WO2006048983A1 - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
WO2006048983A1
WO2006048983A1 PCT/JP2005/017679 JP2005017679W WO2006048983A1 WO 2006048983 A1 WO2006048983 A1 WO 2006048983A1 JP 2005017679 W JP2005017679 W JP 2005017679W WO 2006048983 A1 WO2006048983 A1 WO 2006048983A1
Authority
WO
WIPO (PCT)
Prior art keywords
purge valve
fuel
fuel cell
pressure
failure
Prior art date
Application number
PCT/JP2005/017679
Other languages
French (fr)
Japanese (ja)
Inventor
Kenichi Goto
Original Assignee
Nissan Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co., Ltd. filed Critical Nissan Motor Co., Ltd.
Publication of WO2006048983A1 publication Critical patent/WO2006048983A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04231Purging of the reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system, and more particularly to a fuel cell system with improved purge valve failure detection.
  • a fuel cell is one in which a fuel gas such as hydrogen and an oxidant gas having oxygen are electrochemically reacted via an electrolyte, and electric energy is directly taken out between electrodes provided on both sides of the electrolyte. It is.
  • solid polymer fuel cells using solid polymer electrolytes are attracting attention as power sources for electric vehicles because of their low operating temperature and easy handling.
  • Fuel cell vehicles are equipped with hydrogen storage devices such as high-pressure hydrogen tanks, liquid hydrogen tanks, hydrogen storage alloy tanks, etc., and hydrogen supplied from them and air containing oxygen are sent to the fuel cells for reaction.
  • the motor connected to the drive wheels is driven by the electric energy extracted from the fuel cell power. Therefore, the only material discharged from the fuel cell vehicle is water.
  • reaction gas oxygen gas
  • reaction gas both are collectively referred to as reaction gas
  • reaction gas more gas than the amount of reaction gas required from the output current of the fuel cell is supplied, and surplus hydrogen gas is recirculated to the anode inlet through the hydrogen circulation path.
  • the inert gas (nitrogen, argon, etc.) in the air that leaks the electrolyte membrane from the power sword to the anode accumulates in the hydrogen circulation path, lowers the hydrogen partial pressure, As a result, power generation efficiency is reduced.
  • the generated water generated by the electrochemical reaction of power generation becomes liquid water and accumulates in the gas passage, which may interfere with gas distribution and gas diffusion, leading to a decrease in power generation efficiency and power generation stoppage.
  • the wafer-off gas discharged from the anode is discharged out of the circulation path.
  • a purge valve is provided.
  • a diluting device and a catalytic combustion device are provided downstream of the purge valve as a waste hydrogen treatment device.
  • the dilution device dilutes the purge gas concentration below the limit concentration with air and releases it to the outside of the system.
  • the catalytic combustion device burns hydrogen in the purge gas by the combustion catalyst and releases it as water vapor.
  • the diagnosis of the purge valve can be diagnosed only when the power generation output of the fuel cell is within a predetermined range, and thus the diagnosis frequency is limited. Further, when the purge line system is extremely small, a pressure change due to the purge appears in the anode pressure, and it may be difficult to make a precise diagnosis.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a fuel cell system capable of diagnosing a purge valve failure regardless of the operating state of the fuel cell system.
  • a fuel supply system includes a fuel cell that generates power using a fuel gas supplied to a fuel electrode and an oxidant gas supplied to an oxidant electrode, A fuel circulation path for returning excess fuel gas discharged to the fuel electrode, a fuel discharge path for releasing a part of the gas in the fuel circulation path to the outside, and a plurality of fuel circulation paths arranged in series in the fuel discharge path
  • a failure detector for detecting a failure of the purge valve by detecting a leak.
  • a fuel supply system includes a fuel cell that generates power using a fuel gas supplied to a fuel electrode and an oxidant gas supplied to an oxidant electrode, and A fuel circulation path for recirculating surplus fuel gas discharged to the fuel electrode, and the fuel circulation path At least one pressure for measuring a pressure of a space between the plurality of purge valves, a plurality of purge valves arranged in series in the fuel discharge path, A failure detection means for detecting a failure of the purge valve by detecting a gas leak of at least one purge valve force based on a time change of a pressure value detected by the pressure sensor. It is characterized by that.
  • a failure diagnosis method for a fuel supply system includes: a fuel cell that generates power using a fuel gas supplied to a fuel electrode and an oxidant gas supplied to an oxidant electrode; A fuel circulation path for returning surplus fuel gas discharged as much as possible to the fuel electrode, a fuel discharge path for releasing a part of the gas in the fuel circulation path to the outside, and the fuel discharge path in series A plurality of disposed purge valves, a step of measuring a pressure in a space between the plurality of purge valves, and a gas having at least one purge valve force based on a change over time of the measured pressure value. And detecting a failure of the purge valve by detecting leakage.
  • FIG. 1 is a configuration diagram illustrating the configuration of Example 1 of a fuel cell system according to the present invention.
  • FIG. 2 is a timing chart for diagnosing a purge valve failure during operation of the fuel cell system in the first embodiment.
  • FIG. 3 is a flowchart for diagnosing a purge valve failure when idling is stopped in the first embodiment.
  • FIG. 4 is a timing chart for identifying a failure site in Example 1.
  • FIG. 5 is a timing chart for diagnosing a purge valve failure when the fuel cell system is stopped in the first embodiment.
  • FIG. 6 is a flowchart for diagnosing a purge valve failure when the fuel cell system is stopped in the first embodiment.
  • Fig. 7 is a configuration diagram for explaining a main configuration of Example 2 of the fuel cell system according to the present invention.
  • FIG. 1 shows the configuration of Example 1 of the fuel cell system according to the present invention.
  • two purge valves are provided in a hydrogen discharge passage that is a fuel discharge passage.
  • a fuel cell system 1 includes hydrogen as a fuel gas supplied to an anode (fuel electrode) 2a and air as an oxidant gas supplied to a force sword (oxidant electrode) 2b. It has a fuel cell 2 that generates electricity through an electrochemical reaction.
  • the air as the oxidant gas is compressed by the air compressor 3 and supplied to the power sword 2 b of the fuel cell 2 through the air supply path 4. Part of the oxygen in the air is used for the power generation reaction, and the remaining oxygen and nitrogen are discharged outside the system through the air discharge path 5a, the air pressure regulating valve 6, the air discharge path 5b, and the collective discharge path 14.
  • the air pressure regulating valve 6 adjusts the air pressure of the force sword 2b by controlling the opening degree.
  • Hydrogen as a fuel gas is stored in a high-pressure hydrogen tank 7.
  • the hydrogen in the high-pressure hydrogen tank 7 is depressurized to a certain pressure, for example, IMPa, by the pressure reducing valve 8, and then depressurized to a desired pressure by the hydrogen pressure regulating valve 9, and is supplied to the fuel cell 2 via the hydrogen supply path 10.
  • a certain pressure for example, IMPa
  • the pressure reducing valve 8 is depressurized to a desired pressure by the hydrogen pressure regulating valve 9
  • Hydrogen that has not reacted at the anode 2a joins the hydrogen supply path 10 via the hydrogen circulation path l la, the hydrogen circulation pump 12, and the hydrogen circulation path l ib, and is supplied to the anode 2a again.
  • the inert gas (nitrogen, argon, etc.) in the air that leaks the electrolyte membrane from the force sword 2b to the anode 2a accumulates in the hydrogen circulation path and lowers the hydrogen partial pressure.
  • the water generated by the electrochemical reaction of power generation becomes liquid water and accumulates in the gas passage, which may hinder gas flow and gas diffusion, leading to a decrease in power generation efficiency and power generation stoppage.
  • a hydrogen discharge passage 13 is provided in order to discharge the anode-off gas from which the anode force is also discharged out of the circulation passage.
  • an upstream purge valve 16 and a downstream purge valve 17 are provided in series on the hydrogen discharge path 13.
  • the branching point A force with the hydrogen circulation path 11a is 13a in the hydrogen discharge path to the upstream purge valve 16 and the upstream purge valve 16 to the downstream purge valve.
  • the hydrogen discharge path up to 17 is designated as 13b, and the hydrogen purge path 13c from the downstream purge valve 17 to the point B where the hydrogen discharge path joins the air discharge path 5b.
  • downstream from the junction B of the air discharge path 5b and the hydrogen discharge path 13c is a collective discharge path 14 through which hydrogen is diluted with air and discharged.
  • the upstream purge valve 16 is a purge valve capable of controlling the opening degree.
  • the downstream purge valve 17 and the pressure sensor 15 are characteristic components of the present invention.
  • the downstream purge valve 17 may be a valve whose opening degree can be controlled in the same manner as the upstream purge valve 16, but in this embodiment, it is a simple open / close valve. During normal operation, the downstream purge valve 17 is opened, and the amount of purge of the Hanoff gas is adjusted by controlling the opening of the upstream purge valve 16.
  • the pressure sensor 15 is a sensor that detects the pressure in the hydrogen discharge path 13b that is sealed by the upstream purge valve 16 and the downstream purge valve 17, and the detected value is input to the system control unit 18. Yes.
  • the system control unit 18 controls the entire fuel cell system 1 and detects the pressure change of the anode off-gas sealed between the upstream purge valve 16 and the downstream purge valve 17 with the pressure sensor 15, thereby detecting both purge valves.
  • Purge valve that detects 16 and 17 faults also serves as a fault detector.
  • the pressure in the hydrogen discharge passage 13b sealed by the upstream purge valve 16 and the downstream purge valve 17 is also referred to as a purge line pressure.
  • the system control unit 18 is configured by a microprocessor having a CPU, a program ROM, a working RAM, and an input / output interface. When the CPU executes the control program stored in the program ROM, control of the entire system and failure diagnosis of the purge valve are achieved.
  • the system control unit 18 also has a function as a power generation stop determination device that determines whether or not to stop power generation of a fuel cell, which will be described later.
  • the volume of the hydrogen discharge passage 13b which is a space sealed by the upstream purge valve 16 and the downstream purge valve 17, is minimized, in other words, the upstream purge valve 16 and the downstream purge valve 17 are arranged close to each other.
  • the pressure fluctuation sensitivity of the pressure sensor 15 due to leakage of the purge valves 16 and 17 can be increased.
  • failure of the purge valves 16 and 17 can be diagnosed with high accuracy.
  • FIG. 2 The timing chart for diagnosing the leakage of the purge valves 16 and 17 is shown.
  • 2 (a) shows the hydrogen pressure in the hydrogen discharge passage 13b
  • FIG. 2 (b) shows the hydrogen pressure in the anode 2a
  • FIG. 2 (c) shows the open / close state of the downstream purge valve 17.
  • FIG. 2 (d) shows the open / close state of the upstream purge valve 16.
  • the downstream purge valve 17 is closed at a timing tl at which diagnosis is started. Then, the state 1 is changed to the state 2, and the hydrogen discharge path 13b, which is the space between the upstream purge valve 16 and the downstream purge valve 17, is equivalent to the hydrogen pressure in the anode 2a and the hydrogen circulation paths 11a and 1 lb. Pressure is maintained.
  • the detected value of pressure sensor 15 is stored as pressure P1 in system control unit 18, and upstream purge valve 16 is closed at timing t2. This transitions from state 2 to state 3 .
