particles carbonates, phosphates, sulfates, and the like can be used as appropriate.
  • semiconductor fine particles can also be used.
  • the semiconductor fine particles in the present invention mean fine particles having a semiconductor crystal composition.
  • Specific examples of the composition of the semiconductor crystal composition include simple elements of Group 14 elements of the periodic table such as carbon, silicon, germanium and tin, simple elements of Group 15 elements of the periodic table such as phosphorus (black phosphorus), selenium. , Simple substance of group 16 element of periodic table such as tellurium, compound of group 14 element of periodic table such as silicon carbide (SiC), tin oxide (IV) (SnO), tin sulfide (II, IV) ( Sn (lD Sn (lV) S), tin sulfide (IV) (SnS), sulfur
  • Indium phosphide Indium phosphide (In S), indium selenide (In Se), indium telluride (In Te), etc.
  • Compounds of Group 13 and Periodic Group 16 elements such as sodium chloride thallium (I) (T1C1), thallium bromide (I) (TlBr), thallium iodide (I) (T1I), etc.
  • Group 15 of the periodic table such as bismuth selenide (III) (Bi Se;), bismuth tenorylated (III) (Bi Te)
  • Compound of periodic table group 11 element and periodic table group 16 element such as 2 2, copper chloride (I) (CuCl), copper bromide (I) (CuBr), copper iodide (I) (Cul), Compounds of Group 1 elements of Group 1 and Periodic Table 17 elements such as silver chloride (AgCl), Silver bromide (AgBr), Group 10 of Periodic Tables such as nickel oxide (Ni) (NiO) Compound of group 9 element and periodic table group 16 element such as cobalt oxide (II) (CoO), cobalt sulfide (II) (CoS), etc.
  • Three iron Fe
  • Periodic table such as manganese (II) (MnO), periodic group 7 element and periodic table 16 group element, molybdenum sulfide (IV) (MoS), tungsten oxide (IV) (WO), etc.
  • Periodic table Group 16 elements and periodic table such as compounds with Group 16 elements, vanadium (II) oxide (VO), vanadium oxide (IV) (VO), tantalum oxide (V) (TaO), etc. Conversion to group 16 elements
  • Periodic table Group 4 elements and periodic table such as compounds, titanium oxide (TiO, TiO, TiO, TiO, etc.)
  • Group 16 elements compounds of Group 2 elements of the periodic table such as magnesium sulfide (MgS), magnesium selenide (MgSe), and Group 16 elements of the periodic table, cadmium oxide (II) chromium (II I) ( CdCr 2 O 3), selenium-cadmium (III) (III) (CdCr Se), copper sulfate (III) P-III (III)
  • Chalcogen spinels such as (CuCr S), mercury (II) selenide (III) (HgCr Se),
  • Examples thereof include barium titanate (BaTiO 3). G. Schmid et al .; Adv. Mater.
  • the fine particles one kind of inorganic fine particles may be used, or a plurality of kinds of inorganic fine particles may be used in combination. By using a plurality of types of fine particles having different properties, the required properties can be improved more efficiently.
  • the inorganic fine particles according to the present invention preferably have an average particle diameter of 1 nm or more and 30 nm or less, more preferably 1 nm or more and 20 nm or less, and further preferably 1 nm or more and lOnm or less. If the average particle size is less than lnm, it is difficult to disperse the inorganic fine particles and the desired performance may not be obtained. Therefore, the average particle size is preferably lnm or more. If it exceeds the upper limit, the resulting thermoplastic material composition may become turbid and the transparency may be lowered, and the light transmittance may be less than 70%. Therefore, the average particle size is preferably 30 ⁇ m or less.
  • the average particle diameter here refers to the volume average value of the diameter (sphere equivalent particle diameter) when each particle is converted to a sphere having the same volume.
  • the shape of the inorganic fine particles is not particularly limited, but spherical fine particles are preferably used.
  • the minimum particle diameter minimum distance between the tangent lines when drawing two tangent lines that touch the outer circumference of the fine particle
  • Z maximum diameter the corresponding value when drawing two tangent lines that touch the outer circumference of the fine particle
  • the maximum value of the distance between tangents is 0.5 to 1.0. Force S is preferable, and 0.7 to 1.0 is still more preferable.
  • the particle size distribution is not particularly limited, but in order to achieve the effects of the present invention more efficiently, those having a relatively narrow distribution are preferable to those having a wide distribution. Used for.
  • the inorganic fine particles are subjected to surface treatment!
  • Examples of the surface treatment method for inorganic fine particles include surface treatment with a surface modifier such as a coupling agent, polymer grafting, and surface treatment with a mechanochemical.
  • Examples of the surface modifier used for the surface treatment of inorganic fine particles include a silane-based coating agent, a silicone oil, a titanate-based, an aluminate-based, and a zirconate-based force-coupling agent. These are not particularly limited, but inorganic fine particles Further, it can be appropriately selected depending on the type of thermoplastic resin in which the inorganic fine particles are dispersed. Further, two or more surface treatments may be performed simultaneously or at different times.
  • Examples of the silane-based surface treatment agent include bursilazane trimethylchlorosilane, dimethyldichlorosilane, methyltrichlorosilane, trimethylalkoxysilane, dimethyldialkoxysilane, methyltrialkoxysilane, and hexamethyldisilazane. In order to cover the surface widely, hexamethyldisilazane or the like is preferably used.
  • silicone oil-based treatment agent examples include straight silicone oils such as dimethyl silicone oil, methylphenol silicone oil, and methyl hydrogen silicone oil, amino-modified silicone oil, epoxy-modified silicone oil, carboxyl-modified silicone oil, and carbon dioxide.
  • Nord-modified silicone oil methacryl-modified silicone oil, mercapto-modified silicone oil, phenol-modified silicone oil, one-end reactive modified silicone oil, heterogeneous functional group-modified silicone oil, polyether-modified silicone oil, methylstyryl-modified silicone oil, Alkyl modified silicone oil, higher fatty acid ester modified silicone oil, hydrophilic special modified silicone oil, higher alkoxy modified silicone oil, Modified silicone oils such as higher fatty acid-containing modified silicone oils and fluorine-modified silicone oils can be used.
  • These treatment agents may be appropriately diluted with hexane, toluene, methanol, ethanol, acetone water, or the like.
  • Examples of the surface treatment method using the surface modifier include a wet heating method, a wet filtration method, a dry stirring method, an integral blend method, and a granulation method.
  • the dry stirring method is preferably used from the viewpoint of suppressing particle aggregation, but is not limited thereto.
  • These surface modifiers may be used alone or in combination.
  • the properties of the surface-modified fine particles obtained may vary depending on the surface modifier used, and it is also possible to achieve affinity with the thermoplastic resin used in obtaining the resin composition by selecting the surface modifier. It is.
  • the ratio of the surface modification is not particularly limited.
  • the ratio of the surface modifier is preferably in the range of 10 to 99% by mass with respect to the fine particles after the surface modification. The range of 30 to 98% by mass It is more preferable that Next, the thermoplastic resin according to the present invention will be described.
  • thermoplastic resin in which inorganic fine particles dispersed in the present invention are dispersed is not particularly limited as long as it is a transparent thermoplastic resin material generally used as an optical material.
  • acrylic resin, cyclic olefin resin, polycarbonate resin, polyester resin, polyether resin, polyamide resin, or polyimide resin are particularly preferable.
  • compounds described in Japanese Patent Application Laid-Open No. 2003-73559 can be given, and preferred compounds are shown in Table 1.
  • the thermoplastic resin material according to the present invention preferably has a water absorption rate of 0.2% by mass or less.
  • the water absorption of 0.2 wt 0/0 following resins for example, polyolefins ⁇ (e.g., polyethylene, polypropylene, etc.), fluorine ⁇ (e.g., Poritetorafuru Polyethylene, Teflon (registered trademark) AF (manufactured by DuPont), Cytop (manufactured by Asahi Glass Co., Ltd.), cyclic olefin fin resin (for example, ZEONEX (manufactured by ZEON Corporation), Arton CFSR), ), TOPAS (manufactured by Polyplastics Co., Ltd.), etc.), indene Z styrene-based resin, polycarbonate and the like are suitable forces.
  • the water absorption is considered to be approximately equal to the average value of the water absorption of each individual resin, and the average water absorption should be 0.2% or less.
  • thermoplastic resin composition of the present invention is mainly composed of thermoplastic resin and inorganic fine particles, but the preparation method is not particularly limited. That is, a method of preparing thermoplastic coffin and inorganic fine particles independently, and then mixing both, a method of preparing thermoplastic coffin under conditions where pre-prepared inorganic fine particles exist, prepared in advance V-displacement methods such as a method of preparing inorganic fine particles under the condition where thermoplastic resin is present and a method of preparing both thermoplastic resin and inorganic fine particles simultaneously can also be employed.
  • thermoplastic resin composition for example, two solutions of a solution in which thermoplastic resin is dissolved and a dispersion in which inorganic fine particles are uniformly dispersed are uniformly mixed, and the resulting solution is poorly soluble in thermoplastic resin.
  • preferred methods for obtaining the desired thermoplastic resin composition can be mentioned, but the present invention is not limited thereto.
  • the degree of mixing of the thermoplastic resin and the inorganic fine particles is not particularly limited, but in order to achieve the effect of the present invention more efficiently, It is desirable to mix uniformly.
  • the degree of mixing is insufficient, there is a concern that the optical properties such as the refractive index, Abbe number, and light transmittance will be affected, and the resin processability such as thermoplasticity and melt moldability is also affected. There is a risk of adverse effects.
  • the degree of mixing is considered to be affected by the production method, and it is important to select the method with due consideration of the properties of the thermoplastic resin and inorganic fine particles used.
  • thermoplastic resin and the inorganic fine particles In order to more uniformly mix both the thermoplastic resin and the inorganic fine particles, a method of directly bonding the thermoplastic resin and the inorganic fine particles can be suitably used in the present invention.
  • the thermoplastic resin composition of the present invention is an optically excellent resin composition having a high refractive index, low dispersibility (high Abbe number) and high transparency, and is further thermoplastic. And Z or shoot It is a thermoplastic material that is very excellent in moldability because it has a moldability. This material that has both excellent optical properties and moldability is a unique property that cannot be achieved with the materials disclosed so far, and is a specific thermoplastic resin and a specific inorganic material. It is conceivable that the fine particle force also contributes to this characteristic.
  • additives also referred to as compounding agents
  • compounding agents can be added as necessary during the preparation of the thermoplastic resin material of the present invention and in the molding process.
  • stabilizers such as antioxidants, heat stabilizers, light stabilizers, weather stabilizers, UV absorbers, near infrared absorbers; Examples thereof include: white turbidity preventing agents such as soft polymers and alcoholic compounds; colorants such as dyes and pigments; antistatic agents, flame retardants, and fillers.
  • white turbidity preventing agents such as soft polymers and alcoholic compounds
  • colorants such as dyes and pigments
  • antistatic agents flame retardants, and fillers.
  • the polymer contains at least a plasticizer or an antioxidant.
  • the plasticizer is not particularly limited, however, phosphate ester plasticizer, phthalate ester plasticizer, trimellitic ester plasticizer, pyromellitic acid plasticizer, glycolate plasticizer, citrate ester Examples thereof include a plasticizer and a polyester plasticizer.
  • phosphate ester plasticizer for example, triphenyl phosphate, tricresyl phosphate, credinole resin-nore phosphate, otachino resin-nore phosphate, diphenol-no-biphenyl phosphate, trioctyl phosphate, tributyl phosphate, etc.
  • phthalate ester plasticizers examples include jetyl phthalate, dimethoxyethyl phthalate, dimethyl phthalate, dioctyl phthalate, dibutyl phthalate, di-2-ethyl hexyl phthalate, butyl benzyl phthalate, diphenyl phthalate, and dicyclohexyl phthalate.
  • pyromellitic acid ester plasticizers such as tributyl trimellitate, triphenyl trimellitate, triethyl trimellitate, etc.
  • glycolate plasticizers such as tetrabutyl pyromellitate, tetraphenyl bimellitate, tetraethyl pyromellitate, and the like include triacetin, tributyrin, ethyl phthalyl ethyl glycolate, methyl phthalyl ethyl dallicolate, butyl phthalate Rubutyl dalicolate
  • triethyl citrate, tri-n-butyl citrate, acetyl acetyl citrate, acetyl acetyl n-butyl citrate, acetyl tri-n- (2-ethyl hexyl) Examples include citrate.
  • the antioxidant used in the present invention will be described.
  • antioxidants examples include phenolic antioxidants, phosphorus antioxidants, phenolic antioxidants, etc.
  • phenolic antioxidants especially alkyl Substituted phenolic acid oxidants are preferred.
  • these antioxidants can be used alone or in combination of two or more, and the blending amount thereof is appropriately selected within a range not impairing the object of the present invention, but the thermoplastic resin of the present invention.
  • it is 0.001-5 mass parts with respect to 100 mass parts of compositions, More preferably, it is 0.01-1 mass part.
  • phenol-based anti-oxidation agent conventionally known ones can be used.
  • phosphorus-based anti-oxidation agent there are no particular limitations on the phosphorus-based anti-oxidation agent as long as it is usually used in the general oil industry.
  • triphenylphosphite diphenylisodecylphosphite, phenoldiisodecyl.
  • Phosphite tris (norphenol) phosphite, tris (dinolephenol) phosphite, tris (2,4 di-t-butylphenol) phosphite, 10- (3,5- t-butyl 4-hydroxybenzyl) 9, 10 dihydro-9-oxa 10 phosphaphenanthrene 10 monophosphite compounds such as oxide; 4, 4'-butylidene-bis (3-methyl-6-t-butylphenol- And diphosphite compounds such as 4,4'-isopropylidene monobis (phenol didialkyl (C12-C15) phosphite).
  • tris (noyulphele) phosphite tris (dinoufulfer) phosphite, and tris (2,4 di-t-butylphenol) phosphite are particularly preferred, which prefer monophosphite compounds. .
  • iow antioxidants include dilauryl 3, 3 thiodipropionate, dimyristyl 3, 3'-thiodipropionate, distearyl 3, 3-thiodipropionate, lauryl stearyl 3, 3 —Chiodipropionate, pentaerythritol-tetrakis (j8-lauryl thiopropionate), 3, 9 bis (2 dodecylthioethyl) 2, 4, 8, 10—tetraoxaspiro [5, 5] undecane Etc.
