WO2006048968A1 - Drive device for hybrid vehicle and control method for the same - Google Patents

Drive device for hybrid vehicle and control method for the same Download PDF

Info

Publication number
WO2006048968A1
WO2006048968A1 PCT/JP2005/015897 JP2005015897W WO2006048968A1 WO 2006048968 A1 WO2006048968 A1 WO 2006048968A1 JP 2005015897 W JP2005015897 W JP 2005015897W WO 2006048968 A1 WO2006048968 A1 WO 2006048968A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
motor
engine
control
rotational speed
Prior art date
Application number
PCT/JP2005/015897
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiko Kobayashi
Original Assignee
Aisin Aw Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Aw Co., Ltd. filed Critical Aisin Aw Co., Ltd.
Priority to CN2005800328689A priority Critical patent/CN101031460B/en
Priority to DE112005002385.0T priority patent/DE112005002385B4/en
Publication of WO2006048968A1 publication Critical patent/WO2006048968A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • B60K2006/268Electric drive motor starts the engine, i.e. used as starter motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/50Drive Train control parameters related to clutches
    • B60L2240/507Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/26Transition between different drive modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a drive device mounted on a hybrid vehicle that travels using both an engine and a motor, and a control method therefor.
  • Patent Document 1 As a technology related to control at the time of engine start in a drive device mounted on a hybrid vehicle that travels using both an engine and a motor, for example, the following technology is described in Patent Document 1 below. Yes.
  • This technology uses a motor to maintain a smooth vehicle response to the driver's request using a motor in a parallel type hybrid vehicle drive system with an engine separation clutch, and starts the engine by engaging the engine separation clutch.
  • This is a control technology that allows the motor to follow the speed of the torque that is necessary to obtain the desired set speed ⁇ Controlled in control mode. That is, when the engine is started, first, an engine separation clutch is fastened, a desired speed is commanded to the motor, fuel is supplied to the engine, and the engine is started. After that, calculate the desired engine 'torque, and while maintaining the vehicle speed using, for example, a proportional integral controller, gradually reduce the motor torque until the motor torque becomes zero, and proportionally engine' torque To increase the control.
  • the setting of the desired speed of the motor is based on the operation state of the entire vehicle and the driver's request, and is either a trajectory based on the vehicle speed and acceleration at the present time and at a past time, or a constant value. Can be.
  • the desired set speed is Set to the desired idle speed of the engine.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-129926 (Pages 1-5, Fig. 1-2)
  • the hybrid vehicle drive apparatus While driving, the hybrid vehicle drive apparatus as described above is
  • the control technology has the following problems.
  • the power transmission unit is coupled and there is a request for starting the engine while the vehicle is driven by the driving force of the motor, it is preferable to start the engine depending on the operating state of the vehicle including the number of rotations of the motor. May not be possible.
  • the crankshaft of the engine in order to start the engine, it is necessary to rotate the crankshaft of the engine at a certain rotational speed.
  • the above control technique allows the motor to rotate according to the vehicle speed. The number is controlled low. Therefore, if the motor rotation speed is lower than the engine rotation speed, there is a problem that the engine cannot be started immediately at the vehicle speed.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a vehicle including the number of rotations of the motor when there is an engine start request during traveling of the vehicle by the driving force of the motor.
  • the object of the present invention is to provide a hybrid vehicle drive device and a control method thereof capable of starting the engine in a short time regardless of the operating state.
  • the hybrid vehicle drive device includes a motor, a first clutch that transmits or disconnects a driving force between the motor and the engine, and the motor. And a second clutch that transmits or disconnects the driving force of one or both of the engines to the wheel side, and a control device that controls the operation of the motor, the first clutch, and the second clutch,
  • the control device is configured to control the motor, the first control unit, or the like according to a control pattern that differs depending on the rotational speed of the motor detected directly or indirectly. The operation of the one clutch and the second clutch is controlled, and the engine is started.
  • the control device has at least two types of control patterns, that is, a control pattern for high rotation and a control pattern for low rotation as the control pattern, and the control pattern for high rotation
  • the control pattern is to start the engine by increasing the engagement pressure of the first clutch with the two clutches fully engaged, and the low-rotation control pattern is the control pattern with the second clutch open.
  • a configuration in which the engine is started by increasing the engagement pressure of the first clutch can also be adopted.
  • control device is configured to perform the high rotation when the rotation speed of the motor is equal to or higher than a threshold value set to be equal to or higher than a rotation speed at which the engine can be started with the first clutch engaged. It is preferable to perform control for selecting the control pattern for low rotation and selecting the control pattern for low rotation when the control pattern is less than the threshold value.
  • Another characteristic configuration of the hybrid vehicle drive device includes: a motor; a first clutch that transmits or disconnects a driving force between the motor and the engine; and the motor and the engine.
  • a second clutch that transmits or disconnects one or both of the driving forces to the wheel side, and a control device that controls the operation of the motor, the first clutch, and the second clutch.
  • a further characteristic configuration of the hybrid vehicle drive device includes a motor, a first clutch that transmits or disconnects a driving force between the motor and the engine, the motor and the engine.
  • a second clutch that transmits or disconnects one or both of the driving forces to the wheel side, and a control device that controls the operation of the motor, the first clutch, and the second clutch.
  • the second clutch when there is an engine start request during driving of the wheels by the motor, the second clutch is released if the rotational speed of the motor is less than a predetermined threshold value. In this state, the first clutch is engaged and the engine is cranked and started by rotation of the motor. After the engine is started, the first clutch is released and the second clutch is engaged. Therefore, while maintaining the smooth operating state of the wheel, the fluctuation of the driving force when the first clutch is engaged and the fluctuation of the rotation speed of the motor at the start of the engine are not transmitted to the wheel side. The engine can be started.
  • the control device drives the motor to rotate at a rotational speed corresponding to the rotational speed on the wheel side of the second clutch. It is preferable to perform control.
  • control device synchronizes the rotation speed of the motor with the rotation speed of the wheel side of the second clutch, For example, when the control device is engaged with the second clutch after the engine is started, the control device can control the number of rotations of the motor. After synchronizing with the wheel speed Control for starting engagement of the second clutch can also be performed.
  • the second clutch is engaged in a state where the rotation speeds of the motor side and the wheel side of the second clutch are substantially the same. Therefore, when the second clutch is engaged, the difference in rotational speed between the two sides is absorbed to prevent fluctuations in the driving force from being transmitted to the wheel side. Thereby, the smooth operation state of a wheel can be maintained. Moreover, it can be set as the structure with few loads, such as friction which acts with respect to a 2nd clutch. Therefore, it is possible to extend the life of the second clutch, or it is possible to use an inexpensive clutch that hardly transmits the driving force while slipping as the second clutch. As a result, for example, it is possible to configure the second clutch using a clutch, a brake, or the like inside an automatic transmission that has been generally used conventionally.
  • control device performs rotational speed control on the motor when the second clutch is disengaged, and performs torque control on the motor when the second clutch is engaged. This is preferable.
  • the threshold value is set to be equal to or higher than a rotational speed at which the engine can be started.
  • the characteristic configuration of the control method for a hybrid vehicle drive device includes a motor, a first clutch that transmits or disconnects a driving force between the motor and the engine, and the motor and the engine.
  • the second that transmits or cuts one or both driving forces to the wheel side
  • a method for controlling a hybrid vehicle drive device comprising a clutch, wherein when the engine is requested to start while the wheels are being driven by the motor, the rotational speed of the motor is a predetermined threshold value. If it is less, the second clutch is disengaged and the first clutch is engaged, and the engine is started with the rotational speed of the motor being equal to or higher than the rotational speed at which the engine can be started. After starting, the first clutch is disengaged and the second clutch is engaged.
  • the second clutch when there is a request for starting the engine while the wheel is driven by the motor, the second clutch is released if the rotational speed of the motor is less than a predetermined threshold value. In this state, the first clutch is engaged and the engine is cranked and started by the rotation of the motor. After the engine is started, the first clutch is released and the second clutch is engaged. Therefore, while maintaining the smooth operating state of the wheel without transmitting the fluctuation of the driving force when the first clutch is engaged and the fluctuation of the rotation speed of the motor when starting the engine to the wheel side, The engine can be started reliably.
  • FIG. 1 is a conceptual diagram showing an outline of a system configuration of a hybrid vehicle drive device according to the present embodiment.
  • the drive device 1 is a device that is mounted on a hybrid vehicle and that transmits the drive force of one or both of the motor generator MZG and the engine E to the wheels W.
  • the driving device 1 starts the engine E by transmitting the driving force of the motor generator MZG to the engine E when the engine E is stopped. Therefore, this drive device 1 includes a motor 'generator MZG, a motor' generator MZG, a first clutch C1 that transmits or disconnects driving force between the engine E and a motor 'generator M / G and wheels W.
  • a transmission 2 that is disposed between and functions as a second clutch C2 that transmits or disconnects the driving force of one or both of the motor generator MZG and the engine E to the wheel W side, and controls the operation thereof. It has a control device 3.
  • the output shaft 4 of the transmission 2 is connected to the differential gear 5, and the driving force is transmitted to the wheels W via the drive shaft 6.
  • engine E gasoline engine or An internal combustion engine such as a diesel engine is preferably used.
  • the system configuration of the drive unit 1 is as follows: engine E, first clutch Cl, motor generator M / G, and second clutch C2 along the drive force transmission path. It can be expressed as a configuration in which the transmission 2 that functions also, and the wheels W are connected in series in this order.
  • the inside of the transmission 2 is separated into a second clutch C2 and a transmission mechanism 7 and functionally represented. Yes.
  • the motor / generator M / G receives the supply of electric power from the battery 9 converted from direct current to alternating current by the inverter 8 and rotationally drives the intermediate shaft 10.
  • the intermediate shaft 10 is connected at one end to a crankshaft 11 that rotates synchronously with a crankshaft (not shown) of the engine E via a first clutch C1, and has the other end connected to a shift of the transmission 2 via a second clutch C2.
  • the motor generator M / G can start (crank) the engine E when the first clutch C1 is engaged, and drive the wheel W when the second clutch C2 is engaged. It has a configuration that can.
  • the motor / generator M / G can be operated as a generator when the intermediate shaft 10 is driven by the driving force from the engine E or the wheel side.
  • the electric power generated by the motor generator MZG is converted from AC to DC by the inverter 8 and stored in the battery 9.
  • the operation control of the motor / generator MZG is performed based on a control signal from the MZG control device 12.
  • the first clutch C1 is arranged between the motor / generator M / G and the engine E, and is rotated by the motor / generator MZG 10, and the engine E is not shown in FIG.
  • the crankshaft 11 By connecting or disconnecting the crankshaft 11 that rotates synchronously with the shaft, the driving force is transmitted or disconnected between the engine E and the motor generator MZG.
  • a clutch capable of transmitting a driving force while sliding in a half-engaged state until the engagement starting force is also in a fully engaged state is preferably used.
  • a wet multi-plate clutch or the like is used.
  • the operation control of the first clutch C1 is performed based on a control signal from the first clutch control device 13.
  • the transmission 2 here is disposed between the motor / generator MZG and the wheel W, and is rotated from the intermediate shaft 10 that is rotationally driven by the driving force of one or both of the motor / generator MZG and the engine E.
  • the input rotation is shifted at a desired speed ratio and output to the output shaft 4, and the driving force (rotation) is transmitted to or disconnected from the output shaft 4.
  • a stepped automatic transmission (AT automatic transmission) or a continuously variable transmission (CVT) is preferably used.
  • the transmission 2 is a stepped automatic transmission such as a six-speed transmission, for example.
  • This is a planetary gear train for shifting the input rotation transmitted through the intermediate shaft 10 at a desired gear ratio and outputting it to the output shaft 4, and a clutch and brake for controlling the operation of this planetary gear train. have. Then, the transmission 2 switches to a desired gear stage by engaging or releasing these clutches and brakes, or the driving force input from the intermediate shaft 10 is applied to the output shaft 4. It can be in the idle state that is not transmitted.
  • the transmission 2 selects a desired shift speed and switches between a transmission state in which the driving force input from the intermediate shaft 10 is transmitted to the output shaft 4 and an idling state in which the driving force is not transmitted to the output shaft 4.
  • the operation control of the transmission 2 is performed based on a control signal from the transmission control device 14.
  • the control device 3 includes an engine control device 15 that controls the operation of the engine E, an MZG control device 12 that controls the operation of the motor generator MZG, and a first clutch control device that controls the operation of the first clutch C1. 13.
  • Transmission control device 14 for controlling operation of transmission 2 and vehicle A vehicle control device 16 that controls the operation of both is provided.
  • the vehicle control device 16 includes a rotation speed sensor 17 for detecting the rotation speed of the intermediate shaft 10 (in this embodiment, the rotation speed Rmg of the motor / generator MZG), and the rotation of the output shaft 4 of the transmission 2.
  • the memory 23 of the vehicle control device 16 stores a state flag determined by the vehicle control device 16 based on information from each part of the vehicle, as will be described later.
  • FIG. 2 to 5 are flowcharts showing the operation control of the drive device 1 according to the present embodiment.
  • FIG. 6 and FIG. 7 are timing charts showing the operating state of each part when the engine is started in the driving apparatus 1 according to the present embodiment.
  • control device 3 is configured such that when there is a start request for the engine E while the wheel W is being driven only by the motor / generator MZG, 'Two types of control pattern for high rotation (control processing for engine start at high speed) and control pattern for low rotation (control processing for engine start at low speed) according to the rotation speed Rmg of generator MZG
  • the engine E start control is performed according to the control pattern.
  • FIG. 2 shows four driving motors 1, "motor running”, “engine start at high speed”, “engine start at low speed”, and “engine + motor 'generator running”.
  • 5 is a flowchart showing a flow of processing in the control device 3 when selecting one of the control processing.
  • the control device 3 Select and execute control processing (Step # 02).
  • Control device 3 is in the state of “EstartH” indicating that the state flag is “high speed engine start” (step # 03: YE S), select and execute the control process of “engine start at high speed” (step # 04).
  • Step # 06 When the status flag is in the state of “EstartL” indicating “low speed engine start” (step # 05: YES), the control device 3 selects and executes the “low speed engine start” control process. (Step # 06). When the status flag is “E + M / GJ” (step # 07: YES), the control device 3 performs the control process for “engine + motor / generator running”. Select and run (Step # 08).
  • the state flag is determined in the vehicle control device 16 based on information from various parts of the vehicle including the accelerator sensor 20, the brake sensor 22, the vehicle speed sensor 18, and the rotation speed sensor 17, and is stored in the memory. Stored in 23.
  • This state flag can be determined by comparing information from each part of the vehicle with a running state map using this information as a parameter.
  • FIG. 3 is a flowchart showing details of the control process of step # 02 “motor running” in the flowchart of FIG.
  • the status flag stored in the memory 23 is “EV running” indicating “motor running”. "(Step # 12).
  • the engine start request is issued when the accelerator opening becomes large and the output torque is insufficient with the motor 'generator MZG alone, or when the remaining amount of the battery 9 for driving the motor' generator MZG is low.
  • the vehicle control device 16 outputs the engine control device 15, the MZG control device 12, the first clutch control device 13, and the transmission control device 14.
  • the control device 3 sets the operating pressure P1 of the first clutch C1 to zero (step # 13), and the operating pressure P2 of the second clutch C2 The resultant pressure is P2 e (Step # 14).
  • the control device 3 operates the motor / generator MZG so that the output torque Tmg of the motor / generator M / G matches the required torque Tth (step # 15).
  • the required torque Tth is determined by the vehicle control device 16 based on the accelerator opening information detected by the accelerator sensor 20. At this time, it is desirable to prevent the output torque for the accelerator opening from being different between when traveling by the engine and when traveling by the motor generator MZG. Therefore, the accelerator opening and the motor generator M The relationship between the ZG output torque Tmg and the relationship between the accelerator opening and the engine output torque is suitable. Therefore, here, the required torque Tth is determined in accordance with the accelerator opening detected by the accelerator sensor 20 so as to coincide with the engine output torque at the accelerator opening at that time. As a result, it is possible to perform motor traveling reflecting the output request by the driver's accelerator operation without causing the driver to feel uncomfortable even during motor traveling.
  • step # 11 when there is a request for starting the engine (step # 11: YES), the control device 3 determines whether the rotational speed Rmg of the motor / generator MZG is threshold! /, And whether it is less than the value rotational speed Rt. Determine (Step # 16).
  • the rotational speed Rmg of the motor generator MZG is detected based on a detection signal from the rotational speed sensor 17 that detects the rotational speed of the intermediate shaft 10.
  • the threshold rotational speed Rt is set to a rotational speed equal to or higher than the rotational speed of the motor / generator MZG that can start the engine E when the first clutch C1 is fully engaged. That is, the threshold rotational speed Rt is equal to or higher than the rotational speed at which the engine E can be started when the first clutch C1 is fully engaged and the engine E cranking rotational speed is driven by the driving force of the motor generator MZG.