  • the pressure sensor 15 monitors the change over time in the pressure of the blocked hydrogen discharge passage 13b. If there is a gas leak in either the upstream purge valve 16 or the downstream purge valve 17, the pressure in the hydrogen discharge passage 13 b is relatively quickly adjusted to the outside of the purge valve as shown by curve D in (a) in FIG. It changes toward pressure. That is, for example, when there is a gas leak in the downstream purge valve 17, it converges to the atmospheric pressure, and when there is a leak in the upstream purge valve 16, it converges to the pressure in the anode 2a. That is, it is possible to determine the presence or absence of gas leakage from the purge valves 16 and 17 based on the variation width of the pressure in the hydrogen discharge passage 13b at a predetermined time.
  • the upstream purge valve 16 in which the change appearing in the detected value of the pressure sensor 15 is small. It is difficult to detect leakage. Therefore, in state 3, the electric power is taken out from the fuel cell 2 to consume the hydrogen of the anode 2a, and the pressure of the anode 2a is reduced within the range allowed by the power generation requirement of the fuel cell. By doing so, when there is a leak in the upstream purge valve 16, the pressure of the hydrogen discharge passage 13b decreases with the lower pressure of the anode 2a, so that a highly accurate diagnosis can be made.
  • FIG. 4 shows the timing chart of the leak diagnosis of the purge valve when idling stop of the fuel cell system.
  • 4 (a) shows the hydrogen pressure in the hydrogen discharge passage 13b
  • FIG. 4 (b) shows the hydrogen pressure in the anode 2a
  • FIG. 4 (c) shows the open / close state of the downstream purge valve 17.
  • (d) shows the open / close state of the upstream purge valve 16.
  • step SO the system control unit 18 identifies whether or not the current fuel cell is in an idling stop state. If it is not in the idling stop state, in step S2, it is determined whether or not the idling stop permission condition for determining whether or not the fuel cell power generation may be temporarily stopped is satisfied.
  • the idling stop condition for example, in the case of a fuel cell vehicle equipped with a secondary battery, the required power amount based on the accelerator depression amount is sufficiently covered by the discharge amount of the secondary battery.
  • step S2 If it is determined in step S2 that the idling stop permission condition is satisfied, the upstream purge valve 16 is opened and the downstream purge valve 17 is closed in step S4. Thereafter, in step S6, whether the pressure between the upstream purge valve 16 and the downstream purge valve 17 rises within a predetermined time is checked based on the detection value of the pressure sensor 15.
  • the downstream purge valve 17 remains open, that is, the downstream purge valve is in an open / fixed failure state, or the upstream purge valve 16 remains closed. That is, the upstream purge valve is closed.
  • the pressure of the anode 2a is controlled to be lower than the pressure of the hydrogen discharge passage 13b sealed by the purge valves 16, 17 (step S10). As a result, a pressure difference occurs before and after the upstream purge valve 16, so that leakage of the upstream purge valve 16 can also be detected.
  • Step S 12 is a purge valve diagnosis step.
  • step S12 the time measured immediately after the pressure between the purge valves 16 and 17 drops by more than a predetermined pressure with respect to the pressure value stored in step S8 (pressure P1) and immediately after the upstream purge valve 16 is closed. Check if the force is less than or equal to the predetermined time T1. If a pressure drop equal to or higher than the predetermined pressure P is detected within the predetermined time T1 in step S12, the process proceeds to step S14 because there is a leak in the upstream purge valve 16 or the downstream purge valve 17, and it is determined that the purge valve has failed. In addition, the fact that the purge valve is faulty is stored in the system control unit 18 by setting a purge valve fault experience flag. On the other hand, if it is determined in step S12 that there is no pressure drop, the idling stop state is continued.
  • the leak diagnosis of the purge valve can be performed when the idling stop is being performed, the hydrogen leak from the purge valve in the idling stop state can be detected in real time.
  • step S16 it is determined in step S16 whether or not there is a force that needs to cancel the idling stop, that is, the condition for canceling the idling stop. If it is determined in step S16 that the conditions for releasing the idling stop are satisfied, hydrogen supply is started in step S18 and air supply is started.In step S20, the normal opening of the upstream purge valve 16 is started. At the same time as starting the control, the downstream purge valve 17 is opened to shift to the normal power generation state. If it is determined in step S16 that the conditions for releasing the idling stop are not satisfied, the process proceeds to step S12, and the idling stop is continued while continuing the diagnosis of the purge valve.
  • step S16 whether or not the purge valve is determined to be in the open fixed state may be added to the idling stop cancellation condition of step S16. Step during idling stop If it is determined in S14 that the purge valve is in an open stuck state, that is, a failure state, the idling stop return condition is satisfied in step S16, and the normal power generation state is shifted in accordance with steps S18 and S20. . Further, in the idling stop permission condition of step S2, the purge valve is not determined to be in the open stuck state, that is, the purge valve failure experience flag is set (plug ⁇ 1). You can add it.
  • step S14 If it is determined in step S14 that the purge valve is in the open stuck state during the idling stop, the idling stop return condition is satisfied in step S16, and the normal power generation state is set in accordance with steps S18 and S20. However, after that, the idling stop permission condition is not satisfied. As a result, if a leak of the purge valve is detected during idling stop, the idling stop can be immediately released and the function of treating the purged hydrogen of the purge valve force can be restored. Hydrogen can be prevented from being discharged.
  • step S2 determines in step S2 that it is possible to stop the power generation of the fuel cell, before shifting to the state where the power generation of the fuel cell 2 is temporarily stopped.
  • steps S4 and S6 failure of purge valves 16, 17 is detected. Therefore, if a failure of the purge valves 16 and 17 is detected in steps S4 and S6, the function of processing the exhaust hydrogen from the purge valve is maintained because the process does not proceed to step S8 and the idling stop is not performed. As a result, hydrogen above the specified concentration can be prevented from being discharged outside the vehicle.
  • the blocked water The pressure sensor 15 monitors the time change of the pressure in the element discharge passage 13b. If it is determined in state 6 that the purge valve is stuck open, at time t6, the pressure at this time is stored as pressure P2 in the system control unit 18, and at the same time, the upstream purge valve 16 is controlled to open. .
  • the upstream purge valve 16 is originally open and fixed, even if the upstream purge valve 16 is controlled to open, the state of the upstream purge valve 16 and the hydrogen discharge passage 13b from state 6 to state 7 will be described. Therefore, as shown by the curve F in FIG. 4, the way in which the pressure between the purge valves 16 and 17 is released does not change significantly.
  • the hydrogen concentration discharged outside the fuel cell system can be suppressed to a low level. Even if the downstream purge valve 17 has an open stuck failure as a result of identifying the failure location of the purge valve, the normal purge control can be performed by the upstream purge valve 16, so that the normal power generation control can be continued. .
  • the pressure in the hydrogen discharge passage 13b changes toward the pressure outside the purge valve relatively quickly as shown by curve I in FIG. .
  • the pressure in the hydrogen discharge passage 13b changes toward the pressure outside the purge valve relatively quickly as shown by curve I in FIG. .
  • the purge valves 16 and 17 can also be determined by the pressure variation width within the hydrogen discharge passage 13b at a predetermined time.
  • FIG. 6 shows a flowchart of the purge valve diagnosis when the operation of the fuel cell system is stopped.
  • step S40 it is determined whether or not the fuel cell system is activated.
  • step S42 it is determined in step S42 whether or not the fuel cell system is stopped.
  • Step S52 is a purge valve diagnosis step.
  • step S52 the time measured immediately after closing the upstream purge valve 16 when the pressure between the purge valves 16 and 17 drops by more than a predetermined pressure with respect to the pressure value (pressure P1) stored in step S48. Confirm whether or not is less than T1 for a predetermined time. If a pressure drop equal to or greater than the predetermined pressure P1 within the predetermined time T1 at step S52, it is determined that there is a leak in the upstream purge valve 16 or the downstream purge valve 17 and the process proceeds to step S54, where it is determined that the purge valve has failed. The fact that the purge valve is faulty is stored in the system controller 18 by setting the purge valve fault experience flag. On the other hand, if it is determined in step S52 that there is no pressure drop, stop operation and return.
  • step S40 When the fuel cell system is activated next time, it is first recognized as activated in step S40. If it is recognized at step S40 that the engine has been started, it is determined in step S56 that the purge valve has failed due to the diagnosis at the previous stop and whether it has been detected. If it is not determined that the purge valve has failed in the previous diagnosis, the purge valve is recognized as normal and is started without increasing the air in step S60. On the other hand, if the previous diagnosis is determined to be NG in step S56, the purge valve is recognized to be abnormal, and the purge valve force is increased in step S58 to sufficiently dilute the hydrogen estimated to be discharged. In step S62, hydrogen supply is started and the fuel cell is started.
  • FIG. 7 shows a part of the configuration of Example 2 of the fuel cell system according to the present invention, and shows an example in which three purge valves are provided in series with the hydrogen discharge path.
  • three purge valves in the hydrogen discharge passage 13, three purge valves, an upstream purge valve 16, a middle purge valve 20, and a downstream purge valve 17, are arranged in series.
  • the pressure sensor 21 detects the pressure of the hydrogen discharge path sandwiched between the upstream purge valve 16 and the intermediate purge valve 20, and the pressure sensor detects the pressure of the hydrogen discharge path sandwiched between the intermediate purge valve 20 and the downstream purge valve 17. 15 is provided.
  • Other configurations are the same as those of the first embodiment shown in FIG.
  • the failure test of the three purge valves is divided into two tests.
  • a failure test of the intermediate purge valve 20 and the downstream purge valve 17 is performed using the detection value of the pressure sensor 15 with the upstream purge valve 16 opened. This can be done by replacing the upstream purge valve 16 with the middle purge valve 20 in the tests of the upstream purge valve 16 and the downstream purge valve 17 in the failure test of the first embodiment.
  • a failure test of the upstream purge valve 16 and the intermediate purge valve 20 is performed using the detection value of the pressure sensor 21 with the downstream purge valve 17 opened. This can be done by replacing the intermediate purge valve 20 with the downstream purge valve 17 and the pressure sensor 15 with the pressure sensor 21 in the tests of the upstream purge valve 16 and the downstream purge valve 17 in the failure test of the first embodiment.
  • a failure test is performed so that a failure test of two adjacent purge valves is performed in a state where the purge valves other than the adjacent purge valves to be tested are opened.
  • the divided failure tests can be performed in the same manner as in Example 1.
  • a plurality of purge valves and a pressure sensor for detecting the pressure in the space sandwiched between the purge valves are provided in the fuel discharge path for releasing a part of the gas in the fuel circulation path to the outside.
  • the fuel gas is sealed in the space between the two purge valves, and the failure of the purge valve can be diagnosed by detecting the pressure change in the space with a pressure sensor. Since the space for sealing the fuel gas between the purge valves is not affected by the normal operation state of the fuel cell, the failure diagnosis of the purge valve can be performed in any operation state.

