WO2006046311A1 - Xy-actuator - Google Patents

Xy-actuator Download PDF

Info

Publication number
WO2006046311A1
WO2006046311A1 PCT/JP2004/016277 JP2004016277W WO2006046311A1 WO 2006046311 A1 WO2006046311 A1 WO 2006046311A1 JP 2004016277 W JP2004016277 W JP 2004016277W WO 2006046311 A1 WO2006046311 A1 WO 2006046311A1
Authority
WO
WIPO (PCT)
Prior art keywords
cam mechanism
output shaft
pair
slide
reverse rotation
Prior art date
Application number
PCT/JP2004/016277
Other languages
French (fr)
Japanese (ja)
Inventor
Tomio Maeda
Original Assignee
Tsubaki Yamakyu Chain Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsubaki Yamakyu Chain Co., Ltd. filed Critical Tsubaki Yamakyu Chain Co., Ltd.
Priority to CNA2004800443184A priority Critical patent/CN101052576A/en
Priority to PCT/JP2004/016277 priority patent/WO2006046311A1/en
Publication of WO2006046311A1 publication Critical patent/WO2006046311A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/44Movable or adjustable work or tool supports using particular mechanisms
    • B23Q1/56Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism
    • B23Q1/60Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism
    • B23Q1/62Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism with perpendicular axes, e.g. cross-slides
    • B23Q1/621Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism with perpendicular axes, e.g. cross-slides a single sliding pair followed perpendicularly by a single sliding pair
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q5/00Driving or feeding mechanisms; Control arrangements therefor
    • B23Q5/22Feeding members carrying tools or work
    • B23Q5/34Feeding other members supporting tools or work, e.g. saddles, tool-slides, through mechanical transmission
    • B23Q5/341Feeding other members supporting tools or work, e.g. saddles, tool-slides, through mechanical transmission cam-operated

Definitions

  • an object to be conveyed (hereinafter simply referred to as “workpiece”) can be accurately and at high speed. It is related to a two-dimensional linear actuator that can be transported and the device itself has a simpler and more compact configuration (hereinafter referred to as “ ⁇ ”).
  • the transfer device is arranged in parallel with a pair of input shafts to which a rotational driving force is input so as to be opposed to each other, and can reciprocate in directions that are close to each other and in a direction perpendicular thereto.
  • the first and second feed pars are provided on the input shaft so as to be coaxially and integrally rotatable, and have a cam shape that is symmetrical with respect to the rotation center at 180 °, one being at least one and the other being At least two, and a total of three or more feed cams and clamp cams, and each of the feed cams and clamp cams are engaged with each other at 180 ° symmetrical positions, and the input shaft
  • a feed motion conversion mechanism that is provided between the feed turrets and converts the rotation of the feed turret into feed motions of the first and second feed bars, and the clamp turrets and the first and second feeds.
  • a clamp motion converting mechanism that is provided between each of the bars and converts the swinging rotation of the clamping turret into the clamp motion of the first and second feed bars, and the clamp of the first and second feed bars. It is a transfer device configured to clamp the workpiece by movement and to transfer the clamped workpiece by the feed movement of the first and second feed bars.
  • one cam is Since two single-letters are used, and at least three cams (six turrets) are used for the rectangular movement, the equipment itself is complicated and expensive, and the equipment itself is relatively large, resulting in a large installation space. There was a difficulty that was necessary.
  • the turret is installed in a 180 ° symmetrical position with a 180 ° point-symmetric cam, and it is difficult to reduce the movement accuracy due to cam accuracy and cam turret assembly errors. There was also. .
  • the main object of the present invention is to solve the above-mentioned problems of the prior art, transport the cake accurately and smoothly, enable stable operation, and cope with high-speed operation. It is to provide an XY feature that can.
  • the present invention is a.
  • a first cam mechanism actuated by drive means, having an input shaft connected to the drive means, and first and second output shafts;
  • An input shaft connected to the first output shaft of the first cam mechanism via a connecting means, and a second cam mechanism having at least one output shaft;
  • a first motion converting means for converting a forward rotation or a reverse rotation of the output shaft of the second cam mechanism into a reciprocating motion, and is capable of reciprocating in the first direction.
  • At least one linear plate disposed;
  • the first cam is disposed via a second motion converting means that is movably disposed on the linear plate and converts a forward rotation or a reverse rotation of the second output shaft of the first cam mechanism into a reciprocating motion. Connected to the mechanism and arranged to be able to reciprocate in the second direction.
  • a pair of sliding plates, and a pair of actuating bodies are arranged corresponding to the pair of slide braces.
  • the second cam mechanism has first and second output shafts, and first and second motion converting means for converting forward rotation or reverse rotation of the first and second output shafts into reciprocating motion.
  • the first and second linear plates respectively connected to the second cam mechanism are disposed so as to be capable of reciprocating in the first direction, and correspond to the first and second linear plates.
  • the first and second slide braids are disposed so as to be reciprocally movable in the second direction;
  • each of the first and second slide blades is moved in the first direction together with the first and second linear plates. It can be configured to reciprocate.
  • each of the pair of slide blades can reciprocate in the first direction together with the pair of liner plates, i.e., the pair of slide plates can independently move in the first direction.
  • the movement pattern variation of the pair of operating bodies can be expanded.
  • One of the first and second slide blades is moved in the second direction by forward rotation or reverse rotation of the second output shaft of the first cam mechanism. It can be configured to be able to move backward.
  • the pair of slide braces can independently move in the second direction (Y direction), the variation of the operation pattern of the pair of operating bodies can be expanded.
  • the apparatus configuration is further simplified.
  • the first and second slide blades reciprocate so as to approach each other or move away from each other in the second direction by forward rotation or reverse rotation of the second output shaft of the first cam mechanism. Can be configured to.
  • the pair of sliding blades can independently be in the second direction, the variation in the operation pattern of the pair of operating bodies can be expanded.
  • the first and second slide blades are configured to reciprocate so as to approach each other and move away from each other in the first direction by forward or reverse rotation of the output shaft of the second cam mechanism. can do.
  • the pair of slide blades can independently move in the first direction, the variation of the operation pattern of the pair of operating bodies can be expanded.
  • first and second slide braces can be configured to be actuating bodies themselves.
  • FIG. 1 is a schematic plan view for explaining an operation example of a pair of actuating bodies constituting the XY actuator of the present invention.
  • FIG. 2 is a schematic cut-away front view illustrating a part of an embodiment of the XY feature according to the present invention.
  • FIG. 3 is a schematic partial cutaway side view illustrating a part of one embodiment of a vacuum cleaner according to the present invention.
  • FIG. 4 shows an example of a part of an embodiment of the present invention according to the present invention.
  • FIG. 5 is a schematic partially cut-away front view illustrating an example of the XY architect according to the present invention.
  • FIG. 6 is a schematic partially cut-away side view illustrating an example of the XY architect according to the present invention.
  • FIG. 7 is a schematic plan view illustrating an example of the XY architect according to the present invention.
  • FIG. 8 is a schematic view showing an operation example of a pair of operating bodies in the XY actuator according to the present invention.
  • FIG. 9 is a schematic partially cutaway side view illustrating another embodiment of the XY architect according to the present invention.
  • FIG. 10 is a schematic plan view illustrating another example of the XY architect according to the present invention.
  • FIG. 11 is a schematic plan view illustrating another embodiment of the XY feature according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • the present invention is configured so that a workpiece can be conveyed accurately and at high speed during a work process (or when a workpiece is supplied or discharged) by an assembly machine, a printing machine, an inspection machine, or the like.
  • the pair of operating bodies S 1 and S 2 is divided into a first direction (hereinafter simply referred to as “X direction”) as a transport direction and a second direction orthogonal to the transport direction. It is configured to move (reciprocate) in the direction (hereinafter simply referred to as “Y direction”).
