WO2006046358A1 - Apparatus equipped with high frequency coil - Google Patents

Apparatus equipped with high frequency coil Download PDF

Info

Publication number
WO2006046358A1
WO2006046358A1 PCT/JP2005/016700 JP2005016700W WO2006046358A1 WO 2006046358 A1 WO2006046358 A1 WO 2006046358A1 JP 2005016700 W JP2005016700 W JP 2005016700W WO 2006046358 A1 WO2006046358 A1 WO 2006046358A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
conductive object
detection
high frequency
layer
Prior art date
Application number
PCT/JP2005/016700
Other languages
French (fr)
Japanese (ja)
Inventor
Tsutomu Mizuno
Original Assignee
Shinshu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University filed Critical Shinshu University
Priority to JP2006542276A priority Critical patent/JPWO2006046358A1/en
Publication of WO2006046358A1 publication Critical patent/WO2006046358A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/945Proximity switches
    • H03K17/95Proximity switches using a magnetic detector
    • H03K17/952Proximity switches using a magnetic detector using inductive coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 

Definitions

  • the present invention provides an apparatus provided with a high frequency coil for exciting an electromagnetic wave, specifically, an apparatus for detecting and measuring a conductive object, a proximity switch, and a high frequency coil.
  • Japanese Patent Application Laid-Open No. 9-270,700 discloses a gap sensor for preventing shock to a laser processing head.
  • Japanese Patent Application Laid-Open No. 7-8360 non-contact measurement of clearance for wood chip refinement machine Japanese Patent Application Laid-open No. 2 0 0 2-4 7 7 3 is a force cutter used for excavating work.
  • the distance measurement of the drive shaft, the thickness detection of the image recording paper is disclosed in JP-A-11-160430, the determination of the metal material is disclosed in JP-A-8-185749, and the A variety of sensors, such as magnetic bearings, are disclosed in Japanese Utility Model Application Publication No. 2-201101.
  • the high frequency coils used in these various sensors are usually wound with enameled insulated copper wire.
  • An eddy current proximity switch is one that uses the same principle as these various sensors.
  • the proximity switch also has a capacitance type, a magnetic type that captures changes in the DC magnetic field, etc., and generates a switch signal by detecting an approaching conductive object without contact.
  • Contact like a micro switch Therefore, high response, long life, and high reliability can be expected compared to those that produce switch signals.
  • eddy current proximity switches are able to distinguish between magnetic and nonmagnetic properties to be measured, and are easy to miniaturize, and are not susceptible to external magnetic fields. They are expected to be used in industrial applications. There is.
  • JP-A-62-12094 describes an inductor made of a copper wire with a magnetic material attached on the surface.
  • FIG. 1 is a cross-sectional view of one embodiment of a wire used in the coil of an apparatus to which the present invention is applied.
  • FIG. 2 is a diagram showing magnetic flux lines when current is supplied to the wire.
  • FIG. 3 is a diagram showing the strength of the magnetic field according to the distance from the coil.
  • FIG. 4 is a circuit diagram showing one embodiment of a conductive object detection and measurement apparatus to which the present invention is applied.
  • FIG. 5 is a view showing the positional relationship between the conductive object and the detection coil in the detection and measurement device of the embodiment.
  • FIG. 6 is a graph comparing measured values of equivalent series resistance between a coil used in the detection and measurement device of the present invention and a conventional coil.
  • FIG. 7 is a graph comparing measured values of equivalent inductances of a coil used in the detection and measurement device of the present invention and a conventional coil.
  • FIG. 8 is a graph comparing the measured values of the high frequency gain Q value of the coil used in the detection and measurement device of the present invention and the conventional coil.
  • Fig. 9 shows the change in resistance with the distance between the conductive object and the detection coil. It is rough.
  • FIG. 10 is a graph showing the inductance by the distance between the conductive object and the detection coil.
  • FIG. 11 is a graph showing the high frequency gain Q value depending on the distance between the conductive object and the detection coil.
  • FIG. 12 is a graph showing the output voltage according to the distance between the conductive object and the detection coil.
  • FIG. 13 is a graph showing the linearity of the output voltage characteristic depending on the distance between the conductive object and the detection coil.
  • FIG. 14 is a graph showing the sensitivity according to the distance between the conductive object and the detection coil.
  • FIG. 15 is a cross-sectional view of an essential part of a flaw detection sensor which is an embodiment of a conductive object detection and measurement apparatus to which the present invention is applied.
  • FIG. 16 is a cross-sectional view of a high frequency transformer to which the present invention is applied.
  • FIG. 17 is a block diagram of a proximity switch to which the present invention is applied.
  • FIG. 18 is a cross-sectional view of a coil used in a proximity switch to which the present invention is applied.
  • FIG. 19 is a cross-sectional view of another embodiment of a wire used for a coil of an apparatus to which the present invention is applied. Explanation of sign
  • 1 is a copper wire
  • 3 is an iron layer
  • 5 is a nickel layer
  • 7 is an insulating layer
  • 8 is a magnetic flux line
  • 9 is a wire rod
  • 10 is a wire rod
  • 11 is a detection coil
  • 13 is a capacitor
  • 15 is a minute Capacitor for pressure, 17 for oscillator, 19 for voltmeter
  • 20 for conductive body
  • 23 for iron core
  • 25 for primary coil
  • 30 for crack
  • 35 is oscillation circuit
  • 36 is comparison Circuit
  • 37 output circuit
  • 40 magnetic core
  • Ie excitation current
  • Ie eddy current
  • R (x) equivalent series resistance
  • L (x) inductor
  • X is the distance between the conductive object and the detection coil.
  • the inventor of the present invention conducted the following preliminary experiment and FEM (Finite Element Method: finite element method) analysis by a computer to obtain knowledge leading to the completion of the present invention.
  • FEM Finite Element Method: finite element method
  • wire rod 10 of the trial coil (wire rod used for the coil of the device of the present invention) is a magnetic material on the core wire (outside diameter 90 im) made of copper wire 1
  • the iron layer 3 and the -Keckle layer 5 which are layers are laminated, and the insulating layer 7 of polyurethane is applied to the outside.
  • the conventional coil has the same number and shape as a wire material in which a polyurethane insulation layer is coated on the outer periphery of a copper wire (core wire outer diameter 90 m).
  • Prototype coil wire 10 is a conventional coil wire Less bias in current density distribution than material 9.
  • the wire of the trial coil has a magnetic flux which is hard to enter inside the wire due to the shielding effect of the magnetic layer, but in the conventional coil, the magnetic flux is inside of the conductor and this magnetic flux causes an eddy current to flow inside the wire. .
  • the bias of the current density distribution is smaller than that of the conventional coil. Therefore, the current density distribution has a resistance increase due to the bias (proximity effect), so the resistance of the conventional coil is larger than that of the prototype coil.
  • the present invention was made under the findings as described above, and provides an apparatus provided with a high-inductance high-frequency coil for exciting an electromagnetic wave, and in detail, it has excellent detection sensitivity and wide detection.
  • a detection and measurement device for conductive objects that can obtain a range, a proximity switch with high sensitivity and excellent operation reliability that is not affected by the surrounding magnetic field, a motor actuator with a high power factor, and a high frequency transformer. It is said that.
  • the conductive object detection and measurement device which has been made to achieve the above object, comprises a coil (11) facing the conductive object (20) without contact and a coil (11) connected to the coil (11).
  • the coil (11) has a voltage measuring instrument (19), and an eddy current flowing inside the conductive object (20) by high frequency electromagnetic induction oscillated by the resonant (11).
  • the detection and measurement object of the conductive object detection and measurement device of the present invention can be implemented as a detection of metals. That is, this detection and measurement device I mean Sa.
  • the detection and measurement object of the conductive object detection and measurement apparatus of the present invention can be implemented as the distance (X) between the conductive object (20) and the coil (11). That is, this detection and measurement device means a distance sensor to the conductive object (20).
  • the detection and measurement object of the conductive object detection and measurement device of the present invention can be implemented as a scratch (3 0) inside the conductive object (2 0). That is, this detection and measurement device means a flaw detection sensor in a conductive object.
  • the proximity switch of the present invention which has been made to achieve the above object, is connected to the coil (11) and the coil (11) to connect the oscillator circuit (35) and the comparison circuit (36).
  • An eddy current having an output circuit (37) and an on / off signal from the output circuit (37) due to an induced current flowing to the coil (11) as the conductive object (20) approaches.
  • the wire (10) of the coil (11) is a copper wire (1) whose outer periphery is covered by a magnetic layer (3 * 5).
  • the high frequency transformer of the present invention made to achieve the above object comprises at least a primary coil (25) and a secondary coil (27), and the coil (25 ⁇ 2 7)
  • the wire rod (10) is a copper wire (1) whose outer periphery is covered with a magnetic layer (3 * 5).
  • the magnetic layer is a layer of plated iron or Z and nickel. The effect of the invention is preferred
  • the coil used for the detection and measurement device, proximity switch, or high frequency transformer of the present invention uses a copper wire whose outer periphery is covered with a magnetic layer as a wire material, and the inductance is increased. Gain Q improves.
  • the shielding effect of the magnetic layer can prevent resistance ⁇ by the proximity effect of the eddy current, the sensitivity of the detection and measurement device is improved, the sensitivity of the proximity switch is improved, and the high frequency transformer is efficient. improves.
  • the output voltage of the coil used in the device of the present invention is a conventional copper wire
  • the detection voltage is higher than the output voltage of the coil, and the detection range of the distance is wide.
  • FIG. 4 shows a circuit diagram of one embodiment of a conductive object detection and measurement apparatus to which the present invention is applied.
  • the conductive object detection and measurement device shown in the figure includes a distance sensor from the detection coil of the device to the conductive object, a metal detection sensor for detecting the presence of metals, and a flaw detection sensor for detecting the presence or absence of cracks in the conductive object. It can be used as
  • a detection coil (high frequency oscillation coil) 11 faces the conductive object 20 without contact.
  • the detection coil 1 1 has an equivalent series inductance L (x) and an equivalent series resistance R (x). detection The coil 1 1 is connected in parallel with the capacitor 1 3 to form a resonant circuit. An AC voltmeter 19 is connected to the resonant circuit.
  • the detection coil 1 1 is connected to the oscillator 17 via a voltage dividing capacitor 15 for limiting the current.
  • the wire of the detection coil 1 1 used in the detection and measurement device for a conductive object of the present invention is a copper wire whose outer periphery is covered with a magnetic layer.
  • the wire 10 according to the embodiment of the present invention has a core wire made of a copper wire 1 with an iron layer 3 and an Eckel layer 5 as magnetic material layers.
  • Insulating layer 7 of polyurethane is applied to Outer diameter of core wire of copper wire 1 is 90 / zm, outer diameter of iron layer 3 is 92 / xm (layer thickness 1 / zm), outer diameter of Nickel layer 5 is 92.1 ⁇ m (layer thickness 0.0 5 ix) rn)
  • the Nikkol layer is provided to make it easy to attach solder.
  • the same number of coils are applied to the outer periphery of a copper wire (core wire outer diameter 90 zm) with a wire material coated with an insulating layer of polyurethane and a conventional high frequency oscillation coil (hereinafter referred to as a comparative example coil) I assume.
  • the conductive object 20 to be measured is chromium molybdenum steel (S CM4 40) which is a magnetic substance in this embodiment.
  • a magnetic flux 0c is generated when an excitation current IC is supplied to the detection coil 1 1 by applying
  • an eddy current I e flows in the conductive object 20 by electromagnetic induction to generate a magnetic flux.
  • the impedance of detection coil 1 1 changes. This change in impedance is converted to the output voltage Vo by the parallel resonant circuit.
  • the output voltage Vo is expressed by the following equation.
  • x distance from the conductive object to be measured to the detection coil
  • Q (x) Q value depending on distance X
  • V excitation voltage [V]
  • angular frequency [rad / s]
  • L (x) Inductance [HR (x): Resistance [ ⁇ ]
  • C p Resonant capacitor 1 3
  • CS Voltage dividing capacitor 1 5
  • the output voltage Vo is expressed only by the Q (x) value of the coil and the capacitor capacitances C p and CS, and the measurement range of the detection and measurement device using parallel resonance shown in FIG. Indicates that the high frequency gain dependent on the coil Q (x H direct, ie, distance X) is affected.
  • R ( ⁇ ) of the example coil was approximately 1.5 times that of the comparative example coil.
  • the proximity effect between the conducting wires is reduced by the Fe layer and the Ni layer, so the equivalent series resistance R ( ⁇ ) is reduced compared to the comparative example coil.
  • Figure 6 shows the comparison coil The calculated value of resistance by skin effect is shown.
  • Rdc DC resistance of coil [ ⁇ ]
  • 1 length of lead from start to end [m]
  • conductivity of lead [S / m]
  • d diameter of lead [m ]
  • Ri inner radius of coil [m]
  • re outer radius of coil [m]
  • 8 skin thickness [m]
  • / ⁇ ⁇ relative permeability of wire
  • / O permeability of vacuum (4 ⁇ ⁇ ⁇ _ _ 7 ) [H / m]
  • ber 0th-order real Kelvin function, bei: 0th-order complex kelvin function.
  • Figure 6 shows that the increase in resistance to frequency is mainly due to the proximity effect. Also, the resonance frequency was 10.5MH z for all coils.
  • the equivalent series inductances for the frequencies of the example coil and the comparative example coil are shown in FIG.
  • the example coil is 1.1 times as large as the comparative example coil.
  • the frequency gain Q ( ⁇ ) values of the example coil and the comparative example coil were measured and are shown in FIG. In the figure, the example coil has a 0 ( ⁇ ) value of 1.6 times that of the comparative example coil.
  • the reason is that the equivalent series resistance R (R) decreases and the equivalent series inductance L ( ⁇ ) increases.
  • the variation IR of the impedance characteristics R (X) of the example coil and the comparison coil is 31 1 ⁇ and 3 8 ⁇ , respectively, and the variation of the impedance of the coil is 1R. It is 1. 2 times that of the example coil, and it is clear that the impedance characteristic of the example coil is excellent.
  • the impedance characteristic R (X) increases.
  • a magnetic flux larger than that of the comparative example coil acts on the conductive object (see the prototype coil in FIG. 3 and the conventional coil). Therefore, as the distance X becomes smaller, the impedance R (X) of the example coil increases more than that of the comparative example coil.
  • the inductance L (X) is constant with respect to the distance X between the example coil and the comparative example coil.
  • the inductance L (x) of the example coil and the comparative example coil is 40 and 36 respectively, and the inductance L (X) of the example coil is 1.1 times as large as that of the comparative example coil. Ru. It is understood that the inductance L (x) of the example coil is larger than that of the comparative example coil by the effect of the magnetic thin film.
  • the example coil has a large impedance variation 1R and a large inductance L (x), as can be seen from FIG. 11, the variation of the high frequency gain Q (x) value is compared to that of the comparative example coil. About twice that of
  • Figure 12 shows the comparison of the output voltage characteristics of the example coil and the comparative example coil The Also, the figure shows the approximate straight line using the least squares method for each of the output voltage characteristics.
  • the amount of change in output voltage JVo was 430 mV for the conventional coil and 850 mV for the prototype coil, and the example coil was about twice the coil of the comparative example.
  • Amount of change 1VO was calculated from the following equation.
  • FIG. 12 A comparison of the linearity of the output voltage characteristics of the example coil and the comparative example coil is shown in FIG.
  • the output voltage characteristics shown in Fig. 12 are linearly approximated using the least squares method, and the distance between the approximate value and the actual value is kept within a range of ⁇ 3% of the error e (X).
  • the range L was determined.
  • the error e (X) was calculated using the following equation.
  • Vl (x) voltage [V] of approximate straight line.
  • both the L / D and L / ra values of the example coil were about 1.4 times that of the comparative example coil.
  • FIG. 14 shows a comparison of detection sensitivity of the conductive object detection and measurement device in the case of using the example coil and the comparative example coil.
  • the detection sensitivity V ′ (X n) / X n at the n-th measurement point was calculated using the following equation.
  • the detection sensitivity lVo '/ lx is up to 1 5 5 V / m for the coil of the comparative example and up to 3 1 0 V / m for the coil of the example. It became 1.5 times. At all distances, the example coil became more sensitive than the comparative example coil. Therefore, in the example coil, an improvement in distance detection sensitivity is realized as compared with the comparative example coil.
  • FIG. 15 shows a cross section of a schematic configuration of an embodiment in which the above-mentioned detection and measurement device is used as a flaw detection sensor. As shown in this figure, measurement pairs When the conductive object 20 which is an elephant has a crack 30, the eddy current flowing inside the conductive object 20 changes due to the presence of the crack 30.
  • the resonance output of the detection coil 1 1 changes, and the presence or absence of the crack 30 can be detected.
  • the device using the example coil has higher sensitivity than the device using the comparative example coil, and the search range becomes wider.
  • FIG. 16 shows a cross section of an example of the high frequency transformer according to the present invention, in which an iron core 23 is wound with a primary coil 25 and a secondary coil 27.
  • the wire of each of these coils 2 5 ⁇ 2 7 is a copper wire whose outer periphery is covered with a magnetic layer.
  • the high frequency voltage input to the primary coil 25 is transformed and output from the secondary coil 27.
  • An example of a high frequency transformer is a pulse transformer used in a DC-DC converter.
  • a high frequency current is supplied to the primary coil 25 from an external electronic circuit (not shown).
  • the resistance R of the example coil is smaller than that of the comparative example coil. That is, in the high frequency transformer, the copper loss generated in the coil can be reduced by configuring the coil using the magnetic soldered wire in which the outer periphery of the copper wire is covered with the magnetic thin film. It becomes high efficiency.
  • the transformer having the iron core may be an air core type transformer without the iron core. Since the example coil exerts more magnetic flux than the comparative example coil, that is, the magnetic flux can be blown further away, the air core transformer using the example coil can also realize high performance.
  • FIG. 17 shows the configuration of the proximity switch of the present invention and is of the eddy current type. It is connected to coil 1 1 and coil 1 1 and has an oscillation circuit 3 5, a comparison circuit 3 6 and an output circuit 3 7.
  • Oscillator circuit 35 is in parallel with the coil and the coil
  • the excitation current is supplied to the resonant circuit composed of connected capacitors, and the voltage (displacement) of the resonant circuit is output.
  • the comparison circuit 36 compares the preset voltage (hereinafter referred to as the set displacement) with the output of the resonance circuit using the OP amplifier, and the displacement is less than the set displacement and the displacement is the set displacement or more. Output the corresponding voltage.
  • the output circuit 37 outputs 0 V from the output of the comparison circuit 36 if the displacement is less than the set displacement, and outputs 5 V if the displacement is equal to or more than the set displacement.
  • the coil 1 1 has a configuration in which a wire 10 shown in FIG. 1 is wound around a core 40 made of a soft magnetic material such as ferrite.
  • coil 11 may be an air core coil without a core.
  • the above-mentioned eddy current type proximity switch obtains a binary ON / OFF output voltage from the output circuit due to the induced current flowing to the coil near the dust of the conductive object 20.
  • wire rod 10 has iron layer 3 and nickel layer 5 laminated to copper wire 1, but high permeability such as Ni Fe or ferrite
  • a magnetic material having a magnetic permeability and a high resistivity may be formed by a process such as plating.
  • FIG. 20 is a cross-sectional view of a wire used in a coil of an apparatus to which the present invention is applied, which is another embodiment different from the example shown in FIG.
  • the wire 32 of this example an iron layer 3 as a magnetic material layer and a nickel layer 5 are adhered to a core wire made of a copper wire 1, and an insulating layer 7 made of polyurethane is provided on the outer side.
  • a fusion layer made of a thermoplastic resin is provided. This In the wire 32 of the example, it is possible to perform winding directly to the magnetic core while heating, and the fusion layer is melted to bond the wires together.