Landscapes

  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

An upstream purge valve (16) and a downstream purge valve (17) are provided in series on a hydrogen discharge passage (13) for discharging hydrogen gas from the anode (2a) or the hydrogen circulation passage (11a) of a fuel cell to the outside of the system. Furthermore, a pressure sensor (15) is provided for detecting the pressure of the hydrogen discharge passage (13b) between the upstream purge valve (16) and the downstream purge valve (17). A system control section (18) encloses the hydrogen discharge passage (13b) by closing the upstream purge valve (16) and the downstream purge valve (17) and monitors time variation in detection value of the pressure sensor (15). When the detection value of the pressure sensor (15) lowers toward the atmospheric pressure, the system control section (18) judges open lock failure of the downstream purge valve (17) has occurred and when the detection value lowers toward the pressure of the anode (2a) that it judges that open lock failure of the upstream purge valve (16) has occurred.

Description

燃料電池システム  Fuel cell system
技術分野  Technical field
[0001] 本発明は、燃料電池システムに係り、特にパージ弁の故障検出を改善した燃料電 池システムに関する。  TECHNICAL FIELD [0001] The present invention relates to a fuel cell system, and more particularly to a fuel cell system with improved purge valve failure detection.
背景技術  Background art
[0002] 燃料電池は、水素などの燃料ガスと酸素を有する酸化剤ガスとを電解質を介して電 気化学的に反応させ、電解質両面に設けた電極間から電気工ネルギを直接取り出 すものである。特に固体高分子電解質を用いた固体高分子型燃料電池は、動作温 度が低ぐ取り扱いが容易なことから電動車両用の電源として注目されている。燃料 電池車両は、高圧水素タンク、液体水素タンク、水素吸蔵合金タンクなどの水素貯蔵 装置を車両に搭載し、そこから供給される水素と、酸素を含む空気とを燃料電池に送 り込んで反応させ、燃料電池力 取り出した電気工ネルギで駆動輪につながるモー タを駆動するものである。そのため燃料電池車両力 排出される物質は水だけである  [0002] A fuel cell is one in which a fuel gas such as hydrogen and an oxidant gas having oxygen are electrochemically reacted via an electrolyte, and electric energy is directly taken out between electrodes provided on both sides of the electrolyte. It is. In particular, solid polymer fuel cells using solid polymer electrolytes are attracting attention as power sources for electric vehicles because of their low operating temperature and easy handling. Fuel cell vehicles are equipped with hydrogen storage devices such as high-pressure hydrogen tanks, liquid hydrogen tanks, hydrogen storage alloy tanks, etc., and hydrogen supplied from them and air containing oxygen are sent to the fuel cells for reaction. The motor connected to the drive wheels is driven by the electric energy extracted from the fuel cell power. Therefore, the only material discharged from the fuel cell vehicle is water.
[0003] 固体高分子型燃料電池に用いられる高分子電解質は、湿潤状態でなければ良好 な陽イオン伝導性を発揮しな 、ものが多 、ために、燃料電池に供給する水素ガスま たは酸化剤ガス(以下、両者を併せて反応ガスと呼ぶ)は加湿されている。また、発電 効率を高めるために燃料電池の出力電流から要求される反応ガスの量より多くのガ スを供給し、余剰の水素ガスは、水素循環経路によりアノード入口へ再循環させてい る。 [0003] Many polymer electrolytes used in polymer electrolyte fuel cells do not exhibit good cation conductivity unless they are in a wet state. Oxidant gas (hereinafter, both are collectively referred to as reaction gas) is humidified. In addition, in order to increase power generation efficiency, more gas than the amount of reaction gas required from the output current of the fuel cell is supplied, and surplus hydrogen gas is recirculated to the anode inlet through the hydrogen circulation path.
[0004] このような燃料電池システムにおいて、力ソードからアノードへ電解質膜をリークした 空気中の不活性ガス (窒素、アルゴン等)は、水素循環経路内に蓄積して水素分圧 を低下させ、その結果、発電効率を低下させる。また、発電の電気化学反応により生 じる生成水が液水となってガス通路に蓄積し、ガス流通やガス拡散を妨げ、発電効 率の低下や発電停止に至ることがある。このような不純物ガスや液水をガス通路内か ら一掃するために、アノードから排出されるァノーオフガスを循環経路外へ放出する パージ弁が設けられて 、る。 [0004] In such a fuel cell system, the inert gas (nitrogen, argon, etc.) in the air that leaks the electrolyte membrane from the power sword to the anode accumulates in the hydrogen circulation path, lowers the hydrogen partial pressure, As a result, power generation efficiency is reduced. In addition, the generated water generated by the electrochemical reaction of power generation becomes liquid water and accumulates in the gas passage, which may interfere with gas distribution and gas diffusion, leading to a decrease in power generation efficiency and power generation stoppage. In order to sweep out such impurity gas and liquid water from the gas passage, the wafer-off gas discharged from the anode is discharged out of the circulation path. A purge valve is provided.
[0005] 通常、パージ弁の下流には、排水素処理装置として、希釈装置や触媒燃焼装置が 設けられる。希釈装置は、空気によりパージガス濃度を制限濃度未満に希釈して系 外へ放出する。触媒燃焼装置は、燃焼触媒によりパージガス中の水素を燃焼させて 水蒸気として系外へ放出する。  [0005] Normally, a diluting device and a catalytic combustion device are provided downstream of the purge valve as a waste hydrogen treatment device. The dilution device dilutes the purge gas concentration below the limit concentration with air and releases it to the outside of the system. The catalytic combustion device burns hydrogen in the purge gas by the combustion catalyst and releases it as water vapor.
[0006] 従来、パージ弁の故障診断としては、燃料電池の発電出力の変動が所定範囲内で あるような一定運転時にパージ弁を開閉したときの目標アノード圧力と実アノード圧 力を比較することで診断していた (特開 2003— 092125号公報 第 5頁及び図 2参 照)。  [0006] Conventionally, as a failure diagnosis of the purge valve, a comparison is made between the target anode pressure and the actual anode pressure when the purge valve is opened and closed during a constant operation in which the fluctuation of the power generation output of the fuel cell is within a predetermined range. (See JP 2003-092125, page 5 and FIG. 2).
発明の開示  Disclosure of the invention
[0007] し力しながら上記従来技術においては、燃料電池の発電出力が所定範囲内である ときしかパージ弁の故障診断ができないため、診断頻度に制約があった。また、パー ジラインの系が極小さいときには、パージによる圧力変化がアノード圧力に現れに《 、精度よく診断することが困難な場合もあるという問題点があった。  [0007] However, in the above prior art, the diagnosis of the purge valve can be diagnosed only when the power generation output of the fuel cell is within a predetermined range, and thus the diagnosis frequency is limited. Further, when the purge line system is extremely small, a pressure change due to the purge appears in the anode pressure, and it may be difficult to make a precise diagnosis.
[0008] 本発明は上記問題点に鑑みてなされたものであり、その目的は、燃料電池システム の運転状態に拘わらずパージ弁の故障診断が可能な燃料電池システムを提供する ことにある。  [0008] The present invention has been made in view of the above problems, and an object thereof is to provide a fuel cell system capable of diagnosing a purge valve failure regardless of the operating state of the fuel cell system.
[0009] 本発明の第一の態様に係る燃料供給システムは、燃料極に供給された燃料ガス及 び酸化剤極に供給された酸化剤ガスを用いて発電する燃料電池と、前記燃料極から 排出される余剰の燃料ガスを前記燃料極に還流する燃料循環路と、該燃料循環路 内の気体の一部を外部に放出する燃料排出路と、該燃料排出路に直列に配置され た複数のパージ弁と、前記複数のパージ弁の間の空間の圧力を計測する少なくとも 一つの圧力センサと、該圧力センサが検出する圧力値の時間変化に基づいて少なく とも一つの前記パージ弁力 のガス漏洩を検出することにより、前記パージ弁の故障 を検出する故障検出器と、を備えたことを特徴とする。  [0009] A fuel supply system according to a first aspect of the present invention includes a fuel cell that generates power using a fuel gas supplied to a fuel electrode and an oxidant gas supplied to an oxidant electrode, A fuel circulation path for returning excess fuel gas discharged to the fuel electrode, a fuel discharge path for releasing a part of the gas in the fuel circulation path to the outside, and a plurality of fuel circulation paths arranged in series in the fuel discharge path A purge valve, at least one pressure sensor for measuring the pressure in the space between the plurality of purge valves, and at least one gas of the purge valve force based on the change over time of the pressure value detected by the pressure sensor And a failure detector for detecting a failure of the purge valve by detecting a leak.
[0010] 本発明の第二の態様に係る燃料供給システムは、燃料極に供給された燃料ガス及 び酸化剤極に供給された酸化剤ガスを用いて発電する燃料電池と、前記燃料極から 排出される余剰の燃料ガスを前記燃料極に還流する燃料循環路と、該燃料循環路 内の気体の一部を外部に放出する燃料排出路と、該燃料排出路に直列に配置され た複数のパージ弁と、前記複数のパージ弁の間の空間の圧力を計測する少なくとも 一つの圧力センサと、該圧力センサが検出する圧力値の時間変化に基づいて少なく とも一つの前記パージ弁力 のガス漏洩を検出することにより、前記パージ弁の故障 を検出する故障検出手段と、を備えたことを特徴とする。 [0010] A fuel supply system according to a second aspect of the present invention includes a fuel cell that generates power using a fuel gas supplied to a fuel electrode and an oxidant gas supplied to an oxidant electrode, and A fuel circulation path for recirculating surplus fuel gas discharged to the fuel electrode, and the fuel circulation path At least one pressure for measuring a pressure of a space between the plurality of purge valves, a plurality of purge valves arranged in series in the fuel discharge path, A failure detection means for detecting a failure of the purge valve by detecting a gas leak of at least one purge valve force based on a time change of a pressure value detected by the pressure sensor. It is characterized by that.
[0011] 本発明の第三の態様に係る燃料供給システムの故障診断方法は、燃料極に供給 された燃料ガス及び酸化剤極に供給された酸化剤ガスを用いて発電する燃料電池と 、前記燃料極力ゝら排出される余剰の燃料ガスを前記燃料極に還流する燃料循環路と 、該燃料循環路内の気体の一部を外部に放出する燃料排出路と、該燃料排出路に 直列に配置された複数のパージ弁と、を設ける工程と、前記複数のパージ弁の間の 空間の圧力を計測する工程と、計測した圧力値の時間変化に基づいて少なくとも一 つの前記パージ弁力 のガス漏洩を検出することにより、前記パージ弁の故障を検 出する工程と、を有することを特徴とする。  [0011] A failure diagnosis method for a fuel supply system according to a third aspect of the present invention includes: a fuel cell that generates power using a fuel gas supplied to a fuel electrode and an oxidant gas supplied to an oxidant electrode; A fuel circulation path for returning surplus fuel gas discharged as much as possible to the fuel electrode, a fuel discharge path for releasing a part of the gas in the fuel circulation path to the outside, and the fuel discharge path in series A plurality of disposed purge valves, a step of measuring a pressure in a space between the plurality of purge valves, and a gas having at least one purge valve force based on a change over time of the measured pressure value. And detecting a failure of the purge valve by detecting leakage.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1]図 1は、本発明に係る燃料電池システムの実施例 1の構成を説明する構成図で ある。  FIG. 1 is a configuration diagram illustrating the configuration of Example 1 of a fuel cell system according to the present invention.
[図 2]図 2は、実施例 1において、燃料電池システム運転時のパージ弁の故障を診断 するためのタイミングチャートである。  FIG. 2 is a timing chart for diagnosing a purge valve failure during operation of the fuel cell system in the first embodiment.
[図 3]図 3は、実施例 1において、アイドリングストップ時のパージ弁の故障を診断する ためのフローチャートである。  FIG. 3 is a flowchart for diagnosing a purge valve failure when idling is stopped in the first embodiment.
[図 4]図 4は、実施例 1において、故障部位を特定するためのタイミングチャートである  [FIG. 4] FIG. 4 is a timing chart for identifying a failure site in Example 1.
[図 5]図 5は、実施例 1において、燃料電池システム停止時のパージ弁の故障を診断 するためのタイミングチャートである。 FIG. 5 is a timing chart for diagnosing a purge valve failure when the fuel cell system is stopped in the first embodiment.