  • step # 16 When the rotational speed Rmg of the motor generator MZG is not less than the threshold rotational speed Rt (step # 16: NO), the control device 3 sets the status flag stored in the memory 23 to "high rotational speed”. “EstartH” indicating “hour engine start” (step # 17). As a result, as shown in the flow chart of FIG. 2, control of “engine start at high speed” (step # 04) is performed. On the other hand, if the rotation speed Rmg of the motor / generator M / G is less than the threshold rotation speed Rt (step # 16: YES), the status flag stored in the memory 23 is set to “Start engine at low speed”. “EstartL” (step # 18). As a result, as shown in the flowchart of FIG. 2, the control of “engine start at low speed” (step # 06) is performed. This completes the control process for “motor running”.
  • FIG. 4 shows the control of step # 04 “start engine at high speed” in the flowchart of FIG. It is a flowchart which shows the detail of a control process.
  • the control device 3 determines whether or not the operating pressure P1 of the first clutch C1 is the standby pressure Pis ( Step # 31). If the operating pressure P1 of the first clutch C1 is not the standby pressure Pis (step # 31: NO), the operating pressure P1 of the first clutch C1 is set to the stunning pressure Pis (step # 32).
  • the standby pressure Pis of the first clutch C1 is a pressure for bringing the first clutch C1 into a ready state before the start of engagement, and is a pressure for operating the first clutch C1 to a state immediately before the start of engagement. It is preferable to set.
  • step # 33 With the working pressure P2 of the second clutch C2 set to the full engagement pressure P2e (step # 33), the motor generator MZG is operated so that the output torque Tmg of the motor generator MZG matches the required torque Tth. (Step # 34).
  • step # 31 When the operating pressure P1 of the first clutch C1 becomes the standby pressure Pis (step # 31: YES), the control device 3 determines whether or not the engine E is in a complete explosion state. (Step # 35). Whether or not the engine has completely exploded is determined based on detection signals input to the engine control device 15 from various sensors provided in the engine.
  • control device 3 keeps operating pressure P2 of second clutch C2 at full engagement pressure P2e (step # 36). ), The operating pressure P1 of the first clutch C1 is increased at a predetermined rate of change to the full engagement pressure Pie at which the first clutch C1 is fully engaged (step # 37). Thus, the engagement pressure of the first clutch C1 can be increased.
  • the control for increasing the operating pressure P1 of the first clutch C1 to the full engagement pressure Pie is performed by detecting the slip amount of the first clutch C1 and until the slip amount becomes zero. Feedback control is used to increase the operating pressure P1.
  • clutch transmission torque Tc transmitted from motor generator M / G to engine E via first clutch C1 is detected (step # 38).
  • This clutch transmission torque Tc force Corresponds to the torque used to crank and start engine E by motor generator M / G via first clutch C1.
  • the detection of the clutch transmission torque Tc is based on, for example, the operating pressure P1 of the first clutch C1.
  • the vehicle control device 16 can calculate the clutch transmission torque Tc. That is, at this time, the first clutch C1 is controlled to increase its operating pressure P1 to the full engagement pressure Pie (step # 37). Therefore, the greater the torque transmitted in the first clutch C1, the greater the engagement with the larger operating pressure P1 (complete engagement pressure Pie). Therefore, the operating pressure P1 of the first clutch C1 has a certain relationship with the clutch transmission torque Tc transmitted by the first clutch C1. Therefore, the vehicle control device 16 uses the relational expression or table between the operating pressure P1 of the first clutch C1 and the clutch transmission torque Tc, based on the operating pressure P1 of the first clutch C1. Clutch transmission torque Tc can be calculated.
  • control device 3 operates motor generator MZG so as to obtain a torque obtained by adding clutch transmission torque Tc to output torque Tmg force required torque Tth of motor / generator MZG (step # 39).
  • the engine E can be started while the motor travels reflecting the output request by the driver's accelerator operation.
  • the required torque Tth is determined by the vehicle control device 16 based on the accelerator opening information detected by the accelerator sensor 20 as described above.
  • step # 35 When the engine E reaches the complete explosion state (step # 35: YES), the control device 3 sets the state flag stored in the memory 23 to "engine + motor 'generator running”. “E + MZG” shown (step # 40). As a result, as shown in the flowchart of FIG. 2, the “engine + motor / generator running” control (step # 08) is performed. This completes the control process for “starting the engine at high speed”.
  • FIG. 6 is an example of a timing chart showing the operation state of each part when engine E is started according to the control process of "high speed engine start” after "motor running” is performed from the stop state of the vehicle. It is.
  • the brake pedal is depressed by the driver, the vehicle is stopped (area A).
  • the control device 3 starts to rotate the motor 'generator MZG accordingly, as in the creep state in an automatic' transmission vehicle equipped with a torque converter. Output a torque that slowly moves forward (region B). This starts “motor running”.
  • the accelerator pedal 19 is depressed by the driver.
  • the control device 3 operates the motor / generator MZG so that the output torque Tmg of the motor / generator MZG matches the required torque Tth (see step # 15 in FIG. 3), and “motor running” is performed. (Area C).
  • the control device 3 starts control of "engine start at high speed". That is, the operating pressure P1 of the first clutch C1 is set to the standby pressure Pis (see step # 32 in FIG. 4), and the first clutch C1 is operated to a state just before the engagement is started (region D). Then, while increasing the operating pressure P1 of the first clutch C1 to the full engagement pressure Pie at a predetermined rate of change (see step # 37 in Fig. 4), the output torque Tmg of the motor generator MZG becomes the required torque Tth. The motor / generator MZG is operated so that the clutch transmission torque Tc is added (see step # 39 in Fig. 4), and the engine E is started (region E).
  • FIG. 6 shows a case where the engine start request is output because the remaining amount of the notch 9 is less than the increase in the accelerator opening.
  • the operating pressure P2 of the second clutch C2 remains at the full engagement pressure P2e. Further, when performing the control process of “engine start at high rotation”, the motor generator MZG is controlled by torque control in all the above regions B to G.
  • FIG. 5 is a flowchart showing details of the control process of step # 06 “engine start at low speed” in the flowchart of FIG.
  • the control device 3 determines whether or not the operating pressure P1 of the first clutch C1 is the standby pressure Pis and the operating pressure P2 of the second clutch C2 is the standby pressure P2s. (Step # 51). If not (step # 51: NO), the operating pressure PI of the first clutch C1 is set to the standby pressure Pis (step # 52).
  • the standby pressure Pis of the first clutch C1 is a pressure for setting the first clutch C1 in a preparation state before the start of engagement, and is a pressure for operating the first clutch C1 to a state immediately before the start of engagement. It is preferable to set.
  • the operating pressure P2 of the second clutch C2 is set to the standby pressure P2s (step # 53).
  • the standby pressure P2s of the second clutch C2 is a pressure that brings the second clutch C2 into an open state, and is an arbitrary pressure between the pressure that makes the second clutch C2 in a state immediately before the start of engagement and the pressure zero. It can be a pressure.
  • control device 3 performs the rotational speed control so as to maintain the rotational speed Rmg of motor'generator MZG at the engine start rotational speed Res (step # 54).
  • This engine start rotational speed Res is equal to or higher than the rotational speed of the motor generator MZG that can start the engine E when the first clutch C1 is in the fully engaged state, like the threshold rotational speed Rt.
  • the rotation speed control for maintaining the motor / generator MZG at the predetermined rotation speed in this way is performed so that the motor / generator MZG has the predetermined rotation speed regardless of the load acting on the intermediate shaft 10. This can be done by controlling the output torque Tmg.
  • step # 51 When the operating pressure P1 of the first clutch C1 is the standby pressure Pis and the operating pressure P2 of the second clutch C2 is the standby pressure P2s (step # 51: YES), the control device 3 Judgment is made as to whether or not engine E is in a complete explosion (step # 55). Whether or not the engine is completely detonated is determined based on detection signals input to the engine control unit 15 for various sensor forces provided in the engine.
  • step # 56 the control device 3 keeps the operating pressure P2 of the second clutch C2 at the standby pressure P2s (step # 56).
  • the operating pressure PI of the clutch CI is increased at a predetermined rate of change until the fully engaged pressure Pie at which the first clutch CI is fully engaged (step # 57).
  • the rotational speed control is performed so that the rotational speed Rmg of the motor / generator MZG is maintained at the engine start rotational speed Res (step # 58).
  • the first clutch C1 enters the fully engaged state through the half-engaged state.
  • the intermediate shaft 10 that is driven to rotate by the motor generator MZG is connected to the crankshaft 11 that rotates in synchronization with a clutch shaft (not shown) of the engine E, and the crankshaft of the engine E is driven by the driving force of the motor generator MZG. Will be rotated. Therefore, to maintain the motor generator MZG speed Rmg at the engine start speed Res, the output torque Tmg of the motor 'generator MZG must be increased by the torque required for engine E cranking. (Refer to area K in Fig. 7).
  • the second clutch C2 is disengaged so that the motor 'generator MZG's driving force is not transmitted to the output shaft 4, and the change in the rotational speed Rmg of the motor' generator MZG does not affect the running state of the vehicle.
  • the engine E can be started by increasing the speed Rmg of the motor / generator MZG to a speed at which the engine E can be started. Therefore, even if the rotation speed Rmg of the motor / generator MZG during “motor running” is low, the fluctuation of the rotation speed Rmg of the motor / generator MZG at the start of the engine E is transmitted to the wheel W.
  • the engine E can be reliably started while maintaining the smooth operating state of the wheel W without any trouble.
  • control device 3 determines the number of revolutions of motor / generator M / G, Rmg force, number of revolutions of wheel W of second clutch C2, and W side.
  • the number of revolutions according to the following (hereinafter referred to as “second clutch wheel side revolutions”) is determined by whether or not it is Rw (step # 59).
  • the second clutch wheel side rotation speed Rw is determined when the second clutch C2 is fully engaged, and the motor / generator MZG side (intermediate shaft 10 side) and the wheel W side (transmission mechanism) of the second clutch C2.
  • This is the rotation speed of the motor / generator M / G when the rotation speed is almost the same with the difference within the specified range. That is, this second clutch wheel side rotation speed Rw is Depending on the running speed of the vehicle and the speed selected in the speed change mechanism 7, the number of revolutions varies.
  • the traveling speed of the vehicle can be detected by the vehicle speed sensor 18.
  • the gear stage of the transmission mechanism 7 is controlled by the transmission control device 14.
  • step # 59 the second clutch wheel side rotational speed Rw is set to a value having a certain range, and the rotational speed Rmg of the motor generator MZG is within the corresponding range of the second clutch wheel side rotational speed Rw. If it is within the range, it is preferable to judge that the condition is satisfied.
  • step # 59 In the case where the rotation speed Rmg of the motor / generator M / G is V which is the rotation speed Rw on the second clutch wheel side (step # 59: NO), the operating pressure P2 of the second clutch C2 is set to the standby pressure P2s. (Step # 60), the operating pressure P1 of the first clutch C1 is set to the standby pressure P1 s (step # 61). Then, the rotational speed control is performed so that the rotational speed Rmg of the motor / generator M / G is synchronized with the rotational speed Rw of the second clutch wheel (step # 62).
  • the rotational speed control in which the rotational speed Rmg of the motor / generator M / G is set to the second clutch wheel-side rotational speed Rw is based on the vehicle running speed detected by the vehicle speed sensor 18 and the speed stage selected in the speed change mechanism 7. This can be done based on the second clutch wheel speed Rw determined from the information. That is, the output torque Tmg of the motor / generator MZG necessary for setting the rotation speed Rmg of the motor / generator M / G to the rotation speed Rw of the second clutch wheel is calculated, and the motor / generator MZG is calculated according to the calculation result. Control.
  • step # 63 the working pressure P2 of the second clutch C2 is completely engaged. Judgment is made as to whether or not the pressure is P2e (step # 63). This is the second This is a determination as to whether or not the clutch C2 is fully engaged. If the operating pressure P2 of the second clutch C2 becomes the full engagement pressure P2e (step # 63: NO), the operating pressure P1 of the first clutch C1 remains at the standby pressure Pis (step # 63). # 64), the working pressure P2 of the second clutch C2 is set to the full engagement pressure P2e (step # 65). During this time, the rotational speed control is performed so that the rotational speed Rmg of the motor generator MZG is maintained at the second clutch wheel-side rotational speed Rw (step # 66).
  • the wheel W can be driven by the driving force of the motor generator MZG while maintaining the smooth operation state of the wheel.
  • control device 3 sets the status flag stored in the memory 23 to “E + M / G” indicating “engine + motor′generator running” (step # 67).
  • “engine + motor / generator running” control step # 08) is performed.
  • FIG. 7 is an example of a timing chart showing the operation state of each part when the engine E is started according to the control process of "low speed engine start” after "motor running” is performed from the stop state of the vehicle. It is.
  • the vehicle is in a stopped state (region H) when the brake pedal is depressed by the driver.
  • the control device 3 starts to rotate the motor generator MZG accordingly, and the vehicle is moved in the same way as in a creep state in an automatic transmission vehicle equipped with a torque converter. Output torque that slowly moves forward (area 1). As a result, “motor running” is performed.
  • the control device 3 starts the control of "engine start at low speed".
  • the accelerator pedal 19 is largely depressed from the state where the accelerator pedal 19 is not depressed and the vehicle is moving forward slowly. Therefore, the motor 'generator M / G alone has insufficient output torque, and the engine is started with the motor's generator MZG speed Rmg being a low speed less than the threshold speed Rt. It is. I.e.
  • the operating pressure P 1 of the clutch C 1 is set to the standby pressure P 1 s (see step # 52 in FIG. 5), and the operating pressure P2 of the second clutch C2 is set to the standby pressure P2s (see step # 53 in FIG. 5).
  • the control device 3 performs the rotational speed control to maintain the rotational speed Rmg of the motor'generator MZG at the engine start rotational speed Res (see step # 58 in FIG. 5), while the first clutch C1
  • the operating pressure P1 is increased at a predetermined rate of change to the fully engaged pressure Pie at which the first clutch C1 is fully engaged (see step # 57 in FIG. 5), and the engine E is started (region K).
  • the output torque Tmg of the motor / generator M / G increases by the amount of torque required for engine E clamping.
  • the control device 3 keeps the operating pressure P2 of the second clutch C2 at the standby pressure P2s (see step # 60 in FIG. 5), and the first clutch C1 Is set to the standby pressure Pis (see step # 61 in Fig. 5). Then, the rotational speed Rmg of the motor / generator M / G is synchronized with the rotational speed Rw of the second clutch wheel (see step # 62 in FIG. 5) (region L).
  • the operating pressure P 1 of the first clutch C 1 is set to the standby pressure P 1 s (see step # 64 in FIG. 5), and the rotation speed Rmg of the motor / generator M / G is set to the rotation speed Rw of the second clutch wheel.
  • the operating pressure P2 of the second clutch C2 is set to the full engagement pressure P2e (see step # 65 in FIG. 5).
  • the wheel W is driven by the driving force of the motor / generator M / G (region M).
  • the operating pressure P2 of the second clutch C2 is set at a predetermined change rate while synchronizing the rotational speed Rmg of the motor / generator MZG with the second clutch wheel-side rotational speed Rw. Control to raise. This is to shorten the time required for engaging the second clutch C2.
  • the second clutch C2 After synchronizing the rotational speed Rmg of the motor generator MZG with the second clutch wheel side rotational speed Rw, the second clutch C2 It is also possible to adopt a configuration that starts to increase the operating pressure P2. In this case, the time required for engagement of the second clutch C2 can be shortened by synchronizing the rotation speed Rmg of the motor generator MZG with the second clutch wheel side rotation speed Rw in a short time.
  • the output torque Te of engine E is equal to the torque obtained by adding the required torque Tth and the torque required for power generation by the motor generator MZG (power generation torque) Teg. .
  • the vehicle is driven by the output torque Te of the engine E, and the motor / generator MZG is driven to rotate and operates as a generator (region 0).
  • the control device 3 rotates with respect to the motor generator M / G in the region where the second clutch C2 is in an open state to M. Perform number control.
  • the control device 3 performs torque control on the motor / generator MZG in the regions H, I, N and O in which the second clutch C2 is completely engaged.
  • the configuration for detecting the rotational speed Rmg of the motor generator MZG based on the detection signal from the rotational speed sensor 17 that detects the rotational speed of the intermediate shaft 10 has been described.
  • the means for detecting the rotational speed Rmg of the motor / generator M / G is not limited to this, and any means capable of detecting the rotational speed Rmg of the motor / generator MZG directly or indirectly may be used. Therefore, for example, based on the detection signal from the vehicle speed sensor 18 that detects the rotation speed of the output shaft 4 of the transmission 2 and the information on the V and the gear stage selected in the transmission 2! /, Indirectly Motor / generator MZG speed Rm
  • a configuration for detecting g is also one preferred embodiment.
  • the standby pressure Pis of the first clutch C1 is set to a pressure at which the first clutch C1 is operated to the state immediately before the start of engagement has been described as an example.
  • the Stanno pressure Pis is not limited to this, and can be any pressure between the pressure immediately before the engagement of the first clutch C1 and the pressure zero.
  • the present invention can be suitably used for a hybrid vehicle that travels using both an engine and a motor.
  • FIG. 1 is a conceptual diagram showing an outline of a system configuration of a hybrid vehicle drive device according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing a flow of control processing selection in the hybrid vehicle drive device according to the embodiment of the present invention.
  • FIG. 3 is a flowchart showing details of the control process of step # 02 “motor running” in the flowchart of FIG. [Fig.4] Flowchart showing the details of the control process of Step # 04 “Engine start at high speed” in the flowchart of Fig.2
  • FIG. 5 is a flowchart showing the details of the control process of Step # 06 “Engine Start at Low Rotation” in the flowchart of FIG.
  • FIG. 6 is an example of a timing chart showing an operation state of each part when the engine is started in accordance with the control process of “high speed engine start” in the hybrid vehicle drive device according to the embodiment of the present invention.
  • FIG. 7 is an example of a timing chart showing the operation state of each part when starting the engine E according to the control process of “engine start at low speed” in the hybrid vehicle drive device according to the embodiment of the present invention.