Abstract

A conductive body detecting/measuring device which has a coil (11) facing in non-contact a conductive body (20), and a voltage measuring unit (19) for measuring an output voltage from the coil (11), and which detects and measures the conductive body by measuring with the voltage measuring unit (19) a change in output voltage from the coil (11) caused by eddy current flowing inside the conductive body (20) due to high-frequency electromagnetic induction oscillated by the coil (11), wherein the wire (10) of the detection coil (11) is a copper wire (1) covered on the outer periphery thereof with magnetic layers (3, 5). A high-frequency transformer provided with at least a primary-side coil (25) and a secondary-side coil (27), wherein the wires (10) of the coils (25, 27) are copper wires covered on the outer peripheries thereof with the magnetic layers (3, 5).

Description

高周波コイルを備えた機器  Equipment equipped with high frequency coil
技術分野 Technical field
本発明は、 電磁波を励起する高周波コイルを備えた機器、 具体的に は導電性物体を検出測定する装置、 近接スィ ッチ、 高周波コイルを備 明  The present invention provides an apparatus provided with a high frequency coil for exciting an electromagnetic wave, specifically, an apparatus for detecting and measuring a conductive object, a proximity switch, and a high frequency coil.
えた高周波変圧器に関するものである。 書 It relates to a high frequency transformer. book
背景技術  Background art
高周波コイルから電磁波が発振されると、 その磁界内にある導電性 物体には電磁誘導電流が流れることが知られている。 かかる高周波コ ィルによる誘導渦電流を利用して各種のセンサが開発されている。 例 えば特開平 9 - 2 7 7 0 7 0号公報には、 レーザー加工へッ ド衝撃防 止のためのギャップセンサが開示されている。 また特開平 7 - 8 3 6 0 6号公報には木材チップの精砕機用の非接触式隙間測定、 特開 2 0 0 2 - 4 7 7 3号公報には掘削作業に使用する力ッターの駆動軸の距 離測定、特開 1 1 - 1 6 5 4 3 0号公報には画像記録用紙の厚さ検出、 特開平 8 - 1 8 4 5 7 9号公報には金属材質の判定、 特開平 2 - 2 0 1 1 0 1号公報には磁気軸受けなど、 多様なセンサが示されている。 これらの各種センサに使用される高周波コイルは、 通常、 エナメル絶 縁の銅線で巻かれている。  When an electromagnetic wave is oscillated from a high frequency coil, it is known that an electromagnetic induction current flows to a conductive object in the magnetic field. Various sensors have been developed using the eddy currents induced by such high frequency coils. For example, Japanese Patent Application Laid-Open No. 9-270,700 discloses a gap sensor for preventing shock to a laser processing head. Also, Japanese Patent Application Laid-Open No. 7-8360 non-contact measurement of clearance for wood chip refinement machine, Japanese Patent Application Laid-open No. 2 0 0 2-4 7 7 3 is a force cutter used for excavating work. The distance measurement of the drive shaft, the thickness detection of the image recording paper is disclosed in JP-A-11-160430, the determination of the metal material is disclosed in JP-A-8-185749, and the A variety of sensors, such as magnetic bearings, are disclosed in Japanese Utility Model Application Publication No. 2-201101. The high frequency coils used in these various sensors are usually wound with enameled insulated copper wire.
これら各種センサと同一原理を使用するものに、 渦電流形近接スィ ツチがある。 近接スィ ッチは、 渦電流形以外に、 静電容量形、 直流磁 界の変化を捉える磁気形などがあり 、 接近する導電物体を非接触で検 出してスィ ッチ信号を出すもので、 マイクロスイ ッチのよ うに接触し てスイ ッチ信号を出すもの以上の高応答、 長寿命、 高信頼性が期待で きる。 なかでも渦電流形近接スィ ッチは、 測定対象の磁性、 非磁性の 判別が可能であり、 かつ小形化が容易で外部磁界の影響を受けにくい 利点もあり工業用途での利用が期待されている。 An eddy current proximity switch is one that uses the same principle as these various sensors. In addition to the eddy current type, the proximity switch also has a capacitance type, a magnetic type that captures changes in the DC magnetic field, etc., and generates a switch signal by detecting an approaching conductive object without contact. Contact like a micro switch Therefore, high response, long life, and high reliability can be expected compared to those that produce switch signals. Above all, eddy current proximity switches are able to distinguish between magnetic and nonmagnetic properties to be measured, and are easy to miniaturize, and are not susceptible to external magnetic fields. They are expected to be used in industrial applications. There is.
—方、 実公昭 4 2 - 1 3 3 9号公報は、 銅線円周上に強磁性体メ ッ キを施したエナメル絶縁電線を高周波輪用卷線に用いた場合、 高周波 利得を向上し得ることを開示している。 また特開昭 6 2— 2 1 1 9 0 4号公報には、 表面に磁性体メ ツキをした銅線からなるイ ンダクタが 記載されている。 図面の簡単な説明  The method disclosed in Japanese Utility Model Publication No. 4 2-1 3 3 9 improves the high frequency gain when the enameled insulated wire having a ferromagnetic mesh on the copper wire circumference is used for the wire for high frequency ring. It discloses what to get. In addition, JP-A-62-12094 describes an inductor made of a copper wire with a magnetic material attached on the surface. Brief description of the drawings
図 1 は、 本発明を適用する機器のコィルに使用される線材の一実施 例の断面図である。  FIG. 1 is a cross-sectional view of one embodiment of a wire used in the coil of an apparatus to which the present invention is applied.
図 2は、 線材に電流を流したときの磁束線を示す図である。  FIG. 2 is a diagram showing magnetic flux lines when current is supplied to the wire.
図 3は、 コイルからの距離による磁界の強さを示す図である。  FIG. 3 is a diagram showing the strength of the magnetic field according to the distance from the coil.
図 4は、 本発明を適用する導電性物体検出測定装置の一実施例を示 す回路図である。  FIG. 4 is a circuit diagram showing one embodiment of a conductive object detection and measurement apparatus to which the present invention is applied.
図 5は、 前記実施例の検出測定装置における導電性物体と検出コィ ルの位置関係を示す図である。  FIG. 5 is a view showing the positional relationship between the conductive object and the detection coil in the detection and measurement device of the embodiment.
図 6は、 本発明の検出測定装置に使用するコイルと、 従来のコイル との等価直列抵抗の実測値を比較したグラフである。  FIG. 6 is a graph comparing measured values of equivalent series resistance between a coil used in the detection and measurement device of the present invention and a conventional coil.
図 7は、 本発明の検出測定装置に使用するコイルと、 従来のコイル との等価ィンダクタンスの実測値を比較したグラフである。  FIG. 7 is a graph comparing measured values of equivalent inductances of a coil used in the detection and measurement device of the present invention and a conventional coil.
図 8は、 本発明の検出測定装置に使用するコイルと、 従来のコイル. との高周波利得 Q値の実測値を比較したグラフである。  FIG. 8 is a graph comparing the measured values of the high frequency gain Q value of the coil used in the detection and measurement device of the present invention and the conventional coil.
図 9は、 導電性物体と検出コイルとの距離による抵抗変化を示すグ ラフである。 Fig. 9 shows the change in resistance with the distance between the conductive object and the detection coil. It is rough.
図 1 0は、 導電性物体と検出コイルとの距離によるィンダクタンス を示すグラフである。  FIG. 10 is a graph showing the inductance by the distance between the conductive object and the detection coil.
図 1 1 は、 導電性物体と検出コイルとの距離による高周波利得 Q値 を示すグラフである。  FIG. 11 is a graph showing the high frequency gain Q value depending on the distance between the conductive object and the detection coil.
図 1 2は、 導電性物体と検出コイルとの距離による出力電圧を示す グラフである。  FIG. 12 is a graph showing the output voltage according to the distance between the conductive object and the detection coil.
図 1 3は、 導電性物体と検出コイルとの距離による出力電圧特性の 直線性を示すグラフである。  FIG. 13 is a graph showing the linearity of the output voltage characteristic depending on the distance between the conductive object and the detection coil.
図 1 4は、 導電性物体と検出コイルとの距離による感度を示すダラ フである。  FIG. 14 is a graph showing the sensitivity according to the distance between the conductive object and the detection coil.
図 1 5は、 本発明を適用する導電性物体検出測定装置の一実施例で ある傷探知センサの要部構成断面図である。  FIG. 15 is a cross-sectional view of an essential part of a flaw detection sensor which is an embodiment of a conductive object detection and measurement apparatus to which the present invention is applied.
図 1 6は、 本発明を適用する高周波変圧器の断面図である。  FIG. 16 is a cross-sectional view of a high frequency transformer to which the present invention is applied.
図 1 7は、本発明を適用する近接スィ ッチのブロ ック回路図である。 図 1 8は、 本発明を適用する近接スィ ツチに使用されるコイルの断 面図である。  FIG. 17 is a block diagram of a proximity switch to which the present invention is applied. FIG. 18 is a cross-sectional view of a coil used in a proximity switch to which the present invention is applied.
図 1 9は、 本発明を適用する機器のコイルに使用される線材の別な 実施例の断面図である。 符号の説明  FIG. 19 is a cross-sectional view of another embodiment of a wire used for a coil of an apparatus to which the present invention is applied. Explanation of sign
1 は銅線、 3は鉄層、 5はニッケル層、 7は絶縁層、 8は磁束線、 9 は線材、 1 0は線材、 1 1 は検出コイル、 1 3 はコ ンデンサ、 1 5 は分圧用コ ンデンサ、 1 7は発振器、 1 9は電圧測定器、 2 0は導電 性物体、 2 3は鉄芯、 2 5は一次コイル、 2 7は二次コイル、 3 0は クラック、 3 2は線材、 3 3'は融着層、 3 5は発振回路、 3 6は比較 回路、 3 7は出力回路、 4 0は磁性コア、 I eは励振電流、 I eは渦電 流、 Φθ · Φθ は磁束、 R (x )は等価直列抵抗、 L (x )はイ ンダクタ ン ス、 Xは導電性物体と検出コイルとの距離である。 1 is a copper wire, 3 is an iron layer, 5 is a nickel layer, 7 is an insulating layer, 8 is a magnetic flux line, 9 is a wire rod, 10 is a wire rod, 11 is a detection coil, 13 is a capacitor, 15 is a minute Capacitor for pressure, 17 for oscillator, 19 for voltmeter, 20 for conductive body, 23 for iron core, 25 for primary coil, 27 for secondary coil, 30 for crack, 32 for 32 Wire, 3 3 'is fusion layer, 35 is oscillation circuit, 36 is comparison Circuit, 37: output circuit, 40: magnetic core, Ie : excitation current, Ie : eddy current, 、 θ · θθ: magnetic flux, R (x): equivalent series resistance, L (x): inductor X is the distance between the conductive object and the detection coil.