[図 6]図 6は、実施例 1において、燃料電池システム停止時のパージ弁の故障を診断 するためのフローチャートである。  FIG. 6 is a flowchart for diagnosing a purge valve failure when the fuel cell system is stopped in the first embodiment.
[図 7]図 7は、本発明に係る燃料電池システムの実施例 2の要部構成を説明する構成 図である。 発明を実施するための最良の形態 [Fig. 7] Fig. 7 is a configuration diagram for explaining a main configuration of Example 2 of the fuel cell system according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 図面を参照して、本発明の実施の形態を詳細に説明する。尚、以下に説明する各 実施例は、特に限定されな ヽが燃料電池車両に好適な燃料電池システムである。  Embodiments of the present invention will be described in detail with reference to the drawings. Each embodiment described below is a fuel cell system suitable for a fuel cell vehicle, although not particularly limited.
[0014] (実施例 1) [0014] (Example 1)
図 1では、本発明に係る燃料電池システムの実施例 1の構成を示している。本実施 例 1は、燃料排出路である水素排出路に 2つのパージ弁を設けたものである。  FIG. 1 shows the configuration of Example 1 of the fuel cell system according to the present invention. In the first embodiment, two purge valves are provided in a hydrogen discharge passage that is a fuel discharge passage.
[0015] 図 1において、燃料電池システム 1は、アノード (燃料極) 2aに供給された燃料ガス としての水素と、力ソード (酸化剤極) 2bに供給された酸化剤ガスとしての空気との電 気化学反応により発電する燃料電池 2を備えている。酸化剤ガスとしての空気は、空 気コンプレッサ 3で圧縮されて、空気供給路 4を介して燃料電池 2の力ソード 2bへ供 給される。空気中の酸素の一部が発電反応に利用され、残った酸素と窒素は空気排 出路 5a、空気調圧弁 6、空気排出路 5b、集合排出路 14を介して系外へ排出される。 空気調圧弁 6はその開度を制御することにより、力ソード 2bの空気圧力を調整する。  In FIG. 1, a fuel cell system 1 includes hydrogen as a fuel gas supplied to an anode (fuel electrode) 2a and air as an oxidant gas supplied to a force sword (oxidant electrode) 2b. It has a fuel cell 2 that generates electricity through an electrochemical reaction. The air as the oxidant gas is compressed by the air compressor 3 and supplied to the power sword 2 b of the fuel cell 2 through the air supply path 4. Part of the oxygen in the air is used for the power generation reaction, and the remaining oxygen and nitrogen are discharged outside the system through the air discharge path 5a, the air pressure regulating valve 6, the air discharge path 5b, and the collective discharge path 14. The air pressure regulating valve 6 adjusts the air pressure of the force sword 2b by controlling the opening degree.
[0016] 燃料ガスとしての水素は、高圧水素タンク 7に貯蔵されている。高圧水素タンク 7の 水素は、減圧弁 8で一定の圧力、例えば IMPaまで減圧された後、水素調圧弁 9に より所望の圧力まで減圧されて、水素供給路 10を介して、燃料電池 2のアノード 2aへ 供給される。アノード 2aで反応しなかった水素は、水素循環路 l la、水素循環ポンプ 12,水素循環路 l ibを介して水素供給路 10へ合流し、再びアノード 2aへ供給される  [0016] Hydrogen as a fuel gas is stored in a high-pressure hydrogen tank 7. The hydrogen in the high-pressure hydrogen tank 7 is depressurized to a certain pressure, for example, IMPa, by the pressure reducing valve 8, and then depressurized to a desired pressure by the hydrogen pressure regulating valve 9, and is supplied to the fuel cell 2 via the hydrogen supply path 10. Supplied to anode 2a. Hydrogen that has not reacted at the anode 2a joins the hydrogen supply path 10 via the hydrogen circulation path l la, the hydrogen circulation pump 12, and the hydrogen circulation path l ib, and is supplied to the anode 2a again.
[0017] この燃料電池システム 1において、力ソード 2bからアノード 2aへ電解質膜をリークし た空気中の不活性ガス (窒素、アルゴン等)は、水素循環経路内に蓄積して水素分 圧を低下させ、発電効率を低下させる。また、発電の電気化学反応により生じる生成 水が液水となってガス通路に蓄積し、ガス流通やガス拡散を妨げ、発電効率の低下 や発電停止に至ることがある。このような不純物ガスや液水をガス通路内から一掃す るために、アノード力も排出されるァノーオフガスを循環経路外へ放出するために、 水素排出路 13が設けられている。さらにこの水素排出路 13上に直列に、上流パー ジ弁 16と下流パージ弁 17とが設けられている。ここで、水素循環路 11aとの分岐点 A 力も上流パージ弁 16までの水素排出路を 13a,上流パージ弁 16から下流パージ弁 17までの水素排出路を 13b、下流パージ弁 17から水素排出路が空気排出路 5bと 合流する点 Bまでを水素排出路 13cとする。尚、空気排出路 5bと水素排出路 13cと の合流点 Bより下流は、水素が空気により希釈されて排出される集合排出路 14とする 。上流パージ弁 16は、開度を制御することができるパージ弁である。 [0017] In this fuel cell system 1, the inert gas (nitrogen, argon, etc.) in the air that leaks the electrolyte membrane from the force sword 2b to the anode 2a accumulates in the hydrogen circulation path and lowers the hydrogen partial pressure. To reduce power generation efficiency. In addition, the water generated by the electrochemical reaction of power generation becomes liquid water and accumulates in the gas passage, which may hinder gas flow and gas diffusion, leading to a decrease in power generation efficiency and power generation stoppage. In order to sweep out such impurity gas and liquid water from the gas passage, a hydrogen discharge passage 13 is provided in order to discharge the anode-off gas from which the anode force is also discharged out of the circulation passage. Further, an upstream purge valve 16 and a downstream purge valve 17 are provided in series on the hydrogen discharge path 13. Here, the branching point A force with the hydrogen circulation path 11a is 13a in the hydrogen discharge path to the upstream purge valve 16 and the upstream purge valve 16 to the downstream purge valve. The hydrogen discharge path up to 17 is designated as 13b, and the hydrogen purge path 13c from the downstream purge valve 17 to the point B where the hydrogen discharge path joins the air discharge path 5b. In addition, downstream from the junction B of the air discharge path 5b and the hydrogen discharge path 13c is a collective discharge path 14 through which hydrogen is diluted with air and discharged. The upstream purge valve 16 is a purge valve capable of controlling the opening degree.
[0018] 下流パージ弁 17及び圧力センサ 15は、本発明に特徴的な構成要素である。下流 パージ弁 17は、上流パージ弁 16と同様に開度制御可能な弁でもよいが、本実施例 では単なる開閉弁とする。通常運転時では、下流パージ弁 17は開とし、上流パージ 弁 16の開度制御にてァノーオフガスのパージ量の調整を行う。  [0018] The downstream purge valve 17 and the pressure sensor 15 are characteristic components of the present invention. The downstream purge valve 17 may be a valve whose opening degree can be controlled in the same manner as the upstream purge valve 16, but in this embodiment, it is a simple open / close valve. During normal operation, the downstream purge valve 17 is opened, and the amount of purge of the Hanoff gas is adjusted by controlling the opening of the upstream purge valve 16.
[0019] 圧力センサ 15は、上流パージ弁 16と下流パージ弁 17とで密閉される水素排出路 13b内の圧力を検出するセンサであり、その検出値は、システム制御部 18へ入力さ れている。システム制御部 18は、燃料電池システム 1の全体を制御するとともに、上 流パージ弁 16及び下流パージ弁 17の間に密閉したアノードオフガスの圧力変化を 圧力センサ 15で検出することにより、両パージ弁 16, 17の故障を検出するパージ弁 故障検出器を兼ねている。尚、本明細書では上流パージ弁 16と下流パージ弁 17と で密閉される水素排出路 13bの気圧を、パージライン圧ともいう。  The pressure sensor 15 is a sensor that detects the pressure in the hydrogen discharge path 13b that is sealed by the upstream purge valve 16 and the downstream purge valve 17, and the detected value is input to the system control unit 18. Yes. The system control unit 18 controls the entire fuel cell system 1 and detects the pressure change of the anode off-gas sealed between the upstream purge valve 16 and the downstream purge valve 17 with the pressure sensor 15, thereby detecting both purge valves. Purge valve that detects 16 and 17 faults Also serves as a fault detector. In the present specification, the pressure in the hydrogen discharge passage 13b sealed by the upstream purge valve 16 and the downstream purge valve 17 is also referred to as a purge line pressure.
[0020] 尚、特に限定されな!、が、本実施例では、システム制御部 18は、 CPU、プログラム ROM、作業用 RAM、及び入出力インタフェースを備えたマイクロプロセッサで構成 される。そして CPUがプログラム ROMに記憶された制御プログラムを実行することに より、システム全体の制御、パージ弁の故障診断が達成される。なおシステム制御部 18は、後述する燃料電池の発電を停止するカゝ否かを判断する発電停止判断装置と しての機能をも有する。  Although not particularly limited! In the present embodiment, the system control unit 18 is configured by a microprocessor having a CPU, a program ROM, a working RAM, and an input / output interface. When the CPU executes the control program stored in the program ROM, control of the entire system and failure diagnosis of the purge valve are achieved. The system control unit 18 also has a function as a power generation stop determination device that determines whether or not to stop power generation of a fuel cell, which will be described later.
[0021] また上流パージ弁 16と下流パージ弁 17で密閉される空間である水素排出路 13b の容積を極小さくすること、言い換えれば、上流パージ弁 16と下流パージ弁 17とを 近接して配置することにより、パージ弁 16及び 17の漏洩による圧力センサ 15の圧力 変動感度を高めることができる。このように圧力センサ 15の感度を高めることにより、 パージ弁 16及び 17の故障を精度よく診断することができる。  [0021] In addition, the volume of the hydrogen discharge passage 13b, which is a space sealed by the upstream purge valve 16 and the downstream purge valve 17, is minimized, in other words, the upstream purge valve 16 and the downstream purge valve 17 are arranged close to each other. By doing so, the pressure fluctuation sensitivity of the pressure sensor 15 due to leakage of the purge valves 16 and 17 can be increased. By increasing the sensitivity of the pressure sensor 15 in this way, failure of the purge valves 16 and 17 can be diagnosed with high accuracy.
[0022] 以下、パージ弁 16, 17の故障診断方法について説明する。まず、図 2を参照して、 燃料電池システムの通常運転時におけるパージ弁の故障診断を説明する。図 2では 、パージ弁 16及び 17の漏洩を診断するためのタイミングチャートを示す。尚、図 2中 (a)は水素排出路 13b内の水素圧力を示し、図 2中(b)はアノード 2a内の水素圧力 を示し、図 2中(c)は下流パージ弁 17の開閉状態を示し、図 2中(d)は上流パージ弁 16の開閉状態を示す。 Hereinafter, a failure diagnosis method for the purge valves 16 and 17 will be described. First, referring to FIG. 2, the purge valve failure diagnosis during normal operation of the fuel cell system will be described. In Figure 2 The timing chart for diagnosing the leakage of the purge valves 16 and 17 is shown. 2 (a) shows the hydrogen pressure in the hydrogen discharge passage 13b, FIG. 2 (b) shows the hydrogen pressure in the anode 2a, and FIG. 2 (c) shows the open / close state of the downstream purge valve 17. In FIG. 2, (d) shows the open / close state of the upstream purge valve 16.
[0023] まず、通常の運転状態である状態 1において、診断を開始するタイミング tlで下流 パージ弁 17を閉じる。すると、状態 1から状態 2へ遷移し、上流パージ弁 16と下流パ ージ弁 17の間の空間である水素排出路 13bに、アノード 2a及び水素循環路 11a, 1 lb内の水素圧力相当の圧力が保持される。状態 2である程度時間が経過して圧力 センサ 15の検出値が安定したら、その検出値を圧力 P1としてシステム制御部 18へ 記憶するとともに、タイミング t2で上流パージ弁 16を閉じる。これにより状態 2から状 態 3へ遷移する。続いて状態 3にて、閉塞された水素排出路 13bの圧力の時間変化 を圧力センサ 15でモニタする。上流パージ弁 16または下流パージ弁 17のいずれか にガス漏洩があった場合は、図 2中の(a)の曲線 Dのように、水素排出路 13bの圧力 は比較的速やかにパージ弁外部の圧力に向かって変化する。つまり例えば下流パ ージ弁 17にガス漏れがある場合は大気圧に、上流パージ弁 16に漏れがある場合は アノード 2a内の圧力に収束する。つまり、所定時間における水素排出路 13b内の圧 力の変化幅力もパージ弁 16, 17のガス漏洩の有無を判断することができる。 [0023] First, in the state 1 which is a normal operation state, the downstream purge valve 17 is closed at a timing tl at which diagnosis is started. Then, the state 1 is changed to the state 2, and the hydrogen discharge path 13b, which is the space between the upstream purge valve 16 and the downstream purge valve 17, is equivalent to the hydrogen pressure in the anode 2a and the hydrogen circulation paths 11a and 1 lb. Pressure is maintained. When a certain amount of time has passed in state 2 and the detected value of pressure sensor 15 has stabilized, the detected value is stored as pressure P1 in system control unit 18, and upstream purge valve 16 is closed at timing t2. This transitions from state 2 to state 3 . Subsequently, in state 3, the pressure sensor 15 monitors the change over time in the pressure of the blocked hydrogen discharge passage 13b. If there is a gas leak in either the upstream purge valve 16 or the downstream purge valve 17, the pressure in the hydrogen discharge passage 13 b is relatively quickly adjusted to the outside of the purge valve as shown by curve D in (a) in FIG. It changes toward pressure. That is, for example, when there is a gas leak in the downstream purge valve 17, it converges to the atmospheric pressure, and when there is a leak in the upstream purge valve 16, it converges to the pressure in the anode 2a. That is, it is possible to determine the presence or absence of gas leakage from the purge valves 16 and 17 based on the variation width of the pressure in the hydrogen discharge passage 13b at a predetermined time.