Abstract

A drive device for a hybrid vehicle, with which an engine can be started in a short time, regardless of the operating state of the vehicle including the number of rotation of a motor, in response to an engine start request while the vehicle is traveling by the drive force of the motor, and a control method for the drive device. The drive device comprises a motor, a first clutch for making or interrupting the transmission of drive force between the motor and an engine, a second clutch for making or interrupting the transmission of drive force of either or both of the motor and the engine to the wheel side, and a controller for performing operation control of the motor, the first clutch, and the second clutch. When engine start is requested while wheels are driven by the motor, the controller performs operation control of the motor, the first clutch, and the second clutch according to a control pattern dependent on the number of rotation of the motor which is detected directly or indirectly.

Description

ノ、イブリツド車用駆動装置及びその制御方法  , Driving device for hybrid vehicle and control method thereof
技術分野  Technical field
[0001] 本発明は、エンジンとモータとを併用して走行するハイブリッド車両に搭載される駆 動装置及びその制御方法に関する。  The present invention relates to a drive device mounted on a hybrid vehicle that travels using both an engine and a motor, and a control method therefor.
背景技術  Background art
[0002] エンジンとモータとを併用して走行するハイブリッド車両に搭載される駆動装置にお けるエンジン始動時の制御に関する技術として、例えば、下記特許文献 1には以下 のような技術が記載されている。この技術は、エンジン分離クラッチを持つパラレル式 ノ、イブリツド車の駆動装置において、モータを用いて運転者の要求に対する滑らかな 車両の応答を維持しながら、エンジン分離クラッチを締結して、エンジンを始動させる ための制御技術であり、モータは、エンジンを始動する間ずつと、所望の設定速度を 得るのに必要なトルク力 ^、かなるものであっても、それに適応する制御を行う速度追 従制御モードで制御される。すなわち、エンジン始動時には、まず、エンジン分離クラ ツチを締結し、モータに所望速度を命令し、エンジンに燃料を供給してエンジンを始 動する。その後、所望エンジン 'トルクを計算し、例えば比例積分制御器を用いて車 速を維持しながら、モータのトルクがゼロになるまで、徐々にモータのトルクを減少さ せながら比例してエンジン 'トルクを増大させる制御を行う。  [0002] As a technology related to control at the time of engine start in a drive device mounted on a hybrid vehicle that travels using both an engine and a motor, for example, the following technology is described in Patent Document 1 below. Yes. This technology uses a motor to maintain a smooth vehicle response to the driver's request using a motor in a parallel type hybrid vehicle drive system with an engine separation clutch, and starts the engine by engaging the engine separation clutch. This is a control technology that allows the motor to follow the speed of the torque that is necessary to obtain the desired set speed ^ Controlled in control mode. That is, when the engine is started, first, an engine separation clutch is fastened, a desired speed is commanded to the motor, fuel is supplied to the engine, and the engine is started. After that, calculate the desired engine 'torque, and while maintaining the vehicle speed using, for example, a proportional integral controller, gradually reduce the motor torque until the motor torque becomes zero, and proportionally engine' torque To increase the control.
[0003] ここで、モータの所望速度の設定は、車両全体の動作状態と運転者の要求に基づ いており、現時点及び過去のある時点の車速と加速度に基づく軌跡又は一定値のい ずれかとなり得る。一方、運転者が現在動作トルクを命令しておらず、エンジン及び モータ力 の駆動力を車輪に伝達する自動変速機等の動力伝達ユニットが結合して いない場合には、所望の設定速度は、エンジンの所望のアイドル速度に設定される。  [0003] Here, the setting of the desired speed of the motor is based on the operation state of the entire vehicle and the driver's request, and is either a trajectory based on the vehicle speed and acceleration at the present time and at a past time, or a constant value. Can be. On the other hand, if the driver is not currently commanding the operating torque and a power transmission unit such as an automatic transmission that transmits the driving force of the engine and motor power to the wheels is not coupled, the desired set speed is Set to the desired idle speed of the engine.
[0004] 特許文献 1 :特開 2003— 129926号公報 (第 1—5頁、第 1—2図)  [0004] Patent Document 1: Japanese Patent Laid-Open No. 2003-129926 (Pages 1-5, Fig. 1-2)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] し力しながら、上記のようなハイブリッド車両の駆動装置におけるエンジン始動時の 制御技術では、以下のような問題がある。すなわち、動力伝達ユニットが結合した状 態であって、モータの駆動力による車両の走行中にエンジン始動要求があった場合 、モータの回転数を含む車両の動作状態によっては、エンジンの始動を好適に行うこ とができない場合がある。つまり、エンジンを始動させるためには一定以上の回転数 でエンジンのクランクシャフトを回転させる必要がある。しかし、例えば、動力伝達ュ ニットが結合した状態でモータの駆動力により車両が走行中であって、車両の速度が 低い場合には、上記の制御技術では、車両の速度に応じてモータの回転数も低く制 御される。したがって、モータの回転数がエンジンを始動可能な回転数より低い場合 には、その車速のままで即座にエンジンを始動させることができないという問題がある [0005] While driving, the hybrid vehicle drive apparatus as described above is The control technology has the following problems. In other words, when the power transmission unit is coupled and there is a request for starting the engine while the vehicle is driven by the driving force of the motor, it is preferable to start the engine depending on the operating state of the vehicle including the number of rotations of the motor. May not be possible. In other words, in order to start the engine, it is necessary to rotate the crankshaft of the engine at a certain rotational speed. However, for example, when the vehicle is running with the driving force of the motor in a state where the power transmission unit is coupled and the vehicle speed is low, the above control technique allows the motor to rotate according to the vehicle speed. The number is controlled low. Therefore, if the motor rotation speed is lower than the engine rotation speed, there is a problem that the engine cannot be started immediately at the vehicle speed.
課題を解決するための手段 Means for solving the problem
[0006] 本発明は、上記の課題に鑑みてなされたものであり、その目的は、モータの駆動力 による車両の走行中にエンジン始動要求があった場合において、モータの回転数を 含む車両の動作状態に関わらず、短時間でエンジンを始動させることが可能なハイ ブリツド車用駆動装置及びその制御方法を提供する点にある。  [0006] The present invention has been made in view of the above problems, and an object of the present invention is to provide a vehicle including the number of rotations of the motor when there is an engine start request during traveling of the vehicle by the driving force of the motor. The object of the present invention is to provide a hybrid vehicle drive device and a control method thereof capable of starting the engine in a short time regardless of the operating state.
[0007] 上記目的を達成するための本発明に係るハイブリッド車用駆動装置の特徴構成は 、モータと、前記モータとエンジンとの間で駆動力の伝達又は切断を行う第一クラッチ と、前記モータ及び前記エンジンの一方又は双方の駆動力の車輪側への伝達又は 切断を行う第二クラッチと、前記モータ、前記第一クラッチ及び前記第二クラッチの動 作制御を行う制御装置と、を備え、前記制御装置は、前記モータによる前記車輪の 駆動中にエンジン始動要求があった場合、直接的又は間接的に検出される前記モ ータの回転数に応じて異なる制御パターンにより前記モータ、前記第一クラッチ及び 前記第二クラッチの動作制御を行 、、前記エンジンを始動する点にある。  [0007] To achieve the above object, the hybrid vehicle drive device according to the present invention includes a motor, a first clutch that transmits or disconnects a driving force between the motor and the engine, and the motor. And a second clutch that transmits or disconnects the driving force of one or both of the engines to the wheel side, and a control device that controls the operation of the motor, the first clutch, and the second clutch, When there is an engine start request during driving of the wheel by the motor, the control device is configured to control the motor, the first control unit, or the like according to a control pattern that differs depending on the rotational speed of the motor detected directly or indirectly. The operation of the one clutch and the second clutch is controlled, and the engine is started.
[0008] この特徴構成によれば、モータによる車輪の駆動中にエンジン始動要求があった 場合、モータの回転数に応じて異なる制御パターンによりモータ、第一クラッチ及び 第二クラッチの動作制御を行うことになる。したがって、モータの回転数を含む車両の 動作状態に応じて最適な制御パターンを適用することができ、短時間で確実にェン ジンを始動させることが可能となる。 [0009] ここで、前記制御装置は、前記制御パターンとして少なくとも高回転用制御パター ンと低回転用制御パターンとの二通りの制御パターンを有し、前記高回転用制御パ ターンは、前記第二クラッチを完全係合した状態で前記第一クラッチの係合圧を上 昇させて前記エンジンを始動する制御パターンであり、前記低回転用制御パターン は、前記第二クラッチを開放した状態で前記第一クラッチの係合圧を上昇させて前 記エンジンを始動する制御パターンである構成とすることもできる。 [0008] According to this characteristic configuration, when there is an engine start request during driving of the wheels by the motor, the operation of the motor, the first clutch, and the second clutch is controlled by a different control pattern according to the number of rotations of the motor. It will be. Therefore, an optimal control pattern can be applied according to the vehicle operating state including the motor speed, and the engine can be reliably started in a short time. Here, the control device has at least two types of control patterns, that is, a control pattern for high rotation and a control pattern for low rotation as the control pattern, and the control pattern for high rotation The control pattern is to start the engine by increasing the engagement pressure of the first clutch with the two clutches fully engaged, and the low-rotation control pattern is the control pattern with the second clutch open. A configuration in which the engine is started by increasing the engagement pressure of the first clutch can also be adopted.
[0010] このように高回転用と低回転用の二通りの制御パターンとすることにより、簡易な制 御アルゴリズムを用いて、モータの回転数を含む車両の動作状態に応じて、短時間 で確実にエンジンを始動させることが可能となる。  [0010] By using two control patterns for high rotation and low rotation in this way, a simple control algorithm can be used in a short time according to the operating state of the vehicle including the motor speed. The engine can be reliably started.
[0011] また、前記制御装置は、前記モータの回転数が、前記第一クラッチを係合した状態 で前記エンジンを始動可能な回転数以上に設定されたしきい値以上の場合に前記 高回転用制御パターンを選択し、前記しきい値未満の場合に前記低回転用制御パ ターンを選択する制御を行うこととすると好適である。  [0011] Further, the control device is configured to perform the high rotation when the rotation speed of the motor is equal to or higher than a threshold value set to be equal to or higher than a rotation speed at which the engine can be started with the first clutch engaged. It is preferable to perform control for selecting the control pattern for low rotation and selecting the control pattern for low rotation when the control pattern is less than the threshold value.
[0012] これにより、モータによる車輪の駆動中にエンジン始動要求があった際に、モータ の回転数がエンジンを始動可能な回転数未満であった場合であっても、それに応じ た低回転用制御パターンを適用することにより短時間で確実にエンジンを始動させる ことが可能となる。  [0012] With this, when there is an engine start request while driving the wheel by the motor, even if the motor speed is less than the engine speed at which the engine can be started, By applying the control pattern, the engine can be started reliably in a short time.
[0013] 本発明に係るハイブリッド車用駆動装置のもう一つの特徴構成は、モータと、前記 モータとエンジンとの間で駆動力の伝達又は切断を行う第一クラッチと、前記モータ 及び前記エンジンの一方又は双方の駆動力の車輪側への伝達又は切断を行う第二 クラッチと、前記モータ、前記第一クラッチ及び前記第二クラッチの動作制御を行う制 御装置と、を備え、前記制御装置は、前記モータによる前記車輪の駆動中にェンジ ン始動要求があった際に、前記モータの回転数が所定のしきい値未満である場合に は、前記第二クラッチを開放した状態で前記エンジンを始動する制御を行う点にある  [0013] Another characteristic configuration of the hybrid vehicle drive device according to the present invention includes: a motor; a first clutch that transmits or disconnects a driving force between the motor and the engine; and the motor and the engine. A second clutch that transmits or disconnects one or both of the driving forces to the wheel side, and a control device that controls the operation of the motor, the first clutch, and the second clutch. When an engine start request is made while the wheel is driven by the motor, and the rotational speed of the motor is less than a predetermined threshold value, the engine is operated with the second clutch open. It is in the point of performing control to start
[0014] この特徴構成によれば、モータによる車輪の駆動中にエンジン始動要求があった 際にモータの回転数が所定のしきい値未満である場合には、第二クラッチを開放し た状態でエンジンを始動する制御を行う。したがって、エンジン始動時のモータの回 転数の変動を車輪側に伝達することなく車輪の円滑な動作状態を維持しながら、確 実にエンジンを始動させることができる。 [0014] According to this characteristic configuration, when the engine speed is requested while the wheels are being driven by the motor and the motor rotation speed is less than the predetermined threshold value, the second clutch is opened. To start the engine. Therefore, when the engine starts, The engine can be reliably started while maintaining the smooth operation state of the wheel without transmitting the fluctuation of the rotational speed to the wheel side.
[0015] 本発明に係るハイブリッド車用駆動装置の更なる特徴構成は、モータと、前記モー タとエンジンとの間で駆動力の伝達又は切断を行う第一クラッチと、前記モータ及び 前記エンジンの一方又は双方の駆動力の車輪側への伝達又は切断を行う第二クラ ツチと、前記モータ、前記第一クラッチ及び前記第二クラッチの動作制御を行う制御 装置と、を備え、前記制御装置は、前記モータによる前記車輪の駆動中にエンジン 始動要求があった際に、前記モータの回転数が所定のしきい値未満である場合には 、前記第二クラッチを開放して前記第一クラッチを係合し、前記モータの回転数を前 記エンジンの始動が可能な回転数以上として前記エンジンを始動させ、前記ェンジ ンの始動後に前記第一クラッチを開放して前記第二クラッチを係合する制御を行う点 にある。  [0015] A further characteristic configuration of the hybrid vehicle drive device according to the present invention includes a motor, a first clutch that transmits or disconnects a driving force between the motor and the engine, the motor and the engine. A second clutch that transmits or disconnects one or both of the driving forces to the wheel side, and a control device that controls the operation of the motor, the first clutch, and the second clutch. When the engine is requested to start while the wheels are driven by the motor, if the rotational speed of the motor is less than a predetermined threshold value, the second clutch is released and the first clutch is disengaged. Engage and start the engine with the motor rotating speed higher than the engine starting speed, and after starting the engine, release the first clutch and engage the second clutch. That there is a point to carry out control.
[0016] この特徴構成によれば、モータによる車輪の駆動中にエンジン始動要求があった 際に、モータの回転数が所定のしきい値未満である場合には、第二クラッチを開放し た状態で、第一クラッチを係合してモータの回転によりエンジンをクランキングして始 動させ、エンジンの始動後に第一クラッチを開放して第二クラッチを係合する。したが つて、第一クラッチの係合の際の駆動力の変動及びエンジン始動時のモータの回転 数の変動を車輪側に伝達することがなぐ車輪の円滑な動作状態を維持しながら、確 実にエンジンを始動させることができる。  [0016] According to this characteristic configuration, when there is an engine start request during driving of the wheels by the motor, the second clutch is released if the rotational speed of the motor is less than a predetermined threshold value. In this state, the first clutch is engaged and the engine is cranked and started by rotation of the motor. After the engine is started, the first clutch is released and the second clutch is engaged. Therefore, while maintaining the smooth operating state of the wheel, the fluctuation of the driving force when the first clutch is engaged and the fluctuation of the rotation speed of the motor at the start of the engine are not transmitted to the wheel side. The engine can be started.
[0017] また、前記制御装置は、前記エンジンの始動後、少なくとも前記第二クラッチの完 全係合時には、前記モータを前記第二クラッチの車輪側の回転数に応じた回転数で 回転駆動する制御を行うこととすると好適である。  [0017] Further, after the engine is started, at least when the second clutch is fully engaged, the control device drives the motor to rotate at a rotational speed corresponding to the rotational speed on the wheel side of the second clutch. It is preferable to perform control.
このような制御として、例えば、前記制御装置は、前記エンジンの始動後に前記第 二クラッチを係合する際、前記モータの回転数を前記第二クラッチの車輪側の回転 数に同期させつつ、前記第二クラッチの係合圧を上昇させる制御を行うことができる また、例えば、前記制御装置は、前記エンジンの始動後に前記第二クラッチを係合 する際、前記モータの回転数を前記第二クラッチの車輪側の回転数に同期させた後 、前記第二クラッチの係合を開始する制御を行うこともできる。 As such control, for example, when the second clutch is engaged after the engine is started, the control device synchronizes the rotation speed of the motor with the rotation speed of the wheel side of the second clutch, For example, when the control device is engaged with the second clutch after the engine is started, the control device can control the number of rotations of the motor. After synchronizing with the wheel speed Control for starting engagement of the second clutch can also be performed.
[0018] これにより、第二クラッチのモータ側と車輪側との回転数がほぼ同じとなった状態で 第二クラッチの係合が行われることになる。したがって、第二クラッチの係合の際に両 側の回転数の差を吸収することにより駆動力の変動が生じ、それが車輪側に伝達さ れることを防止できる。これにより、車輪の円滑な動作状態を維持することができる。 また、第二クラッチに対して作用する摩擦等の負荷が少ない構成とすることができる 。したがって、第二クラッチの寿命を延ばすことができ、或いは、第二クラッチとしてス リップさせながらの駆動力の伝達をほとんど行うことができないが安価なクラッチを使 用することが可能となる。これにより、例えば従来から一般的に用いられている自動変 速機の内部のクラッチやブレーキ等を用いて第二クラッチを構成することも可能となる  [0018] Thus, the second clutch is engaged in a state where the rotation speeds of the motor side and the wheel side of the second clutch are substantially the same. Therefore, when the second clutch is engaged, the difference in rotational speed between the two sides is absorbed to prevent fluctuations in the driving force from being transmitted to the wheel side. Thereby, the smooth operation state of a wheel can be maintained. Moreover, it can be set as the structure with few loads, such as friction which acts with respect to a 2nd clutch. Therefore, it is possible to extend the life of the second clutch, or it is possible to use an inexpensive clutch that hardly transmits the driving force while slipping as the second clutch. As a result, for example, it is possible to configure the second clutch using a clutch, a brake, or the like inside an automatic transmission that has been generally used conventionally.