発明の開示 Disclosure of the invention
発明の実施に先立ち、 本発明の発明者は、 以下の予備実験、 および コンピュータによる F EM (Finite Element Method : 有限要素法) 解 析を行い、 本発明の完成に到る知見を得た。  Prior to the implementation of the invention, the inventor of the present invention conducted the following preliminary experiment and FEM (Finite Element Method: finite element method) analysis by a computer to obtain knowledge leading to the completion of the present invention.
先ず試作コイルと従来のコイルを作成した。 図 1 (断面図) に詳細 を示すとおり、 試作コイルの線材 1 0 (本発明の機器のコイルに使用 される線材) は、 銅線 1からなる芯線 (外径 9 0 i m) に、 磁性体層 である鉄層 3 と -ッケル層 5がメ ツキされ、 その外側にポリ ウレタン の絶縁層 7が塗布されている。 この線材 1 0を、 内径 : 1. 6 mm、 外形 : 2. 2 4 mm、 軸方向の長さ : 0. 6 3 mm、 卷数 : N= 2 6 回のコイルと した。  First, a prototype coil and a conventional coil were created. As shown in detail in FIG. 1 (cross-sectional view), wire rod 10 of the trial coil (wire rod used for the coil of the device of the present invention) is a magnetic material on the core wire (outside diameter 90 im) made of copper wire 1 The iron layer 3 and the -Keckle layer 5 which are layers are laminated, and the insulating layer 7 of polyurethane is applied to the outside. The wire 10 was used as a coil with an inner diameter of 1.6 mm, an outer diameter of 2.24 mm, an axial length of 0.63 mm, and a number of N = 26 times.
従来のコイルは、 銅線 (芯線外径 9 0 m) の外周にポリ ウレタン め絶縁層が塗布されている線材で同一卷数、 同一形状と した。  The conventional coil has the same number and shape as a wire material in which a polyurethane insulation layer is coated on the outer periphery of a copper wire (core wire outer diameter 90 m).
( 1 ) コイルに電流を流したときの磁束線を、 F EM解析 (ソフ ト ウェア Maxwell) によつて得た。 解析条件は f = 1 . 4 MH z 、 I c = 1 mAで行った。 図 2 (A) に示す試作コイルの線材 1 0周辺にお ける磁束線 8の分布、 (B) に示す従来コイルの線材 9周辺における 磁束線 8の分布のよ うに、 試作コイルは磁性薄膜のシールド効果によ つて従来のコイルよ り も導線内部に磁束が入り込みにく いことがわか る。 (1) FEM analysis (software Maxwell) was used to obtain flux lines when current was applied to the coil. The analysis conditions were f = 1.4 MH z and I c = 1 mA. As shown in Fig. 2 (A), the distribution of magnetic flux lines 8 around wire 10 of the prototype coil and the distribution of magnetic flux lines 8 around wire 9 of the conventional coil shown in Fig. 2 (B). The shielding effect shows that magnetic flux is less likely to enter the inside of the wire than conventional coils.
( 2 ) コイルに電流を流したと きの線材断面における電流密度を、 F EM解析によって得た。 試作コイルの線材 1 0は、 従来のコイルの線 材 9 より も電流密度分布の偏りが小さレ、。 試作コィルの線材 1 0は磁 性体層のシールド効果によ り磁束が線材内部に入り にく いが、 従来の コィルは磁束が導体内部に入り この磁束によつて線材内部に渦電流が 流れる。 磁束がはいり込みづらい試作コイルは、 従来のコィノレよ り も 電流密度分布の偏りが小さ く なる。 したがって、 電流密度分布は偏り によって抵抗が増加 (近接効果) するために、 試作コイルよ り も従来 のコイルの方が抵抗は大きレ、。 (2) The current density at the wire cross section when current was applied to the coil was obtained by FEM analysis. Prototype coil wire 10 is a conventional coil wire Less bias in current density distribution than material 9. The wire of the trial coil has a magnetic flux which is hard to enter inside the wire due to the shielding effect of the magnetic layer, but in the conventional coil, the magnetic flux is inside of the conductor and this magnetic flux causes an eddy current to flow inside the wire. . In the case of a trial coil that is hard to contain magnetic flux, the bias of the current density distribution is smaller than that of the conventional coil. Therefore, the current density distribution has a resistance increase due to the bias (proximity effect), so the resistance of the conventional coil is larger than that of the prototype coil.
( 3 ) コイルからの距離による磁界の強さを、 F EM解析で求めた。 図 3に示すよ うに、 距離 r が離れた場合に、 従来のコイルよ り も試作 コイルの磁界の強さは大きいことが解かった。  (3) The strength of the magnetic field due to the distance from the coil was determined by FEM analysis. As shown in Fig. 3, it was found that the magnetic field strength of the prototype coil was larger than that of the conventional coil when the distance r was separated.
本発明は、 上記のよ うな知見の下になされたものであり、 電磁波を 励起する高イ ンダクタンスの高周波コイルを備えた機器を提供するも のであり、 詳細には、 優れた検出感度と広い検出範囲を得られる導電 性物体の検出測定装置、 周辺の磁界に影響されず高感度で動作確実性 に優れた近接スィ ッチ、 力率の高いモータゃァクチユエータ、 高周波 変圧器を提供することを目的とするものである。  The present invention was made under the findings as described above, and provides an apparatus provided with a high-inductance high-frequency coil for exciting an electromagnetic wave, and in detail, it has excellent detection sensitivity and wide detection. A detection and measurement device for conductive objects that can obtain a range, a proximity switch with high sensitivity and excellent operation reliability that is not affected by the surrounding magnetic field, a motor actuator with a high power factor, and a high frequency transformer. It is said that.
前記の目的を達成するためになされた本発明の導電性物体検出測定 装置は、 導電性物体 ( 2 0 ) に非接触で対向するコイル ( 1 1 ) 、 お よび該コイル ( 1 1 ) に連結する電圧測定器 ( 1 9 ) を有し、 該コィ ノレ ( 1 1 ) が発振する高周波の電磁誘導で該導電性物体 ( 2 0 ) の内 部に流れる淌電流による、 該コイル ( 1 1 ) の出力電圧変化を該電圧 測定器で測定することで該導電性物体 ( 2 0 ) を検出測定する装置で あって、 該高周波発振コイル ( 1 1 ) の線材 ( 1 0 ) が外周を磁性体 層 ( 3 · 5 ) で覆った銅線 ( 1 ) であることを特徴とする。  The conductive object detection and measurement device according to the present invention, which has been made to achieve the above object, comprises a coil (11) facing the conductive object (20) without contact and a coil (11) connected to the coil (11). The coil (11) has a voltage measuring instrument (19), and an eddy current flowing inside the conductive object (20) by high frequency electromagnetic induction oscillated by the resonant (11). A device for detecting and measuring the conductive object (20) by measuring a change in output voltage of the high frequency oscillation device with the voltage measuring instrument, wherein a wire (10) of the high frequency oscillation coil (11) It is characterized by being a copper wire (1) covered with a layer (3. 5).
本発明の該導電性物体検出測定装置の検出測定対象は、 金属類の探 知と して実施できる。 すなわち、 この検出測定装置は、 金属探知セン サを意味する。 The detection and measurement object of the conductive object detection and measurement device of the present invention can be implemented as a detection of metals. That is, this detection and measurement device I mean Sa.
同じく本発明の該導電性物体検出測定装置の検出測定対象は、 該導 電性物体 ( 2 0) と該コイル ( 1 1 ) との間隔距離 ( X ) と して実施 できる。 すなわち、 この検出測定装置は、 導電性物体 ( 2 0 ) までの 距離センサを意味する。  Similarly, the detection and measurement object of the conductive object detection and measurement apparatus of the present invention can be implemented as the distance (X) between the conductive object (20) and the coil (11). That is, this detection and measurement device means a distance sensor to the conductive object (20).
また、 本発明の該導電性物体検出測定装置の検出測定対象は、 該導 電性物体 ( 2 0 ) 内部の傷 ( 3 0 ) と して実施できる。 すなわち、 こ の検出測定装置は、 導電性物体中の傷探知センサを意味する。  In addition, the detection and measurement object of the conductive object detection and measurement device of the present invention can be implemented as a scratch (3 0) inside the conductive object (2 0). That is, this detection and measurement device means a flaw detection sensor in a conductive object.
前記の目的を達成するためになされた本発明の近接スィ ツチは、 コ ィル ( 1 1 ) 、 およびコイル ( 1 1 ) に接続して発振回路 ( 3 5 ) と 比較回路 ( 3 6 ) と出力回路 ( 3 7 ) とを有し、 導電性物体 ( 2 0 ) の接近でコイル ( 1 1 ) に流れる誘導電流によ り出力回路 ( 3 7 ) か らオン · オフ信号を出力する渦電流形近接スィ ツチであって、 コイル ( 1 1 ) の線材 ( 1 0 ) が外周を磁性体層 ( 3 * 5 ) で覆った銅線 ( 1 ) であることを特徴とする。  The proximity switch of the present invention, which has been made to achieve the above object, is connected to the coil (11) and the coil (11) to connect the oscillator circuit (35) and the comparison circuit (36). An eddy current having an output circuit (37) and an on / off signal from the output circuit (37) due to an induced current flowing to the coil (11) as the conductive object (20) approaches. It is characterized in that the wire (10) of the coil (11) is a copper wire (1) whose outer periphery is covered by a magnetic layer (3 * 5).
前記の目的を達成するためになされた本発明の高周波変圧器は、 少 なく とも一次側コイル ( 2 5 ) と、 二次側コイル ( 2 7 ) を備え、 コ ィル ( 2 5 · 2 7 ) の線材 ( 1 0 ) が外周を磁性体層 ( 3 * 5 ) で覆 つた銅線 ( 1 ) であることを特徴とする。  The high frequency transformer of the present invention made to achieve the above object comprises at least a primary coil (25) and a secondary coil (27), and the coil (25 · 2 7) The wire rod (10) is a copper wire (1) whose outer periphery is covered with a magnetic layer (3 * 5).