[0024] 一方、アノード 2a及び水素循環路 11a, l ibの圧力と水素排出路 13bの圧力とが 比較的近い圧力を示す場合、圧力センサ 15の検出値に現れる変化が小さぐ上流 パージ弁 16の漏洩を検出することが困難である。そこで、状態 3にて、燃料電池 2か ら電力を取り出してアノード 2aの水素を消費させてアノード 2aの圧力を燃料電池の 発電要求が許す範囲で低下させる。そうすることにより、上流パージ弁 16に漏れがあ つた場合に、水素排出路 13bの圧力は、より低いアノード 2aの圧力に向力つて低下 していくため、精度の良い診断ができる。そして図 2中の(b)の曲線 Eのように、ァノー ド 2aの圧力を低下させても、図 2中の(a)の曲線 Cのように、水素排出路 13b内の水 素圧力がほとんど低下しない場合には、パージ弁 16及び 17からの漏れは無いと判 断することができる。  [0024] On the other hand, when the pressure in the anode 2a and the hydrogen circulation paths 11a, ib and the pressure in the hydrogen discharge path 13b indicate relatively close pressures, the upstream purge valve 16 in which the change appearing in the detected value of the pressure sensor 15 is small. It is difficult to detect leakage. Therefore, in state 3, the electric power is taken out from the fuel cell 2 to consume the hydrogen of the anode 2a, and the pressure of the anode 2a is reduced within the range allowed by the power generation requirement of the fuel cell. By doing so, when there is a leak in the upstream purge valve 16, the pressure of the hydrogen discharge passage 13b decreases with the lower pressure of the anode 2a, so that a highly accurate diagnosis can be made. And even if the pressure of the anode 2a is decreased as shown by the curve E in (b) in FIG. 2, the hydrogen pressure in the hydrogen discharge passage 13b remains as shown by the curve C in (a) in FIG. If there is almost no drop, it can be determined that there is no leakage from the purge valves 16 and 17.
[0025] 次に、図 3及び図 4を参照して、アイドリングストップ時におけるパージ弁の故障診 断を説明する。図 4には、燃料電池システムのアイドリングストップ時のパージ弁の漏 洩診断のタイミングチャートを記載する。尚、図 4中(a)は水素排出路 13b内の水素 圧力を示し、図 4中(b)はアノード 2a内の水素圧力を示し、図 4中(c)は下流パージ 弁 17の開閉状態を示し、図 4中 (d)は上流パージ弁 16の開閉状態を示す。 [0025] Next, referring to FIG. 3 and FIG. 4, the failure diagnosis of the purge valve when idling is stopped. I will explain this. Fig. 4 shows the timing chart of the leak diagnosis of the purge valve when idling stop of the fuel cell system. 4 (a) shows the hydrogen pressure in the hydrogen discharge passage 13b, FIG. 4 (b) shows the hydrogen pressure in the anode 2a, and FIG. 4 (c) shows the open / close state of the downstream purge valve 17. In FIG. 4, (d) shows the open / close state of the upstream purge valve 16.
[0026] まず、システム制御部 18は、ステップ SOにお 、て、現在燃料電池がアイドリングスト ップ状態かどうかを識別する。そしてアイドリングストップ状態ではないときは、ステツ プ S2において、燃料電池の発電を一次的に停止してもよいか否かを決めるアイドリ ングストップ許可条件が成立して 、る力否かを判断する。アイドリングストップ条件とし ては、例えば、二次電池を備える燃料電池車両であれば、アクセル踏込量に基づく 要求電力量が二次電池の放電量で十分賄える量とする。  [0026] First, in step SO, the system control unit 18 identifies whether or not the current fuel cell is in an idling stop state. If it is not in the idling stop state, in step S2, it is determined whether or not the idling stop permission condition for determining whether or not the fuel cell power generation may be temporarily stopped is satisfied. As an idling stop condition, for example, in the case of a fuel cell vehicle equipped with a secondary battery, the required power amount based on the accelerator depression amount is sufficiently covered by the discharge amount of the secondary battery.
[0027] ステップ S2にてアイドリングストップ許可条件が成立していると判断されたら、ステツ プ S4にて上流パージ弁 16を開き、下流パージ弁 17を閉じる。その後ステップ S6に て上流パージ弁 16と下流パージ弁 17との間の圧力が所定時間内に上昇するかどう かを圧力センサ 15の検出値に基づいてチェックする。ここで、所定時間経過しても圧 力が上昇しな 、場合は下流パージ弁 17が開 、たまま、つまり下流パージ弁の開固 着故障状態であるか、上流パージ弁 16が閉じたまま、つまり上流パージ弁の閉故障 状態である。この場合にはステップ S6からステップ S14に移行し、パージ弁故障と判 断するとともに、パージ弁が故障であることをパージ弁故障経験フラグをセットする(フ ラグ = 1とする)ことによりシステム制御部 18内に記憶する。  If it is determined in step S2 that the idling stop permission condition is satisfied, the upstream purge valve 16 is opened and the downstream purge valve 17 is closed in step S4. Thereafter, in step S6, whether the pressure between the upstream purge valve 16 and the downstream purge valve 17 rises within a predetermined time is checked based on the detection value of the pressure sensor 15. Here, if the pressure does not increase even after a predetermined time has elapsed, the downstream purge valve 17 remains open, that is, the downstream purge valve is in an open / fixed failure state, or the upstream purge valve 16 remains closed. That is, the upstream purge valve is closed. In this case, the process proceeds from step S6 to step S14, and it is determined that the purge valve has failed, and the system control is performed by setting the purge valve failure experience flag (flag = 1) to indicate that the purge valve has failed. Store in part 18.
[0028] 一方、ステップ S6にて、上流パージ弁 16と下流パージ弁 17の間の圧力が上昇し た場合は、ステップ S8へ移行して上流パージ弁 16を閉じて、両パージ弁 16, 17間 の水素排出路 13bの圧力を保持するとともに、圧力センサ 15で検出するパージ弁 1 6, 17間の圧力 P1をシステム制御部 18内に記憶する(圧力 Pl =パージライン圧)。 また、上流パージ弁 16を閉じた直後より、上流パージ弁 16を閉じている時間の測定 を開始する。さらに、両パージ弁 16, 17を閉じた直後、水素及び空気の供給を停止 して燃料電池の発電を一時的に停止するアイドリングストップの状態とする一方、燃 料電池 2から電力を取り出して水素を消費することにより、アノード 2aの圧力をパージ 弁 16, 17で密閉された水素排出路 13bの圧力より低くなるように制御する (ステップ S10)。これにより上流パージ弁 16の前後で気圧差が発生するため、上流パージ弁 16の漏洩も検出することができる。 [0028] On the other hand, if the pressure between the upstream purge valve 16 and the downstream purge valve 17 increases in step S6, the process proceeds to step S8, the upstream purge valve 16 is closed, and both the purge valves 16, 17 While maintaining the pressure of the hydrogen discharge passage 13b, the pressure P1 between the purge valves 16, 17 detected by the pressure sensor 15 is stored in the system control unit 18 (pressure Pl = purge line pressure). Further, immediately after the upstream purge valve 16 is closed, measurement of the time during which the upstream purge valve 16 is closed is started. Further, immediately after closing both purge valves 16 and 17, the supply of hydrogen and air is stopped to stop the power generation of the fuel cell temporarily. The pressure of the anode 2a is controlled to be lower than the pressure of the hydrogen discharge passage 13b sealed by the purge valves 16, 17 (step S10). As a result, a pressure difference occurs before and after the upstream purge valve 16, so that leakage of the upstream purge valve 16 can also be detected.
[0029] ステップ S 12はパージ弁診断のステップである。ステップ S 12では、両パージ弁 16 , 17間の圧力が、ステップ S8にて記憶した圧力値 (圧力 P1)に対して所定圧力以上 低下し、かつ上流パージ弁 16を閉じた直後から測定した時間が所定時間 T1以下で ある力否か確認する。ステップ S12にて所定時間 T1内に所定圧力 P以上の圧力低 下があった場合は、上流パージ弁 16または下流パージ弁 17の漏れがあるとしてステ ップ S14に移行し、パージ弁故障と判断するとともに、パージ弁が故障であることをパ ージ弁故障経験フラグをセットすることによりシステム制御部 18内に記憶する。一方、 ステップ S12にて圧力の低下がないと判断される場合には、アイドリングストップの状 態を継続する。 Step S 12 is a purge valve diagnosis step. In step S12, the time measured immediately after the pressure between the purge valves 16 and 17 drops by more than a predetermined pressure with respect to the pressure value stored in step S8 (pressure P1) and immediately after the upstream purge valve 16 is closed. Check if the force is less than or equal to the predetermined time T1. If a pressure drop equal to or higher than the predetermined pressure P is detected within the predetermined time T1 in step S12, the process proceeds to step S14 because there is a leak in the upstream purge valve 16 or the downstream purge valve 17, and it is determined that the purge valve has failed. In addition, the fact that the purge valve is faulty is stored in the system control unit 18 by setting a purge valve fault experience flag. On the other hand, if it is determined in step S12 that there is no pressure drop, the idling stop state is continued.
[0030] このように、アイドリングストップ機能を持つ燃料電池にぉ 、ては、アイドリングストツ プ中は燃料電池の補機を停止するため、アイドリングストップ中の燃料排出経路から の排水素を処理する機能が損なわれたり、制限されたりする。従って、アイドリングスト ップ中にパージ弁の漏洩を精度よく診断する必要がある。本実施例によれば、アイド リングストップを行っているときにパージ弁の漏洩診断を行うことができるので、アイド リングストップ状態のパージ弁からの水素漏れをリアルタイムで検出することができる  [0030] As described above, in the fuel cell having the idling stop function, the function of processing the exhaust hydrogen from the fuel discharge path during the idling stop to stop the auxiliary device of the fuel cell during the idling stop. Will be damaged or restricted. Therefore, it is necessary to accurately diagnose the leakage of the purge valve during the idling stop. According to this embodiment, since the leak diagnosis of the purge valve can be performed when the idling stop is being performed, the hydrogen leak from the purge valve in the idling stop state can be detected in real time.
[0031] 一方、ステップ SOにてアイドリングストップ状態と識別したときには、ステップ S16に てアイドリングストップを解除する必要があるカゝ、つまりアイドリングストップを解除する 条件が成立している力否か判断する。ステップ S16にてアイドリングストップを解除す る条件が成立している判断されたときは、ステップ S18で水素供給を開始するととも に空気供給を開始し、ステップ S20で上流パージ弁 16の通常の開度制御を開始す ると共に、下流パージ弁 17を開いて、通常の発電状態へ移行する。また、ステップ S 16にてアイドリングストップを解除する条件が成立していないと判断した場合は、ステ ップ S12に移行し、パージ弁の診断を継続しつつ、アイドリングストップを継続する。 [0031] On the other hand, when the idling stop state is identified in step SO, it is determined in step S16 whether or not there is a force that needs to cancel the idling stop, that is, the condition for canceling the idling stop. If it is determined in step S16 that the conditions for releasing the idling stop are satisfied, hydrogen supply is started in step S18 and air supply is started.In step S20, the normal opening of the upstream purge valve 16 is started. At the same time as starting the control, the downstream purge valve 17 is opened to shift to the normal power generation state. If it is determined in step S16 that the conditions for releasing the idling stop are not satisfied, the process proceeds to step S12, and the idling stop is continued while continuing the diagnosis of the purge valve.