[0019] また、前記制御装置は、前記第二クラッチの開放状態では前記モータに対して回 転数制御を行 、、前記第二クラッチの係合状態では前記モータに対してトルク制御 を行うこととすると好適である。 [0019] Further, the control device performs rotational speed control on the motor when the second clutch is disengaged, and performs torque control on the motor when the second clutch is engaged. This is preferable.
[0020] これにより、第二クラッチが開放されてモータの駆動力が車輪側に伝達されない状 態では、モータの回転数をエンジン始動に必要な回転数以上に維持する制御を行 つて、エンジン始動のために必要なトルクの大きさに関わらず確実にエンジンを始動 させることができる。また、第二クラッチが係合されてモータの駆動力が車輪側に伝達 される状態では、運転者によるアクセルペダルの操作に基づくトルク要求に応えるよ うにモータを動作させて車両を走行させることができる。  [0020] As a result, in a state where the second clutch is released and the driving force of the motor is not transmitted to the wheel side, control is performed to maintain the motor rotation speed at or above the rotation speed necessary for engine start, and the engine start This ensures that the engine can be started regardless of the amount of torque required for this. Further, in a state where the second clutch is engaged and the driving force of the motor is transmitted to the wheel side, it is possible to run the vehicle by operating the motor to respond to the torque request based on the accelerator pedal operation by the driver. it can.
[0021] ここで、前記しきい値は、前記エンジンを始動可能な回転数以上に設定されている と好適である。  [0021] Here, it is preferable that the threshold value is set to be equal to or higher than a rotational speed at which the engine can be started.
[0022] これにより、モータによる車輪の駆動中にエンジン始動要求があった際にモータの 回転数がエンジンを始動可能な回転数未満であった場合に、短時間で確実にェン ジンを始動させることが可能となる。  [0022] This ensures that the engine can be started in a short time when the engine speed is less than the engine speed required when the engine is requested to drive the wheel while the motor is driving. It becomes possible to make it.
[0023] 本発明に係るハイブリッド車用駆動装置の制御方法の特徴構成は、モータと、前記 モータとエンジンとの間で駆動力の伝達又は切断を行う第一クラッチと、前記モータ 及び前記エンジンの一方又は双方の駆動力の車輪側への伝達又は切断を行う第二 クラッチと、を備えたハイブリッド車用駆動装置の制御方法であって、前記モータによ る前記車輪の駆動中にエンジン始動要求があった際に、前記モータの回転数が所 定のしき 、値未満である場合には、前記第二クラッチを開放して前記第一クラッチを 係合し、前記モータの回転数を前記エンジンの始動が可能な回転数以上として前記 エンジンを始動させ、前記エンジンの始動後に前記第一クラッチを開放して前記第 二クラッチを係合する点にある。 [0023] The characteristic configuration of the control method for a hybrid vehicle drive device according to the present invention includes a motor, a first clutch that transmits or disconnects a driving force between the motor and the engine, and the motor and the engine. The second that transmits or cuts one or both driving forces to the wheel side A method for controlling a hybrid vehicle drive device comprising a clutch, wherein when the engine is requested to start while the wheels are being driven by the motor, the rotational speed of the motor is a predetermined threshold value. If it is less, the second clutch is disengaged and the first clutch is engaged, and the engine is started with the rotational speed of the motor being equal to or higher than the rotational speed at which the engine can be started. After starting, the first clutch is disengaged and the second clutch is engaged.
[0024] この特徴構成によれば、モータによる車輪の駆動中にエンジン始動要求があった 際に、モータの回転数が所定のしきい値未満である場合には、第二クラッチを開放し た状態で、第一クラッチを係合してモータの回転によりエンジンをクランキングして始 動させ、エンジンの始動後に前記第一クラッチを開放して第二クラッチを係合する。し たがって、第一クラッチの係合の際の駆動力の変動及びエンジン始動時のモータの 回転数の変動を車輪側に伝達することがなぐ車輪の円滑な動作状態を維持しなが ら、確実にエンジンを始動させることができる。  [0024] According to this characteristic configuration, when there is a request for starting the engine while the wheel is driven by the motor, the second clutch is released if the rotational speed of the motor is less than a predetermined threshold value. In this state, the first clutch is engaged and the engine is cranked and started by the rotation of the motor. After the engine is started, the first clutch is released and the second clutch is engaged. Therefore, while maintaining the smooth operating state of the wheel without transmitting the fluctuation of the driving force when the first clutch is engaged and the fluctuation of the rotation speed of the motor when starting the engine to the wheel side, The engine can be started reliably.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0025] 以下に、本発明の実施の形態について図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図 1は本実施形態に係るハイブリッド車用駆動装置のシステム構成の概略を示す 概念図である。  FIG. 1 is a conceptual diagram showing an outline of a system configuration of a hybrid vehicle drive device according to the present embodiment.
[0026] 本実施形態に係る駆動装置 1は、ハイブリッド車両に搭載され、モータ'ジエネレー タ MZG及びエンジン Eの一方又は双方の駆動力を車輪 Wに伝達する装置である。 また、この駆動装置 1は、エンジン Eの停止時にはモータ'ジェネレータ MZGの駆動 力をエンジン Eに伝達してエンジン Eの始動を行う。そこで、この駆動装置 1は、モー タ 'ジェネレータ MZG、モータ'ジェネレータ MZGとエンジン Eとの間で駆動力の伝 達又は切断を行う第一クラッチ C1、モータ'ジェネレータ M/Gと車輪 Wとの間に配 置され、モータ 'ジェネレータ MZG及びエンジン Eの一方又は双方の駆動力の車輪 W側への伝達又は切断を行う第二クラッチ C2としても機能する変速機 2、及びこれら の動作制御を行う制御装置 3を有して構成されている。そして、変速機 2の出力軸 4 はディファレンシャルギヤ 5に接続されており、そこカゝら駆動軸 6を介して車輪 Wに駆 動力が伝達される構成となっている。ここで、エンジン Eとしては、ガソリンエンジンや ディーゼルエンジン等の内燃機関が好適に用いられる。 The drive device 1 according to the present embodiment is a device that is mounted on a hybrid vehicle and that transmits the drive force of one or both of the motor generator MZG and the engine E to the wheels W. In addition, the driving device 1 starts the engine E by transmitting the driving force of the motor generator MZG to the engine E when the engine E is stopped. Therefore, this drive device 1 includes a motor 'generator MZG, a motor' generator MZG, a first clutch C1 that transmits or disconnects driving force between the engine E and a motor 'generator M / G and wheels W. A transmission 2 that is disposed between and functions as a second clutch C2 that transmits or disconnects the driving force of one or both of the motor generator MZG and the engine E to the wheel W side, and controls the operation thereof. It has a control device 3. The output shaft 4 of the transmission 2 is connected to the differential gear 5, and the driving force is transmitted to the wheels W via the drive shaft 6. Here, as engine E, gasoline engine or An internal combustion engine such as a diesel engine is preferably used.
[0027] この図 1に示すように、この駆動装置 1のシステム構成は、駆動力の伝達経路に沿 つて、エンジン E、第一クラッチ Cl、モータ'ジェネレータ M/G、第二クラッチ C2とし ても機能する変速機 2、車輪 Wの順に直列に接続された構成として表すことができる 。なお、図 1では、本実施形態に係る駆動装置 1のシステム構成を分かりやすく表現 するために、変速機 2の内部を第二クラッチ C2と変速機構 7とに分離して機能的に表 現している。  [0027] As shown in FIG. 1, the system configuration of the drive unit 1 is as follows: engine E, first clutch Cl, motor generator M / G, and second clutch C2 along the drive force transmission path. It can be expressed as a configuration in which the transmission 2 that functions also, and the wheels W are connected in series in this order. In FIG. 1, in order to express the system configuration of the drive device 1 according to the present embodiment in an easy-to-understand manner, the inside of the transmission 2 is separated into a second clutch C2 and a transmission mechanism 7 and functionally represented. Yes.
[0028] モータ'ジェネレータ M/Gは、インバータ 8により直流から交流に変換されたバッテ リ 9からの電力の供給を受けて中間軸 10を回転駆動する。この中間軸 10は、一方端 が第一クラッチ C1を介してエンジン Eの図示しないクランクシャフトと同期回転するク ランク軸 11に接続され、他方端が第二クラッチ C2を介して変速機 2の変速機構 7に 接続されている。したがって、モータ'ジェネレータ M/Gは、第一クラッチ C1を係合 した状態ではエンジン Eの始動(クランキング)を行うことができ、第二クラッチ C2を係 合した状態では車輪 Wの駆動を行うことができる構成となっている。  The motor / generator M / G receives the supply of electric power from the battery 9 converted from direct current to alternating current by the inverter 8 and rotationally drives the intermediate shaft 10. The intermediate shaft 10 is connected at one end to a crankshaft 11 that rotates synchronously with a crankshaft (not shown) of the engine E via a first clutch C1, and has the other end connected to a shift of the transmission 2 via a second clutch C2. Connected to mechanism 7. Therefore, the motor generator M / G can start (crank) the engine E when the first clutch C1 is engaged, and drive the wheel W when the second clutch C2 is engaged. It has a configuration that can.
また、モータ'ジェネレータ M/Gは、エンジン E又は車輪側からの駆動力により中 間軸 10が駆動されている状態では発電機として動作させることができる。この場合、 モータ ·ジェネレータ MZGで発電された電力は、インバータ 8により交流から直流に 変換されてバッテリ 9に蓄えられる。  The motor / generator M / G can be operated as a generator when the intermediate shaft 10 is driven by the driving force from the engine E or the wheel side. In this case, the electric power generated by the motor generator MZG is converted from AC to DC by the inverter 8 and stored in the battery 9.
そして、このモータ'ジェネレータ MZGの動作制御は、 MZG制御装置 12からの 制御信号に基づ 、て行われる。  The operation control of the motor / generator MZG is performed based on a control signal from the MZG control device 12.
[0029] 第一クラッチ C1は、モータ'ジェネレータ M/Gとエンジン Eとの間に配置され、モ ータ ·ジェネレータ MZGにより回転駆動される中間軸 10と、エンジン Eの図示しな!ヽ クランクシャフトに同期回転するクランク軸 11との接続又は分離を行うことにより、ェン ジン Eとモータ'ジェネレータ MZGとの間での駆動力の伝達又は切断を行う。 [0029] The first clutch C1 is arranged between the motor / generator M / G and the engine E, and is rotated by the motor / generator MZG 10, and the engine E is not shown in FIG. By connecting or disconnecting the crankshaft 11 that rotates synchronously with the shaft, the driving force is transmitted or disconnected between the engine E and the motor generator MZG.
したがって、エンジン Eの停止時には、この第一クラッチ C1を係合すること〖こよりモ ータ 'ジェネレータ MZGの駆動力をエンジン Eに伝達してエンジン Eの始動を行うこ とができる。また、エンジン Eの動作時には、この第一クラッチ C1を係合することにより エンジン Eの駆動力が変速機 2を介して車輪 Wに伝達される。 このような第一クラッチ CIとしては、係合開始力も完全係合状態となるまでの間の 半係合状態で滑らせながら駆動力の伝達を行うことが可能なクラッチが好適に用いら れ、例えば湿式多板クラッチ等が用いられる。 Therefore, when the engine E is stopped, it is possible to start the engine E by transmitting the driving force of the motor generator MZG to the engine E by engaging the first clutch C1. Further, during the operation of the engine E, the driving force of the engine E is transmitted to the wheels W through the transmission 2 by engaging the first clutch C1. As such a first clutch CI, a clutch capable of transmitting a driving force while sliding in a half-engaged state until the engagement starting force is also in a fully engaged state is preferably used. For example, a wet multi-plate clutch or the like is used.
そして、この第一クラッチ C1の動作制御は、第一クラッチ制御装置 13からの制御信 号に基づいて行われる。  The operation control of the first clutch C1 is performed based on a control signal from the first clutch control device 13.
[0030] 変速機 2は、ここでは、モータ'ジェネレータ MZGと車輪 Wとの間に配置され、モー タ ·ジェネレータ MZG及びエンジン Eの一方又は双方の駆動力により回転駆動され る中間軸 10からの入力回転を所望の変速比で変速して出力軸 4に出力するとともに 、その駆動力(回転)の出力軸 4への伝達又は切断を行う。 [0030] The transmission 2 here is disposed between the motor / generator MZG and the wheel W, and is rotated from the intermediate shaft 10 that is rotationally driven by the driving force of one or both of the motor / generator MZG and the engine E. The input rotation is shifted at a desired speed ratio and output to the output shaft 4, and the driving force (rotation) is transmitted to or disconnected from the output shaft 4.
このような変速機 2としては、有段の通常の自動変速機(AT utomatic Transmissi on)又は無段変速機 (CVT: Continuously Variable Transmission)が好適に用いられ る。本実施形態においては、変速機 2として例えば 6段等の有段の自動変速機を用 V、て 、る。これは中間軸 10を介して伝達された入力回転を所望の変速比で変速して 出力軸 4に出力するための遊星歯車列や、この遊星歯車列の動作制御を行うための クラッチ及びブレーキ等を有している。そして、この変速機 2は、これらのクラッチ及び ブレーキの係合又は開放を行うことにより、所望の変速段への切り替えを行い、或い は中間軸 10から入力された駆動力を出力軸 4に伝達しない空転 (ニュートラル)状態 とすることができる。  As such a transmission 2, a stepped automatic transmission (AT automatic transmission) or a continuously variable transmission (CVT) is preferably used. In this embodiment, the transmission 2 is a stepped automatic transmission such as a six-speed transmission, for example. This is a planetary gear train for shifting the input rotation transmitted through the intermediate shaft 10 at a desired gear ratio and outputting it to the output shaft 4, and a clutch and brake for controlling the operation of this planetary gear train. have. Then, the transmission 2 switches to a desired gear stage by engaging or releasing these clutches and brakes, or the driving force input from the intermediate shaft 10 is applied to the output shaft 4. It can be in the idle state that is not transmitted.
すなわち、変速機 2は、所望の変速段を選択して中間軸 10から入力された駆動力 を出力軸 4に伝達する伝達状態と、その駆動力を出力軸 4に伝達しない空転状態と を切り替えることができるので、第二クラッチ C2としても機能することになる。したがつ て上記のとおり、変速機 2は、機能的に見ると、第二クラッチ C2と変速機構 7とを有す るちのとして考免ることができる。  That is, the transmission 2 selects a desired shift speed and switches between a transmission state in which the driving force input from the intermediate shaft 10 is transmitted to the output shaft 4 and an idling state in which the driving force is not transmitted to the output shaft 4. Can also function as the second clutch C2. Therefore, as described above, the transmission 2 can be considered as having only the second clutch C2 and the transmission mechanism 7 from a functional viewpoint.
本実施形態においては、変速機 2の動作制御は、変速機制御装置 14からの制御 信号に基づいて行われる。  In the present embodiment, the operation control of the transmission 2 is performed based on a control signal from the transmission control device 14.
[0031] 制御装置 3は、エンジン Eの動作制御を行うエンジン制御装置 15、モータ'ジエネレ ータ MZGの動作制御を行う MZG制御装置 12、第一クラッチ C1の動作制御を行う 第一クラッチ制御装置 13、変速機 2の動作制御を行う変速機制御装置 14、及び車 両全体の動作制御を行う車両制御装置 16を備えている。 [0031] The control device 3 includes an engine control device 15 that controls the operation of the engine E, an MZG control device 12 that controls the operation of the motor generator MZG, and a first clutch control device that controls the operation of the first clutch C1. 13. Transmission control device 14 for controlling operation of transmission 2, and vehicle A vehicle control device 16 that controls the operation of both is provided.
また、車両制御装置 16には、中間軸 10の回転数 (本実施形態においてはモータ' ジェネレータ MZGの回転数 Rmgと一致する)を検出する回転数センサ 17、変速機 2の出力軸 4の回転数を検出する車速センサ 18、アクセルペダル 19の踏み込み量( アクセル開度)を検出するアクセルセンサ 20、及びブレーキペダル 21の踏み込み量 を検出するブレーキセンサ 22からの検出信号がそれぞれ入力される構成となってい る。  Further, the vehicle control device 16 includes a rotation speed sensor 17 for detecting the rotation speed of the intermediate shaft 10 (in this embodiment, the rotation speed Rmg of the motor / generator MZG), and the rotation of the output shaft 4 of the transmission 2. A detection signal from a vehicle speed sensor 18 that detects the number of pedals, an accelerator sensor 20 that detects the amount of depression of the accelerator pedal 19 (accelerator opening), and a brake sensor 22 that detects the amount of depression of the brake pedal 21 It has become.
更に、車両制御装置 16のメモリ 23には、後述するように、車両の各部からの情報に 基づいて車両制御装置 16により決定した状態フラグが格納される。  Further, the memory 23 of the vehicle control device 16 stores a state flag determined by the vehicle control device 16 based on information from each part of the vehicle, as will be described later.
[0032] 次に、本実施形態に係る駆動装置 1の動作制御について図面に基づいて説明す る。 Next, operation control of the drive device 1 according to the present embodiment will be described based on the drawings.
図 2から図 5は、本実施形態に係る駆動装置 1の動作制御を示すフローチャートで ある。また、図 6及び図 7は、本実施形態に係る駆動装置 1におけるエンジン始動時 の各部の動作状態を示すタイミングチャートである。  2 to 5 are flowcharts showing the operation control of the drive device 1 according to the present embodiment. FIG. 6 and FIG. 7 are timing charts showing the operating state of each part when the engine is started in the driving apparatus 1 according to the present embodiment.