本発明の検出測定装置、 近接スィ ッチ、 または高周波変圧器に使用 されるコィノレ ( 1 1 · 2 5 · 2 7 ) の線材 1 0の外周の磁性体層は、 フェライ ト、 鉄、 ニッケル、 コバル ト、 Fe-N、 Fe-X-N(X=Ta、 N b、 Hf, etc.), Fe-X-〇(X=Mg、 Al、 etc.), NiFe (パーマ ロ イ ) 、 CoFe、 CoNiFe、 CoFeB、 FeP、 NiFeP、 CoNiFeMoC, CoFeB、 CoNbZrゝ Fe-Si, などの軟磁性体から選ばれる少なく とも 1層で実施できる。  The magnetic layer on the outer periphery of the wire rod 10 of the core (1 1 · 2 · 5 · 2 7) used for the detection and measurement device of the present invention, proximity switch, or high frequency transformer is ferrite, iron, nickel, Cobalt, Fe-N, Fe-XN (X = Ta, Nb, Hf, etc.), Fe-X-〇 (X = Mg, Al, etc.), NiFe (Permalloy), CoFe, CoNiFe It can be carried out with at least one layer selected from soft magnetic materials such as CoFeB, FeP, NiFeP, CoNiFeMoC, CoFeB, CoNbZr で き る Fe-Si, and the like.
また磁性体層が、 鍍金された鉄または Zおよびニッケルの層である ことが好ましレ 発明の効果 Also, the magnetic layer is a layer of plated iron or Z and nickel. The effect of the invention is preferred
本発明の検出測定装置、 近接スィ ッチ、 または高周波変圧器に使用 されるコイルは、 線材と して外周を磁性体層で覆った銅線を使用し、 イ ンダクタ ンスが増加するため、 高周波利得 Q値が向上する。 また磁 性体層のシールド効果によって渦電流の近接効果による抵抗增を防止 できるため、 検出測定装置は感度が向上し、 近接スィ ッチは接近距離 の感度が向上し、 高周波変圧器は効率が向上する。  The coil used for the detection and measurement device, proximity switch, or high frequency transformer of the present invention uses a copper wire whose outer periphery is covered with a magnetic layer as a wire material, and the inductance is increased. Gain Q improves. In addition, since the shielding effect of the magnetic layer can prevent resistance 增 by the proximity effect of the eddy current, the sensitivity of the detection and measurement device is improved, the sensitivity of the proximity switch is improved, and the high frequency transformer is efficient. improves.
検出測定装置のコイルから検出測定対象である導電性物体までの距 離と、 コイルの出力電圧の関係を比較すると、 本発明の装置で使用し たコイルの出力電圧は、 従来の銅線を使用したコイルの出力電圧よ り も大きく 、 検出感度が高く なつており、 また距離の検出範囲も広く な つている。 実施例  Comparing the distance from the coil of the detection and measurement device to the conductive object to be detected and measured and the output voltage of the coil, the output voltage of the coil used in the device of the present invention is a conventional copper wire The detection voltage is higher than the output voltage of the coil, and the detection range of the distance is wide. Example
以下、 本発明の実施例を図面によ り詳細に説明する。 しかしながら 本発明は、 これらの実施例に限定されるものではない。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to these examples.
図 4には、 本発明を適用する導電性物体検出測定装置の一実施例の 回路図を示してある。 同図に示す導電性物体検出測定装置は、 装置の 検出コィルから導電性物体までの距離センサ、 金属類の有無を調べる 金属探知センサ、 導電性物体中のクラックの有無を検出する傷探知セ ンサと して利用できる。  FIG. 4 shows a circuit diagram of one embodiment of a conductive object detection and measurement apparatus to which the present invention is applied. The conductive object detection and measurement device shown in the figure includes a distance sensor from the detection coil of the device to the conductive object, a metal detection sensor for detecting the presence of metals, and a flaw detection sensor for detecting the presence or absence of cracks in the conductive object. It can be used as
図 4に示すとおり、 導電性物体 2 0に非接触で検出コイル (高周波 発振コイル) 1 1が対向している。 検出コイル 1 1 は、 等価直列イ ン ダクタ ンス L ( x )と等価直列抵抗 R ( x )特性を持つものである。 検出 コイル 1 1 はコンデンサ 1 3 と並列されて共振回路を形成している。 その共振回路には交流電圧計 1 9が接続されている。 また検出コイル 1 1 は、 電流を制限するための分圧用コンデンサ 1 5を介して発振器 1 7に繋がっている。 As shown in FIG. 4, a detection coil (high frequency oscillation coil) 11 faces the conductive object 20 without contact. The detection coil 1 1 has an equivalent series inductance L (x) and an equivalent series resistance R (x). detection The coil 1 1 is connected in parallel with the capacitor 1 3 to form a resonant circuit. An AC voltmeter 19 is connected to the resonant circuit. The detection coil 1 1 is connected to the oscillator 17 via a voltage dividing capacitor 15 for limiting the current.
本発明の導電性物体の検出測定装置に使用される検出コイル 1 1 の 線材は、 外周を磁性体層で覆った銅線である。 本発明の実施例の線材 1 0は、 図 1 (断面図) に詳細を示すとおり、 銅線 1からなる芯線に、 磁性体層である鉄層 3 とエッケル層 5がメ ツキされ、 その外側にポリ ウレタンの絶縁層 7が塗布されている。銅線 1の芯線外径は 9 0 /z m、 鉄層 3の外形は 9 2 /x m (層厚 1 /z m) 、 二ッケル層 5の外形は 9 2. 1 μ m (層厚 0.0 5 ix rn) である。 尚、 二ッケル層は半田がつきやす くするために、 設けたものである。  The wire of the detection coil 1 1 used in the detection and measurement device for a conductive object of the present invention is a copper wire whose outer periphery is covered with a magnetic layer. As shown in detail in FIG. 1 (cross-sectional view), the wire 10 according to the embodiment of the present invention has a core wire made of a copper wire 1 with an iron layer 3 and an Eckel layer 5 as magnetic material layers. Insulating layer 7 of polyurethane is applied to Outer diameter of core wire of copper wire 1 is 90 / zm, outer diameter of iron layer 3 is 92 / xm (layer thickness 1 / zm), outer diameter of Nickel layer 5 is 92.1 μm (layer thickness 0.0 5 ix) rn) The Nikkol layer is provided to make it easy to attach solder.
この線材 1 0をァク リ ル樹脂製の直径 3. 3 6 mmのボビンに、 卷 数 1 0 2回、 軸方向の長さ 2. 1 5 mmに卷き、 コイル外径 4. 5 4 mm (コィノレ内径 3. 3 6 mm、 コイル内外差厚み 0.5 9 m m、 コィ ル平均半径 = 1 .9 7 5 mm) の実施例の検出コイル 1 1 (以下、 実施 例コイルとレ、う こともある) と した。 This wire rod 10 is wound onto a bobbin of diameter 3.36 mm made of acrylic resin, with a length of 10.2 times and an axial length of 2.15 mm, coil outer diameter 4.5 4 mm (Koinore inner diameter 3. 3 6 mm, coil out differences thickness 0.5 9 mm, Koi Le mean radius = 1. 9 7 5 mm) of the embodiment of the detection coil 1 1 (hereinafter, examples coil and Re, cormorants also Yes).
比較対象のため、 銅線 (芯線外径 9 0 z m) の外周にポリ ウレタン の絶縁層が塗布されている線材で同一卷数のコイルを従来タイプの高 周波発振コイル (以下、 比較例コイル) とする。  For comparison, the same number of coils are applied to the outer periphery of a copper wire (core wire outer diameter 90 zm) with a wire material coated with an insulating layer of polyurethane and a conventional high frequency oscillation coil (hereinafter referred to as a comparative example coil) I assume.
測定対象の導電性物体 2 0は、 この実施例では磁性体であるク ロム モリブデン鋼 ( S CM4 4 0 ) である。  The conductive object 20 to be measured is chromium molybdenum steel (S CM4 40) which is a magnetic substance in this embodiment.
上記の検出測定装置で、 検出測定対象を導電性物体 2 0 とコイル 1 1 との間隔距離 X とする場合は以下のよ うに動作する。 以下、 動作と 装置の性能評価を述べる。  In the case of the above detection and measurement apparatus, when the distance between the conductive object 20 and the coil 1 1 is X, the following operation is performed. The performance evaluation of the operation and equipment is described below.
装置の発振器 1 7からは励振電圧 V (励振周波数 f = 1.4 MHZ) を印加し検出コイル 1 1 に励振電流 I C を流すと、図 5に示すよ う に、 磁束 0c が発生する。 磁束 0c が導電性物体 2 0に作用すると、 電磁 誘導によ り導電性物体 2 0に渦電流 I e が流れて磁束 が生ずる。 検出コイル 1 1 から導電性物体 2 0までの距離 Xに応じて導電性物体 2 0に作用する磁束が変化するために、 導電性物体 2 0に流れる渦電 流 I e が変わり、 その結果、 検出コイル 1 1 のイ ンピーダンスが変化 する。 このイ ンピーダンスの変化が並列共振回路によ り出力電圧 Vo に変換される。 このとき実測された出力電圧 vo の共振周波数の実測 値は f 。 = 1 0 .5 MH zであった。 出力電圧 Voは次式で表わされる。
Figure imgf000011_0001
Excitation voltage V (excitation frequency f = 1.4 MHZ) from the oscillator 17 of the device As shown in Fig. 5, a magnetic flux 0c is generated when an excitation current IC is supplied to the detection coil 1 1 by applying When the magnetic flux 0c acts on the conductive object 20, an eddy current I e flows in the conductive object 20 by electromagnetic induction to generate a magnetic flux. Since the magnetic flux acting on the conductive object 20 changes according to the distance X from the detection coil 1 1 to the conductive object 20, the eddy current I e flowing to the conductive object 20 changes, and as a result, The impedance of detection coil 1 1 changes. This change in impedance is converted to the output voltage Vo by the parallel resonant circuit. The measured resonant frequency of the output voltage vo measured at this time is f. = 10.5 MHz. The output voltage Vo is expressed by the following equation.
Figure imgf000011_0001
Q ( x )= ω L ( x )/R ( x ) ( 2 )  Q (x) = ω L (x) / R (x) (2)
k = 1 + C P/C s ( 3 ) k = 1 + C P / C s (3)
ここに、 x : 測定対象である導電性物体から検出コイルまでの距離、 Q( x ) : 距離 Xに依存する Q値、 V : 励振電圧 [V]、 ω : 角周波数 [r a d / s ]、 L (x ):イ ンダクタンス [H R(x ):抵抗 [Ω]、 C p : 共振用 コンデンサ 1 3、 C S : 分圧用コンデンサ 1 5。 Here, x: distance from the conductive object to be measured to the detection coil, Q (x): Q value depending on distance X, V: excitation voltage [V], ω: angular frequency [rad / s], L (x): Inductance [HR (x): Resistance [Ω], C p: Resonant capacitor 1 3 CS: Voltage dividing capacitor 1 5
上記式から出力電圧 Vo はコイルの Q (x )値とコンデンサ容量 C p および C S だけで表され、 図 1 に示した並列共振を利用した検出測定 装置の測定範囲の拡大や検出感度の向上には、コイルの Q(x H直、 すな わち距離 Xに依存する高周波利得が影響することを示している。  From the above equation, the output voltage Vo is expressed only by the Q (x) value of the coil and the capacitor capacitances C p and CS, and the measurement range of the detection and measurement device using parallel resonance shown in FIG. Indicates that the high frequency gain dependent on the coil Q (x H direct, ie, distance X) is affected.