[0032] ここで、ステップ S 16のアイドリングストップ解除条件の中に、パージ弁が開固着状 態であると判断されて 、るかどうかを追加してもよ 、。アイドリングストップ中にステップ S14にてパージ弁が開固着状態、つまり故障状態であると判断された場合は、ステツ プ S16にてアイドリングストップ復帰条件が成立し、ステップ S18、ステップ S20に従 つて通常の発電状態へ移行する。さらに、ステップ S 2のアイドリングストップ許可条件 の中に、パージ弁が開固着状態であると判断されていないこと、即ち、パージ弁故障 経験フラグがセットされて 、な 、こと(プラグ≠ 1)を追加してもよ 、。アイドリングストツ プ中にステップ S14にてパージ弁が開固着状態であると判断された場合は、ステップ S16にてアイドリングストップ復帰条件が成立し、ステップ S18、ステップ S20に従つ て通常の発電状態へ移行するが、その後は、アイドリングストップ許可条件が成立し ないので、以降アイドリングストップに移行しない。これにより、アイドリングストップ中 にパージ弁の漏洩が検出された場合は、ただちにアイドリングストップを解除し、パー ジ弁力 の排水素を処理する機能を復活させることができるので、車外に規定濃度 以上の水素が排出されることを防止することができる。また、ー且パージ弁の漏洩が 検出された場合は、以後アイドリングストップを行わないようにできるので、パージ弁 の故障によりアイドリングストップに移行したとたんにアイドリングストップ力も運転状態 に復帰するという動作を防止することができる。さらに本発明では、システム制御部 1 8がステップ S2において燃料電池の発電を停止することが可能であると判断したとき に、燃料電池 2の発電を一時的に停止する状態に移行する前に、ステップ S4及び S 6でパージ弁 16, 17の故障検出を行う。そのため、もしステップ S4及び S6でパージ 弁 16, 17の故障が検出された場合、ステップ S8に移行せずアイドリングストップが行 われないため、パージ弁からの排水素を処理する機能が維持されることにより、車外 に規定濃度以上の水素が排出を防止することができる。 [0032] Here, whether or not the purge valve is determined to be in the open fixed state may be added to the idling stop cancellation condition of step S16. Step during idling stop If it is determined in S14 that the purge valve is in an open stuck state, that is, a failure state, the idling stop return condition is satisfied in step S16, and the normal power generation state is shifted in accordance with steps S18 and S20. . Further, in the idling stop permission condition of step S2, the purge valve is not determined to be in the open stuck state, that is, the purge valve failure experience flag is set (plug ≠ 1). You can add it. If it is determined in step S14 that the purge valve is in the open stuck state during the idling stop, the idling stop return condition is satisfied in step S16, and the normal power generation state is set in accordance with steps S18 and S20. However, after that, the idling stop permission condition is not satisfied. As a result, if a leak of the purge valve is detected during idling stop, the idling stop can be immediately released and the function of treating the purged hydrogen of the purge valve force can be restored. Hydrogen can be prevented from being discharged. In addition, if a purge valve leak is detected, it is possible to prevent the idling stop from being performed thereafter.As a result, the idling stop force returns to the operating state as soon as the purge valve malfunctions. Can be prevented. Furthermore, in the present invention, when the system control unit 18 determines in step S2 that it is possible to stop the power generation of the fuel cell, before shifting to the state where the power generation of the fuel cell 2 is temporarily stopped, In steps S4 and S6, failure of purge valves 16, 17 is detected. Therefore, if a failure of the purge valves 16 and 17 is detected in steps S4 and S6, the function of processing the exhaust hydrogen from the purge valve is maintained because the process does not proceed to step S8 and the idling stop is not performed. As a result, hydrogen above the specified concentration can be prevented from being discharged outside the vehicle.
次にアイドリングストップ状態でパージ弁 16, 17のいずれの弁が故障したかを診断 する方法について説明する。図 4に示すように、まずアイドリングストップ状態である状 態 4において、タイミング t4で下流パージ弁 17を閉じる。すると、状態 4から状態 5へ 遷移し、水素排出路 13bに、アノード 2a内の水素圧力相当の圧力が保持される。状 態 5である程度時間が経過して圧力センサ 15の検出値が安定したら、その検出値を 圧力 P1としてシステム制御部 18へ記憶するとともに、タイミング t5で上流パージ弁 1 6を閉じる。これにより状態 5から状態 6へ遷移する。続いて状態 6にて、閉塞された水 素排出路 13bの圧力の時間変化を圧力センサ 15でモニタする。ここで状態 6にてパ ージ弁の開固着と判断した場合は、タイミング t6で、この時の圧力を圧力 P2としてシ ステム制御部 18に記憶すると同時に、上流パージ弁 16を開く制御をする。ここで、も ともと上流パージ弁 16が開固着していた場合は、たとえ上流パージ弁 16を開く制御 をしたとしても、状態 6から状態 7にかけて上流パージ弁 16及び水素排出路 13bの状 況が変化するわけではないため、図 4中曲線 Fに示すように、両パージ弁 16, 17間 の圧力の抜け方も大きく変化しない。しかし、下流パージ弁 17が開固着していた場 合は、上流パージ弁 16を開くことで、図 4中曲線 Gに示すように、状態 6から状態 7に かけてパージ弁 16, 17間の圧力の抜ける面積が広がったことになり、圧力の抜け方 が早くなる。つまり状態 7において、パージ弁 16及び 17の両方が開状態となるため、 パージ弁 16, 17間の水素がアノード 2a側及び集合排出路 14側に速やかに流出し てしまう。従って、圧力 P1から圧力 P2に移行するまでの圧力低下速度と上流パージ 弁 16を開いた後の圧力 P2から圧力 P3に移行するまでの圧力低下速度とを比較す ることにより、どちらのパージ弁が故障しているかを判別し、パージ弁の故障部位が 特定できる。これにより、その後の修理を迅速に行うことができる。また、故障部位に 応じた最適なフェールセーフ制御を行うことができる。 Next, a method for diagnosing which of purge valves 16 and 17 has failed in the idling stop state will be described. As shown in FIG. 4, first, in the state 4 in the idling stop state, the downstream purge valve 17 is closed at the timing t4. Then, the state 4 changes to the state 5, and a pressure corresponding to the hydrogen pressure in the anode 2a is held in the hydrogen discharge path 13b. When a certain amount of time elapses in state 5 and the detected value of pressure sensor 15 becomes stable, the detected value is stored as pressure P1 in system control unit 18, and upstream purge valve 16 is closed at timing t5. This transitions from state 5 to state 6. Subsequently, in state 6, the blocked water The pressure sensor 15 monitors the time change of the pressure in the element discharge passage 13b. If it is determined in state 6 that the purge valve is stuck open, at time t6, the pressure at this time is stored as pressure P2 in the system control unit 18, and at the same time, the upstream purge valve 16 is controlled to open. . Here, if the upstream purge valve 16 is originally open and fixed, even if the upstream purge valve 16 is controlled to open, the state of the upstream purge valve 16 and the hydrogen discharge passage 13b from state 6 to state 7 will be described. Therefore, as shown by the curve F in FIG. 4, the way in which the pressure between the purge valves 16 and 17 is released does not change significantly. However, if the downstream purge valve 17 is stuck open, the upstream purge valve 16 is opened, and as shown by the curve G in FIG. This means that the area where the pressure can be released has increased, and the pressure can be released more quickly. That is, in the state 7, since both the purge valves 16 and 17 are opened, the hydrogen between the purge valves 16 and 17 quickly flows out to the anode 2a side and the collecting discharge path 14 side. Therefore, by comparing the pressure drop rate until the pressure P1 is changed to the pressure P2 and the pressure drop rate after the upstream purge valve 16 is opened and the pressure P2 is changed to the pressure P3, which purge valve is It is possible to determine whether the purge valve has failed or not. Thereby, subsequent repairs can be performed quickly. In addition, optimal fail-safe control can be performed according to the fault location.
[0034] ここで図 1に示すように、パージ弁 16及び 17から排出されるガスを力ソードのオフガ スにて希釈する構成をとる場合、正常な状態であれば、パージ弁 16及び 17から排出 される分の水素を希釈するだけの空気を供給すればよいのだが、パージ弁 16若しく は 17に開固着があって通常の想定以上の水素が排出される場合は、それの応じた 空気を供給する必要がある。ここで、上流パージ弁 16が故障していた場合は通常の パージ制御の機能が損なわれているため、パージ弁力 の排出水素が安全濃度ま で希釈されることを保証するために、希釈空気量を増加する等の水素処理機能の能 力を高めるフェールセーフ処理を行う。この結果、燃料電池システム外に排出される 水素濃度を低く抑制することができる。パージ弁の故障部位特定の結果、下流パー ジ弁 17が開固着故障していたとしても、上流パージ弁 16で通常のパージ制御を行う ことができるので、通常の発電制御を継続することができる。  [0034] Here, as shown in FIG. 1, when the gas discharged from the purge valves 16 and 17 is diluted with the off-gas of the power sword, the purge valves 16 and 17 It is sufficient to supply enough air to dilute the hydrogen to be discharged, but if the purge valve 16 or 17 is stuck open and more hydrogen than usual is expected, it will be It is necessary to supply air. Here, if the upstream purge valve 16 is out of order, the normal purge control function is impaired, so that the diluted hydrogen air can be diluted to a safe concentration in order to ensure that the discharged hydrogen of the purge valve force is diluted to a safe concentration. Perform fail-safe treatment to increase the capacity of the hydrogen treatment function, such as increasing the amount. As a result, the hydrogen concentration discharged outside the fuel cell system can be suppressed to a low level. Even if the downstream purge valve 17 has an open stuck failure as a result of identifying the failure location of the purge valve, the normal purge control can be performed by the upstream purge valve 16, so that the normal power generation control can be continued. .
[0035] 次に、図 5を参照して、燃料電池システムの運転停止時におけるパージ弁の故障 診断を説明する。 Next, referring to FIG. 5, the purge valve malfunctions when the fuel cell system is shut down. Explain the diagnosis.
[0036] 燃料電池システムの通常運転状態力 システム停止させ、停止状態 8に遷移させた 後に、タイミング t8で下流パージ弁 17を閉じる。すると、状態 9にて水素排出路 13b にアノード 2aの水素圧力相当の気圧が保持される。この時に圧力センサ 15で検出し た圧力を圧力 P1としてシステム制御部 18に記憶するとともに、タイミング t9で上流パ ージ弁 16を閉じる。つづいて状態 10にて、閉塞された水素排出路 13bの圧力の時 間変化を圧力センサ 15でモニタする。上流パージ弁 16または下流パージ弁 17に漏 洩が無い場合は、図 5中曲線 Hに示すように、水素排出路 13bの圧力がほとんど低 下しない。し力し上流パージ弁 16または下流パージ弁 17に漏洩があった場合は、図 5中曲線 Iに示すように、水素排出路 13bの圧力は比較的速やかにパージ弁外部の 圧力に向かい変化する。例えば下流パージ弁 17に漏れがある場合は大気圧に、上 流パージ弁 16に漏れがある場合はアノード 2aの圧力に収束する。つまり、所定時間 における水素排出路 13b内の圧力の変化幅力もパージ弁 16, 17の漏洩の有無を判 断することができる。  [0036] Normal operating state force of fuel cell system After the system is stopped and transitioned to stop state 8, downstream purge valve 17 is closed at timing t8. Then, in the state 9, a pressure corresponding to the hydrogen pressure of the anode 2a is held in the hydrogen discharge path 13b. At this time, the pressure detected by the pressure sensor 15 is stored in the system control unit 18 as the pressure P1, and the upstream purge valve 16 is closed at timing t9. Subsequently, in state 10, the pressure sensor 15 monitors the change over time in the pressure of the blocked hydrogen discharge passage 13b. If there is no leakage in the upstream purge valve 16 or the downstream purge valve 17, the pressure in the hydrogen discharge passage 13b hardly decreases as shown by curve H in FIG. If the upstream purge valve 16 or the downstream purge valve 17 leaks, the pressure in the hydrogen discharge passage 13b changes toward the pressure outside the purge valve relatively quickly as shown by curve I in FIG. . For example, if there is a leak in the downstream purge valve 17, it converges to atmospheric pressure, and if there is a leak in the upstream purge valve 16, it converges to the pressure of the anode 2 a. In other words, whether or not the purge valves 16 and 17 are leaking can also be determined by the pressure variation width within the hydrogen discharge passage 13b at a predetermined time.
[0037] 図 6に、燃料電池システムの運転停止時のパージ弁診断のフローチャートを示す。  FIG. 6 shows a flowchart of the purge valve diagnosis when the operation of the fuel cell system is stopped.
まず、ステップ S40において、燃料電池システムを起動する力否かを判定し、燃料電 池システムを起動しないときには、ステップ S42において、燃料電池システムが停止 して 、る力か否かを判断する。  First, in step S40, it is determined whether or not the fuel cell system is activated. When the fuel cell system is not activated, it is determined in step S42 whether or not the fuel cell system is stopped.