[0033] これらの図 2〜図 7に示すように、本実施形態においては、制御装置 3は、モータ. ジェネレータ MZGのみによる車輪 Wの駆動中にエンジン Eの始動要求があった場 合、モータ 'ジェネレータ MZGの回転数 Rmgに応じて高回転用制御パターン(「高 回転時エンジン始動」の制御処理)と低回転用制御パターン(「低回転時エンジン始 動」の制御処理)との 2通りの制御パターンによりエンジン Eの始動制御を行う。  As shown in FIG. 2 to FIG. 7, in the present embodiment, the control device 3 is configured such that when there is a start request for the engine E while the wheel W is being driven only by the motor / generator MZG, 'Two types of control pattern for high rotation (control processing for engine start at high speed) and control pattern for low rotation (control processing for engine start at low speed) according to the rotation speed Rmg of generator MZG The engine E start control is performed according to the control pattern.
以下、このようなエンジン Eの始動のための動作制御を中心に、本実施形態に係る 駆動装置 1の動作制御について詳細に説明する。  Hereinafter, the operation control of the drive device 1 according to the present embodiment will be described in detail with a focus on the operation control for starting the engine E.
[0034] 図 2は、本実施形態に係る駆動装置 1において、「モータ走行」、「高回転時ェンジ ン始動」、「低回転時エンジン始動」、「エンジン +モータ'ジェネレータ走行」の 4つの 制御処理のいずれかを選択する際の制御装置 3における処理の流れを示すフロー チャートである。この図に示すように、制御装置 3は、メモリ 23に格納されている状態 フラグが「モータ走行」を示す「EV」の状態である場合 (ステップ # 01 : YES)、「モー タ走行」の制御処理を選択して実行する (ステップ # 02)。制御装置 3は、状態フラグ が「高回転時エンジン始動」を示す「EstartH」の状態である場合 (ステップ # 03: YE S)、「高回転時エンジン始動」の制御処理を選択して実行する (ステップ # 04)。制 御装置 3は、状態フラグが「低回転時エンジン始動」を示す「EstartL」の状態である 場合 (ステップ # 05 : YES)、「低回転時エンジン始動」の制御処理を選択して実行 する(ステップ # 06)。制御装置 3は、状態フラグが「エンジン +モータ'ジェネレータ 走行」を示す「E + M/GJの状態である場合 (ステップ # 07 : YES)、「エンジン +モ ータ ·ジェネレータ走行」の制御処理を選択して実行する (ステップ # 08)。 [0034] FIG. 2 shows four driving motors 1, "motor running", "engine start at high speed", "engine start at low speed", and "engine + motor 'generator running". 5 is a flowchart showing a flow of processing in the control device 3 when selecting one of the control processing. As shown in this figure, when the status flag stored in the memory 23 is in the state of “EV” indicating “motor running” (step # 01: YES), the control device 3 Select and execute control processing (Step # 02). Control device 3 is in the state of “EstartH” indicating that the state flag is “high speed engine start” (step # 03: YE S), select and execute the control process of “engine start at high speed” (step # 04). When the status flag is in the state of “EstartL” indicating “low speed engine start” (step # 05: YES), the control device 3 selects and executes the “low speed engine start” control process. (Step # 06). When the status flag is “E + M / GJ” (step # 07: YES), the control device 3 performs the control process for “engine + motor / generator running”. Select and run (Step # 08).
[0035] ここで、状態フラグは、アクセルセンサ 20、ブレーキセンサ 22、車速センサ 18、及 び回転数センサ 17を含む車両の各部からの情報に基づいて車両制御装置 16にお いて決定され、メモリ 23に格納される。なお、この状態フラグは、具体的には、車両の 各部からの情報と、この情報をパラメータとする走行状態マップとを比較することによ り決定することがでさる。  Here, the state flag is determined in the vehicle control device 16 based on information from various parts of the vehicle including the accelerator sensor 20, the brake sensor 22, the vehicle speed sensor 18, and the rotation speed sensor 17, and is stored in the memory. Stored in 23. This state flag can be determined by comparing information from each part of the vehicle with a running state map using this information as a parameter.
[0036] 図 3は、図 2のフローチャートにおけるステップ # 02「モータ走行」の制御処理の詳 細を示すフローチャートである。この図に示すように、「モータ走行」の制御処理では 、エンジン始動要求があるまでは (ステップ # 11 :NO)、メモリ 23に格納されている状 態フラグは「モータ走行」を示す「EV」のままとする (ステップ # 12)。ここで、エンジン 始動要求は、アクセル開度が大きくなりモータ 'ジェネレータ MZGのみでは出力トル クが不足する場合や、モータ'ジェネレータ MZGを駆動するためのバッテリ 9の残量 が少なくなつた場合等に、車両制御装置 16からエンジン制御装置 15、 MZG制御 装置 12、第一クラッチ制御装置 13、及び変速機制御装置 14に対して出力される。  FIG. 3 is a flowchart showing details of the control process of step # 02 “motor running” in the flowchart of FIG. As shown in this figure, in the “motor running” control process, until the engine start request is made (step # 11: NO), the status flag stored in the memory 23 is “EV running” indicating “motor running”. "(Step # 12). Here, the engine start request is issued when the accelerator opening becomes large and the output torque is insufficient with the motor 'generator MZG alone, or when the remaining amount of the battery 9 for driving the motor' generator MZG is low. The vehicle control device 16 outputs the engine control device 15, the MZG control device 12, the first clutch control device 13, and the transmission control device 14.
[0037] そして、制御装置 3は、第一クラッチ C1の作動圧 P1をゼロとし (ステップ # 13)、第 二クラッチ C2の作動圧 P2を、第二クラッチ C2が完全係合状態となる完全係合圧 P2 eとする (ステップ # 14)。また、制御装置 3は、モータ'ジェネレータ M/Gの出力トル ク Tmgを要求トルク Tthに合せるようにモータ ·ジェネレータ MZGを動作させる(ステ ップ # 15)。  [0037] Then, the control device 3 sets the operating pressure P1 of the first clutch C1 to zero (step # 13), and the operating pressure P2 of the second clutch C2 The resultant pressure is P2 e (Step # 14). The control device 3 operates the motor / generator MZG so that the output torque Tmg of the motor / generator M / G matches the required torque Tth (step # 15).
ここで、要求トルク Tthは、アクセルセンサ 20により検出されたアクセル開度の情報 に基づいて車両制御装置 16において決定される。この際、エンジンによる走行時と モータ'ジェネレータ MZGによる走行時とでアクセル開度に対する出力トルクが相 違することを防止するのが望ましい。そこで、アクセル開度とモータ'ジェネレータ M ZGの出力トルク Tmgとの関係は、アクセル開度とエンジンの出力トルクとの関係に 合せたものとすると好適である。したがって、ここでは、要求トルク Tthは、アクセルセ ンサ 20により検知されるアクセル開度に応じて、そのときのアクセル開度でのェンジ ンの出力トルクと一致するように決定されることとしている。これにより、モータ走行時 にも運転者に違和感を与えることがなぐ運転者のアクセル操作による出力要求を反 映したモータ走行を行うことができる。 Here, the required torque Tth is determined by the vehicle control device 16 based on the accelerator opening information detected by the accelerator sensor 20. At this time, it is desirable to prevent the output torque for the accelerator opening from being different between when traveling by the engine and when traveling by the motor generator MZG. Therefore, the accelerator opening and the motor generator M The relationship between the ZG output torque Tmg and the relationship between the accelerator opening and the engine output torque is suitable. Therefore, here, the required torque Tth is determined in accordance with the accelerator opening detected by the accelerator sensor 20 so as to coincide with the engine output torque at the accelerator opening at that time. As a result, it is possible to perform motor traveling reflecting the output request by the driver's accelerator operation without causing the driver to feel uncomfortable even during motor traveling.
[0038] そして、エンジン始動要求があった場合には (ステップ # 11: YES)、制御装置 3は モータ ·ジェネレータ MZGの回転数 Rmgがしき!/、値回転数 Rt未満であるか否かを 判断する (ステップ # 16)。本実施形態においては、モータ'ジェネレータ MZGの回 転数 Rmgは、中間軸 10の回転数を検出する回転数センサ 17からの検出信号に基 づいて検出される。 [0038] Then, when there is a request for starting the engine (step # 11: YES), the control device 3 determines whether the rotational speed Rmg of the motor / generator MZG is threshold! /, And whether it is less than the value rotational speed Rt. Determine (Step # 16). In the present embodiment, the rotational speed Rmg of the motor generator MZG is detected based on a detection signal from the rotational speed sensor 17 that detects the rotational speed of the intermediate shaft 10.
しきい値回転数 Rtは、第一クラッチ C1を完全係合状態とした際にエンジン Eを始動 可能なモータ'ジェネレータ MZGの回転数以上の回転数に設定される。すなわち、 しきい値回転数 Rtは、第一クラッチ C1を完全係合状態とした際におけるモータ'ジェ ネレータ MZGの駆動力によるエンジン Eのクランキング回転数力 エンジン Eを始動 可能な回転数以上となるように設定される。具体的には、エンジン Eのアイドリング回 転数程度に設定することが望ましぐ例えば 600〜700rpm程度とすると好適である  The threshold rotational speed Rt is set to a rotational speed equal to or higher than the rotational speed of the motor / generator MZG that can start the engine E when the first clutch C1 is fully engaged. That is, the threshold rotational speed Rt is equal to or higher than the rotational speed at which the engine E can be started when the first clutch C1 is fully engaged and the engine E cranking rotational speed is driven by the driving force of the motor generator MZG. Is set to be Specifically, it is desirable to set it to about the idling speed of engine E, for example, about 600 to 700 rpm is preferable.
[0039] 制御装置 3は、モータ'ジェネレータ MZGの回転数 Rmgがしきい値回転数 Rt未満 でない場合には (ステップ # 16 :NO)、メモリ 23に格納されている状態フラグを、「高 回転時エンジン始動」を示す「EstartH」とする(ステップ # 17)。これにより、図 2のフ ローチャートに示すように「高回転時エンジン始動」の制御 (ステップ # 04)が行われ る。一方、モータ'ジェネレータ M/Gの回転数 Rmgがしきい値回転数 Rt未満である 場合には (ステップ # 16 : YES)、メモリ 23に格納されている状態フラグを、「低回転 時エンジン始動」を示す「EstartL」とする(ステップ # 18)。これにより、図 2のフロー チャートに示すように「低回転時エンジン始動」の制御 (ステップ # 06)が行われる。 以上で「モータ走行」の制御処理を終了する。 [0039] When the rotational speed Rmg of the motor generator MZG is not less than the threshold rotational speed Rt (step # 16: NO), the control device 3 sets the status flag stored in the memory 23 to "high rotational speed". “EstartH” indicating “hour engine start” (step # 17). As a result, as shown in the flow chart of FIG. 2, control of “engine start at high speed” (step # 04) is performed. On the other hand, if the rotation speed Rmg of the motor / generator M / G is less than the threshold rotation speed Rt (step # 16: YES), the status flag stored in the memory 23 is set to “Start engine at low speed”. "EstartL" (step # 18). As a result, as shown in the flowchart of FIG. 2, the control of “engine start at low speed” (step # 06) is performed. This completes the control process for “motor running”.
[0040] 図 4は、図 2のフローチャートにおけるステップ # 04「高回転時エンジン始動」の制 御処理の詳細を示すフローチャートである。この図に示すように、「高回転時エンジン 始動」の制御処理では、まず、制御装置 3は、第一クラッチ C1の作動圧 P1がスタン バイ圧 Pisとなっている力否かについて判断する (ステップ # 31)。そして、第一クラッ チ C1の作動圧 P1がスタンバイ圧 Pisでない場合には (ステップ # 31: NO)、第一ク ラッチ C1の作動圧 P1をスタンノ ィ圧 Pisとする (ステップ # 32)。ここで、第一クラッ チ C1のスタンバイ圧 Pisは、第一クラッチ C1を係合開始前の準備状態とするための 圧力であり、第一クラッチ C1を係合開始直前の状態まで動作させる圧力に設定する と好適である。 [0040] FIG. 4 shows the control of step # 04 “start engine at high speed” in the flowchart of FIG. It is a flowchart which shows the detail of a control process. As shown in this figure, in the control process of “engine start at high speed”, first, the control device 3 determines whether or not the operating pressure P1 of the first clutch C1 is the standby pressure Pis ( Step # 31). If the operating pressure P1 of the first clutch C1 is not the standby pressure Pis (step # 31: NO), the operating pressure P1 of the first clutch C1 is set to the stunning pressure Pis (step # 32). Here, the standby pressure Pis of the first clutch C1 is a pressure for bringing the first clutch C1 into a ready state before the start of engagement, and is a pressure for operating the first clutch C1 to a state immediately before the start of engagement. It is preferable to set.
そして、第二クラッチ C2の作動圧 P2を完全係合圧 P2eとした (ステップ # 33)状態 で、モータ ·ジェネレータ MZGの出力トルク Tmgを要求トルク Tthに合せるようにモ ータ ·ジェネレータ MZGを動作させる(ステップ # 34)。  Then, with the working pressure P2 of the second clutch C2 set to the full engagement pressure P2e (step # 33), the motor generator MZG is operated so that the output torque Tmg of the motor generator MZG matches the required torque Tth. (Step # 34).
[0041] 第一クラッチ C1の作動圧 P1がスタンバイ圧 Pisとなった場合には (ステップ # 31: YES)、制御装置 3は、エンジン Eが完爆状態となっている力否かについて判断する( ステップ # 35)。エンジンが完爆したか否かは、エンジンに設けられた各種センサか らエンジン制御装置 15に入力される検出信号に基づ!/、て判断される。  [0041] When the operating pressure P1 of the first clutch C1 becomes the standby pressure Pis (step # 31: YES), the control device 3 determines whether or not the engine E is in a complete explosion state. (Step # 35). Whether or not the engine has completely exploded is determined based on detection signals input to the engine control device 15 from various sensors provided in the engine.
[0042] エンジン Eが完爆状態となっていない場合には (ステップ # 35 : NO)、制御装置 3 は、第二クラッチ C2の作動圧 P2を完全係合圧 P2eとしたまま (ステップ # 36)、第一 クラッチ C1の作動圧 P1を、第一クラッチ C1が完全係合状態となる完全係合圧 Pie まで所定の変化率で上昇させる (ステップ # 37)。これにより第一クラッチ C1の係合 圧を上昇させることができる。本実施形態においては、第一クラッチ C1の作動圧 P1 を完全係合圧 Pieまで上昇させる制御は、第一クラッチ C1の滑り量を検出し、その 滑り量がゼロになるまで第一クラッチ C 1の作動圧 P 1を上昇させるフィードバック制御 としている。  [0042] When engine E is not in the complete explosion state (step # 35: NO), control device 3 keeps operating pressure P2 of second clutch C2 at full engagement pressure P2e (step # 36). ), The operating pressure P1 of the first clutch C1 is increased at a predetermined rate of change to the full engagement pressure Pie at which the first clutch C1 is fully engaged (step # 37). Thus, the engagement pressure of the first clutch C1 can be increased. In the present embodiment, the control for increasing the operating pressure P1 of the first clutch C1 to the full engagement pressure Pie is performed by detecting the slip amount of the first clutch C1 and until the slip amount becomes zero. Feedback control is used to increase the operating pressure P1.
[0043] そして、第一クラッチ C1を介してモータ'ジェネレータ M/Gからエンジン E側に伝 達されるクラッチ伝達トルク Tcを検出する (ステップ # 38)。このクラッチ伝達トルク Tc 力 第一クラッチ C1を介してモータ'ジェネレータ M/Gによりエンジン Eをクランキン グして始動させるために用いられるトルクに相当する。  [0043] Then, clutch transmission torque Tc transmitted from motor generator M / G to engine E via first clutch C1 is detected (step # 38). This clutch transmission torque Tc force Corresponds to the torque used to crank and start engine E by motor generator M / G via first clutch C1.
このクラッチ伝達トルク Tcの検出は、例えば、第一クラッチ C1の作動圧 P1に基づ いて、車両制御装置 16においてクラッチ伝達トルク Tcを算出することにより行うことが できる。すなわち、このとき第一クラッチ C1は、その作動圧 P1を完全係合圧 Pieまで 上昇させる制御が行われている (ステップ # 37)。したがって、第一クラッチ C1におい て伝達されるトルクが大きい程、大きい作動圧 P1 (完全係合圧 Pie)により係合される ことになる。したがって、第一クラッチ C1の作動圧 P1は、第一クラッチ C1により伝達 されるクラッチ伝達トルク Tcとの間に一定の関係を有する。よって、車両制御装置 16 にお 、て、第一クラッチ C 1の作動圧 P 1とクラッチ伝達トルク Tcとの関係式又はテー ブルを用いて、第一クラッチ C1の作動圧 P1に基づ 、てクラッチ伝達トルク Tcを算出 することができる。 The detection of the clutch transmission torque Tc is based on, for example, the operating pressure P1 of the first clutch C1. The vehicle control device 16 can calculate the clutch transmission torque Tc. That is, at this time, the first clutch C1 is controlled to increase its operating pressure P1 to the full engagement pressure Pie (step # 37). Therefore, the greater the torque transmitted in the first clutch C1, the greater the engagement with the larger operating pressure P1 (complete engagement pressure Pie). Therefore, the operating pressure P1 of the first clutch C1 has a certain relationship with the clutch transmission torque Tc transmitted by the first clutch C1. Therefore, the vehicle control device 16 uses the relational expression or table between the operating pressure P1 of the first clutch C1 and the clutch transmission torque Tc, based on the operating pressure P1 of the first clutch C1. Clutch transmission torque Tc can be calculated.
[0044] そして、制御装置 3は、モータ'ジェネレータ MZGの出力トルク Tmg力 要求トルク Tthにクラッチ伝達トルク Tcをカ卩えたトルクとなるようにモータ ·ジェネレータ MZGを 動作させる (ステップ # 39)。これにより、運転者のアクセル操作による出力要求を反 映したモータ走行を行いつつ、エンジン Eの始動を行うことができる。なお、要求トル ク Tthは、上記のとおり、アクセルセンサ 20により検出されたアクセル開度の情報に 基づ 、て車両制御装置 16にお 、て決定される。  [0044] Then, control device 3 operates motor generator MZG so as to obtain a torque obtained by adding clutch transmission torque Tc to output torque Tmg force required torque Tth of motor / generator MZG (step # 39). As a result, the engine E can be started while the motor travels reflecting the output request by the driver's accelerator operation. The required torque Tth is determined by the vehicle control device 16 based on the accelerator opening information detected by the accelerator sensor 20 as described above.
[0045] そして、エンジン Eが完爆状態となった場合には (ステップ # 35: YES)、制御装置 3は、メモリ 23に格納されている状態フラグを、「エンジン +モータ'ジェネレータ走行 」を示す「E + MZG」とする(ステップ # 40)。これにより、図 2のフローチャートに示す ように「エンジン +モータ ·ジェネレータ走行」の制御(ステップ # 08)が行われる。 以上で「高回転時エンジン始動」の制御処理を終了する。  [0045] When the engine E reaches the complete explosion state (step # 35: YES), the control device 3 sets the state flag stored in the memory 23 to "engine + motor 'generator running". “E + MZG” shown (step # 40). As a result, as shown in the flowchart of FIG. 2, the “engine + motor / generator running” control (step # 08) is performed. This completes the control process for “starting the engine at high speed”.