  • the workpiece is clamped by the movement of the pair of operating bodies S 1 and S 2 in the Y direction (for example, movements approaching, moving away from each other, or approaching or moving away from each other)
  • the pair of actuators S 1 and S 2 can move in the X direction (reciprocating movement in the transport direction).
  • the workpiece can be transported in the X direction (conveyance direction) or moved to the original position to transport the next workpiece.
  • a drive means such as a geared motor, an input shaft to which a driving rotational force of the drive means is transmitted, and an output shaft 1 (first output shaft)
  • a first cam mechanism A having a Y-direction output shaft 2 (second output shaft)
  • a second cam mechanism B having an input shaft 5 and an X-direction output shaft 6, and a first cam mechanism A
  • the connecting means C for transmitting the rotational force of the output shaft 1 to the input shaft 5 of the second cam mechanism B, the linear plate 10 configured to be able to reciprocate in the X direction via the guide means E, the second Motion conversion means D that converts the rotational force of the output shaft 6 for the X direction of the cam mechanism B into the reciprocating movement of the linear plate 10 in the X direction
  • a pair of slide plates configured to be able to reciprocate 15 and 16 and a pair of slide plates
  • a pair of slides with the guide means F that supports the guide plates 15 and 16 on the linear plate 10 so that they can reciprocate in the Y
  • a pair of actuating bodies S 1 and S 2 are attached corresponding to the pair of slide plates 15 and 16, or the pair of slide plates 15 and 16 themselves are a pair of actuating bodies S 1. , S 2 (see Figure 7).
  • the first cam mechanism A is composed of an oscillator housed in a box-shaped casing made of metal, for example.
  • an oscillator cam, a groove cam, a rib cam, and the like are built-in, and the input shaft is directly connected to the input shaft (or may not be directly connected).
  • the Y-direction output shaft 2 projects from the casing.
  • the driving rotational force of the driving means such as a geared motor is transmitted to the input shaft, and the rotation of this input shaft causes the output shaft 1 to rotate in a predetermined direction and the Y-direction output shaft 2 to be set in advance. It is configured to move appropriately combining forward rotation, reverse rotation, stop, etc. (see Fig. 2).
  • the second cam mechanism B is substantially the same as the first cam mechanism A, for example, a metal
  • the input shaft 5 and the X-direction output shaft 6 project outside the housing, and the output shaft 1 of the first cam mechanism A
  • the X-direction output shaft 6 is configured to perform a desired combination of preset forward rotation, reverse rotation, stop, etc. (See Figure 2 and Figure 3).
  • the connecting means C can use, for example, a chain mechanism, a toothed belt mechanism, a link mechanism, a gear mechanism, etc., and the rotational force of the output shaft 1 is reliably and accurately applied to the input shaft 5. And what is necessary is just to be able to transmit smoothly.
  • the motion converting means D is configured to smoothly and accurately convert the rotational force of the X direction output shaft 6 of the second cam mechanism B into the reciprocating movement of the linear plate 10 in the X direction.
  • the swing arm 7 fixed to the X-direction output shaft 6 of the second cam mechanism B, the roller 8 attached to the tip of the swing arm 7, and the roller 8 are accommodated.
  • a roller receiver 9 fixed to the lower surface of the linear plate 10 see Fig. 2, Fig. 3, Fig. 5 and Fig. 6).
  • the motion converting means D includes, for example, a pinion fixed to the X-direction output shaft 6 of the second cam mechanism B, a rack that meshes with the pinion and is fixed to the lower surface of the linear plate 10. It can also consist of (not shown).
  • the linear plate 10 is formed, for example, in a substantially rectangular plate shape in which an oblong hole is bored so as not to interfere with the Y-direction output shaft 2 portion of the first cam mechanism A at substantially the center thereof. (See Figure 4).
  • the guide means E is configured to support the linear plate 10 in a smooth and stable reciprocating manner in the X direction.
  • the first cam mechanism A and the second cam mechanism It is composed of a pair of rails 1 1 fixed to the B side, and a guide body 1 2 that is slidably mounted on the rails 11 and fixed to the linear plate 10 by an appropriate number.
  • the rail 11 is fixed by a fixing screw or the like, and the left and right side portions thereof are provided with notched grooves.
  • the guide body 12 has protrusions that match the notched grooves of the rail 11. This guide body 12 is slid only in the X direction with respect to the rail 11 1 so that it does not rattle, separate, or deviate in the other direction (this is formed.
  • a pair of rails 11 are provided, but the present invention is not limited to this, and one or more than three may be provided.
  • the pair of slide plates 15 and 16 are formed in, for example, a substantially elongated rectangular plate shape (see FIG. 7).
  • the guide means F is configured to support the pair of slide plates 15 and 16 in a smooth and stable reciprocating manner in the Y direction.
  • the guide means F is configured to support the pair of slide plates 15 and 16 in a smooth and stable reciprocating manner in the Y direction.
  • on the upper surface of the linear plate 10 It is composed of a pair of fixed rails 17 and a guide body 18 that is slidably mounted on the rails 17 and fixed to each of the pair of slide plates 15 and 16. (See Figure 5, Figure 6, and Figure 7.)
  • the rail 17 is fixed by a fixing screw or the like in the same manner as the rail 11. Further, the left and right side portions of the rail 17 are provided with cutout grooves, while the guide body 18 is aligned with the cutout grooves.
  • the guide body 18 is formed so that it slides only in the Y direction relative to the rail 17 and does not rattle, separate, or deviate in other directions.
  • a pair of rails 17 are provided.
  • the present invention is not limited to this, and one or three or more rails 17 may be provided.
  • the motion converting means G is configured to smoothly and accurately convert the rotational force of the Y-direction output shaft 2 of the first cam mechanism A to the reciprocating movement of the pair of slide plates 15 and 16 in the Y direction.
  • the swing lever 20 fixed to the Y-direction output shaft 2 of the first cam mechanism A, the guide bins 21 attached to both ends of the swing lever 20, A guide block 2 having a guide groove 2 3 for receiving the guide bin 2 1 and being attached to a pair of slide plates 1 5 and 1 6 2 (see Figure 5, Figure 6 and Figure 7).
  • the guide groove 23 'of the guide block 22 is formed so as to be parallel to the X direction, and the linear output 10 is rotated in the X direction when the direction output shaft 6 rotates forward or backward.
  • the guide bin 2 1 simply passes through the guide groove 2 3 in the guide block 2 2, and the pair of slide plates 1 5 and 1 6 do not move in the Y direction. It is configured to move only in the X direction with 0.
  • the linear plate 10 is composed of, for example, one rectangular plate in the illustrated example, but is composed of two (a pair) linear plates 10 a and 10 b that are substantially elongated rectangular plates. (Refer to Fig. 9, Fig. 10 and Fig. 11) That is, a pair of linear shakers 1 0 a and 1 0 b are formed so as to be movable in the X direction by the guide means E, respectively.
  • the second cam mechanism B is provided with a pair of X-direction output shafts 6 a and 6 b (first and second output shafts), and the rotational force of the pair of X-direction output shafts 6 a and 6 b Can be converted smoothly and accurately into the reciprocating motion of each linear plate 1 O a, 10 b in the X direction via the motion conversion means D.
  • a pair of linear plates 1 0 a, 1 0 b becomes different movement state (for example, movement range, movement timing, etc. are different) It can also be configured as follows.
  • the swing arm 7 is fixed to the pair of output shafts 6 a and 6 b for the X direction, and the tip portions of the pair of linear plates 10 a and 10 b and the swing arm 7 are respectively Are connected to each other via a roller 8 and a roller receiver 9. Then, by adjusting the length of the swing arm 7 (the distance from the X-direction output shafts 6a, 6b to the roller 8), etc., the pair of linear plates 1 0a, 1 0b are Since it can be moved independently in the X direction, the variation of the operation pattern of the pair of actuators S 1 and S 2 is expanded (see Fig. 11).