[0038] ステップ S42にてシステム停止条件が成立していると判断されたら、ステップ S44に て上流パージ弁 16を開き、下流パージ弁 17を閉じる。その後ステップ S46にて上流 パージ弁 16と下流パージ弁 17との間の圧力が所定時間内に上昇するかどうかを圧 力センサ 15の検出値に基づいてチェックする。ここで、所定時間経過しても圧力が上 昇しない場合は下流パージ弁 17が開いたまま、つまり下流パージ弁の開固着故障 状態であるか、上流パージ弁 16が閉じたまま、つまり上流パージ弁の閉故障状態で ある。この場合にはステップ S46からステップ S54に移行しパージ弁故障と判断する とともに、パージ弁が故障であることをパージ弁故障経験フラグをセットする(フラグ = 1とする)ことによりシステム制御部 18内に記憶する。  If it is determined in step S42 that the system stop condition is satisfied, the upstream purge valve 16 is opened and the downstream purge valve 17 is closed in step S44. Thereafter, in step S46, it is checked whether the pressure between the upstream purge valve 16 and the downstream purge valve 17 rises within a predetermined time based on the detection value of the pressure sensor 15. Here, if the pressure does not increase even after a predetermined time has elapsed, the downstream purge valve 17 remains open, that is, the downstream purge valve is stuck open, or the upstream purge valve 16 remains closed, that is, the upstream purge. The valve is closed. In this case, the process proceeds from step S46 to step S54, and it is determined that the purge valve has failed, and the purge valve failure experience flag is set (flag = 1) to indicate that the purge valve has failed. To remember.
[0039] 一方、ステップ S46にて、上流パージ弁 16と下流パージ弁 17の間の圧力が上昇し た場合は、ステップ S48へ移行して上流パージ弁 16を閉じて、両パージ弁 16, 17間 の水素排出路 13bの圧力を保持するとともに、圧力センサ 15で検出するパージ弁 1 6, 17間の圧力変化をシステム制御部 18内に記憶する(圧力 Pl =パージライン圧) 。また、上流パージ弁 16を閉じた直後より、上流パージ弁 16を閉じている時間の測 定を開始する。さらに両パージ弁 16, 17を閉じた直後、水素、空気の供給を停止す る。また、ステップ S50にて、燃料電池 2から電力を取り出してアノード 2aの圧力をパ ージ弁 16, 17で密閉された水素排出路 13bの圧力より低くなるように制御する。 [0039] On the other hand, in step S46, the pressure between the upstream purge valve 16 and the downstream purge valve 17 increases. If this is the case, the process proceeds to step S48, the upstream purge valve 16 is closed, the pressure in the hydrogen discharge passage 13b between the purge valves 16 and 17 is maintained, and the pressure between the purge valves 16 and 17 detected by the pressure sensor 15 Is stored in the system control unit 18 (pressure Pl = purge line pressure). Also, immediately after the upstream purge valve 16 is closed, measurement of the time during which the upstream purge valve 16 is closed is started. Further, immediately after closing both purge valves 16 and 17, supply of hydrogen and air is stopped. In step S50, the electric power is taken out from the fuel cell 2 and the pressure of the anode 2a is controlled to be lower than the pressure of the hydrogen discharge passage 13b sealed by the purge valves 16 and 17.
[0040] ステップ S52はパージ弁診断のステップである。ステップ S52では、両パージ弁 16 , 17間の圧力が、ステップ S48にて記憶した圧力値 (圧力 P1)に対して所定圧力以 上低下し、かつ上流パージ弁 16を閉じた直後から測定した時間が所定時間 T1以下 であるか否力確認する。ステップ S52にて所定時間 T1内に所定圧力 P1以上の圧力 低下があった場合は、上流パージ弁 16または下流パージ弁 17の漏れがあるとしてス テツプ S54に移行し、パージ弁故障と判断するとともに、パージ弁が故障であることを パージ弁故障経験フラグをセットすることによりシステム制御部 18内に記憶する。一 方、ステップ S52にて圧力の低下がないと判断される場合には、運転停止を終了して リターンする。 Step S52 is a purge valve diagnosis step. In step S52, the time measured immediately after closing the upstream purge valve 16 when the pressure between the purge valves 16 and 17 drops by more than a predetermined pressure with respect to the pressure value (pressure P1) stored in step S48. Confirm whether or not is less than T1 for a predetermined time. If a pressure drop equal to or greater than the predetermined pressure P1 within the predetermined time T1 at step S52, it is determined that there is a leak in the upstream purge valve 16 or the downstream purge valve 17 and the process proceeds to step S54, where it is determined that the purge valve has failed. The fact that the purge valve is faulty is stored in the system controller 18 by setting the purge valve fault experience flag. On the other hand, if it is determined in step S52 that there is no pressure drop, stop operation and return.
[0041] 次回の燃料電池システム起動する際、まずステップ S40にて起動と認識される。ス テツプ S40にて起動時と認識された場合は、ステップ S56にて前回停止時の診断に てパージ弁が故障して 、ると判定されて 、るかどうかを確認する。前回の診断でパー ジ弁が故障していると判定されていない場合は、パージ弁は正常であると認識し、ス テツプ S60にて空気増量を行わずに起動を行う。一方、ステップ S56にて前回診断 で NGと判定した場合は、パージ弁は異常であると認識し、ステップ S58にてパージ 弁力 排出されると推定される水素を希釈するのに十分な空気増量を行い、ステップ S62で水素供給を開始して燃料電池を起動する。  [0041] When the fuel cell system is activated next time, it is first recognized as activated in step S40. If it is recognized at step S40 that the engine has been started, it is determined in step S56 that the purge valve has failed due to the diagnosis at the previous stop and whether it has been detected. If it is not determined that the purge valve has failed in the previous diagnosis, the purge valve is recognized as normal and is started without increasing the air in step S60. On the other hand, if the previous diagnosis is determined to be NG in step S56, the purge valve is recognized to be abnormal, and the purge valve force is increased in step S58 to sufficiently dilute the hydrogen estimated to be discharged. In step S62, hydrogen supply is started and the fuel cell is started.
[0042] このように、燃料電池システムの停止時にパージ弁の故障判定を行ってその結果を 記憶し、起動時に記憶した故障判定結果に応じて燃料電池の供給空気量を調整す ることにより、起動時に故障判定の必要が無くなり燃料電池システムの起動時間を短 縮できる。停止時に故障判定しない場合には、パージ弁に開固着がある可能性を前 提として、起動時に空気量を増大させる必要があるが、停止時に故障診断を行えば 、パージ弁が開固着していない場合までも空気量を増大させる必要がなくなり、消費 電力削減及びコンプレッサ等による騒音低減することができる。 [0042] In this way, by determining the failure of the purge valve when the fuel cell system is stopped and storing the result, and adjusting the amount of air supplied to the fuel cell according to the failure determination result stored at the time of startup, It is not necessary to determine the failure at startup, and the startup time of the fuel cell system can be shortened. If the failure is not judged at the stop, the possibility that the purge valve is stuck As a matter of fact, it is necessary to increase the amount of air at startup. However, if failure diagnosis is performed at the time of stoppage, it is not necessary to increase the amount of air even when the purge valve is not fixed open. Noise can be reduced.
[0043] (実施例 2)  [0043] (Example 2)
図 7では、本発明に係る燃料電池システムの実施例 2の構成の一部を示しており、 水素排出路に直列に 3つのパージ弁を設けた例を示している。図 7において、水素 排出路 13には、上流パージ弁 16、中流パージ弁 20、下流パージ弁 17の 3つのパ ージ弁が直列に配置されている。そして、上流パージ弁 16と中流パージ弁 20で挟ま れた水素排出路の圧力を検出する圧力センサ 21,中流パージ弁 20と下流パージ弁 17で挟まれた水素排出路の圧力を検出する圧力センサ 15が設けられている。その 他の構成は、図 1に示した実施例 1の構成と同様であるので図示を省略する。  FIG. 7 shows a part of the configuration of Example 2 of the fuel cell system according to the present invention, and shows an example in which three purge valves are provided in series with the hydrogen discharge path. In FIG. 7, in the hydrogen discharge passage 13, three purge valves, an upstream purge valve 16, a middle purge valve 20, and a downstream purge valve 17, are arranged in series. The pressure sensor 21 detects the pressure of the hydrogen discharge path sandwiched between the upstream purge valve 16 and the intermediate purge valve 20, and the pressure sensor detects the pressure of the hydrogen discharge path sandwiched between the intermediate purge valve 20 and the downstream purge valve 17. 15 is provided. Other configurations are the same as those of the first embodiment shown in FIG.
[0044] 本実施例においては、 3つのパージ弁の故障試験は、 2つの試験に分割される。第 1の試験は、上流パージ弁 16を開いた状態で、圧力センサ 15の検出値を用いて、中 流パージ弁 20と、下流パージ弁 17の故障試験を行う。これは、実施例 1の故障試験 における上流パージ弁 16と下流パージ弁 17の試験において、上流パージ弁 16を 中流パージ弁 20に読み替えればよ 、。  [0044] In the present embodiment, the failure test of the three purge valves is divided into two tests. In the first test, a failure test of the intermediate purge valve 20 and the downstream purge valve 17 is performed using the detection value of the pressure sensor 15 with the upstream purge valve 16 opened. This can be done by replacing the upstream purge valve 16 with the middle purge valve 20 in the tests of the upstream purge valve 16 and the downstream purge valve 17 in the failure test of the first embodiment.
[0045] 第 2の試験は、下流パージ弁 17を開いた状態で、圧力センサ 21の検出値を用いて 、上流パージ弁 16と中流パージ弁 20の故障試験を行う。これは、実施例 1の故障試 験における上流パージ弁 16と下流パージ弁 17の試験において、中流パージ弁 20 を下流パージ弁 17に、圧力センサ 15を圧力センサ 21に読み替えればよい。  In the second test, a failure test of the upstream purge valve 16 and the intermediate purge valve 20 is performed using the detection value of the pressure sensor 21 with the downstream purge valve 17 opened. This can be done by replacing the intermediate purge valve 20 with the downstream purge valve 17 and the pressure sensor 15 with the pressure sensor 21 in the tests of the upstream purge valve 16 and the downstream purge valve 17 in the failure test of the first embodiment.
[0046] このように、 3以上のパージ弁を備えた構成において、試験対象の隣り合うパージ 弁以外のパージ弁を開いた状態で、 2つの隣り合うパージ弁の故障試験を行うように 、故障試験を分割すると、それぞれ分割された故障試験は、実施例 1と同様に行うこ とがでさる。  As described above, in a configuration including three or more purge valves, a failure test is performed so that a failure test of two adjacent purge valves is performed in a state where the purge valves other than the adjacent purge valves to be tested are opened. When the test is divided, the divided failure tests can be performed in the same manner as in Example 1.
[0047] 特願 2004— 320659号(出願日: 2004年 11月 4日)の全内容はここに援用される  [0047] The entire contents of Japanese Patent Application No. 2004-320659 (filing date: November 4, 2004) are incorporated herein by reference.
[0048] 以上、実施の形態及び実施例に沿って本発明の内容を説明したが、本発明はこれ らの記載に限定されるものではなぐ種々の変形及び改良が可能であることは、当業 者には自明である。 [0048] The contents of the present invention have been described above according to the embodiments and examples. However, the present invention is not limited to these descriptions, and various modifications and improvements can be made. Work It is self-evident to the person.
産業上の利用の可能性 Industrial applicability
本発明によれば、燃料循環路内の気体の一部を外部へ放出する燃料排出路に、 複数のパージ弁と、パージ弁に挟まれた空間の圧力を検出する圧力センサを設けた 。そしてこの 2つのパージ弁の間の空間に燃料ガスを密封し、この空間の圧力変化を 圧力センサで検出することでパージ弁の故障診断を行うことができる。このパージ弁 の間の燃料ガスを密封する空間は、通常の燃料電池の運転状態に左右されな ヽ部 分なので、任意の運転状態においてパージ弁の故障診断を行うことができる。  According to the present invention, a plurality of purge valves and a pressure sensor for detecting the pressure in the space sandwiched between the purge valves are provided in the fuel discharge path for releasing a part of the gas in the fuel circulation path to the outside. The fuel gas is sealed in the space between the two purge valves, and the failure of the purge valve can be diagnosed by detecting the pressure change in the space with a pressure sensor. Since the space for sealing the fuel gas between the purge valves is not affected by the normal operation state of the fuel cell, the failure diagnosis of the purge valve can be performed in any operation state.