そこで、 実施例コィルと比較例コィルの周波数に対する等価直列抵 抗 R (x =∞)を測定し、 図 6に示した。 実験では、 実施例コイルの R (∞)は比較例コイルの約 1 . 5倍となった。 実施例コイルでは F e層 と N i層によつて導線間の近接効果が軽減されるため、 比較例コイル に比べ等価直列抵抗 R (∞)が減少している。 図 6 中に比較例コイルの 表皮効果による抵抗の計算値を示した。 Therefore, the equivalent series resistance R (x = ∞) with respect to the frequency of the example coil and the comparative example coil was measured and is shown in FIG. In the experiment, R (∞) of the example coil was approximately 1.5 times that of the comparative example coil. In the example coil, the proximity effect between the conducting wires is reduced by the Fe layer and the Ni layer, so the equivalent series resistance R (∞) is reduced compared to the comparative example coil. Figure 6 shows the comparison coil The calculated value of resistance by skin effect is shown.
表皮効果による抵抗 Rseは、 下式から算出した γ berybei - beiyber'y  Resistance due to the skin effect Rse is calculated by the following equation: γ berybei-beiyber'y
[Ω]  [Ω]
ber'-y + bei  ber'-y + bei
4_ Four_
πσά [Ω]  πσά [Ω]
2
Figure imgf000012_0001
2
Figure imgf000012_0001
ここに、 Rdc: コイルの直流抵抗 [Ω]、 1 : 卷始めから卷終りまで の導線の長さ [m]、 σ : 導線の導電率 [ S /m]、 d : 導線の線径 [m]、 r i : コイルの内径半径 [m]、 r e : コイルの外形半径 [m】、 8 : 表皮 厚さ [m]、 /χ θ : 導線の比透磁率、 / O :真空の透磁率 ( 4 π Χ ΐ Ο _ 7 ) [H/m】、 b e r : 0次実数ケルビン関数、 b e i : 0次複素数ケルビ ン関数。 Here, Rdc: DC resistance of coil [Ω], 1: length of lead from start to end [m], σ: conductivity of lead [S / m], d: diameter of lead [m ], Ri: inner radius of coil [m], re: outer radius of coil [m], 8: skin thickness [m], / θ θ: relative permeability of wire, / O: permeability of vacuum (4 π Χ Ο _ _ 7 ) [H / m], ber: 0th-order real Kelvin function, bei: 0th-order complex kelvin function.
さ らに、 図 6は周波数に対する抵抗の増加が主に近接効果によって 生じていることを示している。 また共振周波数はいずれのコイルも 1 0. 5MH z となった。  Furthermore, Figure 6 shows that the increase in resistance to frequency is mainly due to the proximity effect. Also, the resonance frequency was 10.5MH z for all coils.
実施例コイルと比較例コイルの周波数に対する等価直列ィンダクタ ンスを、 図 7に示した。 周波数 f = 1 0 0 k H z 〜 2 MH z の範囲で 実施例コイルと比較例コイルの等価直列ィンダクタンス L(∞)はそれ ぞれ 4 1 /z Hと 3 7 // Hであり、 実施例コィルは比較例コィルの 1 . 1倍となった。 実施例コイルと比較例コイルの周波数ゲイン Q(∞)値を、 測定し図 8に示した。 同図において、実施例コイルは、比較例コイルに比して、 0 (∞)値は 1. 7 6倍となっている。 この理由と して、 等価直列抵抗 R (∞)が減少し、 等価直列インダクタンス L (∞)が増加していること が挙げられる。 The equivalent series inductances for the frequencies of the example coil and the comparative example coil are shown in FIG. The equivalent series inductances L ()) of the example coil and the comparative example coil in the frequency range of f = 100 kHz to 2 MHz are 41 / z H and 37 // H, respectively. The example coil is 1.1 times as large as the comparative example coil. The frequency gain Q (∞) values of the example coil and the comparative example coil were measured and are shown in FIG. In the figure, the example coil has a 0 (∞) value of 1.6 times that of the comparative example coil. The reason is that the equivalent series resistance R (R) decreases and the equivalent series inductance L (∞) increases.
図 9に示すよ うに、 実施例コイルと比較例コィルのィンピーダンス 特性 R ( X )の変化量 IRは、 それぞれ 3 1 Ω と 3 8 Ωであり、 比較例 コイルのィンピーダンス変化量 1Rは実施例コイルの 1. 2倍あり、 実施例コイルのィンピーダンス特性が優れていることが明らかである。 距離 Xが小さ く なるにしたがって、 測定対象である導電性物体によ り 大きな磁束 0cが作用して、導電性物体の渦電流損が増加する。 これに よ りイ ンピーダンス特性 R ( X )が増加する。 実施例コイルは、 比較例 コイルよ り も大きな磁束 が導電性物体に作用する (図 3の試作コ ィル、 従来のコイル参照) 。 したがって、 距離 Xが小さく なるにした がって実施例コイルのイ ンピーダンス R ( X )は比較例コイルよ り も急 増する。  As shown in FIG. 9, the variation IR of the impedance characteristics R (X) of the example coil and the comparison coil is 31 1 Ω and 3 8 Ω, respectively, and the variation of the impedance of the coil is 1R. It is 1. 2 times that of the example coil, and it is clear that the impedance characteristic of the example coil is excellent. As the distance X decreases, a large magnetic flux 0c acts on the conductive object to be measured to increase the eddy current loss of the conductive object. Due to this, the impedance characteristic R (X) increases. In the example coil, a magnetic flux larger than that of the comparative example coil acts on the conductive object (see the prototype coil in FIG. 3 and the conventional coil). Therefore, as the distance X becomes smaller, the impedance R (X) of the example coil increases more than that of the comparative example coil.
図 1 0に示すとおり、 実施例コイルと比較例コイルは、 夫々距離 X に対してインダクタンス L ( X )は一定である。 実施例コイルと比較例 コイルのイ ンダク タ ンス L (x )はそれぞれ 4 0 Ηと 3 6 であ り 、 実施例コイルのイ ンダクタ ンス L ( X )は比較例コイルの 1. 1倍であ る。 磁性薄膜の効果によって実施例コイルのインダクタンス L (x )は 比較例コイルよ り も大きいことが解かる。  As shown in FIG. 10, the inductance L (X) is constant with respect to the distance X between the example coil and the comparative example coil. The inductance L (x) of the example coil and the comparative example coil is 40 and 36 respectively, and the inductance L (X) of the example coil is 1.1 times as large as that of the comparative example coil. Ru. It is understood that the inductance L (x) of the example coil is larger than that of the comparative example coil by the effect of the magnetic thin film.
また、 実施例コイルはイ ンピーダンス変化量 1Rが大きく 、 かつィ ンダクタンス L (x )も大きいために、 図 1 1 から分るよ うに、 高周波 利得 Q(x )値の変化量 は、 比較例コイルの約 2倍である。  In addition, since the example coil has a large impedance variation 1R and a large inductance L (x), as can be seen from FIG. 11, the variation of the high frequency gain Q (x) value is compared to that of the comparative example coil. About twice that of
図 1 2に実施例コイルと比較例コイルの出力電圧特性の比較を示し た。 また、 同図中にそれぞれの出力電圧特性の最小二乗法を用いた近 似直線を示した。 出力電圧の変化量 JVo は従来のコイルで 4 3 0 m V、 試作コイルで 8 5 0 mVとなり、 実施例コイルが比較例コイルの 約 2倍となった。 変化量 1VOは下式から算出した。 Figure 12 shows the comparison of the output voltage characteristics of the example coil and the comparative example coil The Also, the figure shows the approximate straight line using the least squares method for each of the output voltage characteristics. The amount of change in output voltage JVo was 430 mV for the conventional coil and 850 mV for the prototype coil, and the example coil was about twice the coil of the comparative example. Amount of change 1VO was calculated from the following equation.
AVo = Vo(∞)-Vo(0.\) [V] AV o = V o (∞)-V o (0. \) [V]
図 1 3に実施例コイルと比較例コイルの出力電圧特性の直線性の比 較を示した。 図 1 2に示した出力電圧特性を最小二乗法を用いて直線 近似し、 その近似値と実測値との誤差 e ( X )が ± 3 %以内の範囲で直 線性が保たれている距離の範囲 Lを求めた。 誤差 e ( X )は下式を用い て算出した。
Figure imgf000014_0001
A comparison of the linearity of the output voltage characteristics of the example coil and the comparative example coil is shown in FIG. The output voltage characteristics shown in Fig. 12 are linearly approximated using the least squares method, and the distance between the approximate value and the actual value is kept within a range of ± 3% of the error e (X). The range L was determined. The error e (X) was calculated using the following equation.
Figure imgf000014_0001
ここに、 Vl(x ) : 近似直線の電圧 [V]。 Here, Vl (x): voltage [V] of approximate straight line.
出力電力の直線性が ε ( X ) = ± 3 %以内に保たれている範囲は、 表 1 に示すとおり、 実施例コイルと比較例コィルでそれぞれ 0.1〜 2. 2 mmと 0.1〜 1.6 mmである。 すなわち実施例コイルと比較例コ ィルの直線範囲 Lはそれぞれ 2.1 mmと 1 .5 mmである。 また、 コ ィルの外径寸法 Dに対する直線範囲 L/Dは、実施例コイルと比較例コ ィルでそれぞれ 0.5 8 と 0.3 3 となった。 コイルの平均半径 r a に 対する直線範囲 L / r aは、実施例コイルと比較例コィルでそれぞれ 1. 2 3 と 0.8 7 となった。 L/D、 L / r a ともに実施例コイルが比較例 コイルの約 1 .4倍となった。 なお、 レ、ずれのコィノレも D = 4.5 4 m m、 r a= 1.7 3 mmである。 したがって、 実施例コイルは、 比較例 コイルと比較して、 直線性に優れており、 導電性物体検出測定装置の 距離検出範囲の拡大が実現されている。 表 The range in which the linearity of the output power is kept within ε (X) = ± 3% is, as shown in Table 1, between 0.1 and 2.2 mm and 0.1 to 1.6 mm for the example coil and the comparative example coil, respectively. is there. That is, the linear ranges L of the example coil and the comparative example coil are 2.1 mm and 1.5 mm, respectively. Further, the linear range L / D with respect to the outer diameter dimension D of the coil was 0.5 8 and 0.3 3 for the example coil and the comparative example coil, respectively. The linear range L / ra with respect to the average radius ra of the coil was 1.23 and 0.87 for the example coil and the comparative example coil, respectively. Both the L / D and L / ra values of the example coil were about 1.4 times that of the comparative example coil. In addition, as for Re, the gap of the gap is also D = 4.5 4 mm, ra = 1.73 mm. Therefore, the example coil is superior in linearity to the comparative example coil, and the expansion of the distance detection range of the conductive object detection and measurement device is realized. table
Figure imgf000015_0001
図 1 4に実施例コイルと比較例コイルを用いた場合における導電性 物体検出測定装置の検出感度の比較を示した。 n番目の測定点におけ る検出感度 V ' ( X n)/ X nは下式を用いて算出した。
Figure imgf000015_0001