  • the light-resistant stabilizer used in the present invention will be described.
  • the light-resistant stabilizer examples include benzophenone-based light-resistant stabilizer, benzotriazole-based light-resistant stabilizer, hindered amine-based light-resistant stabilizer, and the like.
  • a hindered amine light stabilizer from the viewpoint of transparency of the lens, color resistance, and the like.
  • HALS hindered amine light-resistant stabilizers
  • the force S of polystyrene equivalent Mn measured by GPC using tetrahydrofuran (THF) as a solvent is preferably 1,000 to 10,000 S A force S of 000 to 5,000 is more preferable, and a force of 2,800 to 3,800 is particularly preferable.
  • Mn is too small, when HALS is blended by heat-melting and kneading it into a thermoplastic resin, it will not be able to add a predetermined amount due to volatilization, The stability of the cache is reduced, for example, foaming or silver streaks occur during hot melt molding such as extrusion molding.
  • the lens is used for a long time with the lamp turned on, the lens force is also generated by volatile components as gas.
  • Mn is too large, the dispersibility in the block copolymer is lowered, the transparency of the lens is lowered, and the effect of improving light resistance is reduced. Therefore, in the present invention, by setting HALS Mn in the above range, a lens having excellent processing stability, low gas generation and transparency can be obtained.
  • HALS include N, ⁇ ', N g, N' "— tetrakis [4, 6-bis ⁇ petite (N-methyl-2, 2, 6, 6-tetramethylpiperidine -4)) amino ⁇ —triazine—2-yl] —4, 7 diazadecane— 1,10 diamine, dibutylamine and 1, 3, 5 triazine and N, N '—bis (2, 2, 6, 6— Polycondensate with tetramethyl-4-piperidyl) butyramine, poly [ ⁇ (1, 1, 3, 3-tetramethylbutyl) amino-1,3,5-triazine-1,2,4 dil ⁇ ⁇ (2, 2, 6, 6-tetramethyl-4-piperidyl) imino ⁇ hexamethylene ⁇ (2, 2, 6, 6-tetramethyl-1-piperidyl) imino ⁇ ], 1, 6 hexanediamin-1 N, N '—bis (2 , 2, 6, 6-tetramethyl mono-4-piperidyl
  • the blending amount of the thermoplastic resin composition of the present invention is preferably 0.01 to 20 parts by mass, more preferably 0.02 to 15 parts by mass, particularly preferably 100 parts by mass of the polymer. Is 0.05 to 10 parts by mass. If the amount added is too small, the effect of improving light resistance cannot be obtained sufficiently, and coloring occurs when used outdoors for a long time. On the other hand, if the amount of HALS is too large, a part of it will be generated as a gas, or the dispersibility in rosin will be reduced and the transparency of the lens will be reduced.
  • thermoplastic resin composition of the present invention by adding a compound having the lowest glass transition temperature of 30 ° C or lower to the thermoplastic resin composition of the present invention, various properties such as transparency, heat resistance, and mechanical strength are provided. It can prevent white turbidity in high temperature and high humidity environment for a long time without deteriorating the characteristics.
  • the optically-absorbent lens according to the present invention is prepared by first preparing an aliphatic composition (in some cases, oleum alone or in a mixture of rosin and additives), and then obtaining Forming a molded resin composition.
  • the optically-absorbent lens according to the present invention is prepared by first preparing an irrigation composition (in some cases, oleum alone or in a mixture of rosin and additives), and then obtaining Forming a molded resin composition.
  • a molded product of the thermoplastic resin material of the present invention is obtained by forming a molding material comprising the resin composition.
  • the molding method is not particularly limited, but melt molding is preferable in order to obtain a molded product excellent in characteristics such as low birefringence, mechanical strength, and dimensional accuracy.
  • Examples of the melt molding method include commercially available press molding, commercially available extrusion molding, and commercially available injection molding. Injection molding is preferred from the viewpoint of moldability and productivity.
  • Molding conditions are appropriately selected depending on the purpose of use or molding method.
  • a resin composition in injection molding in the case of a single resin or a mixture of a resin and an additive
  • the temperature of the product imparts appropriate fluidity to the resin during molding to prevent sink marks and distortion of the molded product, prevents the occurrence of silver streaks due to thermal decomposition of the resin, and further the yellowing of the molded product.
  • the range of 150 ° C to 400 ° C is preferable, more preferably 200 ° C to 350 ° C, and particularly preferably 200 ° C to 330 ° C. .
  • the molded product according to the present invention can be used in various forms such as a spherical shape, a rod shape, a plate shape, a columnar shape, a tubular shape, a tube shape, a fiber shape, a film or a sheet shape, and has a low birefringence. Because of its excellent properties, transparency, mechanical strength, heat resistance, and low water absorption, it is used as an optical resin lens that is one of the optical elements of the present invention, but is also suitable as other optical components.
  • optical resin lens according to the present invention can be obtained by the above-described production method.
  • Specific examples of application to optical components are as follows.
  • an imaging lens of a camera a lens such as a microscope, an endoscope or a telescope lens; an all-light transmission lens such as a spectacle lens; CD, CD-ROM, WORM Type optical disc), MO (rewritable optical disc; magneto-optical disc), MD (mini disc), DVD (digital video disc) and other optical disc pick-up lenses; laser beam printer f ⁇ lenses, sensor lenses, etc.
  • Optical disc applications include CD, CD-ROM, WORM (recordable optical disc), MO (rewritable optical disc; magneto-optical disc), MD (mini disc), DVD (digital video disc), and the like. It is done.
  • Other optical applications include light guide plates such as liquid crystal displays; optical films such as polarizing films, retardation films, and light diffusing films; light diffusing plates; optical cards; and liquid crystal display element substrates.
  • optical resin lens As an example of the use of the optical resin lens according to the present invention, an example used as an objective lens used in a pickup device for an optical disk will be described with reference to FIG.
  • the target is a “high density optical disk” using a so-called blue-violet laser light source having a used wavelength of 405 nm.
  • This optical disk has a protective substrate thickness of 0.1 mm and a storage capacity of about 30 GB.
  • FIG. 1 shows an optical device in which the optical element of the present invention (optical resin lens) is applied as an objective lens. It is a schematic diagram which shows an example of the pick-up apparatus for disks.
  • the laser diode (LD) 2 is a light source, and a blue violet laser having a wavelength ⁇ of 405 nm is used. A power wavelength in the range of 390 nm to 420 nm is appropriately adopted. can do.
  • the beam splitter (BS) 3 transmits the light source incident from the LD 2 in the direction of the objective optical element (OBL) 4, but the sensor lens for the reflected light (returned light) from the optical disk (optical information recording medium) 5. It has a function of condensing light receiving sensor (PD) 7 through (SL) 6.
  • the light beam emitted from the LD 2 is incident on the collimator (COL) 8, collimated into infinite parallel light by this, and then enters the objective lens OBL 4 via the beam splitter (BS) 3. Then, a condensing spot is formed on the information recording surface 5b via the protective substrate 5a of the optical disc (optical information recording medium) 5. Next, after reflecting on the information recording surface 5b, following the same path, the direction of polarization is changed by the 1Z4 wave plate (Q) 9, the path is bent by BS3, and the sensor (PD) is passed through the sensor lens (SL) 6. ) Condensed to 7. This sensor photoelectrically converts it into an electrical signal.
  • the objective optical element OBL4 is a single lens optical resin lens that is injection-molded by resin.
  • An aperture (AP) 10 is provided on the incident surface side to determine the beam diameter.
  • the incident beam is reduced to a diameter of 3 mm.
  • focusing is performed by the actuator (AC) 11.
  • the numerical aperture required for the objective optical element O BL4 varies depending on the thickness of the protective substrate of the optical information recording medium and the size of the pits.
  • the numerical aperture of the high-density optical disk (optical information recording medium) 5 is assumed to be 0.85.
  • the inorganic fine particles A were prepared in the same manner except that the aluminum nitride was changed to aluminum oxide (TM-300, average particle size of about 7 nm) manufactured by Daimei Chemical Industry Co., Ltd. B was obtained.
  • Inorganic fine particles C were obtained in the same manner as in the preparation of inorganic fine particles A, except that aluminum nitride was changed to titanium oxide (Typeter ST-01, average particle size of about 7 nm) manufactured by Ishihara Sangyo Co., Ltd.
  • thermoplastic rosin composition [0101] ⁇ Preparation of thermoplastic rosin composition
  • thermoplastic resin composition 1 (Preparation of thermoplastic resin composition 1)
  • a mixer (KF70) and a high-slicing rotor are installed in a kneader Labo Plast Mill Type C (manufactured by Toyo Seiki Seisakusho), with a refractive index of 1.49 and an Abbe number of 58 (1) ) And the prepared inorganic fine particles A were added at a mass ratio of 69:31, and kneaded at a preset temperature of 200 ° C. and 30 Orpm for 5 minutes to prepare a thermoplastic resin composition 1.
  • thermoplastic rosin composition 2 Preparation of thermoplastic rosin composition 2
  • thermoplastic resin composition 1 In the preparation of the thermoplastic resin composition 1 described above, the same procedure was used except that the resin (2) having a refractive index of 1.54 and an Abbe number of 56 shown in Table 1 was used instead of the resin (1). Thus, a thermoplastic rosin composition 2 was prepared.
  • thermoplastic rosin composition 3 (Preparation of thermoplastic rosin composition 3)
  • thermoplastic resin composition 1 In the preparation of the thermoplastic resin composition 1 described above, the same procedure was used except that the resin (3) having a refractive index of 1.53 and an Abbe number of 57 shown in Table 1 was used instead of the resin (1). Thus, a thermoplastic resin composition 3 was prepared.
  • thermoplastic rosin composition 4 Preparation of thermoplastic rosin composition 4.
  • thermoplastic resin composition 2 the mass ratio of the resin (2) and the inorganic fine particles A is A thermoplastic rosin composition 4 was prepared in the same manner except that the ratio was changed to 48:52.
  • thermoplastic resin composition 5 (Preparation of thermoplastic resin composition 5)
  • thermoplastic resin composition 2 In preparing the thermoplastic resin composition 2, the thermoplastic resin composition 5 was prepared in the same manner except that the mass ratio of the resin (2) and the inorganic fine particles A was changed to 31:69. .
  • thermoplastic rosin composition 6 (Preparation of thermoplastic rosin composition 6)
  • a mixer (KF70) and a high shear type rotor are attached to the kneading apparatus lab plast mill C type, and the resin (2) and inorganic fine particles B shown in Table 1 are added so that the mass ratio is 19:81.
  • the kneading apparatus stopped suddenly due to an overload, so that the thermoplastic resin composition 6 could not be obtained.
  • thermoplastic rosin composition 7 Preparation of thermoplastic rosin composition 7
  • thermoplastic resin composition 2 In the preparation of the thermoplastic resin composition 2 described above, the inorganic fine particle B prepared above was used instead of the inorganic fine particle A, and the mass ratio of the resin (2) and the inorganic fine particle B was set to 64:36. Similarly, a thermoplastic rosin composition 7 was prepared.
  • thermoplastic rosin composition 8 (Preparation of thermoplastic rosin composition 8)
  • thermoplastic resin composition 8 was prepared in the same manner as in the preparation of the thermoplastic resin composition 7 except that the resin (3) was used instead of the resin (2).
  • thermoplastic rosin composition 9 (Preparation of thermoplastic rosin composition 9)
  • thermoplastic resin composition 8 was prepared in the same manner except that the mass ratio of the resin (2) and the inorganic fine particles B was changed to 42:58. .
  • thermoplastic rosin composition 10 Preparation of thermoplastic rosin composition 10.
  • thermoplastic resin composition 10 was prepared in the same manner as in the preparation of the thermoplastic resin composition 7, except that the inorganic fine particle C prepared above was used instead of the inorganic fine particle B.
  • thermoplastic resin composition 11 Preparation of thermoplastic resin composition 11
  • thermoplastic resin composition 11 was prepared in the same manner as in the preparation of the thermoplastic resin composition 8 except that the prepared inorganic fine particles C were used in place of the inorganic fine particles B.
  • thermoplastic resin composition 12 Preparation of thermoplastic resin composition 12
  • thermoplastic resin composition 12 was prepared in the same manner as in the preparation of the thermoplastic resin composition 9 except that the inorganic fine particle C prepared above was used instead of the inorganic fine particle B. [0113] ⁇ Evaluation of Thermoplastic Composition >>
  • thermoplastic resin compositions 1 12 prepared above were melted and thermoformed to produce a test plate having a thickness of 0.5 mm, and an Abbe refractometer (DR-M2 manufactured by Atago Co., Ltd.) was used. The respective refractive indexes at wavelengths of 588 nm, 486 nm and 656 nm were measured. The measured temperature was 23 ° C. Refractive index n of 588 nm and Abbe number d calculated according to the above equation (4)
  • Each of the prepared thermoplastic resin compositions 112 was melted and thermoformed to produce a test plate having a thickness of 3 mm.
  • the transmittance at a wavelength of 588 nm in the thickness direction was measured using a spectrophotometer UV-3150 manufactured by Shimadzu Corporation. Table 2 shows the results obtained.
  • thermoplastic resin composition of the present invention satisfying the conditions defined by the formula (1) or the formulas (2) and (3) of the present invention is a comparative example. On the other hand, it has a high refractive index, a high Abbe number, and a high transparency.
  • the optical element of the present invention has good optical characteristics, and even if it is irradiated with Blue-Ray used for recording and reproduction of CDs and DVDs for a long time, a material such as cloudiness is produced It was confirmed that it was excellent in alteration resistance.
  • thermoplastic resin composition having high refractive index, low dispersibility (high Abbe number), excellent transparency and light weight, and an optical element using the same.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 無機微粒子が熱可塑性樹脂中に分散された溶融成形可能な熱可塑性樹脂組成物であり、波長588nmの光に対する屈折率をndとし、アッベ数をνdとした時、下式(1)で規定する条件を満たすことを特徴とする熱可塑性樹脂組成物。  式(1)    nd>1.82-0.0042νd