  • only one of the pair of slide plates 1 5 and 1 6 operates. You may comprise so that it may connect with the output shaft 2 for Y directions through the conversion means G. That is, one (or the other) slide plate 16 connected to the heel direction output shaft 2 via the motion converting means G is formed so as not to move in the heel direction. It can also be configured to move in the ⁇ direction so as to move closer to the slide brace 16 (see Fig. 10).
  • the pair of slide plates 15 and 16 can be configured so as to be in different heel direction movement states (for example, different movement ranges, movement timings, and the like). Specifically, by adjusting the distance between the output shaft 2 for the heel direction and the guide bin 21 of the swing lever 20, each of the pair of slide blades 15 and 16 has its own pattern. Moving in the ⁇ direction, the variation of the operation pattern of the pair of actuators S 1 and S 2 will be more widespread.
  • the linear plate 1 0 is a slide plate 1 5, 1 6
  • the specific means, the shapes of these constituent members, the fixing means for these constituent members, etc. can be selected appropriately.
  • the motion converting means G for connecting the output shaft 2 for the heel direction of the first cam mechanism A and the slide plates 15 and 16 and the output shaft 6 for the X direction of the second cam mechanism B (6 a, 6 b ) And linear plate 10 in motion conversion means D select the specifications and specific means appropriately according to the accuracy, price, components used, etc. be able to.
  • the driving rotational force of the driving means is transmitted to the input shaft of the first cam mechanism A to operate the first cam mechanism A, and this first cam mechanism A
  • the rotational force of the output shaft 1 of the second cam mechanism B enters via the connecting means C.
  • the second cam mechanism B is actuated by transmission to the force shaft 5 (see Fig. 2).
  • the X direction output shaft 6 of the second cam mechanism B rotates, and the rotational force of the X direction output shaft 6 is transmitted to the linear plate 10 via the motion conversion means D. That is, the swing arm 7 fixed to the X-direction output shaft 6, the roller 8 at the tip of the swing arm 7, the roller 8 and the roller receiver 9 fixed to the linite plate 10. As a result, the linear plate 10 reciprocates in the X direction. Moreover, as the linear plate 10 reciprocates, the pair of slide plates 15 and 16 also reciprocate in the X direction (see FIGS. 5 and 6).
  • the sliding plates 15 and 16 can realize various operation modes as shown in FIG. 8, for example. Each operation mode is described below.
  • the operation mode shown in (I) of Fig. 8 is that the pair of slide blades 15 and 16 (actuators S 1 and S 2) transport the workpiece in the X direction (arrow 1), and then Move in the Y direction to move away (arrow 2), move back in the X direction (arrow 3), move in the Y direction so that they approach each other (arrow 4), This mode repeats the operation of 4.
  • the pair of slide braces 15 and 16 transport the workpiece in the X direction (arrow 1), and then Move it away in the Y direction and move it back in the X direction (arrow Mark 2), move in the X direction (arrow 3), and move in the Y direction so that they come close to each other until they return in the X direction (arrow 4) It is a mode to repeat.
  • FIG. 8 shows that the pair of slide blades 15 and 16 (actuators S 1 and S 2) transport the workpiece in the X direction (arrow 1), and then move away from each other in the Y direction. And move back in the X direction (arrow 2), and move back in the Y direction so that they approach each other (arrow 3) before returning to the X direction (arrow 3)
  • This mode repeats the operation of 3.
  • FIG. 8 shows that after a pair of slide plates 15 and 16 (actuating bodies S 1 and S 2) appropriately transport the workpiece (conveyed object) in the X direction (1), This is a mode that repeats the operations of 1 to 2, such as moving in the Y direction so that they are separated from each other before moving back, and then moving in the Y direction so that they are close to each other (2).
  • the operation mode shown in Fig. 8 (IV) is that the pair of slide plates 15 and 16 (actuators S 1 and S 2) transport the workpiece in the X direction (arrow 1) and then the other slide
  • the blade 1 6 (actuator S 2) is moved in the Y direction (arrow 2) away from one slide brace 1 5 (actuator S 1), and a pair of slide plates 1 5 and 1 6 (actuator Body S1, S2) Force to move back in the X direction (arrow 3), the other slide plate 16 (actuator S2) approaches one slide plate 15 (actor S1) Move in the Y direction as shown (arrow 4).
  • Each operation mode indicated by (VI) and (VIII) in FIG. 8 includes, for example, the other slide braid 16 (actuator S 2), one slide braid 15 (actor S 1), and the like.
  • the transport stroke (movement amount in the X direction) is different and the workpiece is moved in the X direction. This is a mode in which a turning force is applied to the workpiece during transport so that the orientation of the workpiece can be controlled.
  • Each operation mode shown in (VII) and (VIII) of FIG. 8 is, for example, the other slide braid. This is a mode in which the amount of movement in the Y direction between the first 16 (operating body S 2) and one slide bullet 15 (operating body S 1) is different.
  • the XY actuator according to the present invention is used in an operation process by an assembly machine, a printing machine, an inspection machine, etc. for various products, and can convey a workpiece accurately and at high speed.
  • the device itself has been devised to make it simpler and more compact.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)

Abstract

An XY-actuator comprises a first cam mechanism (A), a second cam mechanism (B), a linear plate (10) reciprocable in the X-direction by the forward and backward rotation of the X-direction output shaft (6) of the second cam mechanism (B), and a pair of slide plates (15, 16) reciprocable in the Y-direction on the linear plate (10) by the forward and backward rotation of the Y-direction output shaft (2) of the first cam mechanism (A). It is capable of transferring a work accurately and at high speed. Further, since it is simple in arrangement, its assembly is easy, and size reduction, size compaction and space saving can be easily attained. Its incorporation into production lines or the like and its installation are easy, and furthermore, it is superior in durability, easy to maintain, capable of cost reduction, and very economical.

Description

明細書  Specification
X Yァクチユエ一ター 技術分野  X Y
本発明は、 例えば、 各種商品の組立機や、 印刷機や、 検査機等 Iこよる作業ェ 程中に於いて、 被搬送物 (以下、 単に 「ワーク」 という) を、 正確に且つ高速 に搬送させることができ、 しかも、 装置自身の構成がより簡素で、 コンパクト となるように工夫された 2次元リニアァクチユエ一ター (以下、 「Χ Υァクチ ユエ一ター」 という) に関するものである。  In the present invention, for example, in an assembly process of various products, a printing machine, an inspection machine, and the like, an object to be conveyed (hereinafter simply referred to as “workpiece”) can be accurately and at high speed. It is related to a two-dimensional linear actuator that can be transported and the device itself has a simpler and more compact configuration (hereinafter referred to as “Χ”).