FIG. 14 shows a comparison of detection sensitivity of the conductive object detection and measurement device in the case of using the example coil and the comparative example coil. The detection sensitivity V ′ (X n) / X n at the n-th measurement point was calculated using the following equation.
Δ^0 ) _ M- i^) [v/m] 同図よ り検出感度 lVo'/ lxは、比較例コイルで最大 1 9 5 V/m、 実施例コィルで最大 3 1 0 V/mとなり、 1.5倍になった。 すべての 距離において実施例コイルの方が比較例コイルよ り高感度となった。 したがって、 実施例コイルは比較例コイルと比較して距離検出感度の 向上が実現されている。 Δ ^ 0 ) _ M− i ^) [v / m ] According to the figure, the detection sensitivity lVo '/ lx is up to 1 5 5 V / m for the coil of the comparative example and up to 3 1 0 V / m for the coil of the example. It became 1.5 times. At all distances, the example coil became more sensitive than the comparative example coil. Therefore, in the example coil, an improvement in distance detection sensitivity is realized as compared with the comparative example coil.
以上の結果から、 導電性物体検出測定装置のコイルに磁性めつき線 を用いることで、 従来の銅線と比較して距離測定範囲の拡大と距離検 出感度の向上が可能である。  From the above results, it is possible to expand the distance measurement range and to improve the distance detection sensitivity compared to the conventional copper wire by using a magnetic plated wire for the coil of the conductive object detection and measurement device.
上記の実施例では、 装置の検出コイルから導電性物体までの距離を 測定できる距離センサと しての例を説明したが、 同一の構成で金属類 など導電性物体の有無そのものを調べる金属探知センサと しての利用 もでき、 実施例コイルを使用した装置が比較例コイルを使用した装置 よ り も高感度であるし、 探査範囲も広く なることが明らかである。 また、 図 1 5には上記検出測定装置を傷探知センサと して利用した 実施例の概略構成の断面が示してある。 この図に示すとおり、 測定対 象である導電性物体 2 0にクラック 3 0がある場合、 導電性物体 2 0 の内部に流れる渦電流がクラック 3 0の存在によ り変化する。 その結 果、 検出コイル 1 1 の共振出力が変わり 、 クラック 3 0の有無を検出 できる。 このよ うな傷探知センサと して利用した場合においても、 実 施例コイルを使用した装置が比較例コイルを使用した装置よ り も高感 度であるし、 探查範囲も広く なる。 In the above embodiment, an example of the distance sensor capable of measuring the distance from the detection coil of the device to the conductive object has been described. However, a metal detection sensor for examining the presence / absence itself of the conductive object such as metal with the same configuration. It is apparent that the device using the example coil is more sensitive than the device using the comparative example coil, and the search range is wider. Further, FIG. 15 shows a cross section of a schematic configuration of an embodiment in which the above-mentioned detection and measurement device is used as a flaw detection sensor. As shown in this figure, measurement pairs When the conductive object 20 which is an elephant has a crack 30, the eddy current flowing inside the conductive object 20 changes due to the presence of the crack 30. As a result, the resonance output of the detection coil 1 1 changes, and the presence or absence of the crack 30 can be detected. Even when used as such a flaw detection sensor, the device using the example coil has higher sensitivity than the device using the comparative example coil, and the search range becomes wider.
図 1 6には本発明の高周波変圧器の一実施例の断面が示してあり、 鉄芯 2 3に一次コイル 2 5 と、 二次コイル 2 7が巻かれている。 これ らのコイル 2 5 · 2 7のそれぞれの線材が外周を磁性体層で覆った銅 線になっている。 一次コイル 2 5に入力した高周波電圧は変圧され、 二次コイル 2 7から出力される。 '  FIG. 16 shows a cross section of an example of the high frequency transformer according to the present invention, in which an iron core 23 is wound with a primary coil 25 and a secondary coil 27. The wire of each of these coils 2 5 · 2 7 is a copper wire whose outer periphery is covered with a magnetic layer. The high frequency voltage input to the primary coil 25 is transformed and output from the secondary coil 27. '
高周波変圧器の例と して D C— D C コンバータに用いられているパ ルス変圧器がある。 一次コイル 2 5には外部の電子回路 (図示してい ない) から高周波の電流が流される。 図 6の実施例コイルと比較例コ ィルの周波数に対する直列等価抵抗 R (∞)の比較に示したよ うに、 実 施例コイルの抵抗 Rは、 比較例コイルと比較して小さレ、。 すなわち、 高周波変圧器において、 銅線の外周を磁性体薄膜で覆った磁性めつき 線を用いたコイルで構成することで、 コイルに発生する銅損を低減す ることができ、 高周波変圧器は高効率になる。  An example of a high frequency transformer is a pulse transformer used in a DC-DC converter. A high frequency current is supplied to the primary coil 25 from an external electronic circuit (not shown). As shown in the comparison of series equivalent resistance R (∞) with respect to the frequency of the example coil of FIG. 6 and the comparative example coil, the resistance R of the example coil is smaller than that of the comparative example coil. That is, in the high frequency transformer, the copper loss generated in the coil can be reduced by configuring the coil using the magnetic soldered wire in which the outer periphery of the copper wire is covered with the magnetic thin film. It becomes high efficiency.
この実施例では鉄心を有する変圧器で説明したが、 鉄心がない空心 形変圧器でもよい。 実施例コイルは、 比較例コイルよ り も多く の磁束 を作用させる、すなわち、磁束をよ り遠く に飛ばすことができるから、 実施例コイルを用いた空心トランスも高性能化を実現できる。  Although the transformer having the iron core is described in this embodiment, it may be an air core type transformer without the iron core. Since the example coil exerts more magnetic flux than the comparative example coil, that is, the magnetic flux can be blown further away, the air core transformer using the example coil can also realize high performance.
図 1 7は、 本発明の近接スィ ッチの構成であり渦電流形である。 コ ィル 1 1 、 コイル 1 1 に接続して発振回路 3 5 と比較回路 3 6 と出力 回路 3 7 とを有している。 発振回路 3 5は、 コイルとコイルに並列に 接続されたコンデンサから構成される共振回路に励振電流を供給して おり、 共振回路の電圧 (変位) が出力されている。 比較回路 3 6は、 予め設定された電圧 (以下、 設定変位) と共振回路の出力を OP アン プを用いて比較することで、 変位が設定変位未満の場合と変位が設定 変位以上の場合に対応した電圧を出力する。 出力回路 3 7は、 比較回 路 3 6の出力から、 変位が設定変位未満の場合には 0V を出力し、 変 位が設定変位以上の場合には 5Vを出力する。 FIG. 17 shows the configuration of the proximity switch of the present invention and is of the eddy current type. It is connected to coil 1 1 and coil 1 1 and has an oscillation circuit 3 5, a comparison circuit 3 6 and an output circuit 3 7. Oscillator circuit 35 is in parallel with the coil and the coil The excitation current is supplied to the resonant circuit composed of connected capacitors, and the voltage (displacement) of the resonant circuit is output. The comparison circuit 36 compares the preset voltage (hereinafter referred to as the set displacement) with the output of the resonance circuit using the OP amplifier, and the displacement is less than the set displacement and the displacement is the set displacement or more. Output the corresponding voltage. The output circuit 37 outputs 0 V from the output of the comparison circuit 36 if the displacement is less than the set displacement, and outputs 5 V if the displacement is equal to or more than the set displacement.
コイル 1 1 は、 図 1 8に示すとおり、 フェライ トなどの軟磁性体か ら構成されるコア 4 0に、 図 1 に示した線材 1 0を巻いた構成となつ ている。 なお、 コイル 1 1はコアのない空心コイルであってもよレヽ。 上記の渦電流形近接スィ ツチで導電性物体 2 0の埃近でコイルに流 れる誘導電流に起因して出力回路からオン · オフの二値の出力電圧を 得ている。  As shown in FIG. 18, the coil 1 1 has a configuration in which a wire 10 shown in FIG. 1 is wound around a core 40 made of a soft magnetic material such as ferrite. In addition, coil 11 may be an air core coil without a core. The above-mentioned eddy current type proximity switch obtains a binary ON / OFF output voltage from the output circuit due to the induced current flowing to the coil near the dust of the conductive object 20.
このよ うな構成と したことで、 コイル 1 1 の交流抵抗が上昇するこ とを抑制し、 イ ンダクタンスが増加し、 磁束を導電性物体 2 0に多く 作用させることができるので、 コイル 1 1から導電性物体 2 0までの 感度距離を拡大し、 コイル 1 1 の小形化が実現できる。  With such a configuration, it is possible to suppress an increase in the alternating current resistance of the coil 1 1, to increase the inductance, and to cause a large amount of magnetic flux to act on the conductive object 20. The sensitivity distance to the conductive object 20 can be expanded, and miniaturization of the coil 1 1 can be realized.
尚、 図 1 に示した線材 1 0の断面図では、 線材 1 0は、 銅線 1 に鉄 層 3 とニッケル層 5がメ ツキされているが、 N i F eやフェライ 卜な どの高透磁率と高抵抗率をもつ磁性体をめつきなどの工程で形成して もよい。  In the cross-sectional view of wire rod 10 shown in FIG. 1, wire rod 10 has iron layer 3 and nickel layer 5 laminated to copper wire 1, but high permeability such as Ni Fe or ferrite A magnetic material having a magnetic permeability and a high resistivity may be formed by a process such as plating.
図 2 0には、 本発明を適用する機器のコイルに使用される線材であ つて、 図 1 に示した例とは別な実施例の線材の断面図が示してある。 この例の線材 3 2は、 銅線 1からなる芯線に、 磁性体層である鉄層 3 とニッケル層 5がメ ツキされ、 その外側にポリ ウレタンの絶縁層 7が あり、 さ らに外側に熱可塑性樹脂からなる融着層が設けてある。 この 実施例の線材 3 2は、 加熱しながら磁性コアに直接卷線を行う ことが でき、 また融着層がとけて導線どう しが結合する。 FIG. 20 is a cross-sectional view of a wire used in a coil of an apparatus to which the present invention is applied, which is another embodiment different from the example shown in FIG. In the wire 32 of this example, an iron layer 3 as a magnetic material layer and a nickel layer 5 are adhered to a core wire made of a copper wire 1, and an insulating layer 7 made of polyurethane is provided on the outer side. A fusion layer made of a thermoplastic resin is provided. this In the wire 32 of the example, it is possible to perform winding directly to the magnetic core while heating, and the fusion layer is melted to bond the wires together.