[0046] 図 6は、車両の停止状態から「モータ走行」を行った後、「高回転時エンジン始動」 の制御処理に従ってエンジン Eの始動を行う場合の各部の動作状態を示すタイミン グチャートの一例である。この図に示す例では、運転者によりブレーキペダルが踏み 込まれている状態では、車両は停止状態にある(領域 A)。次に、運転者によりブレー キペダルが放されると、これに従って制御装置 3はモータ'ジェネレータ MZGの回転 駆動を開始し、トルクコンバータを備えたオートマチック 'トランスミッション車両におけ るクリープ状態と同様に、車両をゆっくりと前進させるトルクを出力させる (領域 B)。こ れにより「モータ走行」が開始される。その後、運転者によりアクセルペダル 19が踏み 込まれたときには、制御装置 3は、モータ'ジェネレータ MZGの出力トルク Tmgを要 求トルク Tthに合せるようにモータ ·ジェネレータ MZGを動作させ(図 3のステップ # 15参照)、「モータ走行」が行われる (領域 C)。 [0046] FIG. 6 is an example of a timing chart showing the operation state of each part when engine E is started according to the control process of "high speed engine start" after "motor running" is performed from the stop state of the vehicle. It is. In the example shown in this figure, when the brake pedal is depressed by the driver, the vehicle is stopped (area A). Next, when the brake pedal is released by the driver, the control device 3 starts to rotate the motor 'generator MZG accordingly, as in the creep state in an automatic' transmission vehicle equipped with a torque converter. Output a torque that slowly moves forward (region B). This starts “motor running”. Then, the accelerator pedal 19 is depressed by the driver. Then, the control device 3 operates the motor / generator MZG so that the output torque Tmg of the motor / generator MZG matches the required torque Tth (see step # 15 in FIG. 3), and “motor running” is performed. (Area C).
[0047] そして、車両制御装置 16からエンジン始動要求が出力された場合には、制御装置 3は、「高回転時エンジン始動」の制御を開始する。すなわち、第一クラッチ C1の作 動圧 P1をスタンバイ圧 Pisとし(図 4のステップ # 32参照)、第一クラッチ C1を係合開 始直前の状態まで動作させる (領域 D)。その後、第一クラッチ C1の作動圧 P1を完 全係合圧 Pieまで所定の変化率で上昇させつつ(図 4のステップ # 37参照)、モータ •ジェネレータ MZGの出力トルク Tmgが、要求トルク Tthにクラッチ伝達トルク Tcを 加えたトルクとなるようにモータ ·ジェネレータ MZGを動作させ(図 4のステップ # 39 参照)、エンジン Eを始動させる(領域 E)。なお、この図 6に示す例では、エンジン始 動要求は、アクセル開度が大きくなつたことによるものではなぐノ ッテリ 9の残量が少 なくなったことにより出力された場合を示している。  [0047] Then, when an engine start request is output from the vehicle control device 16, the control device 3 starts control of "engine start at high speed". That is, the operating pressure P1 of the first clutch C1 is set to the standby pressure Pis (see step # 32 in FIG. 4), and the first clutch C1 is operated to a state just before the engagement is started (region D). Then, while increasing the operating pressure P1 of the first clutch C1 to the full engagement pressure Pie at a predetermined rate of change (see step # 37 in Fig. 4), the output torque Tmg of the motor generator MZG becomes the required torque Tth. The motor / generator MZG is operated so that the clutch transmission torque Tc is added (see step # 39 in Fig. 4), and the engine E is started (region E). The example shown in FIG. 6 shows a case where the engine start request is output because the remaining amount of the notch 9 is less than the increase in the accelerator opening.
[0048] エンジン Eが完爆して始動した後は、「エンジン +モータ'ジェネレータ走行」を開始 する。この際、要求トルク Tthを満たした状態を維持したまま、モータ'ジェネレータ M ZGの出力トルク Tmgを減少させつつエンジン Eの出力トルク Teを増加させ、ェンジ ン Eの出力トルク Teの割合を連続的に増力!]させていく(領域 F)。そして、「エンジン + モータ'ジェネレータ走行」の定常状態では、エンジン Eの出力トルク Teは、要求トル ク Tthとモータ ·ジェネレータ MZGの発電に要するトルク(発電トルク) Tegとを加え たトルクに等しくなる。この状態では、エンジン Eの出力トルク Teにより車両が走行す るとともに、モータ 'ジェネレータ MZGは回転駆動されて発電機として動作する(領 域 G)。  [0048] After engine E has completely exploded and started, "engine + motor 'generator running" is started. At this time, while maintaining the required torque Tth, the engine E output torque Te is increased while the output torque Tmg of the motor generator M ZG is decreased, and the ratio of the engine E output torque Te is continuously increased. Boost your power! ] (Area F). In the steady state of “engine + motor 'generator running”, the output torque Te of engine E is equal to the torque obtained by adding the required torque Tth and the torque required for power generation by motor / generator MZG (power generation torque) Teg. . In this state, the vehicle is driven by the output torque Te of the engine E, and the motor generator MZG is driven to rotate and operates as a generator (region G).
なお、この図 6に示す一連の動作中、第二クラッチ C2の作動圧 P2は完全係合圧 P 2eのままとなつている。また、この「高回転時エンジン始動」の制御処理を行う場合は 、モータ'ジェネレータ MZGは、上記領域 B〜Gの全てにおいてトルク制御により制 御される。  During the series of operations shown in FIG. 6, the operating pressure P2 of the second clutch C2 remains at the full engagement pressure P2e. Further, when performing the control process of “engine start at high rotation”, the motor generator MZG is controlled by torque control in all the above regions B to G.
[0049] 図 5は、図 2のフローチャートにおけるステップ # 06「低回転時エンジン始動」の制 御処理の詳細を示すフローチャートである。この図に示すように、「低回転時エンジン 始動」の制御処理では、まず、制御装置 3は、第一クラッチ C1の作動圧 P1がスタン バイ圧 Pisであり、かつ第二クラッチ C2の作動圧 P2がスタンバイ圧 P2sであるか否か について判断する (ステップ # 51)。そして、そうでない場合には (ステップ # 51 :NO )、第一クラッチ C1の作動圧 PIをスタンバイ圧 Pisとする (ステップ # 52)。ここで、第 一クラッチ C1のスタンバイ圧 Pisは、第一クラッチ C1を係合開始前の準備状態とす るための圧力であり、第一クラッチ C1を係合開始直前の状態まで動作させる圧力に 設定すると好適である。 FIG. 5 is a flowchart showing details of the control process of step # 06 “engine start at low speed” in the flowchart of FIG. As shown in this figure, the engine at low speed In the “start” control process, first, the control device 3 determines whether or not the operating pressure P1 of the first clutch C1 is the standby pressure Pis and the operating pressure P2 of the second clutch C2 is the standby pressure P2s. (Step # 51). If not (step # 51: NO), the operating pressure PI of the first clutch C1 is set to the standby pressure Pis (step # 52). Here, the standby pressure Pis of the first clutch C1 is a pressure for setting the first clutch C1 in a preparation state before the start of engagement, and is a pressure for operating the first clutch C1 to a state immediately before the start of engagement. It is preferable to set.
そして、第二クラッチ C2の作動圧 P2をスタンバイ圧 P2sとする (ステップ # 53)。ここ で、第二クラッチ C2のスタンバイ圧 P2sは、第二クラッチ C2を開放状態とする圧力で あり、第二クラッチ C2を係合開始直前の状態とする圧力から圧力ゼロまでの間の任 意の圧力とすることが可能である。  Then, the operating pressure P2 of the second clutch C2 is set to the standby pressure P2s (step # 53). Here, the standby pressure P2s of the second clutch C2 is a pressure that brings the second clutch C2 into an open state, and is an arbitrary pressure between the pressure that makes the second clutch C2 in a state immediately before the start of engagement and the pressure zero. It can be a pressure.
[0050] そして、制御装置 3は、モータ'ジェネレータ MZGの回転数 Rmgをエンジンスター ト回転数 Resに維持するように回転数制御を行う(ステップ # 54)。このエンジンスタ ート回転数 Resは、上記しきい値回転数 Rtと同様に、第一クラッチ C1を完全係合状 態とした際にエンジン Eを始動可能なモータ'ジェネレータ MZGの回転数以上の回 転数に設定される。具体的には、エンジン Eのアイドリング回転数程度に設定すること が望ましぐ例えば 600〜700rpm程度とすると好適である。 [0050] Then, control device 3 performs the rotational speed control so as to maintain the rotational speed Rmg of motor'generator MZG at the engine start rotational speed Res (step # 54). This engine start rotational speed Res is equal to or higher than the rotational speed of the motor generator MZG that can start the engine E when the first clutch C1 is in the fully engaged state, like the threshold rotational speed Rt. Set to the number of rotations. Specifically, it is desirable to set the engine E to about the idling speed, for example, about 600 to 700 rpm.
なお、このようにモータ'ジェネレータ MZGを所定回転数に維持する回転数制御 は、中間軸 10に作用する負荷に関わらずモータ'ジェネレータ MZGが当該所定回 転数となるように、モータ ·ジェネレータ MZGの出力トルク Tmgを制御することにより 行うことができる。  Note that the rotation speed control for maintaining the motor / generator MZG at the predetermined rotation speed in this way is performed so that the motor / generator MZG has the predetermined rotation speed regardless of the load acting on the intermediate shaft 10. This can be done by controlling the output torque Tmg.
[0051] 第一クラッチ C1の作動圧 P1がスタンバイ圧 Pisであり、かつ第二クラッチ C2の作 動圧 P2がスタンバイ圧 P2sである場合には (ステップ # 51 : YES)、制御装置 3は、ェ ンジン Eが完爆状態となって 、るか否かにつ 、て判断する (ステップ # 55)。エンジン が完爆した力否かは、エンジンに設けられた各種センサ力もエンジン制御装置 15に 入力される検出信号に基づいて判断される。  [0051] When the operating pressure P1 of the first clutch C1 is the standby pressure Pis and the operating pressure P2 of the second clutch C2 is the standby pressure P2s (step # 51: YES), the control device 3 Judgment is made as to whether or not engine E is in a complete explosion (step # 55). Whether or not the engine is completely detonated is determined based on detection signals input to the engine control unit 15 for various sensor forces provided in the engine.
[0052] エンジン Eが完爆状態となっていない場合には (ステップ # 55 : NO)、制御装置 3 は、第二クラッチ C2の作動圧 P2をスタンバイ圧 P2sとしたまま (ステップ # 56)、第一 クラッチ CIの作動圧 PIを第一クラッチ CIが完全係合状態となる完全係合圧 Pieま で所定の変化率で上昇させる (ステップ # 57)。そして、この間もモータ'ジェネレータ MZGの回転数 Rmgをエンジンスタート回転数 Resに維持するように回転数制御を 行う(ステップ # 58)。 [0052] When the engine E is not in the complete explosion state (step # 55: NO), the control device 3 keeps the operating pressure P2 of the second clutch C2 at the standby pressure P2s (step # 56). first The operating pressure PI of the clutch CI is increased at a predetermined rate of change until the fully engaged pressure Pie at which the first clutch CI is fully engaged (step # 57). During this time, the rotational speed control is performed so that the rotational speed Rmg of the motor / generator MZG is maintained at the engine start rotational speed Res (step # 58).
この際、第一クラッチ C 1の作動圧 P 1を完全係合圧 P 1 eまで上昇させることにより、 第一クラッチ C1が半係合状態を経て完全係合状態となる。これにより、モータ'ジェ ネレータ MZGにより回転駆動される中間軸 10とエンジン Eの図示しないクランタシャ フトに同期回転するクランク軸 11とが接続され、モータ'ジェネレータ MZGの駆動力 によりエンジン Eのクランクシャフトが回転されることになる。したがって、モータ'ジェ ネレータ MZGの回転数 Rmgをエンジンスタート回転数 Resに維持するためには、モ ータ 'ジェネレータ MZGの出力トルク Tmgは、エンジン Eのクランキングに要するトル ク分だけ上昇することになる(図 7の領域 K参照)。  At this time, by raising the operating pressure P1 of the first clutch C1 to the full engagement pressure P1e, the first clutch C1 enters the fully engaged state through the half-engaged state. As a result, the intermediate shaft 10 that is driven to rotate by the motor generator MZG is connected to the crankshaft 11 that rotates in synchronization with a clutch shaft (not shown) of the engine E, and the crankshaft of the engine E is driven by the driving force of the motor generator MZG. Will be rotated. Therefore, to maintain the motor generator MZG speed Rmg at the engine start speed Res, the output torque Tmg of the motor 'generator MZG must be increased by the torque required for engine E cranking. (Refer to area K in Fig. 7).
これにより、第二クラッチ C2を開放してモータ 'ジェネレータ MZGの駆動力を出力 軸 4に伝達しない空転状態とし、モータ'ジェネレータ MZGの回転数 Rmgの変動が 車両の走行状態に影響を与えな 、ようにした状態 (空走状態)で、モータ ·ジエネレー タ MZGの回転数 Rmgを、エンジン Eの始動が可能な回転数まで上昇させてェンジ ン Eの始動を行うことができる。したがって、「モータ走行」時におけるモータ'ジエネレ ータ MZGの回転数 Rmgが低 、場合にぉ 、ても、エンジン E始動時のモータ ·ジエネ レータ MZGの回転数 Rmgの変動を車輪 Wに伝達することなく車輪 Wの円滑な動作 状態を維持しながら、確実にエンジン Eを始動させることができる。  As a result, the second clutch C2 is disengaged so that the motor 'generator MZG's driving force is not transmitted to the output shaft 4, and the change in the rotational speed Rmg of the motor' generator MZG does not affect the running state of the vehicle. In this state (idle running state), the engine E can be started by increasing the speed Rmg of the motor / generator MZG to a speed at which the engine E can be started. Therefore, even if the rotation speed Rmg of the motor / generator MZG during “motor running” is low, the fluctuation of the rotation speed Rmg of the motor / generator MZG at the start of the engine E is transmitted to the wheel W. The engine E can be reliably started while maintaining the smooth operating state of the wheel W without any trouble.
そして、エンジン Eが完爆状態となった場合には (ステップ # 55: YES)、制御装置 3は、モータ'ジェネレータ M/Gの回転数 Rmg力 第二クラッチ C2の車輪 W側の回 転数に応じた回転数 (以下、「第二クラッチ車輪側回転数」という) Rwであるカゝ否かに つ!、て判断する (ステップ # 59)。  When engine E reaches the complete explosion state (step # 55: YES), control device 3 determines the number of revolutions of motor / generator M / G, Rmg force, number of revolutions of wheel W of second clutch C2, and W side. The number of revolutions according to the following (hereinafter referred to as “second clutch wheel side revolutions”) is determined by whether or not it is Rw (step # 59).
ここで、第二クラッチ車輪側回転数 Rwは、第二クラッチ C2を完全係合状態とした際 に、第二クラッチ C2のモータ ·ジェネレータ MZG側(中間軸 10側)と車輪 W側(変速 機構 7側)との回転数が所定の範囲内の差でほぼ同じになるときのモータ'ジエネレ ータ M/Gの回転数である。すなわち、この第二クラッチ車輪側回転数 Rwは、そのと きの車両の走行速度及び変速機構 7において選択されている変速段によって異なる 回転数となる。ここで、車両の走行速度は車速センサ 18により検出することができる。 なお、変速機構 7の変速段は変速機制御装置 14により制御されている。 Here, the second clutch wheel side rotation speed Rw is determined when the second clutch C2 is fully engaged, and the motor / generator MZG side (intermediate shaft 10 side) and the wheel W side (transmission mechanism) of the second clutch C2. This is the rotation speed of the motor / generator M / G when the rotation speed is almost the same with the difference within the specified range. That is, this second clutch wheel side rotation speed Rw is Depending on the running speed of the vehicle and the speed selected in the speed change mechanism 7, the number of revolutions varies. Here, the traveling speed of the vehicle can be detected by the vehicle speed sensor 18. The gear stage of the transmission mechanism 7 is controlled by the transmission control device 14.
なお、このステップ # 59の判断においては、第二クラッチ車輪側回転数 Rwは一定 の範囲を有する値とし、モータ 'ジェネレータ MZGの回転数 Rmgが、第二クラッチ車 輪側回転数 Rwの当該範囲内にあれば、条件を満たすものと判断するのが好適であ る。  In this determination of step # 59, the second clutch wheel side rotational speed Rw is set to a value having a certain range, and the rotational speed Rmg of the motor generator MZG is within the corresponding range of the second clutch wheel side rotational speed Rw. If it is within the range, it is preferable to judge that the condition is satisfied.
[0054] モータ'ジェネレータ M/Gの回転数 Rmgが、第二クラッチ車輪側回転数 Rwでな V、場合には (ステップ # 59: NO)、第二クラッチ C2の作動圧 P2をスタンバイ圧 P2sと したまま (ステップ # 60)、第一クラッチ C 1の作動圧 P 1をスタンバイ圧 P 1 sとする(ス テツプ # 61)。そして、モータ'ジェネレータ M/Gの回転数 Rmgを第二クラッチ車輪 側回転数 Rwに同期させるように回転数制御を行う(ステップ # 62)。  [0054] In the case where the rotation speed Rmg of the motor / generator M / G is V which is the rotation speed Rw on the second clutch wheel side (step # 59: NO), the operating pressure P2 of the second clutch C2 is set to the standby pressure P2s. (Step # 60), the operating pressure P1 of the first clutch C1 is set to the standby pressure P1 s (step # 61). Then, the rotational speed control is performed so that the rotational speed Rmg of the motor / generator M / G is synchronized with the rotational speed Rw of the second clutch wheel (step # 62).
このモータ'ジェネレータ M/Gの回転数 Rmgを第二クラッチ車輪側回転数 Rwと する回転数制御は、車速センサ 18により検出される車両の走行速度及び変速機構 7 において選択されている変速段の情報から定まる第二クラッチ車輪側回転数 Rwに 基づいて行うことができる。すなわち、モータ'ジェネレータ M/Gの回転数 Rmgを第 二クラッチ車輪側回転数 Rwとするために必要なモータ ·ジェネレータ MZGの出力ト ルク Tmgを算出し、その算出結果にしたがってモータ'ジェネレータ MZGを制御す る。  The rotational speed control in which the rotational speed Rmg of the motor / generator M / G is set to the second clutch wheel-side rotational speed Rw is based on the vehicle running speed detected by the vehicle speed sensor 18 and the speed stage selected in the speed change mechanism 7. This can be done based on the second clutch wheel speed Rw determined from the information. That is, the output torque Tmg of the motor / generator MZG necessary for setting the rotation speed Rmg of the motor / generator M / G to the rotation speed Rw of the second clutch wheel is calculated, and the motor / generator MZG is calculated according to the calculation result. Control.
このように、第二クラッチ C2のモータ'ジェネレータ M/G側と車輪 W側との回転数 を同期させておくことにより、第二クラッチ C2を係合する際に、モータ'ジェネレータ MZG側と車輪 W側との回転数の差を吸収することにより駆動力の変動が生じ、それ が車輪側に伝達されることを防止できる。したがって、第二クラッチ C2の係合時に第 二クラッチ C2に対して大きな負荷が力かることを防ぎ、車輪の円滑な動作状態を維 持することができる。  In this way, by synchronizing the rotation speeds of the motor's generator M / G side and wheel W side of the second clutch C2, when the second clutch C2 is engaged, the motor 'generator MZG side and wheels Absorbing the difference in rotational speed from the W side can prevent fluctuations in the driving force from being transmitted to the wheel side. Therefore, it is possible to prevent a large load from being applied to the second clutch C2 when the second clutch C2 is engaged, and to maintain a smooth operation state of the wheels.