Description

明 細 書
熱可塑性樹脂組成物及びそれを用いた光学素子
技術分野
[0001] 本発明は、レンズ、フィルター、グレーティング、光ファイバ一、平板光導波路などと して好適に用いられ、高屈折率、低分散性 (高アッベ数)で、かつ透明性、軽量性に 優れた熱可塑性榭脂組成物及びそれを用いた光学素子に関する。
背景技術
[0002] 近年、高度情報化社会に向けたオプトエレクトロニクスの研究が精力的に行われ、 その実現に向けて光学材料の研究も盛んに行われている。光通信、光記録、光加工 、光計測、光演算等、オプトエレクトロニクスの様々な展開を支える光学材料として、 以下の様な特性が求められている。すなわち、高屈折性、低分散性 (すなわち、高ァ ッべ数)、耐熱性、透明性、無色性、クリーン性、易成形性、軽量性、耐薬品性,耐溶 剤性等である。
[0003] これまで適用されてきた光学材料としては、石英や光学ガラスなどの無機系材料が 主であった。これら無機系材料は、優れた光学特性や耐熱性を有しているものの、加 ェ性ゃコスト、密度が大きいなどの問題を抱えている。例えば、屈折率 1. 70を有す る光学用ガラスの密度は約 3. OgZcm3と非常に大きい。これらに対応すベぐ近年、 優れた光学特性と加工性、軽量性等を兼ね備えた材料開発が進められ、有機光学 材料、特に熱可塑性を有する榭脂材料に対する期待が高まっている。熱可塑性を有 する榭脂材料は、軽量で可とう性に優れる、電気的誘導を受けない、成形加工が容 易である等の多くの特徴を有しており、光ファイバ一、光導波路、光ディスク基盤、光 フィルター、レンズ、光学用接着剤等の用途に向けた展開が図られている。
[0004] その代表的な熱可塑性榭脂材料として、ポリカーボネート榭脂が挙げられ、その中 でも、 2, 2—ビス(4ーヒドロキシフエ-ル)プロパン(通称、ビスフエノール A)を原料と したものは、透明性に優れているうえ、ガラスに比べて軽ぐ耐衝撃性に優れ、溶融 成形が可能であると共に、大量生産が容易である等の特徴から、多くの分野で光学 部品として応用が図られている。し力しながら、屈折率は 1. 58程度と比較的高い値 を有しているものの、屈折率の分散性の程度を表すアッベ数が 30と低ぐ屈折率と分 散特性とのバランスが悪ぐ光学部品を構成する榭脂として、その用途が限られてい るのが現状である。
[0005] 例えば、光学部品の代表例である眼鏡レンズは、視覚機能を考慮すると眼鏡レン ズ素材のアッベ数は 40以上が望ましいことが知られている(例えば、非特許文献 1参 照。)が、ビスフエノール Aを原料としたポリカーボネート榭脂をそのまま使用しても所 望の特性を得ることは難しい。
[0006] これらの問題点を解決するための様々な試みがこれまでになされて 、るが、例えば 、眼鏡レンズに適用した場合には、視覚機能の観点力も必要とされるアッベ数 40以 上を有する榭脂は数少なぐ 30〜38程度のものが大半である。また、アッベ数 40以 上を有する榭脂も幾つ力提案されているが、屈折率は高くても 1. 56程度であり、高 い屈折率と高いアッベ数が望まれる用途には適用できない。例えば、眼鏡レンズであ れば、屈折率 1. 58以上が必要とされ、かつアッベ数 40以上を有する榭脂が望まれ ている。
[0007] 更には、例えば、光ファイバ一や光導波路、一部のレンズのように、異なる屈折率を 有する複数の材料を併用したり、屈折率に分布を有する材料の開発も望まれている 。これらの材料に対応するためには、屈折率を任意に調節できることが不可欠となる
[0008] 一方、特に、眼鏡レンズを対象とした熱硬化性榭脂の開発が盛んに行われてきた。
これまでに多くの榭脂が上巿されており、その多くは 1. 60以上の高屈折率と 40以上 のアッベ数を併せ持ち、光学特性に大変優れたものであり、これまで主流であった光 学ガラスに比べて軽量であるといった特徴を有する(例えば、非特許文献 1参照。 )0 しかしながら、これらの榭脂は熱硬化性榭脂であるため、その加工に煩雑な工程と数 十時間以上の多大な時間を要するのが一般であり、これらは生産効率の面力 非常 に大きな問題となっている。
[0009] 従って、高屈折性、低分散性 (高アッベ数)、耐熱性、透明性、及び軽量性を併せ 持ち、さらには屈折率を任意に制御できる熱可塑性を有する材料、およびそれを含 んで構成される光学部品は未だ見出されておらず、その開発が切に望まれて 、た。 [0010] 上記のような要望に対して、プラスチックレンズ等の有機光学材料の屈折率を制御 する方法の 1つとして、微粒子充填材を使用する方法が提案されている。
[0011] この微粒子充填材は、有機光学材料の屈折率を修正するために使用され、粒子サ ィズが十分に小さい充填材を用いることによって、充填材による光散乱を起こさず、 充填されたプラスチックは、光学素子としての十分な透明性を維持することができるも のである。
[0012] 例えば、高い屈折率が得られる有機ポリマー製の光学部品を提供する方法として、 高屈折率かつ高アッベ数な微粒子を基材ポリマーに均一に分散する方法が提案さ れている (例えば、特許文献 1参照。 ) oまた、高屈折性かつ低分散性を有する光学 材料を提供する方法として、熱可塑性榭脂と酸化チタン微粒子からなる材料組成物 が提案されている(例えば、特許文献 2、 3参照。;)。し力しながら、特許文献 2、 3に記 載された方法では、高い屈折率を得るために酸ィ匕チタンのような高屈折率で低アツ ベ数の微粒子を添加するために、十分な低分散性を得ることができない。また、特許 文献 1に記載された高屈折率かつ高アッベ数な微粒子を使っても、十分に高い屈折 率のポリマーは得られないか、屈折率を高くするために非常に多量の微粒子を添カロ する必要があり、いずれも光学レンズに求められる要求を満足できるものではなかつ た。
特許文献 1:特開 2001— 183501号公報 (特許請求の範囲)
特許文献 2:特開 2003 - 73559号公報 (特許請求の範囲)
特許文献 3:特開 2003 - 73564号公報 (特許請求の範囲)
非特許文献 1 :季刊化学総説 No. 39 透明ポリマーの屈折率制御 日本化学会編、 学会出版センター
発明の開示
[0013] 本発明の目的は、高屈折率、低分散性 (高アッベ数)で、かつ透明性及び軽量性 に優れた熱可塑性榭脂組成物とそれを用いた光学素子を提供することにある。
[0014] 本発明の上記目的を達成するための態様の一つは、無機微粒子が熱可塑性榭脂 中に分散された溶融成形可能な熱可塑性榭脂組成物であり、波長 588nmの光に対 する屈折率を nとし、アッベ数を V とした時、下式(1)で規定する条件を満たすことを 特徴とする熱可塑性榭脂組成物にある。
[0015] 式(1)
n > 1. 82-0. 0042 V
d d
図面の簡単な説明
[0016] [図 1]本発明の光学素子 (光学用榭脂レンズ)を対物レンズとして適用した光ディスク 用のピックアップ装置の一例を示す模式図である。
発明を実施するための最良の形態
[0017] 本発明の上記目的は、以下の構成により達成される。
[0018] (1)無機微粒子が熱可塑性榭脂中に分散された溶融成形可能な熱可塑性榭脂組 成物であり、波長 588nmの光に対する屈折率を nとし、アッベ数を v とした時、下式 d d
(1)で規定する条件を満たすことを特徴とする熱可塑性榭脂組成物。
[0019] 式(1)
n > 1. 82-0. 0042 V
d d
(2)前記アッベ数 v 1S 40以上、 70以下であることを特徴とする前記(1)に記載の d
熱可塑性榭脂組成物。
[0020] (3)無機微粒子が、波長 588nmの光に対する屈折率が nである熱可塑性榭脂〖こ
0
分散された溶融成形可能な熱可塑性榭脂組成物であり、該無機微粒子の体積率を f とし、波長 588nmの光に対する屈折率を n、アッベ数を v とした時、下式(2)及び d d
式 (3)で規定する条件を同時に満たすことを特徴とする熱可塑性榭脂組成物。
[0021] 式(2)
n≥n +0. 3f
d 0
式 (3)
v ≥50
d
(4)前記体積率 0. 3以下であることを特徴とする前記(3)に記載の熱可塑性 榭脂組成物。
[0022] (5)前記波長 588nmの光に対する屈折率 nが 1. 6以上であることを特徴とする前 d
記(3)または (4)に記載の熱可塑性榭脂組成物。
[0023] (6)前記無機微粒子の少なくとも 1種が、窒化アルミニウムであることを特徴とする前 記(1)〜(5)の 、ずれか 1項に記載の熱可塑性榭脂組成物。
[0024] (7)無機微粒子が熱可塑性榭脂中に分散された溶融成形可能な熱可塑性榭脂組 成物であり、該無機微粒子の少なくとも 1種が、金属窒化物であることを特徴とする熱 可塑性榭脂組成物。
[0025] (8)前記金属窒化物が、窒化アルミニウムであることを特徴とする前記(7)に記載の 熱可塑性榭脂組成物。
[0026] (9)前記(1)〜(8)の 、ずれか 1項に記載の熱可塑性榭脂組成物を用いて成形さ れ、波長 588nmにおける光路長 3mm当たりの平均光線透過率が 70%以上である ことを特徴とする光学素子。
[0027] 以下、本発明を実施するための最良の形態について詳細に説明する。
[0028] 本発明者は、上記課題に鑑み鋭意検討を行った結果、 1)無機微粒子が熱可塑性 榭脂中に分散された溶融成形可能な熱可塑性榭脂組成物であり、波長 588nmの光 に対する屈折率を nとし、アッベ数を V とした時、前式(1)で規定する条件を満たす d d
ことを特徴とする熱可塑性榭脂組成物、 2)無機微粒子が、波長 588nmの光に対す る屈折率が n
0である熱可塑性榭脂に分散された溶融成形可能な熱可塑性榭脂組成 物であり、該無機微粒子の体積率を fとし、波長 588nmの光に対する屈折率を n d、ァ ッべ数を V とした時、前式 (2)及び式 (3)で規定する条件を同時に満たすことを特徴 d
とする熱可塑性榭脂組成物、あるいは 3)無機微粒子が熱可塑性榭脂中に分散され た溶融成形可能な熱可塑性榭脂組成物であり、該無機微粒子の少なくとも 1種が、 金属窒化物であることにより、上記本発明の目的効果を実現できることを見出し、本 発明に至った次第である。
[0029] 以下、本発明の詳細について説明する。
[0030] 本発明の無機微粒子が熱可塑性榭脂中に分散された熱可塑性榭脂組成物にお いては、波長 588nmの光に対する屈折率を nとし、アッベ数を v とした時、下式(1) d d
で規定する条件を満たすことを特徴とする。
[0031] 式(1)
n > 1. 82-0. 0042 V
d d
本発明でいうアッベ数 v とは、 588nm、 486nm、 656nmにおける屈折率をそれ ぞれ n、 n、 nとした時、下式 (4)で与えられる。
d F C
[0032] 式(4)
V = (n— l) / (n — n )
d d F C