Claims

1 . 導電性物体に非接触で対向するコイル、 および該コイルに連結 する電圧測定器を有し、 該コイルが発振する高周波の電磁誘導で該導 電性物体の内部に流れる渦電流による、 該コイルの出力電圧変化を該 測定器で測定することで該導電性物体を検出測定する装置であって、 請 1. A coil having a noncontacting opposite to a conductive object, and a voltage measuring device connected to the coil, the eddy current flowing inside the conductive object due to high frequency electromagnetic induction generated by the coil A device for detecting and measuring the conductive object by measuring a change in output voltage of a coil with the measuring device,
該高周波発振コイルの線材が外周を磁性体層で覆った銅線であること を特徴とする導電性物体検出測定装置。 The conductive object detection and measurement apparatus, wherein the wire of the high frequency oscillation coil is a copper wire whose outer periphery is covered with a magnetic layer.
2 . 前記磁性体層が、 フェライ ト、 鉄、 ニッケル、 コバル ト、 Fe-N、 Fe-X-N (X=Ta、 N b、 または Hf) , Fe-X-〇(X=Mg、 または Al)、 NiFe、 囲  2. The magnetic layer is made of ferrite, iron, nickel, cobalt, Fe-N, Fe-XN (X = Ta, Nb or Hf), Fe-X-- (X = Mg or Al) , NiFe,
CoFe、 CoNiFe、 CoFeB、 FeP、 NiFeP、 CoNiFeMoC、 CoFeB、 CoNbZr、 Fe-Si から選ばれる少なく と も 1層であるこ とを特徴とする請求項 1 に記載の導電性物体検出測定装置。 The conductive object detection and measurement apparatus according to claim 1, wherein at least one layer selected from CoFe, CoNiFe, CoFeB, FeP, NiFeP, CoNiFeMoC, CoFeB, CoNbZr, and Fe-Si is used.
3 . 前記磁性体層が、 鍍金された鉄または/およびニッケルの層で あることを特徴とする請求項 1 に記載の導電性物体検出測定装置。 3. The conductive object detection and measurement device according to claim 1, wherein the magnetic material layer is a layer of plated iron or / and nickel.
4 . 前記導電性物体の検出測定対象が、 金属類の探知であることを 特徴とする請求項 1に記載の導電性物体検出測定装置。 4. The conductive object detection and measurement device according to claim 1, wherein the detection target of the conductive object is metal detection.
5 . 前記導電性物体の検出測定対象が、 該導電性物体と該コイルと の間隔距離であることを特徴とする請求項 1 に記載の導電性物体検出 測定装置。  5. The conductive object detection / measurement apparatus according to claim 1, wherein a detection measurement target of the conductive object is a distance between the conductive object and the coil.
6 . 前記導電性物体の検出測定対象が、 該導電性物体内部の傷であ ることを特徴とする請求項 1 に記載の導電性物体検出測定装置。  6. The conductive object detection and measurement apparatus according to claim 1, wherein the detection target of the conductive object is a flaw inside the conductive object.
7 . コイル、 および該コイルに接続して発振回路と比較回路と出力 回路とを有し、 導電性物体の接近でコィルに流れる誘導電流によ り 出 力回路からオン ·オフ信号を出力する渦電流形近接スィ ツチであって、 該コイルの線材が外周を磁性体層で覆った銅線であることを特徴とす る近接スィ ッチ。 7. A coil, and an oscillator circuit, a comparator circuit, and an output circuit connected to the coil, and an eddy that outputs an on / off signal from the output circuit by an induced current flowing to a coil as the conductive object approaches. A current-type proximity switch characterized in that the wire of the coil is a copper wire whose outer periphery is covered with a magnetic layer. Proximity switch.
8 . 前記磁性体層が、 フヱライ ト、 鉄、 ニッケル、 コバルト、 Fe-N、 Fe-X-N (X=Ta、 N b、 または Hf), Fe-X-〇(X=Mg、 または Al)、 NiFe、 CoFe、 CoNiFe、 CoFeB、 FeP、 NiFeP、 CoNiFeMoC , CoFeB、 CoNbZr、 Fe-Si から選ばれる少なく とも 1層であることを特徴とする請求項 7 に記載の近接スィ ッチ。  8. The magnetic layer is ferrite, iron, nickel, cobalt, Fe-N, Fe-XN (X = Ta, Nb or Hf), Fe-X-- (X = Mg or Al), The proximity switch according to claim 10, wherein the proximity switch is at least one layer selected from NiFe, CoFe, CoNiFe, CoFeB, FeP, NiFeP, CoNiFeMoC3, CoFeB, CoNbZr, and Fe-Si.
9 . 前記磁性体層が、 鍍金された鉄または およびニッケルの層で あることを特徴とする請求項 8に記載の近接スィ ツチ。  9. The proximity switch according to claim 8, wherein the magnetic layer is a layer of plated iron or nickel.
1 0 . 少なく と も一次側コイルと、 二次側コイルを備えた高周波変 圧器において、 該コイルの線材が外周を磁性体層で覆った銅線である ことを特徴とする高周波変圧器。  10. A high frequency transformer comprising a high frequency transformer including at least a primary side coil and a secondary side coil, wherein the wire of the coil is a copper wire whose outer periphery is covered with a magnetic layer.
1 1 . 前記磁性体層が、鉄、二ッケル、 コバルト、フェライ ト、 Fe-N、 Fe-X-N (X=Ta、 N b、 または Hf) , Fe-X-〇(X=Mg、 または Al)、 NiFe、 CoFe、 CoNiFe、 CoFeB、 FeP、 NiFeP、 CoNiFeMoC、 CoFeB、 CoN bZr、 Fe-Si から選ばれる少なく とも 1層であることを特徴とする請求項 1 0に記載の高周波変圧器。  1 1. The magnetic layer is made of iron, nickel, cobalt, ferrite, Fe-N, Fe-XN (X = Ta, Nb, or Hf), Fe-X- ((X = Mg, or Al) The high frequency transformer according to claim 10, wherein the high frequency transformer is at least one layer selected from NiFe, CoFe, CoNiFe, CoFeB, FeP, NiFeP, CoNiFeMoC, CoFeB, CoNbZr and Fe-Si.
1 2 . 前記磁性体層が、 鍍金された鉄または およびニッケルの層 であることを特徴とする請求項 1 0に記載の高周波変圧器。  12. The high frequency transformer according to claim 10, wherein the magnetic layer is a layer of plated iron or nickel.
PCT/JP2005/016700 2004-10-28 2005-09-06 Apparatus equipped with high frequency coil WO2006046358A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006542276A JPWO2006046358A1 (en) 2004-10-28 2005-09-06 Equipment with high frequency coil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-314176 2004-10-28
JP2004314176 2004-10-28