[0055] そして、モータ'ジェネレータ M/Gの回転数 Rmg力 第二クラッチ車輪側回転数 R wとなった場合には (ステップ # 59: YES)、第二クラッチ C2の作動圧 P2が完全係合 圧 P2eとなっている力否かについて判断する(ステップ # 63)。これは、すなわち第二 クラッチ C2が完全係合状態となっている力否かについての判断である。そして、第二 クラッチ C2の作動圧 P2が完全係合圧 P2eとなって ヽな 、場合には (ステップ # 63: NO)、第一クラッチ C1の作動圧 P1をスタンバイ圧 Pisとしたまま (ステップ # 64)、第 二クラッチ C2の作動圧 P2を完全係合圧 P2eとする (ステップ # 65)。そして、この間 もモータ'ジェネレータ MZGの回転数 Rmgを第二クラッチ車輪側回転数 Rwに維持 するように回転数制御を行う(ステップ # 66)。 [0055] Then, when the rotational speed Rmg force of the motor / generator M / G reaches the second clutch wheel side rotational speed Rw (step # 59: YES), the working pressure P2 of the second clutch C2 is completely engaged. Judgment is made as to whether or not the pressure is P2e (step # 63). This is the second This is a determination as to whether or not the clutch C2 is fully engaged. If the operating pressure P2 of the second clutch C2 becomes the full engagement pressure P2e (step # 63: NO), the operating pressure P1 of the first clutch C1 remains at the standby pressure Pis (step # 63). # 64), the working pressure P2 of the second clutch C2 is set to the full engagement pressure P2e (step # 65). During this time, the rotational speed control is performed so that the rotational speed Rmg of the motor generator MZG is maintained at the second clutch wheel-side rotational speed Rw (step # 66).
これにより、車輪の円滑な動作状態を維持したまま、モータ 'ジェネレータ MZGの 駆動力により車輪 Wが駆動される状態とすることができる。  As a result, the wheel W can be driven by the driving force of the motor generator MZG while maintaining the smooth operation state of the wheel.
[0056] そして、第二クラッチ C2の作動圧 P2が完全係合圧 P2eとなった場合には (ステップ  [0056] When the operating pressure P2 of the second clutch C2 becomes the complete engagement pressure P2e (step
# 63 : YES)、制御装置 3は、メモリ 23に格納されている状態フラグを、「エンジン + モータ'ジェネレータ走行」を示す「E + M/G」とする(ステップ # 67)。これにより、図 2のフローチャートに示すように「エンジン +モータ ·ジェネレータ走行」の制御(ステツ プ # 08)が行われる。  # 63: YES), the control device 3 sets the status flag stored in the memory 23 to “E + M / G” indicating “engine + motor′generator running” (step # 67). As a result, as shown in the flowchart of FIG. 2, “engine + motor / generator running” control (step # 08) is performed.
以上で「低回転時エンジン始動」の制御処理を終了する。  This completes the control process for “starting the engine at low speed”.
[0057] 図 7は、車両の停止状態から「モータ走行」を行った後、「低回転時エンジン始動」 の制御処理に従ってエンジン Eの始動を行う場合の各部の動作状態を示すタイミン グチャートの一例である。この図に示す例では、運転者によりブレーキペダルが踏み 込まれている状態では、車両は停止状態にある(領域 H)。次に、運転者によりブレー キペダルが離されると、これに従って制御装置 3はモータ'ジェネレータ MZGの回転 駆動を開始し、トルクコンバータを備えたオートマチック 'トランスミッション車両におけ るクリープ状態と同様に、車両をゆっくりと前進させるトルクを出力させる (領域 1)。こ れにより「モータ走行」が行われる。  [0057] FIG. 7 is an example of a timing chart showing the operation state of each part when the engine E is started according to the control process of "low speed engine start" after "motor running" is performed from the stop state of the vehicle. It is. In the example shown in this figure, the vehicle is in a stopped state (region H) when the brake pedal is depressed by the driver. Next, when the brake pedal is released by the driver, the control device 3 starts to rotate the motor generator MZG accordingly, and the vehicle is moved in the same way as in a creep state in an automatic transmission vehicle equipped with a torque converter. Output torque that slowly moves forward (area 1). As a result, “motor running” is performed.
[0058] そして、運転者によりアクセルペダル 19が踏み込まれたときに、制御装置 3は、「低 回転時エンジン始動」の制御を開始する。この図 7に示す例では、アクセルペダル 19 が踏み込まれておらず車両がゆっくりと前進している状態から、アクセルペダル 19が 大きく踏み込まれている。そのため、モータ'ジェネレータ M/Gのみでは出力トルク が不足し、モータ'ジェネレータ MZGの回転数 Rmgがしきい値回転数 Rt未満の低 い回転数である状態でエンジン始動を行う制御となったものである。すなわち、第一 クラッチ C 1の作動圧 P 1をスタンバイ圧 P 1 sとするとともに(図 5のステップ # 52参照) 、第二クラッチ C2の作動圧 P2をスタンバイ圧 P2sとして(図 5のステップ # 53参照)、 モータ 'ジェネレータ MZGの駆動力を出力軸 4に伝達しない空転状態 (空走状態) とする(領 )。このとき、制御装置 3は、モータ 'ジェネレータ MZGの回転数 Rmgを エンジンスタート回転数 Resに維持する回転数制御を開始する(図 5のステップ # 54 参照)。 [0058] Then, when the accelerator pedal 19 is depressed by the driver, the control device 3 starts the control of "engine start at low speed". In the example shown in FIG. 7, the accelerator pedal 19 is largely depressed from the state where the accelerator pedal 19 is not depressed and the vehicle is moving forward slowly. Therefore, the motor 'generator M / G alone has insufficient output torque, and the engine is started with the motor's generator MZG speed Rmg being a low speed less than the threshold speed Rt. It is. I.e. The operating pressure P 1 of the clutch C 1 is set to the standby pressure P 1 s (see step # 52 in FIG. 5), and the operating pressure P2 of the second clutch C2 is set to the standby pressure P2s (see step # 53 in FIG. 5). Set the motor 'generator MZG's driving force to the output shaft 4 in the idling state (idle state). At this time, the control device 3 starts the rotational speed control for maintaining the rotational speed Rmg of the motor “generator MZG at the engine start rotational speed Res (see step # 54 in FIG. 5).
[0059] その後、制御装置 3は、モータ'ジェネレータ MZGの回転数 Rmgをエンジンスター ト回転数 Resに維持する回転数制御を行いつつ(図 5のステップ # 58参照)、第一ク ラッチ C1の作動圧 P1を第一クラッチ C1が完全係合状態となる完全係合圧 Pieまで 所定の変化率で上昇させ(図 5のステップ # 57参照)、エンジン Eを始動させる (領域 K)。この際、モータ'ジェネレータ M/Gの出力トルク Tmgは、エンジン Eのクランキ ングに要するトルク分だけ上昇して 、る。  [0059] After that, the control device 3 performs the rotational speed control to maintain the rotational speed Rmg of the motor'generator MZG at the engine start rotational speed Res (see step # 58 in FIG. 5), while the first clutch C1 The operating pressure P1 is increased at a predetermined rate of change to the fully engaged pressure Pie at which the first clutch C1 is fully engaged (see step # 57 in FIG. 5), and the engine E is started (region K). At this time, the output torque Tmg of the motor / generator M / G increases by the amount of torque required for engine E clamping.
[0060] エンジン Eが完爆して始動した後は、制御装置 3は、第二クラッチ C2の作動圧 P2を スタンバイ圧 P2sとしたままで(図 5のステップ # 60参照)、第一クラッチ C1の作動圧 P1をスタンバイ圧 Pisとする(図 5のステップ # 61参照)。そして、モータ'ジエネレー タ M/Gの回転数 Rmgを第二クラッチ車輪側回転数 Rwに同期させる(図 5のステツ プ # 62参照)(領域 L)。  [0060] After the engine E has completely exploded and started, the control device 3 keeps the operating pressure P2 of the second clutch C2 at the standby pressure P2s (see step # 60 in FIG. 5), and the first clutch C1 Is set to the standby pressure Pis (see step # 61 in Fig. 5). Then, the rotational speed Rmg of the motor / generator M / G is synchronized with the rotational speed Rw of the second clutch wheel (see step # 62 in FIG. 5) (region L).
そして、第一クラッチ C 1の作動圧 P 1をスタンバイ圧 P 1 sに(図 5のステップ # 64参 照)、モータ'ジェネレータ M/Gの回転数 Rmgを第二クラッチ車輪側回転数 Rwに 維持したままで(図 5のステップ # 66参照)、第二クラッチ C2の作動圧 P2を完全係合 圧 P2eとする(図 5のステップ # 65参照)。これにより、モータ'ジェネレータ M/Gの 駆動力により車輪 Wが駆動される状態となる (領域 M)。  Then, the operating pressure P 1 of the first clutch C 1 is set to the standby pressure P 1 s (see step # 64 in FIG. 5), and the rotation speed Rmg of the motor / generator M / G is set to the rotation speed Rw of the second clutch wheel. While maintaining (see step # 66 in FIG. 5), the operating pressure P2 of the second clutch C2 is set to the full engagement pressure P2e (see step # 65 in FIG. 5). As a result, the wheel W is driven by the driving force of the motor / generator M / G (region M).
[0061] なお、この図 7に示すタイミングチャートでは、モータ ·ジェネレータ MZGの回転数 Rmgを第二クラッチ車輪側回転数 Rwに同期させつつ、第二クラッチ C2の作動圧 P2 を所定の変化率で上昇させる制御を行っている。これは、第二クラッチ C2の係合に 要する時間を短縮するためである。  In the timing chart shown in FIG. 7, the operating pressure P2 of the second clutch C2 is set at a predetermined change rate while synchronizing the rotational speed Rmg of the motor / generator MZG with the second clutch wheel-side rotational speed Rw. Control to raise. This is to shorten the time required for engaging the second clutch C2.
し力し、図 5のフローチャートを用いて説明したように、モータ'ジェネレータ MZG の回転数 Rmgを第二クラッチ車輪側回転数 Rwに同期させた後に、第二クラッチ C2 の作動圧 P2の上昇を開始する構成とすることも可能である。この場合、モータ'ジェ ネレータ MZGの回転数 Rmgを短時間で第二クラッチ車輪側回転数 Rwに同期させ ることにより、第二クラッチ C2の係合に要する時間を短縮することができる。 As described with reference to the flowchart of FIG. 5, after synchronizing the rotational speed Rmg of the motor generator MZG with the second clutch wheel side rotational speed Rw, the second clutch C2 It is also possible to adopt a configuration that starts to increase the operating pressure P2. In this case, the time required for engagement of the second clutch C2 can be shortened by synchronizing the rotation speed Rmg of the motor generator MZG with the second clutch wheel side rotation speed Rw in a short time.
[0062] その後、「エンジン +モータ'ジェネレータ走行」を開始する。具体的には、モータ' ジェネレータ MZGの出力トルク Tmgを減少させてエンジン Eの出力トルク Teを増加 させ、第一クラッチ C1の作動圧 P1を完全係合圧 Pieまで所定の変化率で上昇させ る(領域 N)。この際、第一クラッチ C1の作動圧 P1をスタンバイ圧 Pisから完全係合 圧 Pieまで上昇させる間、エンジン Eの出力トルク Teを増加させつつ、第一クラッチ C 1を半係合状態で滑らせながらエンジン Eの出力トルク Teの伝達を行う。これにより、 車輪 W側に伝達される出力トルク Teの変動を緩やかなものとして 、る。 [0062] Thereafter, "engine + motor 'generator running" is started. Specifically, the output torque Tmg of the motor / generator MZG is decreased to increase the output torque Te of the engine E, and the operating pressure P1 of the first clutch C1 is increased to the full engagement pressure Pie at a predetermined change rate. (Region N). At this time, while the operating pressure P1 of the first clutch C1 is increased from the standby pressure Pis to the full engagement pressure Pie, the output torque Te of the engine E is increased and the first clutch C1 is slid in a half-engaged state. The engine E output torque Te is transmitted. As a result, the fluctuation of the output torque Te transmitted to the wheel W side is moderated.
そして、 「エンジン +モータ'ジェネレータ走行」の定常状態では、エンジン Eの出力 トルク Teは、要求トルク Tthとモータ.ジェネレータ MZGの発電に要するトルク(発電 トルク) Tegとをカ卩えたトルクに等しくなる。この状態では、エンジン Eの出力トルク Te により車両が走行するとともに、モータ ·ジェネレータ MZGは回転駆動されて発電機 として動作する (領域 0)。  In the steady state of "engine + motor 'generator running", the output torque Te of engine E is equal to the torque obtained by adding the required torque Tth and the torque required for power generation by the motor generator MZG (power generation torque) Teg. . In this state, the vehicle is driven by the output torque Te of the engine E, and the motor / generator MZG is driven to rotate and operates as a generator (region 0).
以上のように、「低回転時エンジン始動」の制御処理を行う場合は、制御装置 3は、 第二クラッチ C2が開放状態となっている領 〜Mではモータ'ジェネレータ M/G に対して回転数制御を行う。一方、制御装置 3は、第二クラッチ C2が完全係合状態と なっている領域 H、 I、 N及び Oではモータ'ジェネレータ MZGに対してトルク制御を 行う。  As described above, when performing the control process of “engine start at low speed”, the control device 3 rotates with respect to the motor generator M / G in the region where the second clutch C2 is in an open state to M. Perform number control. On the other hand, the control device 3 performs torque control on the motor / generator MZG in the regions H, I, N and O in which the second clutch C2 is completely engaged.
[0063] 〔別実施形態〕  [0063] [Another embodiment]
(1)上記実施形態においては、中間軸 10の回転数を検出する回転数センサ 17から の検出信号に基づ!/ヽてモータ'ジェネレータ MZGの回転数 Rmgを検出する構成に ついて説明した。しかし、モータ'ジェネレータ M/Gの回転数 Rmgの検出手段はこ れに限定されるものではなぐ直接的又は間接的にモータ 'ジェネレータ MZGの回 転数 Rmgを検出できる手段であればよい。したがって、例えば、変速機 2の出力軸 4 の回転数を検出する車速センサ 18からの検出信号と、変速機 2において選択されて V、る変速段の情報とに基づ!/、て、間接的にモータ ·ジェネレータ MZGの回転数 Rm gを検出する構成とすることも好適な実施形態の一つである。 (1) In the above embodiment, the configuration for detecting the rotational speed Rmg of the motor generator MZG based on the detection signal from the rotational speed sensor 17 that detects the rotational speed of the intermediate shaft 10 has been described. However, the means for detecting the rotational speed Rmg of the motor / generator M / G is not limited to this, and any means capable of detecting the rotational speed Rmg of the motor / generator MZG directly or indirectly may be used. Therefore, for example, based on the detection signal from the vehicle speed sensor 18 that detects the rotation speed of the output shaft 4 of the transmission 2 and the information on the V and the gear stage selected in the transmission 2! /, Indirectly Motor / generator MZG speed Rm A configuration for detecting g is also one preferred embodiment.
[0064] (2)上記実施形態においては、モータ'ジェネレータ MZGのみによる車輪 Wの駆動 中にエンジン Eの始動要求があった場合、モータ'ジェネレータ MZGの回転数 Rmg に応じて高回転用制御パターンと低回転用制御パターンとの 2通りの制御パターン によりエンジン Eの始動制御を行う場合について説明した。しかし、モータ'ジエネレ ータ MZGの回転数 Rmgに応じて 3通り以上の制御パターンによりエンジン Eの始動 制御を行うことも当然に可能である。  [0064] (2) In the above embodiment, when there is a request to start the engine E while the wheel W is driven only by the motor 'generator MZG, the high-rotation control pattern is determined according to the rotational speed Rmg of the motor' generator MZG. We explained the case where engine E start control is performed using two control patterns: a low-speed control pattern and a low-speed control pattern. However, it is of course possible to perform start control of engine E with three or more control patterns according to the rotational speed Rmg of the motor generator MZG.
[0065] (3)上記実施形態においては、図 7の K領域の制御処理として、第一クラッチの作動 圧を所定の変化率で上昇させつつ、モータ ·ジェネレータ MZGの回転数 Rmgをェ ンジンスタート回転数 Resに維持する回転数制御を行う場合について説明した。しか し、第一クラッチの作動圧を急激に上昇させて係合させる制御とすることも可能である 。この場合、エンジン Eに作用する負荷は大きくなるが、エンジン Eの始動に要する時 間を短縮することができる。  [0065] (3) In the above embodiment, as the control process for the K region in FIG. 7, while the operating pressure of the first clutch is increased at a predetermined rate of change, the rotational speed Rmg of the motor / generator MZG is engine-started. The case of performing the rotation speed control maintained at the rotation speed Res has been described. However, it is also possible to control the engagement of the first clutch by rapidly increasing the operating pressure. In this case, the load acting on the engine E increases, but the time required to start the engine E can be shortened.
[0066] (4)上記実施形態においては、第一クラッチ C1のスタンバイ圧 Pisとして、第一クラッ チ C1を係合開始直前の状態まで動作させる圧力に設定する場合を例として説明し た。しかし、スタンノ ィ圧 Pisはこれに限定されるものではなぐ第一クラッチ C1を係 合開始直前の状態とする圧力から圧力ゼロまでの間の任意の圧力とすることが可能 である。  [0066] (4) In the above embodiment, the case where the standby pressure Pis of the first clutch C1 is set to a pressure at which the first clutch C1 is operated to the state immediately before the start of engagement has been described as an example. However, the Stanno pressure Pis is not limited to this, and can be any pressure between the pressure immediately before the engagement of the first clutch C1 and the pressure zero.
産業上の利用可能性  Industrial applicability
[0067] 本発明は、エンジンとモータとを併用して走行するハイブリッド車両に好適に用いる ことができる。 The present invention can be suitably used for a hybrid vehicle that travels using both an engine and a motor.
図面の簡単な説明  Brief Description of Drawings
[0068] [図 1]本発明の実施形態に係るハイブリッド車用駆動装置のシステム構成の概略を示 す概念図  FIG. 1 is a conceptual diagram showing an outline of a system configuration of a hybrid vehicle drive device according to an embodiment of the present invention.
[図 2]本発明の実施形態に係るハイブリッド車用駆動装置における制御処理の選択 の流れを示すフローチャート  FIG. 2 is a flowchart showing a flow of control processing selection in the hybrid vehicle drive device according to the embodiment of the present invention.
[図 3]図 2のフローチャートにおけるステップ # 02「モータ走行」の制御処理の詳細を 示すフローチャート [図 4]図 2のフローチャートにおけるステップ # 04「高回転時エンジン始動」の制御処 理の詳細を示すフローチャート FIG. 3 is a flowchart showing details of the control process of step # 02 “motor running” in the flowchart of FIG. [Fig.4] Flowchart showing the details of the control process of Step # 04 “Engine start at high speed” in the flowchart of Fig.2
[図 5]図 2のフローチャートにおけるステップ # 06「低回転時エンジン始動」の制御処 理の詳細を示すフローチャート  FIG. 5 is a flowchart showing the details of the control process of Step # 06 “Engine Start at Low Rotation” in the flowchart of FIG.
[図 6]本発明の実施形態に係るハイブリッド車用駆動装置において、「高回転時ェン ジン始動」の制御処理に従ってエンジンの始動を行う場合の各部の動作状態を示す タイミングチャートの一例  FIG. 6 is an example of a timing chart showing an operation state of each part when the engine is started in accordance with the control process of “high speed engine start” in the hybrid vehicle drive device according to the embodiment of the present invention.
[図 7]本発明の実施形態に係るハイブリッド車用駆動装置において、「低回転時ェン ジン始動」の制御処理に従ってエンジン Eの始動を行う場合の各部の動作状態を示 すタイミングチャートの一例  FIG. 7 is an example of a timing chart showing the operation state of each part when starting the engine E according to the control process of “engine start at low speed” in the hybrid vehicle drive device according to the embodiment of the present invention.
符号の説明 Explanation of symbols
1 駆動装置 1 Drive unit
2 変速機 2 Transmission
3 制御装置 3 Control unit
4 出力軸 4 Output shaft
E エンジン E engine
M/G モータ'ジェネレータ  M / G motor 'generator
W 車輪  W wheel
C1 第一クラッチ  C1 first clutch
C2 第二クラッチ  C2 Second clutch
Rmg モータ'ジェネレータの回転数  Rmg motor 'generator speed
Rt しきい値回転数  Rt threshold speed
Rw 第二クラッチ車輪側回転数  Rw Second clutch wheel side rotation speed