背景技術 Background art
従来、 この種の装置としては、 例えば、 特開平 1 0— 1 3 9 1 2 5号公報に 開示された搬送装置がある。 そして、 この搬送装置は、 回転駆動力が入力され る入力軸と、 相互に相対向させて平行に一対配置され、 互いに接離する方向お よびこれと直交する方向へ往復移動可能でそれぞれ矩形運動される第 1、 第 2 フィードパーと、 前記入力軸にこれと同軸で一体回転可能に設けられ、 回転中 心周りに 1 8 0 ° 点対称なカム形状を有する、 一方が少なくとも 1つ、 他方が 少なくとも 2つで、 合わせて 3つ以上のフィード用カムおよびクランプ用カム と、 前記フィード用カムおよびクランプ用カムそれぞれに、 これを挟んで 1 8 0 ° 対称位置で係合され、 前記入力軸回転を互いに直交する方向の揺動回転に 変換する一対のフィード用ターレツトおよび一対のクランプ用ターレツ卜と、 前記各フィード用ターレットと第 1、 第 2フィードバ一それぞれとの間に設け られ、 該フィード用ターレットの揺動回転を第 1、 第 2フィードバーのフィー ド運動に変換するフィード運動変換機構と、 前記各クランプ用ターレツ卜と第 1、 第 2フィードバーそれぞれとの間に設けられ、 該クランプ用ターレットの 揺動回転を第 1、 第 2フィードバーのクランプ運動に変換するクランプ運動変 換機構とを備え、 前記第 1、 第 2フィードパーのクランプ運動によってワーク をクランプすると共に、 クランプしたワークを第 1、 第 2フィードバーのフィ 一ド運動によって搬送するように構成された搬送装置である。  Conventionally, as this type of apparatus, for example, there is a conveying apparatus disclosed in Japanese Patent Laid-Open No. 10-1 3 9 1 2 5. The transfer device is arranged in parallel with a pair of input shafts to which a rotational driving force is input so as to be opposed to each other, and can reciprocate in directions that are close to each other and in a direction perpendicular thereto. The first and second feed pars are provided on the input shaft so as to be coaxially and integrally rotatable, and have a cam shape that is symmetrical with respect to the rotation center at 180 °, one being at least one and the other being At least two, and a total of three or more feed cams and clamp cams, and each of the feed cams and clamp cams are engaged with each other at 180 ° symmetrical positions, and the input shaft A pair of feed turrets and a pair of clamping turrets for converting the rotation into a oscillating rotation in a direction orthogonal to each other, the feed turrets and the first and second feedbars A feed motion conversion mechanism that is provided between the feed turrets and converts the rotation of the feed turret into feed motions of the first and second feed bars, and the clamp turrets and the first and second feeds. A clamp motion converting mechanism that is provided between each of the bars and converts the swinging rotation of the clamping turret into the clamp motion of the first and second feed bars, and the clamp of the first and second feed bars. It is a transfer device configured to clamp the workpiece by movement and to transfer the clamped workpiece by the feed movement of the first and second feed bars.
ところが、 前記従来技術にかかる搬送装置にあっては、 カム 1個に対してタ 一レツトを 2個使用し、 最低でもカム 3個 (ターレツト 6個) を使用して矩形 運動させるため、 装置自体が複雑で、 高価となり、 しかも、 装置自体が比較的 大きくなつて、 大きな設置スペースが必要となる難点があった。 However, in the transfer device according to the above-described prior art, one cam is Since two single-letters are used, and at least three cams (six turrets) are used for the rectangular movement, the equipment itself is complicated and expensive, and the equipment itself is relatively large, resulting in a large installation space. There was a difficulty that was necessary.
更に、 1 8 0 ° 点対称なカムでタ一レットを 1 8 0 ° 対称位置に設置してあ リ、 カム精度や、 カム■タ一レットの組立て誤差によって、 運動精度が低下し 易いという難点もあった。.  Furthermore, the turret is installed in a 180 ° symmetrical position with a 180 ° point-symmetric cam, and it is difficult to reduce the movement accuracy due to cam accuracy and cam turret assembly errors. There was also. .
そこで、 本発明の主たる目的は、 従来技術が抱える上記問題点を解決し、 ヮ ークを正確に、 かつ円滑に搬送させることができ、 安定した動作が可能で、 作 業の高速化に対応できる X Yァクチユエ一ターを提供することにある。  Therefore, the main object of the present invention is to solve the above-mentioned problems of the prior art, transport the cake accurately and smoothly, enable stable operation, and cope with high-speed operation. It is to provide an XY feature that can.
本発明の他の目的は、 構成の簡素化やコンパクト化が容易で、 生産ライン等 への組込みや設置が容易な X Yァクチユエ一ターを提供することにある。 本発明の更に他の目的は、 耐久性に優れると共に、 メンテナンスが容易であ リ、 コスト低減化が容易で、 極めて経済的である汎用性の優れた X Yァクチュ エーターを提供することにある。  Another object of the present invention is to provide an XY architect that can be easily simplified and made compact, and can be easily assembled and installed in a production line. Still another object of the present invention is to provide a versatile XY actuator that is excellent in durability, easy to maintain, easy to reduce costs, and extremely economical.
発明の開示 Disclosure of the invention
本発明は、  The present invention
( 1 ) 一対の作動体を、 第 1の方向 (X方向) 及びこの方向に対して直交す るような第 2の方向 (Y方向) に移動せしめるよう構成された X Yァクチユエ ータ一において、  (1) In an XY actuator configured to move a pair of operating bodies in a first direction (X direction) and a second direction (Y direction) perpendicular to this direction,
駆動手段によって作動される第 1カム機構であって、前記駆動手段に接続さ れる入力軸、並びに第 1および第 2の出力軸を有するものと、  A first cam mechanism actuated by drive means, having an input shaft connected to the drive means, and first and second output shafts;
前記第 1カム機構の第 1の出力軸に連繋手段を介して接続される入力軸、並 びに少なくとも 1つの出力軸を有する第 2カム機構と、  An input shaft connected to the first output shaft of the first cam mechanism via a connecting means, and a second cam mechanism having at least one output shaft;
前記第 2カム機構の出力軸の正回転または逆回転を往復運動に変換する第 1 の動作変換手段を介して、前記第 2カム機構に接続され、 かつ前記第 1の方向 へ往復移動可能に配設された少なくとも 1つのリニアプレートと、  It is connected to the second cam mechanism via a first motion converting means for converting a forward rotation or a reverse rotation of the output shaft of the second cam mechanism into a reciprocating motion, and is capable of reciprocating in the first direction. At least one linear plate disposed;
前記リニアプレート上に移動可能に配設され、前記第 1カム機構の第 2の出 力軸の正回転または逆回転を往復運動に変換する第 2の動作変換手段を介して 、前記第 1カム機構に接続され、 かつ前記第 2の方向へ往復移動可能に配設さ れた一対のスライ ドプレートとを備え、 前記一対のスライドブレー卜に対応し て一対の作動体を配設したことを特徴とする。 The first cam is disposed via a second motion converting means that is movably disposed on the linear plate and converts a forward rotation or a reverse rotation of the second output shaft of the first cam mechanism into a reciprocating motion. Connected to the mechanism and arranged to be able to reciprocate in the second direction. A pair of sliding plates, and a pair of actuating bodies are arranged corresponding to the pair of slide braces.
上記構成によれば、 各種商品の組立機や、 印刷機や、 検査機等による作業ェ 程中において、 ワークを正確にかつ円滑に搬送することができ、 加えて、 安定 した動作が可能で、 作業の高速化にも対応できる X Yァクチユエ一ターを提供 することができる。 そして、 一対の作動体の動作特性や、 動作精度等も優れた ものとなる。 しかも、 装置自身の構成がより簡素となり、 その組立てが簡単で 、 小型コンパクトに構成でき、 省スペース化が図り易く、 設置が容易で、 生産 ライン等への組込みも容易となり、 耐久性に優れ、 故障し難く、 メンテナンス も容易で、 コストの低減が可能となり、 経済的で、 汎用性の優れた X Yァクチ ユエ一ターとなる。  According to the above configuration, workpieces can be transported accurately and smoothly during work processes by various product assembly machines, printing machines, inspection machines, etc. In addition, stable operation is possible. It is possible to provide an XY architect that can handle high-speed work. In addition, the operational characteristics and operational accuracy of the pair of operating bodies are excellent. Moreover, the structure of the device itself is simpler, its assembly is simple, it can be made compact and compact, it is easy to save space, it is easy to install, it can be easily installed in production lines, etc., and it has excellent durability. It is hard to break down, is easy to maintain, can be reduced in cost, is economical, and has a versatile XY feature.