本発明においては、本発明の熱可塑性榭脂組成物のアッベ数 v は、 40以上、 70
d
以下であることが好ましい。
[0033] 本発明において、 588nm、 486nm、 656nmにおける屈折率 n、 n、 nは、公知 d F C の屈折計を用いて測定することができ、例えば、アッベ屈折計 (ァタゴ社製 DR- M 2)、自動複屈折計 KOBRA— 21ADH (王子計測機器 (株)製)等を用いて求めるこ とがでさる。
[0034] 熱可塑性榭脂組成物の屈折率 nとアッベ数 V 1S 前記式(1)で規定する条件を満 d d
たすことにより、高屈折率、低分散性 (高アッベ数)で、かつ透明性に優れた熱可塑 性榭脂組成物を得ることができる。
[0035] 本発明において、前記式(1)で規定する条件を満たす手段としては、例えば、後述 の表 1に記載のような特定の屈折率とアッベ数を備えた熱可塑性榭脂を適宜選択す ること、分散させる無機微粒子の種類及び体積率を適宜選択すること、あるいはそれ らを適宜組み合わせることにより達成することができる。
[0036] また、本発明の無機微粒子が熱可塑性榭脂中に分散された熱可塑性榭脂組成物 においては、無機微粒子が、波長 588nmの光に対する屈折率が nである熱可塑性
0
榭脂に分散された溶融成形可能な熱可塑性榭脂組成物であり、該無機微粒子の体 積率を fとし、波長 588nmの光に対する屈折率を n、アッベ数を v とした時、前式(2 d d
)及び式 (3)で規定する条件を同時に満たすことを特徴とする。
[0037] ここで、熱可塑性榭脂組成物に対する無機微粒子の体積率 fは、 f = (熱可塑性榭 脂組成物中の無機微粒子の総体積) , (熱可塑性榭脂組成物の体積)で与えられる
[0038] 前記式(2)にお 、て、体積率 fの係数である 0. 3は、無機微粒子の体積率 fに対す る屈折率 nの傾き (変化率)を表すものであり、この傾きが 0. 3以上で本発明の目的 d
が達成され、より好ましくは 0. 4以上、さらに好ましくは 0. 5以上である。
[0039] この傾きが大き ヽ程、低 ヽ無機微粒子の体積率で高屈折率の熱可塑性榭脂組成 物が得られ、さらにアッベ数が 50以上の時に高屈折率性と低分散性の両立が可能と なる。
[0040] 無機微粒子の体積率 fは 0. 3以下であることが好ましぐより好ましくは 0. 2以下、さ らに好ましくは 0. 1以下である。無機微粒子の体積率が 0. 3を超えると、熱可塑性榭 脂への添加が難しくなり、熱可塑性榭脂組成物が硬くなつて混練や成形がしにくくな り、更には熱可塑性榭脂組成物の比重が大きくなるなどの問題が生じることがある。
[0041] 次 、で、本発明の熱可塑性榭脂組成物の詳細にっ 、て説明する。
[0042] はじめに、本発明に係る無機微粒子にっ 、て説明する。
[0043] 本発明の熱可塑性榭脂組成物にお!ヽては、無機微粒子としては、特に制限はな ヽ 力 本発明の上記目的効果をいかんなく発揮できる観点から、金属窒化物を含有す ることが 1つの特徴である。
[0044] 本発明で好ましく用いられる金属窒化物の金属元素としては、窒化可能な金属で あれば特に制限されず、例えば、アルミニウム、チタン、鉄、ケィ素、ホウ素、ガリウム 、ニオブ、ジルコニウム、クロムなどが挙げられる。これらの金属窒化物は 1種でもよい し、複数類を併用することもできる。本発明においては、金属窒化物の中でも、特に、 窒化アルミニウムが好ましく用いられる。本発明で適用可能な窒化アルミニウムの微 粒子としてはは、例えば、 Nanomat, Inc.力 平均粒径が 5〜25nmのものがプラ ズマ合成法により製造及び提供されている他、特開 2001— 206708号公報等にも、 その製造方法が記載されているが、本発明においては、その製造方法などは特に限 定されない。
[0045] 本発明において用いられる無機微粒子としては、上記の金属窒化物が好ましく用 いられるが、これらに限定されるものではなぐ公知の無機微粒子、例えば、酸ィ匕物 微粒子等を用いることも可能である。
本発明にお ヽて用いられる酸ィ匕物微粒子としては、金属酸化物を構成する金属が、 Li、 Na、 Mg、 Al、 Si、 K:、 Ca、 Sc、 Ti、 V、 Cr、 Mn、 Fe、 Co、 Ni、 Cu、 Zn、 Rb、 Sr 、 Y、 Nb、 Zr、 Mo、 Ag、 Cd、 In、 Sn、 Sb、 Cs、 Ba、 La、 Ta、 Hf、 W、 Ir、 Tl、 Pb、 Bi 及び希土類金属からなる群より選ばれる 1種または 2種以上の金属である金属酸ィ匕 物を用いることができ、具体的には、例えば、酸化珪素、酸化チタン、酸化亜鉛、酸 化アルミニウム、酸化ジルコニウム、酸化ハフニウム、酸化ニオブ、酸化タンタル、酸 化マグネシウム、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化インジウム 、酸化錫、酸化鉛、これら酸化物より構成される複酸化物であるニオブ酸リチウム、二 ォブ酸カリウム、タンタル酸リチウム、アルミニウム 'マグネシウム酸化物(MgAl O )
2 4 等の中から、適宜選択することが可能である。また、本発明において用いられる酸ィ匕 物微粒子として希土類酸ィ匕物を用いることもでき、具体的には酸化スカンジウム、酸 ィ匕イットリウム、酸化ランタン、酸化セリウム、酸ィ匕プラセオジム、酸ィ匕ネオジム、酸ィ匕 サマリウム、酸ィ匕ユウ口ピウム、酸ィ匕ガドリニウム、酸ィ匕テルビウム、酸ィ匕ジスプロシゥ ム、酸ィ匕ホルミウム、酸ィ匕エルビウム、酸ィ匕ツリウム、酸化イッテルビウム、酸化ルテチ ゥム等が挙げられる。金属塩微粒子としては、炭酸塩、リン酸塩、硫酸塩なども適宜 用いることが可能である。
また、本発明において、半導体微粒子を用いることも可能であり、本発明における 半導体微粒子とは、半導体結晶組成の微粒子を意味する。該半導体結晶組成の具 体的な組成例としては、炭素、ケィ素、ゲルマニウム、錫等の周期表第 14族元素の 単体、リン (黒リン)等の周期表第 15族元素の単体、セレン、テルル等の周期表第 16 族元素の単体、炭化ケィ素(SiC)等の複数の周期表第 14族元素からなる化合物、 酸化錫(IV) (SnO )、硫化錫(II, IV) (Sn (lD Sn (lV) S )、硫化錫(IV) (SnS )、硫
2 3 2 化錫(Π) (SnS)、セレンィ匕錫(Π) (SnSe)、テルルイ匕錫(Π) (SnTe)、硫ィ匕鉛 (Π) (Pb S)、セレン化鉛 (II) (PbSe)、テルルイ匕鉛 (II) (PbTe)等の周期表第 14族元素と周 期表第 16族元素との化合物、窒化ホウ素 (BN)、リンィ匕ホウ素 (BP)、砒ィ匕ホウ素 (B As)、窒化アルミニウム(A1N)、リン化アルミニウム(A1P)、砒化アルミニウム(AlAs) 、アンチモン化アルミニウム(AlSb)、窒化ガリウム(GaN)、リン化ガリウム(GaP)、砒 化ガリウム(GaAs)、アンチモン化ガリウム(GaSb)、窒化インジウム(InN)、リン化ィ ンジゥム(InP)、砒化インジウム(InAs)、アンチモン化インジウム(InSb)等の周期表 第 13族元素と周期表第 15族元素との化合物 (あるいは III V族化合物半導体)、硫 化アルミニウム(Al S )、セレン化アルミニウム(Al Se )、硫化ガリウム(Ga S )、セ
2 3 2 3 2 3 レン化ガリウム(Ga Se )、テルル化ガリウム(Ga Te )、酸化インジウム(In O )、硫
2 3 2 3 2 3 化インジウム(In S )、セレン化インジウム(In Se )、テルル化インジウム(In Te )等 の周期表第 13族元素と周期表第 16族元素との化合物、塩ィ匕タリウム (I) (T1C1)、臭 化タリウム (I) (TlBr)、ヨウ化タリウム (I) (T1I)等の周期表第 13族元素と周期表第 17 族元素との化合物、酸ィ匕亜鉛 (ZnO)、硫ィ匕亜鉛 (ZnS)、セレンィ匕亜鉛 (ZnSe)、テ ルル化亜鉛 (ZnTe)、酸化カドミウム(CdO)、硫ィ匕カドミウム(CdS)、セレン化カドミ ゥム(CdSe)、テルル化カドミウム(CdTe)、硫化水銀 (HgS)、セレンィ匕水銀 (HgSe) 、テルルイ匕水銀 (HgTe)等の周期表第 12族元素と周期表第 16族元素との化合物( あるいは II-VI族化合物半導体)、硫ィ匕砒素(III) (As S )、セレンィ匕砒素(III) (As S
2 3 2 e;)、テルル化砒素(III) (As Te;)、硫化アンチモン(III) (Sb S )、セレン化アンチモ
3 2 3 2 3
ン(III) (Sb Se )、テノレノレィ匕アンチモン(ΙΠ) (Sb Te )、硫ィ匕ビスマス(III) (Bi S )、
2 3 2 3 2 3 セレン化ビスマス(III) (Bi Se;)、テノレル化ビスマス(III) (Bi Te )等の周期表第 15族
2 3 2 3
元素と周期表第 16族元素との化合物、酸化銅 (I) (Cu 0)、セレン化銅 (I) (Cu Se)
2 2 等の周期表第 11族元素と周期表第 16族元素との化合物、塩化銅 (I) (CuCl)、臭化 銅 (I) (CuBr)、ヨウ化銅 (I) (Cul)、塩ィ匕銀 (AgCl)、臭化銀 (AgBr)等の周期表第 1 1族元素と周期表第 17族元素との化合物、酸化ニッケル (Π) (NiO)等の周期表第 1 0族元素と周期表第 16族元素との化合物、酸化コバルト (II) (CoO)、硫化コバルト (I I) (CoS)等の周期表第 9族元素と周期表第 16族元素との化合物、四酸化三鉄 (Fe
3
O )、硫化鉄 (II) (FeS)等の周期表第 8族元素と周期表第 16族元素との化合物、酸
4
化マンガン (II) (MnO)等の周期表第 7族元素と周期表第 16族元素との化合物、硫 化モリブデン (IV) (MoS )、酸ィ匕タングステン (IV) (WO )等の周期表第 6族元素と
2 2
周期表第 16族元素との化合物、酸化バナジウム (II) (VO)、酸ィ匕バナジウム (IV) (V O )、酸化タンタル (V) (Ta O )等の周期表第 5族元素と周期表第 16族元素との化
2 2 5
合物、酸ィ匕チタン (TiO、 Ti O、 Ti O、 Ti O等)等の周期表第 4族元素と周期表
2 2 5 2 3 5 9
第 16族元素との化合物、硫化マグネシウム(MgS)、セレン化マグネシウム(MgSe) 等の周期表第 2族元素と周期表第 16族元素との化合物、酸化カドミウム (II)クロム (II I) (CdCr O )、セレンィ匕カドミウム(Π)ク Pム(III) (CdCr Se )、硫ィ匕銅(Π)ク Pム(III)
2 4 2 4
(CuCr S )、セレン化水銀(II)クロム(III) (HgCr Se )等のカルコゲンスピネル類、
2 4 2 4
バリウムチタネート(BaTiO )等が挙げられる。なお、 G. Schmidら; Adv. Mater. ,