Claims

請求の範囲 The scope of the claims
[1] 燃料極に供給された燃料ガス及び酸化剤極に供給された酸化剤ガスを用いて発 電する燃料電池と、  [1] A fuel cell that generates electricity using the fuel gas supplied to the fuel electrode and the oxidant gas supplied to the oxidant electrode;
前記燃料極力ゝら排出される余剰の燃料ガスを前記燃料極に還流する燃料循環路と 該燃料循環路内の気体の一部を外部に放出する燃料排出路と、  A fuel circulation path for returning excess fuel gas discharged from the fuel as much as possible to the fuel electrode; a fuel discharge path for releasing a part of the gas in the fuel circulation path to the outside;
該燃料排出路に直列に配置された複数のパージ弁と、  A plurality of purge valves arranged in series in the fuel discharge passage;
前記複数のパージ弁の間の空間の圧力を計測する少なくとも一つの圧力センサと 該圧力センサが検出する圧力値の時間変化に基づいて少なくとも一つの前記パー ジ弁力 のガス漏洩を検出することにより、前記パージ弁の故障を検出する故障検出 器と、  At least one pressure sensor for measuring a pressure in a space between the plurality of purge valves, and detecting a gas leak of at least one of the purge valve forces based on a temporal change in a pressure value detected by the pressure sensor. A failure detector for detecting a failure of the purge valve;
を備えたことを特徴とする燃料電池システム。  A fuel cell system comprising:
[2] 前記故障検出器によりパージ弁の故障の検出を行うときに、前記燃料循環路の圧 力を前記故障の検出を開始した時の圧力より低い圧力に調整することを特徴とする 請求項 1に記載の燃料電池システム。  [2] The pressure of the fuel circulation path is adjusted to a pressure lower than the pressure at the time of detecting the failure when the failure detector detects the failure of the purge valve. The fuel cell system according to 1.
[3] 燃料電池の発電を停止する力否かを判断する判断装置を備え、  [3] A determination device for determining whether or not to stop the power generation of the fuel cell is provided,
該判断装置が燃料電池の発電を停止することが可能であると判断したときに、燃料 電池の発電を一時的に停止する一方、前記判断装置が燃料電池の発電停止を解 除したときに、燃料電池の発電を再開させることを特徴とする請求項 1に記載の燃料 電池システム。  When the determination device determines that it is possible to stop the power generation of the fuel cell, the power generation of the fuel cell is temporarily stopped, while when the determination device cancels the power generation stop of the fuel cell, 2. The fuel cell system according to claim 1, wherein power generation of the fuel cell is resumed.
[4] 前記判断装置が燃料電池の発電を停止することが可能であると判断したときに、燃 料電池の発電を一時的に停止する状態に移行する前に、前記故障検出器による故 障検出を行うことを特徴とする請求項 3に記載の燃料電池システム。  [4] When the determination device determines that it is possible to stop the power generation of the fuel cell, the failure detector detects a failure before shifting to a state where the power generation of the fuel cell is temporarily stopped. The fuel cell system according to claim 3, wherein detection is performed.
[5] 前記故障検出器が少なくとも一つのパージ弁力ものガス漏洩を検出したときに、燃 料電池の発電を一時的に停止する状態を解除することを特徴とする請求項 4に記載 の燃料電池システム。  [5] The fuel according to claim 4, wherein when the failure detector detects a gas leak with at least one purge valve force, the fuel cell is temporarily stopped from generating power. Battery system.
[6] 前記判断装置は、前記パージ弁の故障情報を記憶する記憶装置を備え、 前記故障検出器が少なくとも一つのパージ弁力ものガス漏洩を検出したときは、前 記故障情報を前記記憶装置に記憶するとともに、その後前記判断装置は発電の停 止判断を制限することを特徴とする請求項 4に記載の燃料電池システム。 [6] The determination device includes a storage device that stores failure information of the purge valve, When the failure detector detects a gas leak with at least one purge valve force, the failure information is stored in the storage device, and then the determination device limits the determination of stoppage of power generation. The fuel cell system according to claim 4.
[7] 前記故障検出器が少なくとも一つのパージ弁力ものガス漏洩を検出したときに、前 記圧力センサが検出した燃料ガス圧力値を前記記憶装置に記憶させるとともに、前 記圧力センサを挟む 2つのパージ弁のうち、前記燃料循環路に近いほうのパージ弁 を開いて、前記圧力センサの検出値の時間変化を監視し、この時間変化に基づいて 前記何れのパージ弁力 ガス漏洩の有無があるかを判別することを特徴とする請求 項 4に記載の燃料電池システム。 [7] When the failure detector detects gas leakage with at least one purge valve force, the fuel gas pressure value detected by the pressure sensor is stored in the storage device, and the pressure sensor is sandwiched between them. Of the two purge valves, the purge valve closer to the fuel circulation path is opened, and the time change in the detected value of the pressure sensor is monitored. 5. The fuel cell system according to claim 4, wherein it is determined whether or not it exists.
[8] 前記故障検出器が下流側にあるパージ弁からのガス漏洩を検出したときに、燃料 電池の発電を一時的に停止する状態を解除するとともに、燃料電池の発電を再開さ せることを特徴とする請求項 7に記載の燃料電池システム。 [8] When the failure detector detects gas leakage from the purge valve on the downstream side, the state of temporarily stopping the power generation of the fuel cell is canceled and the power generation of the fuel cell is restarted. 8. The fuel cell system according to claim 7, wherein
[9] 前記故障検出器が上流側にあるパージ弁からのガス漏洩が有ると判断したときに、 燃料電池の発電を一時的に停止する状態を解除するとともに、パージ弁力 の排出 ガス濃度を低下させるための処理を行うことを特徴とする請求項 7に記載の燃料電池 システム。 [9] When the failure detector determines that there is a gas leak from the purge valve on the upstream side, the state where the fuel cell power generation is temporarily stopped is released, and the exhaust gas concentration of the purge valve force is reduced. The fuel cell system according to claim 7, wherein a process for reducing is performed.
[10] 燃料電池システム停止時に、前記故障検出器が前記パージ弁の故障を検出した 場合、次回の燃料電池システム起動時において、通常時より燃料電池に対する空気 供給量を増大させることを特徴とする請求項 1に記載の燃料電池システム。  [10] When the fuel cell system is stopped, if the failure detector detects a failure of the purge valve, the air supply amount to the fuel cell is increased from the normal time at the next start of the fuel cell system. The fuel cell system according to claim 1.
[11] 前記パージ弁を 3つ以上備え、試験対象の 2つの隣り合うパージ弁以外のパージ 弁を開いた状態で、 2つの隣り合うパージ弁の故障試験を行うことを特徴とする請求 項 1ないし請求項 10の何れか 1項に記載の燃料電池システム。  [11] The failure test of two adjacent purge valves is performed in a state where three or more purge valves are provided and a purge valve other than the two adjacent purge valves to be tested is opened. The fuel cell system according to any one of claims 10 to 11.
[12] 燃料極に供給された燃料ガス及び酸化剤極に供給された酸化剤ガスを用いて発 電する燃料電池と、  [12] A fuel cell that generates electricity using the fuel gas supplied to the fuel electrode and the oxidant gas supplied to the oxidant electrode;
前記燃料極力ゝら排出される余剰の燃料ガスを前記燃料極に還流する燃料循環路と 該燃料循環路内の気体の一部を外部に放出する燃料排出路と、  A fuel circulation path for returning excess fuel gas discharged from the fuel as much as possible to the fuel electrode; a fuel discharge path for releasing a part of the gas in the fuel circulation path to the outside;
該燃料排出路に直列に配置された複数のパージ弁と、 前記複数のパージ弁の間の空間の圧力を計測する少なくとも一つの圧力センサと 該圧力センサが検出する圧力値の時間変化に基づいて少なくとも一つの前記パー ジ弁力 のガス漏洩を検出することにより、前記パージ弁の故障を検出する故障検出 手段と、 A plurality of purge valves arranged in series in the fuel discharge passage; At least one pressure sensor for measuring a pressure in a space between the plurality of purge valves, and detecting a gas leak of at least one of the purge valve forces based on a temporal change in a pressure value detected by the pressure sensor. Failure detection means for detecting a failure of the purge valve;
を備えたことを特徴とする燃料電池システム。  A fuel cell system comprising:
燃料極に供給された燃料ガス及び酸化剤極に供給された酸化剤ガスを用いて発 電する燃料電池と、前記燃料極力ゝら排出される余剰の燃料ガスを前記燃料極に還流 する燃料循環路と、該燃料循環路内の気体の一部を外部に放出する燃料排出路と 、該燃料排出路に直列に配置された複数のパージ弁と、を設ける工程と、  A fuel cell that generates electricity using the fuel gas supplied to the fuel electrode and the oxidant gas supplied to the oxidant electrode, and a fuel circulation that recirculates the excess fuel gas discharged as much as possible to the fuel electrode Providing a passage, a fuel discharge passage for releasing a part of the gas in the fuel circulation passage to the outside, and a plurality of purge valves arranged in series in the fuel discharge passage;
前記複数のパージ弁の間の空間の圧力を計測する工程と、  Measuring the pressure in the space between the plurality of purge valves;
計測した圧力値の時間変化に基づいて少なくとも一つの前記パージ弁からのガス 漏洩を検出することにより、前記パージ弁の故障を検出する工程と、  Detecting a failure of the purge valve by detecting gas leakage from at least one of the purge valves based on a time change of the measured pressure value;
を有することを特徴とする燃料電池システムの故障診断方法。  A failure diagnosis method for a fuel cell system, comprising:
PCT/JP2005/017679 2004-11-04 2005-09-27 Fuel cell system WO2006048983A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004320659A JP2006134647A (en) 2004-11-04 2004-11-04 Fuel cell system
JP2004-320659 2004-11-04

Publications (1)

Publication Number Publication Date
WO2006048983A1 true WO2006048983A1 (en) 2006-05-11

Family

ID=36318998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017679 WO2006048983A1 (en) 2004-11-04 2005-09-27 Fuel cell system

Country Status (2)

Country Link
JP (1) JP2006134647A (en)
WO (1) WO2006048983A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140026633A1 (en) * 2012-07-27 2014-01-30 GM Global Technology Operations LLC Extremum seeking algorithm in a variable time interval to detect anode pressure sensor stuck failure in a fuel cell system
US10930955B2 (en) 2016-01-21 2021-02-23 Brother Kogyo Kabushiki Kaisha Fuel cell, control method for fuel cell, and computer readable recording medium
CN113178600A (en) * 2021-03-16 2021-07-27 佛山市飞驰汽车科技有限公司 Hydrogen fuel cell automobile hydrogen conveying system and hydrogen leakage detection method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4682922B2 (en) * 2006-06-06 2011-05-11 日産自動車株式会社 Hydraulic control device
JP5121185B2 (en) * 2006-08-23 2013-01-16 ヤマハ発動機株式会社 FUEL CELL SYSTEM AND MOTORCYCLE HAVING THE SAME
JP5207843B2 (en) * 2008-06-19 2013-06-12 本田技研工業株式会社 Electric vehicle and ground fault detection method in electric vehicle
JP5389485B2 (en) * 2009-03-17 2014-01-15 本田技研工業株式会社 Control method of fuel cell system
CN102414898B (en) * 2009-05-08 2014-06-25 松下电器产业株式会社 Fuel cell system
JP5877292B2 (en) * 2010-10-05 2016-03-08 パナソニックIpマネジメント株式会社 Fuel cell system
KR101788201B1 (en) 2016-04-08 2017-10-20 현대자동차주식회사 Fuel cell system and control method for the same
DE102019217593A1 (en) * 2019-11-14 2021-05-20 Psa Automobiles Sa Method and valve arrangement for detecting a leak in a flushing valve of an energy conversion machine
JP7359791B2 (en) 2021-01-25 2023-10-11 本田技研工業株式会社 fuel cell system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08329965A (en) * 1995-05-29 1996-12-13 Matsushita Electric Ind Co Ltd Fuel cell power generating system
JPH0922711A (en) * 1995-07-05 1997-01-21 Sanyo Electric Co Ltd Fuel cell and trouble diagnosing method for it
JP2002352824A (en) * 2001-05-30 2002-12-06 Nissan Motor Co Ltd Fuel cell system
JP2003092125A (en) * 2001-07-10 2003-03-28 Honda Motor Co Ltd Fuel cell control device
JP2003308868A (en) * 2002-04-18 2003-10-31 Nissan Motor Co Ltd Gas fuel supply device
JP2004095425A (en) * 2002-09-02 2004-03-25 Nissan Motor Co Ltd Failure diagnostic system of supply switching valve
JP2005129392A (en) * 2003-10-24 2005-05-19 Toyota Motor Corp Abnormality detecting device of fuel cell system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08329965A (en) * 1995-05-29 1996-12-13 Matsushita Electric Ind Co Ltd Fuel cell power generating system
JPH0922711A (en) * 1995-07-05 1997-01-21 Sanyo Electric Co Ltd Fuel cell and trouble diagnosing method for it
JP2002352824A (en) * 2001-05-30 2002-12-06 Nissan Motor Co Ltd Fuel cell system
JP2003092125A (en) * 2001-07-10 2003-03-28 Honda Motor Co Ltd Fuel cell control device
JP2003308868A (en) * 2002-04-18 2003-10-31 Nissan Motor Co Ltd Gas fuel supply device
JP2004095425A (en) * 2002-09-02 2004-03-25 Nissan Motor Co Ltd Failure diagnostic system of supply switching valve
JP2005129392A (en) * 2003-10-24 2005-05-19 Toyota Motor Corp Abnormality detecting device of fuel cell system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140026633A1 (en) * 2012-07-27 2014-01-30 GM Global Technology Operations LLC Extremum seeking algorithm in a variable time interval to detect anode pressure sensor stuck failure in a fuel cell system
US9080938B2 (en) * 2012-07-27 2015-07-14 GM Global Technology Operations LLC Extremum seeking algorithm in a variable time interval to detect anode pressure sensor stuck failure in a fuel cell system
US10930955B2 (en) 2016-01-21 2021-02-23 Brother Kogyo Kabushiki Kaisha Fuel cell, control method for fuel cell, and computer readable recording medium
US11362353B2 (en) 2016-01-21 2022-06-14 Brother Kogyo Kabushiki Kaisha Fuel cell, control method for fuel cell, and computer readable recording medium
CN113178600A (en) * 2021-03-16 2021-07-27 佛山市飞驰汽车科技有限公司 Hydrogen fuel cell automobile hydrogen conveying system and hydrogen leakage detection method
CN113178600B (en) * 2021-03-16 2023-04-11 佛山市飞驰汽车科技有限公司 Hydrogen fuel cell automobile hydrogen conveying system and hydrogen leakage detection method

Also Published As

Publication number Publication date
JP2006134647A (en) 2006-05-25

Similar Documents

Publication Publication Date Title
WO2006048983A1 (en) Fuel cell system
US7882728B2 (en) Dual anomaly judgment device for a fuel cell
US9147893B2 (en) Failure diagnostic device for discharge valve
US8232014B2 (en) Fuel cell operational methods for hydrogen addition after shutdown
JP3836440B2 (en) Degradation diagnosis method for gas sensor
CA2647802C (en) Fuel cell with hydrogen leak detection
US9614235B2 (en) Fuel cell system and method of controlling the system
US20080318098A1 (en) Fuel Cell System and Driving Method of Fuel Cell System
US20070193340A1 (en) Gas leak detection device and method for same
JP4561155B2 (en) Fuel cell control device
US8211581B2 (en) Control apparatus and control method for fuel cell
JP5899000B2 (en) Method for judging leakage abnormality of fuel cell system
JP2022065251A (en) Fuel cell system
JP5186867B2 (en) Fuel cell system
US8541142B2 (en) Fuel cell system
KR20060112679A (en) Fuel cell system and method for operating same
JP4748381B2 (en) Anomaly detection device
JP4715138B2 (en) Fuel cell system for abnormality detection processing
JP2013239360A (en) Fuel cell system and fault diagnosis method thereof
CN113675438B (en) Fuel cell system
CN111497647B (en) Fuel cell system and control method for fuel cell system
JP4211000B2 (en) Gas leak judgment device
KR20210011525A (en) Appartus and method for controlling emergency driving for fuel cell vehicle
KR102663202B1 (en) Control method for hydrogen supply of fuel cell
JP2006066100A (en) Fuel cell system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05787724

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5787724

Country of ref document: EP