また、 本発明において、  In the present invention,
前記第 2カム機構は、第 1および第 2の出力軸を有し、 その第 1および第 2 の出力軸の正回転または逆回転を往復運動に変換する第 1および第 2の動作変 換手段を介して、それぞれ前記第 2カム機構に接続された第 1 および第 2のリ ニァプレートが前記第 1の方向へ往復移動可能に配設され、 前記第 1および第 2のリニアプレー卜に対応した第 1および第 2のスライドブレー卜が、前記第 2の方向に往復移動可能に配設され、  The second cam mechanism has first and second output shafts, and first and second motion converting means for converting forward rotation or reverse rotation of the first and second output shafts into reciprocating motion. The first and second linear plates respectively connected to the second cam mechanism are disposed so as to be capable of reciprocating in the first direction, and correspond to the first and second linear plates. The first and second slide braids are disposed so as to be reciprocally movable in the second direction;
前記第 2カム機構の第 1および第 2の出力軸の正回転または逆回転によって、 前記第 1および第スライ ドブレー卜のそれぞれが、前記第 1および第 2リニア プレートと共に、前記第 1の方向に往復移動されるように構成することができ る。  By the forward rotation or reverse rotation of the first and second output shafts of the second cam mechanism, each of the first and second slide blades is moved in the first direction together with the first and second linear plates. It can be configured to reciprocate.
このような構成によれば、一対のスライ ドブレ一卜のそれぞれが、一対のリニ ァプレートと共に第 1の方向に往復移動可能となる、即ち、 一対のスライ ドプ レートがそれぞれ独自に第 1の方向に移動することができるので、 一対の作動 体の動作パターンのバリエーシヨンを拡張することができる。  According to such a configuration, each of the pair of slide blades can reciprocate in the first direction together with the pair of liner plates, i.e., the pair of slide plates can independently move in the first direction. The movement pattern variation of the pair of operating bodies can be expanded.
また、 本発明において、  In the present invention,
前記第 1および第 2のスライドブレートのどちらか一方が、 前記第 1カム機 構の第 2の出力軸の正回転または逆回転によって、 前記第 2の方向において往 復移動可能となるように構成することができる。 One of the first and second slide blades is moved in the second direction by forward rotation or reverse rotation of the second output shaft of the first cam mechanism. It can be configured to be able to move backward.
このような構成によれば、一対のスライドブレー卜がそれぞれ独自に、第 2の 方向 (Y方向) に移動することができるので、 一対の作動体の動作パターンの バリエーションを拡張することができ、しかも装置構成がよリ簡素となる。 また、本発明において、  According to such a configuration, since the pair of slide braces can independently move in the second direction (Y direction), the variation of the operation pattern of the pair of operating bodies can be expanded. In addition, the apparatus configuration is further simplified. In the present invention,
前記第 1および第 2のスライ ドブレ一卜は、前記第 1カム機構の第 2の出力 軸の正回転または逆回転によって、前記第 2の方向において互いに接近したり、 互いに遠ざかるような往復移動をするように構成することができる。  The first and second slide blades reciprocate so as to approach each other or move away from each other in the second direction by forward rotation or reverse rotation of the second output shaft of the first cam mechanism. Can be configured to.
このような構成によれば、一対のスライ ドブレ一卜がそれぞれ独自に第 2の 方向にすることができるので、 一対の作動体の動作パターンのバリエーション を拡張することができる。  According to such a configuration, since the pair of sliding blades can independently be in the second direction, the variation in the operation pattern of the pair of operating bodies can be expanded.
さらに、本発明において、  Furthermore, in the present invention,
前記第 1および第 2のスライ ドブレー卜が、前記第 2カム機構の出力軸の正 回転または逆回転によって、前記第 1の方向において互いに接近したり、互いに 遠ざかるような往復移動をするように構成することができる。  The first and second slide blades are configured to reciprocate so as to approach each other and move away from each other in the first direction by forward or reverse rotation of the output shaft of the second cam mechanism. can do.
このような構成によれば、一対のスライ ドブレー卜がそれぞれ独自に第 1の 方向に移動することができるので、 一対の作動体の動作パターンのバリエーシ ョンを拡張することができる。  According to such a configuration, since the pair of slide blades can independently move in the first direction, the variation of the operation pattern of the pair of operating bodies can be expanded.
さらに、上記発明において、前記第 1および第 2のスライドブレー卜のそれ自 体が作動体となるように構成することもできる。 図面の簡単な説明  Furthermore, in the above invention, the first and second slide braces can be configured to be actuating bodies themselves. Brief Description of Drawings
図 1は、 本発明の X Yァクチユエ一ターを構成する一対の作動体の動作例を 説明するための概略的な平面図である。  FIG. 1 is a schematic plan view for explaining an operation example of a pair of actuating bodies constituting the XY actuator of the present invention.
図 2は、 本発明にかかる X Yァクチユエ一ターの一実施例の一部分を例示す る概略的音 ϋ分切欠正面図である。  FIG. 2 is a schematic cut-away front view illustrating a part of an embodiment of the XY feature according to the present invention.
図 3は、 本発明にかかる Χ Υァクチユエ一ターの一実施例の一部分を例示す る概略的部分切欠側面図である。  FIG. 3 is a schematic partial cutaway side view illustrating a part of one embodiment of a vacuum cleaner according to the present invention.
図 4は、 本発明にかかる Χ Υァクチユエ一ターの一実施例の一部分を例示す る概略的平面図である。 FIG. 4 shows an example of a part of an embodiment of the present invention according to the present invention. FIG.
図 5は、 本発明にかかる X Yァクチユエ一ターの一実施例を例示する概略的 部分切欠正面図である。  FIG. 5 is a schematic partially cut-away front view illustrating an example of the XY architect according to the present invention.
図 6は、 本発明にかかる X Yァクチユエ一ターの一実施例を例示する概略的 部分切欠側面図である。  FIG. 6 is a schematic partially cut-away side view illustrating an example of the XY architect according to the present invention.
図 7は、 本発明にかかる X Yァクチユエ一ターの一実施例を例示する概略的 平面図である。  FIG. 7 is a schematic plan view illustrating an example of the XY architect according to the present invention.
図 8は、 本発明にかかる X Yァクチユエ一ターにおける一対の作動体の動作 例を示す概略図である。 - 図 9は、 本発明にかかる X Yァクチユエ一ターの他の実施例を例示する概略 的部分切欠側面図である。  FIG. 8 is a schematic view showing an operation example of a pair of operating bodies in the XY actuator according to the present invention. FIG. 9 is a schematic partially cutaway side view illustrating another embodiment of the XY architect according to the present invention.
図 1 0は、 本発明にかかる X Yァクチユエ一ターの他の実施例を例示する概 略的平面図である。  FIG. 10 is a schematic plan view illustrating another example of the XY architect according to the present invention.
図 1 1は、 本発明にかかる X Yァクチユエ一ターの他の実施例を例示する概 略的平面図である。 発明を実施するための最良の形態  FIG. 11 is a schematic plan view illustrating another embodiment of the XY feature according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の X Yァクチユエ一ターの実施例について、 添付図面を参照し て詳細に説明する。  Hereinafter, embodiments of the XY architect of the present invention will be described in detail with reference to the accompanying drawings.
本発明は、 組立機械や、 印刷機械や、 検査機械等による作業工程中 (または 、 ワークの供給時あるいは排出時) において、 ワークを正確に且つ高速に搬送 させることができるように構成され、 例えば、 図 1に示すように、 一対の作動 体 S 1、 S 2を、 搬送方向となる第 1の方向 (以下、 単に 「X方向」 という) 及びこの搬送方向に対して直交するような第 2の方向 (以下、 単に 「Y方向」 という) に移動 (往復移動) せしめられるよう構成したものである。  The present invention is configured so that a workpiece can be conveyed accurately and at high speed during a work process (or when a workpiece is supplied or discharged) by an assembly machine, a printing machine, an inspection machine, or the like. As shown in FIG. 1, the pair of operating bodies S 1 and S 2 is divided into a first direction (hereinafter simply referred to as “X direction”) as a transport direction and a second direction orthogonal to the transport direction. It is configured to move (reciprocate) in the direction (hereinafter simply referred to as “Y direction”).