3
4卷, 494頁(1991)【こ報告されて!ヽる(BN) 75 (BF2) 15F15や、 D. Fenskeら; A ngew. Chem. Int. Ed. Engl. , 29卷, 1452頁(1990)【こ報告されて!ヽる Cu S
146 e (トリェチルホスフィン) のように構造の確定されている半導体クラスターも同様に
73 22
例示される。
[0047] 上記の微粒子は、 1種類の無機微粒子を用いてもよぐまた複数種類の無機微粒 子を併用してもよい。異なる性質を有する複数種類の微粒子を用いることで、必要と される特'性を更〖こ効率よく向上させることちできる。
[0048] また、本発明に係る無機微粒子は、平均粒子径が lnm以上、 30nm以下が好まし く、 lnm以上、 20nm以下がより好ましぐさらに好ましくは lnm以上、 lOnm以下で ある。平均粒子径が lnm未満の場合、無機微粒子の分散が困難になり所望の性能 が得られない恐れがあることから、平均粒子径は lnm以上であることが好ましぐまた 平均粒子径が 30nmを超えると、得られる熱可塑性材料組成物が濁るなどして透明 性が低下し、光線透過率が 70%未満となる恐れがあることから、平均粒子径は 30η m以下であることが好ましい。ここでいう平均粒子径は各粒子を同体積の球に換算し た時の直径 (球換算粒径)の体積平均値を言う。
[0049] さらに、無機微粒子の形状は、特に限定されるものではないが、球状の微粒子が好 適に用いられる。具体的には、粒子の最小径 (微粒子の外周に接する 2本の接線を 引く場合における当該接線間の距離の最小値) Z最大径 (微粒子の外周に接する 2 本の接線を引く場合における当該接線間の距離の最大値)が 0. 5〜1. 0であること 力 S好ましく、 0. 7〜1. 0であることが更に好ましい。
また、粒子径の分布に関しても特に制限されるものではないが、本発明の効果をより 効率よく発現させるためには、広範な分布を有するものよりも、比較的狭い分布を持 つものが好適に用いられる。
[0050] さらに、無機微粒子は、表面処理が施されて!/ヽることが好ま ヽ。無機微粒子の 表面処理の方法としては、カップリング剤等の表面修飾剤による表面処理、ポリマー グラフト、メカノケミカルによる表面処理などが挙げられる。
[0051] また、無機微粒子の表面処理に用いられる表面修飾剤としては、シラン系カツプリ ング剤を始め、シリコーンオイル、チタネート系、アルミネート系及びジルコネート系力 ップリング剤等が挙げられる。これらは特に限定されるものではないが、無機微粒子 および無機微粒子を分散する熱可塑性榭脂の種類により適宜選択することが可能で ある。また、各種表面処理を二つ以上同時又は異なる時に行ってもよい。
[0052] シラン系の表面処理剤としては、ビュルシラザントリメチルクロロシラン、ジメチルジク ロロシラン、メチルトリクロロシラン、トリメチルアルコキシシラン、ジメチルジアルコキシ シラン、メチルトリアルコキシシラン、へキサメチルジシラザン等が挙げられ、微粒子の 表面を広く覆うためにへキサメチルジシラザン等が好適に用いられる。
[0053] シリコーンオイル系処理剤としては、ジメチルシリコーンオイル、メチルフエ-ルシリ コーンオイル、メチルハイドロジェンシリコーンオイル等のストレートシリコーンオイルや 、ァミノ変性シリコーンオイル、エポキシ変性シリコーンオイル、カルボキシル変性シリ コーンオイル、カルビノール変性シリコーンオイル、メタクリル変性シリコーンオイル、メ ルカプト変性シリコーンオイル、フエノール変性シリコーンオイル、片末端反応性変性 シリコーンオイル、異種官能基変性シリコーンオイル、ポリエーテル変性シリコーンォ ィル、メチルスチリル変性シリコーンオイル、アルキル変性シリコーンオイル、高級脂 肪酸エステル変性シリコーンオイル、親水性特殊変性シリコーンオイル、高級アルコ キシ変性シリコーンオイル、高級脂肪酸含有変性シリコーンオイル及びフッ素変性シ リコーンオイル等の変性シリコーンオイルを用いることが可能である。
[0054] またこれらの処理剤はへキサン、トルエン、メタノール、エタノール、アセトン水等で 適宜希釈して用いられてもよ ヽ。
[0055] 表面修飾剤による表面処理の方法としては、湿式加熱法、湿式濾過法、乾式攪拌 法、インテグルブレンド法、造粒法等が挙げられる。 lOOnm以下の表面改質を行う 場合、乾式攪拌法が粒子凝集抑制の観点カゝら好適に用いられるが、これに限定され るものではない。
[0056] これらの表面修飾剤は、 1種類のみを用いてもよぐ複数種類を併用してもよい。ま た、用いる表面修飾剤によって得られる表面修飾微粒子の性状は異なることがあり、 榭脂組成物を得るにあたって用いる熱可塑性榭脂との親和性を、表面修飾剤を選ぶ ことによって図ることも可能である。表面修飾の割合は、特に限定されるものではない 力 表面修飾後の微粒子に対して、表面修飾剤の割合が 10〜99質量%の範囲で あることが好ましぐ 30〜98質量%の範囲であることがより好ましい。 [0057] 次 、で、本発明に係る熱可塑性榭脂につ!、て説明する。
[0058] 本発明に用いることのできる無機微粒子が分散される熱可塑性榭脂としては、光学 材料として一般的に用いられる透明の熱可塑性榭脂材料であれば特に制限はない 力 光学素子としての加工性を考慮すると、アクリル榭脂、環状ォレフィン榭脂、ポリ カーボネート榭脂、ポリエステル榭脂、ポリエーテル榭脂、ポリアミド榭脂、またはポリ イミド榭脂であることが好ましぐ特に好ましくは環状ォレフィン榭脂であり、例えば、 特開 2003— 73559号公報等に記載の化合物を挙げることができ、その好ましいィ匕 合物を表 1に示す。
[0059] [表 1]
樹脂番号 構造 屈折率 n ァッベ数
Figure imgf000014_0001
また、本発明に係る熱可塑性榭脂材料にぉ 、ては、吸水率が 0. 2質量%以下であ ることが好ましい。吸水率が 0. 2質量0 /0以下の樹脂としては、例えば、ポリオレフイン 榭脂(例えば、ポリエチレン、ポリプロピレン等)、フッ素榭脂(例えば、ポリテトラフル ォロエチレン、テフロン (登録商標) AF (デュポン社製)、サイトップ (旭硝子社製)等) 、環状ォレフィン榭脂(例えば、 ZEONEX (日本ゼオン社製)、アートン CFSR社製)、 ァペル (三井化学社製)、 TOPAS (ポリプラスチック社製)等)、インデン Zスチレン系 榭脂、ポリカーボネートなどが好適である力 これらに限るものではない。また、これら の榭脂と相溶性のある他の榭脂を併用することも好ましい。 2種以上の榭脂を用いる 場合、その吸水率は、個々の榭脂の吸水率の平均値にほぼ等しいと考えら、その平 均の吸水率が 0. 2%以下になればよい。
[0061] 本発明の熱可塑性榭脂組成物は、上述のごとく熱可塑性榭脂と無機微粒子力ゝら主 に構成されるが、その調製方法としては特に限定されるものではない。すなわち、熱 可塑性榭脂と無機微粒子をそれぞれ独立して調製し、その後に両者を混合させる方 法、予め調製した無機微粒子が存在する条件下で、熱可塑性榭脂を調製する方法、 予め調製した熱可塑性榭脂が存在する条件下で無機微粒子を調製する方法、熱可 塑性榭脂と無機微粒子の両者を同時に調製させる方法など、 Vヽずれの方法をも採用 できる。具体的には、例えば、熱可塑性榭脂が溶解した溶液と、無機微粒子が均一 に分散した分散液の 2液を均一に混合し、熱可塑性榭脂に対して溶解性が乏しい溶 液中に添加することにより、目的とする熱可塑性榭脂組成物を得る方法を好適に挙 げることができるが、これに限定されるものではない。
[0062] 本発明の熱可塑性榭脂組成物において、熱可塑性榭脂と無機微粒子の混合の程 度は特に限定されるものではないが、本発明の効果をより効率よく発現させるために は、均一に混合していることが望ましい。混合の程度が不十分の場合には、特に、屈 折率やアッベ数、光線透過率などの光学特性に影響を及ぼすことが懸念され、また 熱可塑性や溶融成形性などの樹脂加工性にも悪影響する恐れがある。混合の程度 は、その作製方法に影響されることが考えられ、用いる熱可塑性榭脂及び無機微粒 子の特性を十分に勘案して、方法を選択することが重要である。
[0063] 熱可塑性榭脂と無機微粒子の両者がより均一に混合するために、熱可塑性榭脂と 無機微粒子を直接結合させる方法等も、本発明において好適に用いることができる。
[0064] 本発明の熱可塑性榭脂組成物は、高屈折率、低分散性 (高アッベ数)で、かつ透 明度が高ぐ光学的に優れた榭脂組成物であり、さらには熱可塑性及び Zまたは射 出成形性を有するために、成形加工性に非常に優れた熱可塑性材料である。この優 れた光学特性と成形加工性を併せ持った材料は、これまでに開示されて ヽる材料で は達成することができなカゝつた特性であり、特定の熱可塑性榭脂と特定の無機微粒 子力も成ることが、この特性に寄与して 、ることが考えられる。
[0065] 本発明の熱可塑性榭脂材料の調製時や成型工程においては、必要に応じて各種 添加剤(配合剤ともいう)を添加することができる。添加剤については、格別限定はな いが、酸化防止剤、熱安定剤、耐光安定剤、耐候安定剤、紫外線吸収剤、近赤外線 吸収剤などの安定剤;滑剤、可塑剤などの榭脂改質剤;軟質重合体、アルコール性 化合物等の白濁防止剤;染料や顔料などの着色剤;帯電防止剤、難燃剤、フィラー などが挙げられる。これらの配合剤は、単独で、あるいは 2種以上を組み合せて用い ることができ、その配合量は本発明に記載の効果を損なわな ヽ範囲で適宜選択され る。本発明においては、特に、重合体が少なくとも可塑剤または酸化防止剤を含有 することが好ましい。
[0066] (可塑剤)
可塑剤としては、特に限定はないが、リン酸エステル系可塑剤、フタル酸エステル 系可塑剤、トリメリット酸エステル系可塑剤、ピロメリット酸系可塑剤、グリコレート系可 塑剤、クェン酸エステル系可塑剤、ポリエステル系可塑剤等を挙げることができる。
[0067] リン酸エステル系可塑剤では、例えば、トリフエ-ルホスフェート、トリクレジルホスフ エート、クレジノレジフエ-ノレホスフェート、オタチノレジフエ-ノレホスフェート、ジフエ-ノレ ビフエ-ルホスフェート、トリオクチルホスフェート、トリブチルホスフェート等、フタル酸 エステル系可塑剤では、例えば、ジェチルフタレート、ジメトキシェチルフタレート、ジ メチルフタレート、ジォクチルフタレート、ジブチルフタレート、ジー 2—ェチルへキシ ルフタレート、ブチルベンジルフタレート、ジフエ-ルフタレート、ジシクロへキシルフタ レート等、トリメリット酸系可塑剤では、例えば、トリブチルトリメリテート、トリフエ-ルトリ メリテート、トリェチルトリメリテート等、ピロメリット酸エステル系可塑剤では、例えば、 テトラブチルピロメリテート、テトラフエ-ルビ口メリテート、テトラエチルピロメリテート等 、グリコレート系可塑剤では、例えば、トリァセチン、トリブチリン、ェチルフタリルェチ ルグリコレート、メチルフタリルェチルダリコレート、ブチルフタリルブチルダリコレート 等、クェン酸エステル系可塑剤では、例えば、トリェチルシトレート、トリ— n—ブチル シトレート、ァセチルトリェチルシトレート、ァセチルトリー n—ブチルシトレート、ァセチ ルトリ一 n— (2—ェチルへキシル)シトレート等を挙げることができる。