Publications (1)

Publication Number Publication Date
WO2006046358A1 true WO2006046358A1 (en) 2006-05-04

Family

ID=36227609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016700 WO2006046358A1 (en) 2004-10-28 2005-09-06 Apparatus equipped with high frequency coil

Country Status (2)

Country Link
JP (1) JPWO2006046358A1 (en)
WO (1) WO2006046358A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009054517A (en) * 2007-08-29 2009-03-12 Koyo Electronics Ind Co Ltd Long-distance operation proximity sensor
JP2011085502A (en) * 2009-10-16 2011-04-28 Shinshu Univ Magnetic field detection sensor of metal component, and method for determining quality of the metal component
WO2011118634A1 (en) 2010-03-23 2011-09-29 株式会社フジクラ High frequency cable and high frequency coil
WO2013042671A1 (en) 2011-09-22 2013-03-28 株式会社フジクラ Electric wire and coil
US8723387B2 (en) 2010-08-20 2014-05-13 Fujikura Ltd. Electric wire, coil, device for designing electric wire, and electric motor
JP2014147269A (en) * 2013-01-30 2014-08-14 Fukuoka Institute Of Technology Stator and rotator for sr motor, and designing method for them
WO2014148430A1 (en) 2013-03-18 2014-09-25 株式会社フジクラ Wire and coil
WO2015083456A1 (en) 2013-12-02 2015-06-11 株式会社フジクラ High-frequency electrical wire and coil
US10410778B2 (en) 2014-07-08 2019-09-10 Denso Corporation Magnetic circuit component
JP7439580B2 (en) 2020-03-12 2024-02-28 オムロン株式会社 proximity sensor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52154689A (en) * 1976-06-18 1977-12-22 Tokushu Toryo Kk Eddy current testing method and apparatus
JPS62211904A (en) * 1986-03-13 1987-09-17 Matsushita Electric Ind Co Ltd High-frequency inductor
JPH01220808A (en) * 1988-02-29 1989-09-04 Toshiba Corp Inductance element
JPH0355811A (en) * 1989-07-25 1991-03-11 Shinko Electric Co Ltd High-frequency transformer
JPH06232723A (en) * 1993-01-29 1994-08-19 Yamatake Honeywell Co Ltd Proximity switch
JPH10123259A (en) * 1996-10-17 1998-05-15 Shinko Mecs Kk Detection method and device thereof for metal object existing behind metal plate
JP2002004773A (en) * 2000-06-20 2002-01-09 Ishikawajima Harima Heavy Ind Co Ltd Method and device for detecting displacement of cutter driving shaft

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0236680B2 (en) * 1985-12-26 1990-08-20 Tokyo Tokushu Densen Kk KOSHUHASENRINYOZETSUENDENSENNOSEIZOHO
JP2003070200A (en) * 2001-08-24 2003-03-07 Fujikura Ltd Coil for actuator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52154689A (en) * 1976-06-18 1977-12-22 Tokushu Toryo Kk Eddy current testing method and apparatus
JPS62211904A (en) * 1986-03-13 1987-09-17 Matsushita Electric Ind Co Ltd High-frequency inductor
JPH01220808A (en) * 1988-02-29 1989-09-04 Toshiba Corp Inductance element
JPH0355811A (en) * 1989-07-25 1991-03-11 Shinko Electric Co Ltd High-frequency transformer
JPH06232723A (en) * 1993-01-29 1994-08-19 Yamatake Honeywell Co Ltd Proximity switch
JPH10123259A (en) * 1996-10-17 1998-05-15 Shinko Mecs Kk Detection method and device thereof for metal object existing behind metal plate
JP2002004773A (en) * 2000-06-20 2002-01-09 Ishikawajima Harima Heavy Ind Co Ltd Method and device for detecting displacement of cutter driving shaft

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009054517A (en) * 2007-08-29 2009-03-12 Koyo Electronics Ind Co Ltd Long-distance operation proximity sensor
JP2011085502A (en) * 2009-10-16 2011-04-28 Shinshu Univ Magnetic field detection sensor of metal component, and method for determining quality of the metal component
US9123456B2 (en) 2010-03-23 2015-09-01 Fujikura Ltd. High frequency cable, high frequency coil and method for manufacturing high frequency cable
WO2011118634A1 (en) 2010-03-23 2011-09-29 株式会社フジクラ High frequency cable and high frequency coil
US9478328B2 (en) 2010-03-23 2016-10-25 Fujikura Ltd. High frequency cable, high frequency coil and method for manufacturing high frequency cable
EP2621057A3 (en) * 2010-08-20 2016-01-20 Fujikura Ltd. Electric wire, coil, apparatus for designing electric wire, and electric motor
US8723387B2 (en) 2010-08-20 2014-05-13 Fujikura Ltd. Electric wire, coil, device for designing electric wire, and electric motor
US8866019B2 (en) 2010-08-20 2014-10-21 Fujikura Ltd. Electric wire, coil, device for designing electric wire, and electric motor
US9425662B2 (en) 2010-08-20 2016-08-23 Fujikura Ltd. Electric wire, coil, device for designing electric wire, and electric motor
US8987600B2 (en) 2011-09-22 2015-03-24 Fujikura Ltd. Electric wire and coil
US8946560B2 (en) 2011-09-22 2015-02-03 Fujikura Ltd. Electric wire and coil
WO2013042671A1 (en) 2011-09-22 2013-03-28 株式会社フジクラ Electric wire and coil
JP2014147269A (en) * 2013-01-30 2014-08-14 Fukuoka Institute Of Technology Stator and rotator for sr motor, and designing method for them
WO2014148430A1 (en) 2013-03-18 2014-09-25 株式会社フジクラ Wire and coil
US9859032B2 (en) 2013-03-18 2018-01-02 Fujikura Ltd. Electric wire for reducing AC resistance to be equal to or less than copper wire
WO2015083456A1 (en) 2013-12-02 2015-06-11 株式会社フジクラ High-frequency electrical wire and coil
KR20160065959A (en) 2013-12-02 2016-06-09 가부시키가이샤후지쿠라 High-frequency electrical wire and coil
US10410778B2 (en) 2014-07-08 2019-09-10 Denso Corporation Magnetic circuit component
JP7439580B2 (en) 2020-03-12 2024-02-28 オムロン株式会社 proximity sensor

Also Published As

Publication number Publication date
JPWO2006046358A1 (en) 2008-05-22

Similar Documents

Publication Publication Date Title
WO2006046358A1 (en) Apparatus equipped with high frequency coil
JP4662539B2 (en) Multi-directional distance non-contact measuring instrument
Brockmeyer Experimental evaluation of the influence of DC-premagnetization on the properties of power electronic ferrites
EP1965177B1 (en) Inductive presence or position sensor
CN111555469B (en) Power receiving unit, power transmitting unit, and wireless power supply device
JP5150521B2 (en) High frequency oscillation type proximity sensor
JPS60157003A (en) Method and device for improving sensitivity of noncontactingdistance measuring sensor
US10502586B2 (en) Inductive transducer shielding method
Wang et al. A compact and high-performance eddy-current sensor based on meander-spiral coil
CN107966671A (en) Magnetic Sensor inductance element and the current sensor for possessing it
JP2009204342A (en) Eddy current type sample measurement method and eddy current sensor
JPWO2003091655A1 (en) Metal inspection method and metal inspection apparatus
Mizuno et al. Extending the linearity range of eddy-current displacement sensor with magnetoplated wire
Song et al. Enhanced field sensitivity by strong mutual coupling and magnetoinduction in amorphous film/planar coil multilayers
Brockmeyer et al. Frequency dependence of the ferrite-loss increase caused by premagnetization
Isla et al. Optimal impedance on transmission of Lorentz force EMATs
CN207764288U (en) Current measuring element, power transmission device and electrical power transmission system
CN213069016U (en) Annular coil structure for magnetic core parameter measurement
JP2001336906A (en) Electromagnetic induction type displacement detecting device
JP2003177167A (en) Magnetic sensor
JP2020197381A (en) Gradient magnetic field sensor
Mizuno et al. Extending the operating distance of inductive proximity sensor using magnetoplated wire
JP7372540B2 (en) Magnetic flux density measurement method and magnetic flux density measurement device
JP3645093B2 (en) Magneto-impedance effect eddy current sensor
JPH052082A (en) Electromagnetic induction type inspection device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KM KR KZ LC LK LR LS LT LU LV MA MG MK MN MW MX MZ NA NG NI NZ OM PG PH PL PT RO RU SC SD SE SK SL SM SY TJ TM TN TR TT TZ UA US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IS IT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006542276

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05782405

Country of ref document: EP

Kind code of ref document: A1