すなわち、 一対の作動体 S 1、 S 2の Y方向の動作 (例えば、 相互に接近し たり、 離れたり、 或いは、 相対的に接近したり、 離れたりする動作) によって 、 ワークを挟持したり、 あるいは、 ワークから離間させたりすることができ、 また、 一対の作動体 S 1、 S 2の X方向の動作 (搬送方向への往復移動動作) によって、 挟持したワークを X方向 (搬送方向) に搬送したり、 あるいは、 次 のワークを搬送すべく元の位置に移動できるように構成したものである。 That is, the workpiece is clamped by the movement of the pair of operating bodies S 1 and S 2 in the Y direction (for example, movements approaching, moving away from each other, or approaching or moving away from each other) Alternatively, it can be separated from the workpiece, and the pair of actuators S 1 and S 2 can move in the X direction (reciprocating movement in the transport direction). The workpiece can be transported in the X direction (conveyance direction) or moved to the original position to transport the next workpiece.
本発明にかかる X Yァクチユエ一ターの一実施例としては、 ギヤ一ドモータ 一等の駆動手段と、 この駆動手段の駆動回転力が伝達される入力軸と、 出力軸 1 (第 1の出力軸) および Y方向用出力軸 2 (第 2の出力軸) とを有する第 1 カム機構 Aと、 入力軸 5と X方向用出力軸 6とを有する第 2カム機構 Bと、 第 1カム機構 Aの出力軸 1の回転力を第 2カム機構 Bの入力軸 5に伝達する連繋 手段 Cと、 ガイド手段 Eを介して X方向に往復移動可能となるよう構成される リニアプレート 1 0と、 第 2カム機構 Bの X方向用出力軸 6の回転力をリニア プレート 1 0の X方向の往復移動に変換する動作変換手段 Dと、 リニアプレー 卜 1 0と共に X方向に往復移動すると共に、 Y方向に往復移動可能となるよう 構成される一対のスライ ドプレート 1 5、 1 6と、 一対のスライドプレート 1 5、 1 6を Y方向に往復移動可能となるようリニアプレート 1 0に支持するガ ィド手段 Fと、 第 1カム機構 Aの Y方向用出力軸 2の回転力を一対のスライド プレート 1 5、 1 6の Y方向の往復移動に変換する動作変換手段 Gとを有する (図 2、 図 3、 図 7参照) 。  As an embodiment of the XY actuator according to the present invention, a drive means such as a geared motor, an input shaft to which a driving rotational force of the drive means is transmitted, and an output shaft 1 (first output shaft) And a first cam mechanism A having a Y-direction output shaft 2 (second output shaft), a second cam mechanism B having an input shaft 5 and an X-direction output shaft 6, and a first cam mechanism A The connecting means C for transmitting the rotational force of the output shaft 1 to the input shaft 5 of the second cam mechanism B, the linear plate 10 configured to be able to reciprocate in the X direction via the guide means E, the second Motion conversion means D that converts the rotational force of the output shaft 6 for the X direction of the cam mechanism B into the reciprocating movement of the linear plate 10 in the X direction A pair of slide plates configured to be able to reciprocate 15 and 16 and a pair of slide plates A pair of slides with the guide means F that supports the guide plates 15 and 16 on the linear plate 10 so that they can reciprocate in the Y direction, and the Y direction output shaft 2 of the first cam mechanism A It has motion conversion means G that converts the plates 15 and 16 into reciprocating movements in the Y direction (see FIGS. 2, 3, and 7).
更に、 前記一対のスライ ドプレート 1 5、 1 6に対応して一対の作動体 S 1 、 S 2が付設され、 あるいは、 一対のスライ ドプレート 1 5、 1 6自体が一対 の作動体 S 1、 S 2となるように構成されている (図 7参照) 。  Furthermore, a pair of actuating bodies S 1 and S 2 are attached corresponding to the pair of slide plates 15 and 16, or the pair of slide plates 15 and 16 themselves are a pair of actuating bodies S 1. , S 2 (see Figure 7).
前記第 1カム機構 Aは、 図 2に示すように、 例えば、 金属製等の箱形ケーシ ング内に収容されたオシレータから構成される。ケ一シング内には、 オシレー タカムゃ、 溝カム、 リブカム等が内蔵されると共に、 その入力軸と、 該入力軸 に直結されている (あるいは、 直結されていなくてもよい) 出力軸 1 と、 Y方 向用出力軸 2とがケーシングの外側に突設されている。ギヤ一ドモータ一等の 駆動手段の駆動回転力が入力軸に伝達され、 この入力軸の回転によって、 出力 軸 1は、 所定方向に一定回転すると共に、 Y方向用出力軸 2は、 予め設定され た正回転、 逆回転、 停止等を適宜組合せた動きをするように構成されている ( 図 2参照) 。  As shown in FIG. 2, the first cam mechanism A is composed of an oscillator housed in a box-shaped casing made of metal, for example. In the casing, an oscillator cam, a groove cam, a rib cam, and the like are built-in, and the input shaft is directly connected to the input shaft (or may not be directly connected). The Y-direction output shaft 2 projects from the casing. The driving rotational force of the driving means such as a geared motor is transmitted to the input shaft, and the rotation of this input shaft causes the output shaft 1 to rotate in a predetermined direction and the Y-direction output shaft 2 to be set in advance. It is configured to move appropriately combining forward rotation, reverse rotation, stop, etc. (see Fig. 2).
また、 前記第 2カム機構 Bは、 第 1カム機構 Aとほぼ同様に、 例えば、 金属 製等の箱形ケ一シングに収容されたオシレ一タから構成され、 その入力軸 5お よび X方向用出力軸 6がハウジングの外側に突設され、 第 1カム機構 Aの出力 軸 1の回転力が連繋手段 Cを介して入力軸 5に伝達されると、 X方向用出力軸 6は、 予め設定された正回転、 逆回転、 停止等を所望に組合せた »きをするよ うに構成されている (図 2および図 3参照) 。 The second cam mechanism B is substantially the same as the first cam mechanism A, for example, a metal The input shaft 5 and the X-direction output shaft 6 project outside the housing, and the output shaft 1 of the first cam mechanism A When the rotational force is transmitted to the input shaft 5 via the connecting means C, the X-direction output shaft 6 is configured to perform a desired combination of preset forward rotation, reverse rotation, stop, etc. (See Figure 2 and Figure 3).
前記連繋手段 Cは、 例えば、 チヱーン機構や、 歯付きベルト機構、 リンク機 構、 歯車機構等を利用することが可能で、 出力軸 1の回転力が、 入力軸 5に確 実に、 正確に、 かつスムーズに伝達できるものであればよい。  The connecting means C can use, for example, a chain mechanism, a toothed belt mechanism, a link mechanism, a gear mechanism, etc., and the rotational force of the output shaft 1 is reliably and accurately applied to the input shaft 5. And what is necessary is just to be able to transmit smoothly.
なお、 図示例では、 出力軸 1 と入力軸 5とにそれぞれスプロケットを固定し 、 これらのスプロケットにチ Iーンや、 歯付きベルト等を卷装せしめたものを 利用することができる (図 2、 図 3および図 5参照) 。  In the example shown in the figure, it is possible to use sprockets that are fixed to the output shaft 1 and the input shaft 5, respectively, and these sprockets are equipped with a chain or a toothed belt (Fig. 2). Figure 3 and Figure 5).
そして、 前記動作変換手段 Dは、 第 2カム機構 Bの X方向用出力軸 6の回転 力を、 リニアプレート 1 0の X方向の往復移動にスムーズにかつ正確に変換で きるよう構成され、 例えば、 図示例では、 第 2カム機構 Bの X方向用出力軸 6 に固定された揺動アーム 7と、 この揺動アーム 7の先端部分に装着されるロー ラ 8と、 このローラ 8が収容される溝部分を有すると共に、 リニアプレート 1 0下面に固定されるローラ受体 9とで構成されている (図 2、 図 3、 図 5、 図 6参照 o  The motion converting means D is configured to smoothly and accurately convert the rotational force of the X direction output shaft 6 of the second cam mechanism B into the reciprocating movement of the linear plate 10 in the X direction. In the illustrated example, the swing arm 7 fixed to the X-direction output shaft 6 of the second cam mechanism B, the roller 8 attached to the tip of the swing arm 7, and the roller 8 are accommodated. And a roller receiver 9 fixed to the lower surface of the linear plate 10 (see Fig. 2, Fig. 3, Fig. 5 and Fig. 6).