[0068] (酸化防止剤)
本発明に用いられる酸化防止剤につ 、て説明する。
[0069] 酸ィ匕防止剤としては、フエノール系酸ィ匕防止剤、リン系酸化防止剤、ィォゥ系酸ィ匕 防止剤などが挙げられ、これらの中でもフエノール系酸ィ匕防止剤、特にアルキル置換 フエノール系酸ィ匕防止剤が好ましい。これらの酸化防止剤を配合することにより、透 明性、耐熱性等を低下させることなぐ成型時の酸化劣化等によるレンズの着色や強 度低下を防止できる。これらの酸化防止剤は、それぞれ単独で、あるいは 2種以上を 組み合わせて用いることができ、その配合量は、本発明の目的を損なわない範囲で 適宜選択されるが、本発明の熱可塑性榭脂組成物 100質量部に対して好ましくは 0 . 001〜5質量部、より好ましくは 0. 01〜1質量部である。
[0070] フエノール系酸ィ匕防止剤としては、従来公知のものが使用でき、例えば、 2 tーブ チル一 6— (3— t—ブチル 2 ヒドロキシ一 5—メチルベンジル) 4—メチルフエ- ルアタリレート、 2, 4 ジ一 t ァミル一 6— (1— (3, 5 ジ一 t—ァミル一 2 ヒドロキ シフエ-ル)ェチル)フエ-ルアタリレートなどの特開昭 63— 179953号公報ゃ特開 平 1— 168643号公報に記載されるアタリレート系化合物;ォクタデシル— 3— (3, 5 —ジ一 t—ブチル 4 ヒドロキシフエ-ル)プロピオネート、 2, 2' —メチレン一ビス( 4—メチル 6— t—ブチルフエノール)、 1, 1, 3 トリス(2—メチル 4 ヒドロキシ — 5— t ブチルフエ-ル)ブタン、 1, 3, 5 トリメチル 2, 4, 6 トリス(3, 5 ジ一 t ブチル 4—ヒドロキシベンジル)ベンゼン、テトラキス(メチレン一 3— (3' , 5' ージ tーブチルー^ ーヒドロキシフエ-ルプロピオネート))メタン [すなわち、ペン タエリスリメチルーテトラキス(3— (3, 5—ジ tーブチルー 4ーヒドロキシフエニルプロ ピオネート))]、トリエチレングリコールビス(3— (3— t—ブチル 4—ヒドロキシ一 5— メチルフエ-ル)プロピオネート)などのアルキル置換フエノール系化合物; 6—(4ーヒ ドロキシ—3, 5 ジ—tーブチルァニリノ)—2, 4 ビスォクチルチオ—1, 3, 5 トリ ァジン、 4 ビスォクチルチオ 1, 3, 5 トリァジン、 2—ォクチルチオ 4, 6 ビス - (3, 5 ジ— t—ブチル—4—ォキシァ-リノ)— 1, 3, 5 トリァジンなどのトリアジ ン基含有フエノール系化合物;などが挙げられる。
[0071] リン系酸ィ匕防止剤としては、一般の榭脂工業で通常使用される物であれば格別な 限定はなぐ例えば、トリフエ-ルホスフアイト、ジフエ-ルイソデシルホスファイト、フエ -ルジイソデシルホスフアイト、トリス(ノ -ルフエ-ル)ホスファイト、トリス(ジノ-ルフエ -ル)ホスファイト、トリス(2, 4 ジ一 t—ブチルフエ-ル)ホスファイト、 10— (3, 5— ジ一 t—ブチル 4 ヒドロキシベンジル) 9, 10 ジヒドロ一 9—ォキサ 10 ホス ファフェナントレン 10 オキサイドなどのモノホスファイト系化合物; 4, 4' ーブチリ デン—ビス(3—メチル—6— t—ブチルフエ-ルージ—トリデシルホスフアイト)、 4, 4 ' —イソプロピリデン一ビス(フエ-ル一ジ一アルキル(C12〜C15)ホスファイト)など のジホスファイト系化合物などが挙げられる。これらの中でも、モノホスファイト系化合 物が好ましぐトリス(ノユルフェ-ル)ホスファイト、トリス(ジノユルフェ-ル)ホスフアイ ト、トリス(2, 4 ジー t—ブチルフエ-ル)ホスファイトなどが特に好ましい。
[0072] ィォゥ系酸化防止剤としては、例えば、ジラウリル 3, 3 チォジプロピオネート、ジミ リスチル 3, 3' —チォジプロピピオネート、ジステアリル 3, 3—チォジプロピオネート 、ラウリルステアリル 3, 3—チォジプロピオネート、ペンタエリスリトールーテトラキスー ( j8—ラウリル チォープロピオネート)、 3, 9 ビス(2 ドデシルチオェチル) 2, 4, 8, 10—テトラオキサスピロ [5, 5]ゥンデカンなどが挙げられる。
[0073] (耐光安定剤)
本発明に用いられる耐光安定剤について説明する。
[0074] 耐光安定剤としては、ベンゾフエノン系耐光安定剤、ベンゾトリアゾール系耐光安定 剤、ヒンダードアミン系耐光安定剤などが挙げられる力 本発明においては、レンズ の透明性、耐着色性等の観点から、ヒンダードアミン系耐光安定剤を用いるのが好ま しい。ヒンダードアミン系耐光安定剤(以下、 HALSともいう)の中でも、テトラヒドロフラ ン (THF)を溶媒として用いた GPCにより測定したポリスチレン換算の Mnが 1, 000 〜10, 000であるちの力 S好ましく、 2, 000〜5, 000であるちの力 Sより好ましく、 2, 80 0〜3, 800であるものが特に好ましい。 Mnが小さすぎると、該 HALSを熱可塑性榭 脂に加熱溶融混練して配合する際に、揮発のため所定量を配合できな力つたり、射 出成型等の加熱溶融成型時に発泡やシルバーストリークが生じるなどカ卩ェ安定性が 低下する。また、ランプを点灯させた状態でレンズを長時間使用する場合に、レンズ 力も揮発性成分がガスとなって発生する。逆に Mnが大き過ぎると、ブロック共重合体 への分散性が低下して、レンズの透明性が低下し、耐光性改良の効果が低減する。 したがって、本発明においては、 HALSの Mnを上記範囲とすることにより加工安定 性、低ガス発生性、透明性に優れたレンズが得られる。
[0075] このような HALSの具体例としては、 N, Ν' , Nグ , N' " —テトラキス一〔4, 6— ビス {プチルー(N—メチルー 2, 2, 6, 6—テトラメチルピペリジンー4 ィル)ァミノ }—トリァジン— 2—ィル〕—4, 7 ジァザデカン— 1, 10 ジァミン、ジブチルァミンと 1, 3, 5 トリアジンと N, N' —ビス(2, 2, 6, 6—テトラメチル— 4 ピペリジル)ブ チルァミンとの重縮合物、ポリ〔{ (1, 1, 3, 3—テトラメチルブチル)アミノー 1, 3, 5— トリアジン一 2, 4 ジィル } { (2, 2, 6, 6—テトラメチル一 4 ピペリジル)イミノ}へキ サメチレン { (2, 2, 6, 6—テトラメチル一 4 ピペリジル)ィミノ }〕、 1, 6 へキサンジ ァミン一 N, N' —ビス(2, 2, 6, 6—テトラメチル一 4 ピペリジル)とモルフォリン一 2, 4, 6 トリクロ口 1, 3, 5 トリアジンとの重縮合物、ポリ〔(6 モルフォリノ s— トリアジン— 2, 4 ジィル) (2, 2, 6, 6, —テトラメチル— 4 ピペリジル)ィミノ〕—へ キサメチレン〔(2, 2, 6, 6—テトラメチルー 4ーピペリジル)ィミノ〕などの、ピぺリジン 環がトリァジン骨格を介して複数結合した高分子量 HALS;コノ、ク酸ジメチルと 4—ヒ ドロキシ 2, 2, 6, 6—テトラメチルー 1ーピペリジンエタノールとの重合物、 1, 2, 3 , 4 ブタンテトラカルボン酸と 1, 2, 2, 6, 6 ペンタメチルー 4ーピベリジノールと 3 , 9 ビス(2 ヒドロキシ一 1, 1—ジメチルェチル)一 2, 4, 8, 10—テトラオキサスピ 口 [5, 5]ゥンデカンとの混合エステル化物などの、ピぺリジン環がエステル結合を介 して結合した高分子量 HALS等が挙げられる。
[0076] これらの中でも、ジブチルァミンと 1, 3, 5 トリァジンと N, N' —ビス(2, 2, 6, 6 —テトラメチル一 4 ピペリジル)プチルァミンとの重縮合物、ポリ〔{ (1, 1, 3, 3—テト ラメチノレブチノレ)アミノー 1, 3, 5 トリアジンー 2, 4 ジィル } { (2, 2, 6, 6—テトラメ チル一 4 ピペリジル)イミノ}へキサメチレン { (2, 2, 6, 6—テトラメチル一 4 ピペリ ジル)イミノ}〕、 コハク酸ジメチルと 4ーヒドロキシ 2, 2, 6, 6—テトラメチルー 1ーピ ペリジンエタノールとの重合物などの Mnが 2, 000〜5, 000のものが好ましい。
[0077] 本発明の熱可塑性榭脂組成物に対する上記配合量は、重合体 100質量部に対し て、好ましくは 0. 01〜20質量部、より好ましくは 0. 02〜15質量部、特に好ましくは 0. 05〜10質量部である。添加量が少なすぎると耐光性の改良効果が十分に得られ ず、屋外で長時間使用する場合等に着色が生じる。一方、 HALSの配合量が多す ぎると、その一部がガスとなって発生したり、榭脂への分散性が低下して、レンズの透 明性が低下する。
[0078] また、本発明の熱可塑性榭脂組成物に、更に最も低 ヽガラス転移温度が 30°C以 下である化合物を配合することにより、透明性、耐熱性、機械的強度などの諸特性を 低下させることなぐ長時間の高温高湿度環境下での白濁を防止できる。
[0079] 〔光学素子 (光学用樹脂レンズ)の作製方法〕
次 、で、上記説明した本発明の熱可塑性榭脂組成物から作製される光学素子の 一つである光学用榭脂レンズの作製方法について説明する。
[0080] 本発明に係る光学用榭脂レンズは、まず、榭脂組成物 (榭脂単独の場合もあれば、 榭脂と添加剤との混合物の場合もある)を調製し、次いで、得られた榭脂組成物を成 型する工程を含む。
[0081] 本発明に係る光学用榭脂レンズは、まず、榭脂組成物 (榭脂単独の場合もあれば、 榭脂と添加剤との混合物の場合もある)を調製し、次いで、得られた榭脂組成物を成 型する工程を含む。
[0082] 本発明の熱可塑性榭脂材料の成型物は、前記榭脂組成物からなる成型材料を成 型して得られる。成型方法としては、格別制限されるものはないが、低複屈折性、機 械強度、寸法精度等の特性に優れた成型物を得る為には溶融成型が好ましい。溶 融成型法としては、例えば、市販のプレス成型、市販の押し出し成型、市販の射出成 型等が挙げられる力 射出成型が成型性、生産性の観点力 好ましい。
[0083] 成型条件は使用目的、または成型方法により適宜選択されるが、例えば、射出成 型における榭脂組成物 (榭脂単独の場合または榭脂と添加物との混合物の両方があ る)の温度は、成型時に適度な流動性を榭脂に付与して成型品のヒケやひずみを防 止し、榭脂の熱分解によるシルバーストリークの発生を防止し、更に、成型物の黄変 を効果的に防止する観点から 150°C〜400°Cの範囲が好ましぐ更に好ましくは 200 °C〜350°Cの範囲であり、特に好ましくは 200°C〜330°Cの範囲である。