Claims

請求の範囲 The scope of the claims
[1] モータと、前記モータとエンジンとの間で駆動力の伝達又は切断を行う第一クラッチ と、前記モータ及び前記エンジンの一方又は双方の駆動力の車輪側への伝達又は 切断を行う第二クラッチと、前記モータ、前記第一クラッチ及び前記第二クラッチの動 作制御を行う制御装置と、を備えたハイブリッド車用駆動装置であって、  [1] A motor, a first clutch that transmits or disconnects driving force between the motor and the engine, and a first clutch that transmits or disconnects driving force of one or both of the motor and the engine to the wheel side. A drive device for a hybrid vehicle, comprising: two clutches; and a control device that controls operation of the motor, the first clutch, and the second clutch,
前記制御装置は、前記モータによる前記車輪の駆動中にエンジン始動要求があつ た場合、直接的又は間接的に検出される前記モータの回転数に応じて異なる制御 ノ ターンにより前記モータ、前記第一クラッチ及び前記第二クラッチの動作制御を行 When an engine start request is made while the wheels are being driven by the motor, the control device is configured to control the motor and the first according to a control pattern that differs depending on the rotation speed of the motor detected directly or indirectly. Controls the operation of the clutch and the second clutch.
V、、前記エンジンを始動するハイブリッド車用駆動装置。 V, a hybrid vehicle drive device for starting the engine.
[2] 前記制御装置は、前記制御パターンとして少なくとも高回転用制御パターンと低回 転用制御パターンとの二通りの制御パターンを有し、 [2] The control device has at least two control patterns of a high rotation control pattern and a low rotation control pattern as the control pattern,
前記高回転用制御パターンは、前記第二クラッチを完全係合した状態で前記第一 クラッチの係合圧を上昇させて前記エンジンを始動する制御パターンであり、前記低 回転用制御パターンは、前記第二クラッチを開放した状態で前記第一クラッチの係 合圧を上昇させて前記エンジンを始動する制御パターンである請求項 1に記載のハ イブリツド車用駆動装置。  The control pattern for high rotation is a control pattern for starting the engine by increasing the engagement pressure of the first clutch with the second clutch fully engaged, and the control pattern for low rotation is the control pattern for the low rotation 2. The hybrid vehicle drive device according to claim 1, wherein the hybrid vehicle drive system is a control pattern for starting the engine by increasing the engagement pressure of the first clutch with the second clutch opened.
[3] 前記制御装置は、前記モータの回転数が、前記第一クラッチを係合した状態で前 記エンジンを始動可能な回転数以上に設定されたしきい値以上の場合に前記高回 転用制御パターンを選択し、前記しき 、値未満の場合に前記低回転用制御パター ンを選択する制御を行う請求項 2に記載のハイブリッド車用駆動装置。  [3] The control device uses the high rotation speed when the rotation speed of the motor is equal to or higher than a threshold value set to be equal to or higher than the rotation speed at which the engine can be started with the first clutch engaged. 3. The hybrid vehicle drive device according to claim 2, wherein a control pattern is selected, and control is performed to select the low-rotation control pattern when the threshold is less than the threshold value.
[4] モータと、前記モータとエンジンとの間で駆動力の伝達又は切断を行う第一クラッチ と、前記モータ及び前記エンジンの一方又は双方の駆動力の車輪側への伝達又は 切断を行う第二クラッチと、前記モータ、前記第一クラッチ及び前記第二クラッチの動 作制御を行う制御装置と、を備えたハイブリッド車用駆動装置であって、 [4] A motor, a first clutch that transmits or disconnects driving force between the motor and the engine, and a first clutch that transmits or disconnects driving force of one or both of the motor and engine to the wheel side. A drive device for a hybrid vehicle, comprising: two clutches; and a control device that controls operation of the motor, the first clutch, and the second clutch,
前記制御装置は、前記モータによる前記車輪の駆動中にエンジン始動要求があつ た際に、前記モータの回転数が所定のしきい値未満である場合には、前記第二クラ ツチを開放した状態で前記エンジンを始動する制御を行うハイブリッド車用駆動装置 When the engine is requested to start the wheel while the wheel is driven by the motor, the control device opens the second clutch if the rotational speed of the motor is less than a predetermined threshold value. Drive device for hybrid vehicle performing control for starting the engine
[5] モータと、前記モータとエンジンとの間で駆動力の伝達又は切断を行う第一クラッチ と、前記モータ及び前記エンジンの一方又は双方の駆動力の車輪側への伝達又は 切断を行う第二クラッチと、前記モータ、前記第一クラッチ及び前記第二クラッチの動 作制御を行う制御装置と、を備えたハイブリッド車用駆動装置であって、 [5] A motor, a first clutch that transmits or disconnects driving force between the motor and the engine, and a first clutch that transmits or disconnects driving force of one or both of the motor and engine to the wheel side. A drive device for a hybrid vehicle, comprising: two clutches; and a control device that controls operation of the motor, the first clutch, and the second clutch,
前記制御装置は、前記モータによる前記車輪の駆動中にエンジン始動要求があつ た際に、前記モータの回転数が所定のしきい値未満である場合には、前記第二クラ ツチを開放して前記第一クラッチを係合し、前記モータの回転数を前記エンジンの始 動が可能な回転数以上として前記エンジンを始動させ、前記エンジンの始動後に前 記第一クラッチを開放して前記第二クラッチを係合する制御を行うハイブリッド車用駆 動装置。  The controller opens the second clutch when an engine start request is made while the wheels are being driven by the motor, and the rotational speed of the motor is less than a predetermined threshold value. The first clutch is engaged, the engine is started with the rotational speed of the motor being equal to or higher than the rotational speed at which the engine can be started, and after the engine is started, the first clutch is released and the second clutch is released. A hybrid vehicle drive system that controls clutch engagement.
[6] 前記制御装置は、前記エンジンの始動後、少なくとも前記第二クラッチの完全係合 時には、前記モータを前記第二クラッチの車輪側の回転数に応じた回転数で回転駆 動する制御を行う請求項 5に記載のハイブリッド車用駆動装置。  [6] The control device performs control to drive the motor at a rotational speed corresponding to the rotational speed on the wheel side of the second clutch at least when the second clutch is completely engaged after the engine is started. The hybrid vehicle drive device according to claim 5, wherein the hybrid vehicle drive device is performed.
[7] 前記制御装置は、前記エンジンの始動後に前記第二クラッチを係合する際、前記 モータの回転数を前記第二クラッチの車輪側の回転数に同期させつつ、前記第二ク ラッチの係合圧を上昇させる制御を行う請求項 5に記載のハイブリッド車用駆動装置  [7] When the second clutch is engaged after the engine is started, the control device synchronizes the rotational speed of the motor with the rotational speed of the wheel side of the second clutch, 6. The hybrid vehicle drive device according to claim 5, wherein control for increasing the engagement pressure is performed.
[8] 前記制御装置は、前記エンジンの始動後に前記第二クラッチを係合する際、前記 モータの回転数を前記第二クラッチの車輪側の回転数に同期させた後、前記第二ク ラッチの係合を開始する制御を行う請求項 5に記載のハイブリッド車用駆動装置。 [8] When the second clutch is engaged after the engine is started, the control device synchronizes the rotational speed of the motor with the rotational speed of the second clutch on the wheel side, and then the second clutch. 6. The drive device for a hybrid vehicle according to claim 5, wherein control for starting engagement is performed.
[9] 前記制御装置は、前記第二クラッチの開放状態では前記モータに対して回転数制 御を行 、、前記第二クラッチの係合状態では前記モータに対してトルク制御を行う請 求項 4から 8の何れか一項に記載のハイブリッド車用駆動装置。  [9] The control device performs control of the rotational speed for the motor when the second clutch is disengaged, and performs torque control for the motor when the second clutch is engaged. The drive device for a hybrid vehicle according to any one of 4 to 8.
[10] 前記しき 、値は、前記エンジンを始動可能な回転数以上に設定されて 、る請求項 4から 8の何れか一項に記載のハイブリッド車用駆動装置。  10. The hybrid vehicle drive device according to any one of claims 4 to 8, wherein the threshold value is set to be equal to or higher than a rotational speed at which the engine can be started.
[11] モータと、前記モータとエンジンとの間で駆動力の伝達又は切断を行う第一クラッチ と、前記モータ及び前記エンジンの一方又は双方の駆動力の車輪側への伝達又は 切断を行う第二クラッチと、を備えたハイブリッド車用駆動装置の制御方法であって、 前記モータによる前記車輪の駆動中にエンジン始動要求があった際に、前記モー タの回転数が所定のしきい値未満である場合には、前記第二クラッチを開放して前 記第一クラッチを係合し、前記モータの回転数を前記エンジンの始動が可能な回転 数以上として前記エンジンを始動させ、前記エンジンの始動後に前記第一クラッチを 開放して前記第二クラッチを係合するハイブリッド車用駆動装置の制御方法。 [11] A motor, a first clutch that transmits or disconnects driving force between the motor and the engine, and a first clutch that transmits or disconnects driving force of one or both of the motor and engine to the wheel side. A control method for a hybrid vehicle drive device comprising two clutches, When there is an engine start request during driving of the wheel by the motor, if the motor speed is less than a predetermined threshold value, the second clutch is opened and the first clutch A hybrid in which the motor is started with the motor rotating speed equal to or higher than the engine starting speed, the first clutch is released after the engine is started, and the second clutch is engaged. A method for controlling a vehicle drive device.
PCT/JP2005/015897 2004-11-04 2005-08-31 Drive device for hybrid vehicle and control method for the same WO2006048968A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2005800328689A CN101031460B (en) 2004-11-04 2005-08-31 Drive apparatus for hybrid vehicle and control method thereof
DE112005002385.0T DE112005002385B4 (en) 2004-11-04 2005-08-31 Drive device for a hybrid vehicle and control method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-320799 2004-11-04
JP2004320799A JP4135107B2 (en) 2004-11-04 2004-11-04 Hybrid vehicle drive device and control method thereof

Publications (1)

Publication Number Publication Date
WO2006048968A1 true WO2006048968A1 (en) 2006-05-11

Family

ID=36318985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015897 WO2006048968A1 (en) 2004-11-04 2005-08-31 Drive device for hybrid vehicle and control method for the same

Country Status (4)

Country Link
JP (1) JP4135107B2 (en)
CN (1) CN101031460B (en)
DE (1) DE112005002385B4 (en)
WO (1) WO2006048968A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2911101A1 (en) * 2007-01-09 2008-07-11 Porsche Ag Internal combustion engine starting method for hybrid motor vehicle, involves adjusting spin and torque on clutch such that motor transmits torque to clutch, where spin of clutch is reduced for preventing variation of speed and torque
US8298117B2 (en) 2006-10-12 2012-10-30 Robert Bosch Gmbh Method for operating a hybrid drive system having a torque converter
US9096119B2 (en) 2007-12-18 2015-08-04 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Vehicle drive system and use of an electromechanical converter

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4529940B2 (en) * 2006-05-02 2010-08-25 日産自動車株式会社 Hybrid vehicle transmission state switching control device
JP2008068704A (en) 2006-09-13 2008-03-27 Aisin Seiki Co Ltd Vehicular drive source control apparatus
JP2008201229A (en) * 2007-02-19 2008-09-04 Toyota Motor Corp Controller for drive device for vehicle
JP4561760B2 (en) * 2007-03-05 2010-10-13 トヨタ自動車株式会社 Control device for vehicle drive device
US8147375B2 (en) * 2009-05-19 2012-04-03 GM Global Technology Operations LLC Method of clutch control to start an engine with a hybrid transmission
JP5278214B2 (en) * 2009-07-15 2013-09-04 日産自動車株式会社 Control device for hybrid vehicle
JP5471829B2 (en) * 2010-05-25 2014-04-16 日産自動車株式会社 Accelerator pedal force control device for hybrid vehicle
CN102294999A (en) * 2010-06-23 2011-12-28 北汽福田汽车股份有限公司 Driving mode control system used for four-wheel driven automobile
CN102958771B (en) * 2010-10-22 2015-09-23 日野自动车株式会社 The control method of vehicle and vehicle
US9067598B2 (en) * 2012-06-14 2015-06-30 GM Global Technology Operations LLC Method and apparatus for controlling a high-voltage electrical system for a multi-mode transmission
KR101786653B1 (en) * 2012-11-08 2017-11-15 현대자동차주식회사 Method and system for learning operation of engine clutch for hybrid electric vehicle
JP6004007B2 (en) * 2012-12-17 2016-10-05 トヨタ自動車株式会社 Vehicle control device
CN103863297A (en) * 2012-12-17 2014-06-18 上海汽车集团股份有限公司 Power system control method
CN104071147B (en) * 2013-03-26 2016-09-07 北汽福田汽车股份有限公司 Hybrid vehicle and torque control method and device
WO2015147051A1 (en) * 2014-03-26 2015-10-01 アイシン・エィ・ダブリュ株式会社 Control device for a vehicle drive device
JP6512760B2 (en) * 2014-06-26 2019-05-15 日産自動車株式会社 Control device for hybrid vehicle
WO2017056910A1 (en) * 2015-09-30 2017-04-06 アイシン・エィ・ダブリュ株式会社 Control device
CN107380158A (en) * 2017-07-25 2017-11-24 中国第汽车股份有限公司 Dry clutch Half engagement point position self-learning method
CN111452625B (en) * 2019-01-22 2022-12-02 上海汽车集团股份有限公司 Torque control method and device
JP7211190B2 (en) * 2019-03-22 2023-01-24 トヨタ自動車株式会社 Hybrid vehicle control device
CN110194144B (en) * 2019-05-05 2020-10-23 中国第一汽车股份有限公司 Motor torque control method and device for starting engine of hybrid electric vehicle
CN111169459B (en) * 2019-10-11 2021-04-09 中国第一汽车股份有限公司 Hybrid vehicle creep control method and device, vehicle and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003212003A (en) * 2002-01-22 2003-07-30 Honda Motor Co Ltd Control device for hybrid vehicle
JP2003237383A (en) * 2002-02-13 2003-08-27 Nissan Diesel Motor Co Ltd Vehicular hybrid system
JP2003293816A (en) * 2002-04-03 2003-10-15 Nissan Motor Co Ltd Controlling device for hybrid vehicle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2943519A1 (en) * 1979-10-27 1981-05-07 Volkswagenwerk Ag DRIVE FOR A VEHICLE WITH AN INTERNAL COMBUSTION ENGINE AND AN ELECTRIC MOTOR
JP3214427B2 (en) * 1997-12-12 2001-10-02 トヨタ自動車株式会社 Drive control device for hybrid vehicle
DE19814402C2 (en) * 1998-03-31 2000-03-23 Isad Electronic Sys Gmbh & Co Drive system for a motor vehicle and method for operating the same
DE19934790A1 (en) * 1999-07-27 2001-02-08 Bosch Gmbh Robert Drive system for motor vehicles
IT1319883B1 (en) * 2000-02-04 2003-11-12 Fiat Ricerche PROCEDURE AND CONTROL SYSTEM FOR THE PROPULSION OF A VEHICLE
IT1320579B1 (en) * 2000-08-02 2003-12-10 Fiat Ricerche PROCEDURE AND CONTROL SYSTEM FOR THE PROPULSION OF A VEHICLE.
US6581705B2 (en) * 2001-06-29 2003-06-24 Ford Global Technologies, Llc Method for starting an engine in a parallel hybrid electric vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003212003A (en) * 2002-01-22 2003-07-30 Honda Motor Co Ltd Control device for hybrid vehicle
JP2003237383A (en) * 2002-02-13 2003-08-27 Nissan Diesel Motor Co Ltd Vehicular hybrid system
JP2003293816A (en) * 2002-04-03 2003-10-15 Nissan Motor Co Ltd Controlling device for hybrid vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8298117B2 (en) 2006-10-12 2012-10-30 Robert Bosch Gmbh Method for operating a hybrid drive system having a torque converter
FR2911101A1 (en) * 2007-01-09 2008-07-11 Porsche Ag Internal combustion engine starting method for hybrid motor vehicle, involves adjusting spin and torque on clutch such that motor transmits torque to clutch, where spin of clutch is reduced for preventing variation of speed and torque
US9096119B2 (en) 2007-12-18 2015-08-04 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Vehicle drive system and use of an electromechanical converter

Also Published As

Publication number Publication date
CN101031460A (en) 2007-09-05
DE112005002385B4 (en) 2015-10-08
DE112005002385T5 (en) 2007-08-09
CN101031460B (en) 2010-12-01
JP4135107B2 (en) 2008-08-20
JP2006131037A (en) 2006-05-25

Similar Documents

Publication Publication Date Title
WO2006048968A1 (en) Drive device for hybrid vehicle and control method for the same
US7351182B2 (en) Drive apparatus for hybrid vehicle and control method thereof
JP3743421B2 (en) Vehicle control device
JP6048585B2 (en) Start-up control device and start-up control method for hybrid vehicle
JP5704148B2 (en) Vehicle travel control device
WO2006046351A1 (en) Drive device for hybrid vehicle, and control method and control device for the same
JP5510702B2 (en) Hybrid drive device
JP4876795B2 (en) Drive control device for hybrid vehicle
US20150167615A1 (en) Motor Control Device
US9604628B2 (en) Powertrain control of a hybrid vehicle in park or neutral
WO2014068726A1 (en) Vehicle travel control device
JP5521685B2 (en) Vehicle drive control device
JP4257608B2 (en) Hybrid vehicle drive device and control method thereof
JP4186118B2 (en) Hybrid vehicle drive device and control method thereof
JP5617301B2 (en) Vehicle drive control device
JPH11299006A (en) Creep run controller of hybrid vehicle
JP3700660B2 (en) Power output apparatus and automobile equipped with the same
JP5418850B2 (en) Control device
JP6011515B2 (en) Control device for hybrid vehicle
JP2004251452A (en) Controller for hybrid vehicle
JP2004182101A (en) Control device for hybrid car and control method used for the same
JP7322746B2 (en) Vehicle speed control device
JP4816265B2 (en) VEHICLE POWER DEVICE AND CONTROL DEVICE THEREOF
JP7448085B2 (en) Vehicle drive system
JP7187999B2 (en) vehicle controller

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580032868.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1120050023850

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112005002385

Country of ref document: DE

Date of ref document: 20070809

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 05776989

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 05776989

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607