ところで、 前記動作変換手段 Dは、 例えば、 第 2カム機構 Bの X方向用出力 軸 6に固定されるピニオンと、 このピニオンに歯合すると共に、 リニアプレー 卜 1 0下面に固定されるラックとで構成することもできる (図示せず) 。 前記リニアプレート 1 0は、 例えば、 その略中央に第 1カム機構 Aの Y方向 用出力軸 2部分に干渉しないような長円孔が穿設されているような略矩形板状 に形成されている (図 4参照) 。  By the way, the motion converting means D includes, for example, a pinion fixed to the X-direction output shaft 6 of the second cam mechanism B, a rack that meshes with the pinion and is fixed to the lower surface of the linear plate 10. It can also consist of (not shown). The linear plate 10 is formed, for example, in a substantially rectangular plate shape in which an oblong hole is bored so as not to interfere with the Y-direction output shaft 2 portion of the first cam mechanism A at substantially the center thereof. (See Figure 4).
また、 前記ガイ ド手段 Eは、 リニアプレー卜 1 0を X方向にスムーズにかつ 安定的に往復移動自在に支持できるよう構成され、 例えば、 図示例では、 第 1 カム機構 Aや第 2カム機構 B側に固定される一対のレール 1 1 と、 このレール 1 1に摺動自在に装着されると共に、 リニアプレート 1 0に適切な個数だけ固 定されるガイド体 1 2とで構成されている (図 2、 図 3、 図 5および図 6参照 なお、 レール 1 1は、 固定ネジ等によって固定され、 しかも、 その左右側面 部分には切欠溝が設けられ、 一方、 ガイド体 1 2には、 レール 1 1の切欠溝に 合致するような突起が設けられ、 このガイド体 1 2がレール 1 1に対して X方 向にのみ摺動して、 他の方向にガタついたり、 分離、 逸脱しないよう(こ形成し てある。 Further, the guide means E is configured to support the linear plate 10 in a smooth and stable reciprocating manner in the X direction. For example, in the illustrated example, the first cam mechanism A and the second cam mechanism It is composed of a pair of rails 1 1 fixed to the B side, and a guide body 1 2 that is slidably mounted on the rails 11 and fixed to the linear plate 10 by an appropriate number. (See Figure 2, Figure 3, Figure 5, and Figure 6. The rail 11 is fixed by a fixing screw or the like, and the left and right side portions thereof are provided with notched grooves. On the other hand, the guide body 12 has protrusions that match the notched grooves of the rail 11. This guide body 12 is slid only in the X direction with respect to the rail 11 1 so that it does not rattle, separate, or deviate in the other direction (this is formed.
前記レール 1 1は、 この実施例では一対設けているが、 これに限らず、 一つ でもよいし、 三つ以上設けてもよい。  In this embodiment, a pair of rails 11 are provided, but the present invention is not limited to this, and one or more than three may be provided.
また、 前記一対のスライドプレート 1 5、 1 6は、 例えば、 略細長矩形板状 に形成されている (図 7参照) 。  Further, the pair of slide plates 15 and 16 are formed in, for example, a substantially elongated rectangular plate shape (see FIG. 7).
そして、 前記ガイド手段 Fは、 一対のスライドプレート 1 5、 1 6を Y方向 にスムーズにかつ安定的に往復移動自在に支持できるよう構成され、 例えば、 図示例では、 リニアプレート 1 0の上面に固定される一対のレール 1 7と、 こ のレール 1 7に摺動自在に装着されると共に、 一対のスライドプレート 1 5、 1 6のそれぞれに固定されるガイド体 1 8とで構成されている (図 5、 図 6お よび図 7参照) 。  The guide means F is configured to support the pair of slide plates 15 and 16 in a smooth and stable reciprocating manner in the Y direction. For example, in the illustrated example, on the upper surface of the linear plate 10 It is composed of a pair of fixed rails 17 and a guide body 18 that is slidably mounted on the rails 17 and fixed to each of the pair of slide plates 15 and 16. (See Figure 5, Figure 6, and Figure 7.)
なお、 レール 1 7は、 レール 1 1 と同様に、 固定ネジ等によって固定され、 しかも、 その左右側面部分には、 切欠溝が設けられ、 一方、 ガイド体 1 8には 、 この切欠溝に合致する突起が設けられており、 そのガイド体 1 8がレール 1 7に対して Y方向にのみ摺動して、 他の方向にガタついたり、 分離、 逸脱しな いように形成してある。  The rail 17 is fixed by a fixing screw or the like in the same manner as the rail 11. Further, the left and right side portions of the rail 17 are provided with cutout grooves, while the guide body 18 is aligned with the cutout grooves. The guide body 18 is formed so that it slides only in the Y direction relative to the rail 17 and does not rattle, separate, or deviate in other directions.
前記レール 1 7は、 この実施例では一対設けているが、 これに限らず、 一つ でもよいし、 三つ以上設けてもよい。  In this embodiment, a pair of rails 17 are provided. However, the present invention is not limited to this, and one or three or more rails 17 may be provided.
前記動作変換手段 Gは、 第 1カム機構 Aの Y方向用出力軸 2の回転力を一対 のスライドプレート 1 5、 1 6の Y方向の往復移動にスムーズにかつ正確に変 換できるよう構成され、 例えば、 図示例では、 第 1カム機構 Aの Y方向用出力 軸 2に固定された揺動レバー 2 0と、 この揺動レバー 2 0の両端部分に装着さ れるガイドビン 2 1 と、 このガイドビン 2 1が収容されるガイド溝 2 3を有す ると共に、 一対のスライ ドプレート 1 5、 1 6に装着されるガイドブロック 2 2とで構成されている (図 5、 図 6および図 7参照) 。 The motion converting means G is configured to smoothly and accurately convert the rotational force of the Y-direction output shaft 2 of the first cam mechanism A to the reciprocating movement of the pair of slide plates 15 and 16 in the Y direction. For example, in the illustrated example, the swing lever 20 fixed to the Y-direction output shaft 2 of the first cam mechanism A, the guide bins 21 attached to both ends of the swing lever 20, A guide block 2 having a guide groove 2 3 for receiving the guide bin 2 1 and being attached to a pair of slide plates 1 5 and 1 6 2 (see Figure 5, Figure 6 and Figure 7).
すなわち、 ガイドブロック 2 2のガイド溝 2 3'は、 X方向に対して平行とな るように形成されており、 方向用出力軸 6が正回転または逆回転してリニアプ レート 1 0が X方向に移動すると、 ガイ ドビン 2 1がガイドプロック 2 2のガ イド溝 2 3内を通過するだけで、 一対のスライドプレート 1 5、 1 6は、 Y方 向には移動せずに、 リニアプレート 1 0と共に X方向にのみ移動するように構 成されている。  That is, the guide groove 23 'of the guide block 22 is formed so as to be parallel to the X direction, and the linear output 10 is rotated in the X direction when the direction output shaft 6 rotates forward or backward. The guide bin 2 1 simply passes through the guide groove 2 3 in the guide block 2 2, and the pair of slide plates 1 5 and 1 6 do not move in the Y direction. It is configured to move only in the X direction with 0.
また、 Y方向用出力軸 2が正回転または逆回転すると、 ガイ ドピン 2 1がガ イド溝 2 3内壁を押圧して、 ガイドブロック 2 2 (—対のスライドプレー.卜 1 5、 1 6 ) が Y方向に移動するように構成されている。  When the Y-direction output shaft 2 rotates forward or backward, the guide pin 21 pushes against the inner wall of the guide groove 2 3 and the guide block 2 2 (a pair of slide plays. 卜 1 5 and 1 6) Is configured to move in the Y direction.