[0084] 本発明に係る成型物は、球状、棒状、板状、円柱状、筒状、チューブ状、繊維状、 フィルムまたはシート形状など種々の形態で使用することができ、また、低複屈折性、 透明性、機械強度、耐熱性、低吸水性に優れるため、本発明の光学素子の一つで ある光学用榭脂レンズとして用 ヽられるが、その他の光学部品としても好適である。
[0085] (光学用榭脂レンズ)
本発明に係る光学用榭脂レンズは、上記の作製方法により得られるが、光学部品 への具体的な適用例としては、以下のようである。
[0086] 例えば、光学レンズや光学プリズムとしては、カメラの撮像系レンズ;顕微鏡、内視 鏡、望遠鏡レンズなどのレンズ;眼鏡レンズなどの全光線透過型レンズ; CD、 CD- ROM, WORM (追記型光ディスク)、 MO (書き変え可能な光ディスク;光磁気デイス ク)、 MD (ミニディスク)、 DVD (デジタルビデオディスク)などの光ディスクのピックァ ップレンズ;レーザビームプリンターの f Θレンズ、センサー用レンズなどのレーザ走査 系レンズ;カメラのファインダ一系のプリズムレンズなどが挙げられる。
[0087] 光ディスク用途としては、 CD、 CD-ROM, WORM (追記型光ディスク)、 MO (書 き変え可能な光ディスク;光磁気ディスク)、 MD (ミニディスク)、 DVD (デジタルビデ ォディスク)などが挙げられる。その他の光学用途としては、液晶ディスプレイなどの 導光板;偏光フィルム、位相差フィルム、光拡散フィルムなどの光学フィルム;光拡散 板;光カード;液晶表示素子基板などが挙げられる。
[0088] これらの中でも、低複屈折性が要求されるピックアップレンズやレーザ走査系レンズ として好適であり、ピックアップレンズに最も好適に用いられる。
[0089] 本発明に係る光学用榭脂レンズの用途の一例として、光ディスク用のピックアップ 装置に用いる対物レンズとして用いられる例を図 2を用いて説明する。
[0090] 本形態では、使用波長が 405nmのいわゆる青紫色レーザ光源を用いた「高密度 な光ディスク」をターゲットとしている。この光ディスクの保護基板厚は 0. 1mmであり、 記憶容量は約 30GBである。
[0091] 図 1は、本発明の光学素子 (光学用榭脂レンズ)を対物レンズとして適用した光ディ スク用のピックアップ装置の一例を示す模式図である。
[0092] 光ピックアップ装置 1にお 、て、レーザダイオード (LD) 2は、光源であり、波長 λが 405nmの青紫色レーザが用いられる力 波長が 390nm〜420nmである範囲のも のを適宜採用することができる。
[0093] ビームスプリッタ(BS) 3は LD2から入射する光源を対物光学素子(OBL) 4の方向 へ透過させるが、光ディスク (光情報記録媒体) 5からの反射光 (戻り光)について、セ ンサーレンズ (SL) 6を経て受光センサー(PD) 7に集光させる機能を有する。
[0094] LD2から出射された光束は、コリメータ(COL) 8に入射し、これによつて無限平行 光にコリメートされたのち、ビームスプリッタ(BS) 3を介して対物レンズ OBL4に入射 する。そして光ディスク (光情報記録媒体) 5の保護基板 5aを介して情報記録面 5b上 に集光スポットを形成する。ついで情報記録面 5b上で反射したのち、同じ経路をたど つて、 1Z4波長板 (Q) 9によって偏光方向を変えられ、 BS3によって進路を曲げられ 、センサーレンズ(SL) 6を経てセンサー(PD) 7に集光する。このセンサーによって光 電変換され、電気的な信号となる。
[0095] なお対物光学素子 OBL4は、榭脂によって射出成型された単玉の光学用榭脂レン ズである。そしてその入射面側に絞り(AP) 10が設けられており、光束径が定められ る。ここでは入射光束は 3mm径に絞られる。そして、ァクチユエータ (AC) 11によつ て、フォーカシングゃトラッキングが行われる。
[0096] なお、光情報記録媒体の保護基板厚、更にピットの大きさにより、対物光学素子 O BL4に要求される開口数も異なる。ここでは、高密度な、光ディスク (光情報記録媒 体) 5の開口数は 0. 85として!/ヽる。
実施例
[0097] 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定され るものではない。なお、実施例において「部」あるいは「%」の表示を用いる力 特に 断りがない限り「質量部」ある!/、は「質量%」を表す。
[0098] 《無機微粒子の調製》
〔無機微粒子 Aの調製〕
Nanomat, Inc.より入手した窒化アルミニウム(平均粒径約 7nm)の 30gを、メタノ ール 300gと 1モル%の硝酸水溶液の混合液中に分散した。この液を 50°Cで撹拌し ながら、メタノール lOOgとシクロペンチルトリメトキシシラン 6gの混合液を 60分かけて 添加し、その後さらに 2時間撹拌した。得られた透明な分散液を酢酸ェチルに懸濁さ せ、遠心分離を行 、白色の微粒粉末である無機微粒子 Aを得た。
[0099] 〔無機微粒子 Bの調製〕
無機微粒子 Aの調製にぉ 、て、窒化アルミニウムを大明化学工業 (株)製の酸化ァ ルミ-ゥム (TM— 300、平均粒径約 7nm)に変更した以外は同様にして、無機微粒 子 Bを得た。
[0100] 〔無機微粒子 Cの調製〕
無機微粒子 Aの調製にぉ 、て、窒化アルミニウムを石原産業 (株)製の酸化チタン( タイペータ ST— 01、平均粒径約 7nm)に変更した以外は同様にして、無機微粒子 C を得た。
[0101] 《熱可塑性榭脂組成物の調製》
(熱可塑性榭脂組成物 1の調製)
混練装置ラボプラストミル C型 (東洋精機製作所製)に、ミキサー (KF70)、高せん 断型ロータを装着し、表 1に記載の屈折率が 1. 49、アッベ数が 58の榭脂(1)と前記 調製した無機微粒子 Aとを質量比で 69 : 31となるように添加し、設定温度 200°C、 30 Orpmで 5分間混練を行なって、熱可塑性榭脂組成物 1を調製した。
[0102] (熱可塑性榭脂組成物 2の調製)
上記熱可塑性榭脂組成物 1の調製において、榭脂(1)に代えて、表 1に記載の屈 折率が 1. 54、アッベ数が 56の榭脂(2)を用いた以外は同様にして、熱可塑性榭脂 組成物 2を調製した。
[0103] (熱可塑性榭脂組成物 3の調製)
上記熱可塑性榭脂組成物 1の調製において、榭脂(1)に代えて、表 1に記載の屈 折率が 1. 53、アッベ数が 57の榭脂(3)を用いた以外は同様にして、熱可塑性榭脂 組成物 3を調製した。
[0104] (熱可塑性榭脂組成物 4の調製)
上記熱可塑性榭脂組成物 2の調製にお ヽて、榭脂(2)と無機微粒子 Aの質量比を 48: 52に変更した以外は同様にして、熱可塑性榭脂組成物 4を調製した。
[0105] (熱可塑性榭脂組成物 5の調製)
上記熱可塑性榭脂組成物 2の調製にお ヽて、榭脂(2)と無機微粒子 Aの質量比を 31 : 69に変更した以外は同様にして、熱可塑性榭脂組成物 5を調製した。
[0106] (熱可塑性榭脂組成物 6の調製)
混練装置ラボプラストミル C型に、ミキサー (KF70)、高せん断型ロータを装着し、 表 1記載の榭脂(2)と無機微粒子 Bを質量比が 19 : 81となるように添加して、混練し た結果、負荷オーバーで混練装置が緊急停止したため、熱可塑性榭脂組成物 6を 得ることができな力つた。
[0107] (熱可塑性榭脂組成物 7の調製)
上記熱可塑性榭脂組成物 2の調製において、無機微粒子 Aに代えて、前記調製し た無機微粒子 Bを用いて、榭脂(2)と無機微粒子 Bの質量比を 64: 36とした以外は 同様にして、熱可塑性榭脂組成物 7を調製した。
[0108] (熱可塑性榭脂組成物 8の調製)
上記熱可塑性榭脂組成物 7の調製において、榭脂(2)に代えて、榭脂(3)を用い た以外は同様にして、熱可塑性榭脂組成物 8を調製した。
[0109] (熱可塑性榭脂組成物 9の調製)
上記熱可塑性榭脂組成物 7の調製にお ヽて、榭脂(2)と無機微粒子 Bの質量比を 42: 58に変更した以外は同様にして、熱可塑性榭脂組成物 8を調製した。
[0110] (熱可塑性榭脂組成物 10の調製)
上記熱可塑性榭脂組成物 7の調製において、無機微粒子 Bに代えて、前記調製し た無機微粒子 Cを用いた以外は同様にして、熱可塑性榭脂組成物 10を調製した。
[0111] (熱可塑性榭脂組成物 11の調製)
上記熱可塑性榭脂組成物 8の調製において、無機微粒子 Bに代えて、前記調製し た無機微粒子 Cを用いた以外は同様にして、熱可塑性榭脂組成物 11を調製した。
[0112] (熱可塑性榭脂組成物 12の調製)
上記熱可塑性榭脂組成物 9の調製において、無機微粒子 Bに代えて、前記調製し た無機微粒子 Cを用いた以外は同様にして、熱可塑性榭脂組成物 12を調製した。 [0113] 《熱可塑性組成物の評価》
〔屈折率の評価〕
上記調製した熱可塑性榭脂組成物 1 12をそれぞれ溶融し、加熱成形すること〖こ より厚さ 0. 5mmの試験用プレートを作製し、アッベ屈折計 (ァタゴ社製 DR— M2)を 用いて、波長 588nm 486nm 656nmにおけるそれぞれの屈折率を測定した。測 定温度は 23°Cであった。 588nmの屈折率 nと前記式 (4)に従って求めたアッベ数 d
V を表 2に示す。
d
[0114] 〔透過率の評価〕
上記調製した熱可塑性榭脂組成物 1 12をそれぞれ溶融し、加熱成形すること〖こ より厚さ 3mmの試験用プレートをそれぞれ作製した。各試験用プレートについて、 ( 株)島津製作所製の分光光度計 UV— 3150を用いて、厚さ方向の波長 588nmにお ける透過率を測定し、得られた結果を表 2に示す。
[0115] [表 2]
Figure imgf000025_0001
氺 1 1 .82— 0.0042 d 氺 2 no + 0.3f
[0116] 表 2に記載の結果より明らかな様に、本発明の式( 1)または式 (2)及び (3)で規定 する条件を満たす本発明の熱可塑性榭脂組成物は、比較例に対し、高屈折率、高 アッベ数を有すると共に、高 、透明性を備えて 、ることが分かる。
[0117] 実施例 2
上記調製した本発明の熱可塑性榭脂組成物を用いて、プラスチック製の光学素子 を作製して評価した結果、本発明の光学素子は、良好な光学特性を持ち、かつ CD や DVDの記録、再生に用いられる Blue— Rayを長時間照射しても、白濁化等の材 料変質耐性に優れていることを確認することができた。
産業上の利用可能性
本発明によれば、高屈折率、低分散性 (高アッベ数)で、かつ透明性及び軽量性に 優れた熱可塑性榭脂組成物とそれを用いた光学素子を提供することができる。

Claims

請求の範囲
[1] 無機微粒子が熱可塑性榭脂中に分散された溶融成形可能な熱可塑性榭脂組成 物であり、波長 588nmの光に対する屈折率を nとし、アッベ数を v とした時、下式( d d
1)で規定する条件を満たすことを特徴とする熱可塑性榭脂組成物。
式 (1)
n > 1. 82-0. 0042 V
d d
[2] 前記アッベ数 V 力 40以上、 70以下であることを特徴とする請求の範囲第 1項に d
記載の熱可塑性榭脂組成物。
[3] 無機微粒子が、波長 588nmの光に対する屈折率が nである熱可塑性榭脂に分散
0
された溶融成形可能な熱可塑性榭脂組成物であり、該無機微粒子の体積率を fとし 、波長 588nmの光に対する屈折率を n、アッベ数を v とした時、下式(2)及び式(3 d d
)で規定する条件を同時に満たすことを特徴とする熱可塑性榭脂組成物。
式 (2)
n≥n +0. 3f
d 0
式 (3)
v ≥50
d
[4] 前記体積率 0. 3以下であることを特徴とする請求の範囲第 3項に記載の熱可 塑性榭脂組成物。
[5] 前記波長 588nmの光に対する屈折率 nが 1. 6以上であることを特徴とする請求の d
範囲第 3項に記載の熱可塑性榭脂組成物。
[6] 前記無機微粒子の少なくとも 1種が、窒化アルミニウムであることを特徴とする請求 の範囲第 1項に記載の熱可塑性榭脂組成物。
[7] 無機微粒子が熱可塑性榭脂中に分散された溶融成形可能な熱可塑性榭脂組成 物であり、該無機微粒子の少なくとも 1種が、金属窒化物であることを特徴とする熱可 塑性榭脂組成物。
[8] 前記金属窒化物が、窒化アルミニウムであることを特徴とする請求の範囲第 7項に 記載の熱可塑性榭脂組成物。
[9] 請求の範囲第 1項に記載の熱可塑性榭脂組成物を用いて成形され、波長 588nm における光路長 3mm当たりの平均光線透過率が 70%以上であることを特徴とする 光学素子。
[10] 前記無機微粒子の少なくとも 1種が、窒化アルミニウムであることを特徴とする請求 の範囲第 3項に記載の熱可塑性榭脂組成物。
[11] 請求の範囲第 3項に記載の熱可塑性榭脂組成物を用いて成形され、波長 588nm における光路長 3mm当たりの平均光線透過率が 70%以上であることを特徴とする 光学素子。
[12] 請求の範囲第 7項に記載の熱可塑性榭脂組成物を用いて成形され、波長 588nm における光路長 3mm当たりの平均光線透過率が 70%以上であることを特徴とする 光学素子。
PCT/JP2005/019301 2004-11-02 2005-10-20 熱可塑性樹脂組成物及びそれを用いた光学素子 WO2006049015A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/666,026 US20070265381A1 (en) 2004-11-02 2005-10-20 Thermoplastic Resin Composition and Optical Element Utilizing the Same
JP2006543062A JPWO2006049015A1 (ja) 2004-11-02 2005-10-20 熱可塑性樹脂組成物及びそれを用いた光学素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-318878 2004-11-02
JP2004318878 2004-11-02

Publications (1)

Publication Number Publication Date
WO2006049015A1 true WO2006049015A1 (ja) 2006-05-11

Family

ID=36319029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019301 WO2006049015A1 (ja) 2004-11-02 2005-10-20 熱可塑性樹脂組成物及びそれを用いた光学素子

Country Status (3)

Country Link
US (1) US20070265381A1 (ja)
JP (1) JPWO2006049015A1 (ja)
WO (1) WO2006049015A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035897A1 (en) * 2008-09-26 2010-04-01 Fujifilm Corporation Organic-inorganic hybrid material and its shaped article, optical component and lens
JP2012057128A (ja) * 2010-09-13 2012-03-22 Canon Inc 有機無機複合組成物および光学素子

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5163640B2 (ja) * 2007-03-28 2013-03-13 コニカミノルタアドバンストレイヤー株式会社 光学用有機無機複合材料及び光学素子
US20100199491A1 (en) * 2007-07-03 2010-08-12 Konica Minolta Opto, Inc. Manufacturing method of image pick-up device, image pick-up device and optical element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003137912A (ja) * 2001-11-07 2003-05-14 Mitsubishi Chemicals Corp 重合性液体組成物、架橋樹脂組成物及びその製造方法
JP2003155355A (ja) * 2001-11-21 2003-05-27 Mitsubishi Chemicals Corp 超微粒子を含有する樹脂組成物成形体
JP2005298717A (ja) * 2004-04-14 2005-10-27 Konica Minolta Opto Inc 熱可塑性樹脂材料とその製造方法及びそれを用いた光学素子
JP2005325349A (ja) * 2004-04-16 2005-11-24 Konica Minolta Opto Inc 熱可塑性樹脂材料及びそれを用いた光学素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003137912A (ja) * 2001-11-07 2003-05-14 Mitsubishi Chemicals Corp 重合性液体組成物、架橋樹脂組成物及びその製造方法
JP2003155355A (ja) * 2001-11-21 2003-05-27 Mitsubishi Chemicals Corp 超微粒子を含有する樹脂組成物成形体
JP2005298717A (ja) * 2004-04-14 2005-10-27 Konica Minolta Opto Inc 熱可塑性樹脂材料とその製造方法及びそれを用いた光学素子
JP2005325349A (ja) * 2004-04-16 2005-11-24 Konica Minolta Opto Inc 熱可塑性樹脂材料及びそれを用いた光学素子

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035897A1 (en) * 2008-09-26 2010-04-01 Fujifilm Corporation Organic-inorganic hybrid material and its shaped article, optical component and lens
JP2010077280A (ja) * 2008-09-26 2010-04-08 Fujifilm Corp 有機無機複合材料とその成形体、光学部品およびレンズ
US8450406B2 (en) 2008-09-26 2013-05-28 Fujifilm Corporation Organic-inorganic hybrid material and its shaped article, optical component and lens
JP2012057128A (ja) * 2010-09-13 2012-03-22 Canon Inc 有機無機複合組成物および光学素子

Also Published As

Publication number Publication date
US20070265381A1 (en) 2007-11-15
JPWO2006049015A1 (ja) 2008-05-29

Similar Documents

Publication Publication Date Title
US7649035B2 (en) Thermoplastic composite material and optical element
WO2006061982A1 (ja) 熱可塑性複合材料の製造方法並びに熱可塑性複合材料及び光学素子
JP2007154159A (ja) 有機無機複合材料及び光学素子
JP2006160992A (ja) 熱可塑性樹脂組成物及び光学素子
JP2008001895A (ja) 光学用樹脂材料及び光学素子
JP2007077235A (ja) 熱可塑性樹脂組成物及び光学素子
WO2007138924A1 (ja) 光ピックアップ装置
WO2006049015A1 (ja) 熱可塑性樹脂組成物及びそれを用いた光学素子
JP5163640B2 (ja) 光学用有機無機複合材料及び光学素子
JP2007163655A (ja) 光学用樹脂材料及び光学素子
JP2006328261A (ja) 無機微粒子分散組成物、熱可塑性樹脂組成物及び光学素子
JP2009013009A (ja) 無機微粒子粉体の製造方法、有機無機複合材料及び光学素子
JP2006299183A (ja) 非水系微粒子分散液、熱可塑性複合材料及び光学素子
JPWO2006051699A1 (ja) 樹脂組成物及びそれを用いた光学素子
JP2006299032A (ja) 熱可塑性樹脂組成物及び光学素子
JP2007254681A (ja) 熱可塑性複合材料及び光学素子
JP2006299033A (ja) 熱可塑性樹脂組成物の製造方法及び熱可塑性樹脂組成物並びに光学素子
JP2007161980A (ja) マスターバッチ、光学素子、マスターバッチの製造方法及び光学素子の製造方法
US20100010138A1 (en) Organic/Inorganic Composite Material and Optical Element
JP2007070564A (ja) 熱可塑性樹脂組成物及び光学素子
JP2007206197A (ja) 光学用樹脂材料及び光学素子
JP2006213759A (ja) 光学材料及び光学素子
JP2009235325A (ja) 光学用樹脂材料の製造方法、光学用樹脂材料、及び光学素子
JP2007139971A (ja) 光学素子及び光学素子の製造方法
JP2007217659A (ja) 樹脂組成物及び光学素子

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006543062

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11666026

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 11666026

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 05795843

Country of ref document: EP

Kind code of ref document: A1