ところで、 前記リニアプレー卜 1 0は、 例えば、 図示例では一枚の矩形板に よって構成してあるが、 二枚 (一対) の略細長矩形板のリニアプレート 1 0 a , 1 0 bによって構成することもできる (図 9、 図 1 0および図 1 1参照) すなわち、 一対のリ二アブレ一卜 1 0 a, 1 0 bをガイド手段 Eによって X 方向にそれぞれ移動自在となるよう形成し、 更に、 第 2カム機構 Bには一対の X方向用出力軸 6 a, 6 b (第 1および第 2の出力軸) を設け、 この一対の X 方向用出力軸 6 a , 6 bの回転力を動作変換手段 Dを介してそれぞれのリニア プレート 1 O a, 1 0 bの X方向の往復運動にスムーズにかつ正確に変換でき るように構成して、 一対のリニアプレート 1 0 a , 1 0 bが相互に異なる移動 状態 (例えば、 移動範囲、 移動タイミング等が異なる状態) となるように構成 することもできる。  By the way, the linear plate 10 is composed of, for example, one rectangular plate in the illustrated example, but is composed of two (a pair) linear plates 10 a and 10 b that are substantially elongated rectangular plates. (Refer to Fig. 9, Fig. 10 and Fig. 11) That is, a pair of linear shakers 1 0 a and 1 0 b are formed so as to be movable in the X direction by the guide means E, respectively. Furthermore, the second cam mechanism B is provided with a pair of X-direction output shafts 6 a and 6 b (first and second output shafts), and the rotational force of the pair of X-direction output shafts 6 a and 6 b Can be converted smoothly and accurately into the reciprocating motion of each linear plate 1 O a, 10 b in the X direction via the motion conversion means D. A pair of linear plates 1 0 a, 1 0 b becomes different movement state (for example, movement range, movement timing, etc. are different) It can also be configured as follows.
具体的には、 一対の X方向用出力軸 6 a, 6 bに揺動アーム 7をそれぞれ固 定し、 一対のリニアプレート 1 0 a, 1 0 bと揺動アーム 7それぞれの先端部 分とを、 ローラ 8およびローラ受体 9を介してそれぞれ連繋するように形成さ れる。 そして、 揺動アーム 7の長さ (X方向用出力軸 6 a, 6 bからローラ 8 までの間隔) 等を調節することによリ、 一対のリニアプレー卜 1 0 a, 1 0 b をそれぞれ独自に X方向に移動せしめられるので、 一対の作動体 S 1、 S 2の 動作パターンのバリエーションが拡張される (図 1 1参照) 。  Specifically, the swing arm 7 is fixed to the pair of output shafts 6 a and 6 b for the X direction, and the tip portions of the pair of linear plates 10 a and 10 b and the swing arm 7 are respectively Are connected to each other via a roller 8 and a roller receiver 9. Then, by adjusting the length of the swing arm 7 (the distance from the X-direction output shafts 6a, 6b to the roller 8), etc., the pair of linear plates 1 0a, 1 0b are Since it can be moved independently in the X direction, the variation of the operation pattern of the pair of actuators S 1 and S 2 is expanded (see Fig. 11).
また、 一対のスライ ドプレート 1 5、 1 6は、 そのどちらか一方のみを動作 変換手段 Gを介して Y方向用出力軸 2に連繋するように構成してもよい。 即ち 、 動作変換手段 Gを介して Υ方向用出力軸 2に連繋された一方 (あるいは他方 ) のスライ ドプレート 1 6が、 Υ方向には移動しないように形成してある他方 (あるいは一方) のスライドブレー卜 1 6に対して離隔接近するように Υ方向 に移動できるよう構成することもできる (図 1 0参照) 。 Also, only one of the pair of slide plates 1 5 and 1 6 operates. You may comprise so that it may connect with the output shaft 2 for Y directions through the conversion means G. That is, one (or the other) slide plate 16 connected to the heel direction output shaft 2 via the motion converting means G is formed so as not to move in the heel direction. It can also be configured to move in the Υ direction so as to move closer to the slide brace 16 (see Fig. 10).
加えて、 一対のスライ ドプレート 1 5、 1 6は、 相互に異なる Υ方向の移動 状態 (例えば、 移動範囲、 移動タイミング等が異なる状態) となるように構成 することができる。 具体的には、 Υ方向用出力軸 2から揺動レバ一 2 0のガイ ドビン 2 1までの間隔等を調節することによリ、 一対のスライドブレート 1 5 、 1 6それぞれが独自のパターンで Υ方向に移動し、 一対の作動体 S 1、 S 2 の動作パターンのバリエーションがよリ広がるようになる。  In addition, the pair of slide plates 15 and 16 can be configured so as to be in different heel direction movement states (for example, different movement ranges, movement timings, and the like). Specifically, by adjusting the distance between the output shaft 2 for the heel direction and the guide bin 21 of the swing lever 20, each of the pair of slide blades 15 and 16 has its own pattern. Moving in the Υ direction, the variation of the operation pattern of the pair of actuators S 1 and S 2 will be more widespread.
なお、 本発明の Χ Υァクチユエ一ターを構成する構成要素の形状、 寸法、 配 設位置、 個数、 材質等は、 図示例のものに限定されることなく、 本発明の目的 の範囲内で、 種々変更できるものである。  It should be noted that the shape, dimensions, arrangement position, number, material, and the like of the components constituting the Υactuator of the present invention are not limited to those shown in the drawings, but within the scope of the object of the present invention. Various changes can be made.
特に、 リニアプレート 1 0 ( 1 0 a, 1 0 b ) のガイド手段 Eと、 スライド プレート 1 5、 1 6のガイド手段 Fにあっては、 リニアプレート 1 0ゃスライ ドプレート 1 5、 1 6の形状や、寸法、個数等に応じて、 その具体的手段や、 こ れらの構成部材の形状や、 これらの構成部材の固定手段等を適切に選択するこ とができる。  In particular, in the guide means E of the linear plate 1 0 (1 0 a, 1 0 b) and the guide means F of the slide plate 1 5, 1 6, the linear plate 1 0 is a slide plate 1 5, 1 6 Depending on the shape, size, number, etc., the specific means, the shapes of these constituent members, the fixing means for these constituent members, etc. can be selected appropriately.
加えて、 第 1カム機構 Aの丫方向用出力軸 2とスライドプレート 1 5、 1 6 を連繋する動作変換手段 Gや、 第 2カム機構 Bの X方向用出力軸 6 ( 6 a , 6 b ) とリニアプレート 1 0を連繋する動作変換手段 Dにあっては、 その精度や 、 価格や、 採用される構成部材等に応じて、 その仕様や、 具体的な手段等を適 切に選択することができる。  In addition, the motion converting means G for connecting the output shaft 2 for the heel direction of the first cam mechanism A and the slide plates 15 and 16 and the output shaft 6 for the X direction of the second cam mechanism B (6 a, 6 b ) And linear plate 10 in motion conversion means D, select the specifications and specific means appropriately according to the accuracy, price, components used, etc. be able to.
次に、 本発明にかかる X Yァクチユエータ一を、 例えば搬送装置として利用 した場合について説明する。  Next, the case where the XY actuator according to the present invention is used as, for example, a transfer device will be described.
先ず、 ギヤ一ドモーター等の駆動手段を作動させると、 その駆動手段の駆動 回転力が第 1カム機構 Aの入力軸に伝達されて第 1カム機構 Aが作動し、 この 第 1カム機構 Aの出力軸 1の回転力が連繋手段 Cを介して第 2カム機構 Bの入 力軸 5に伝達されて第 2カム機構 Bが作動する (図 2参照) 。 First, when a driving means such as a geared motor is operated, the driving rotational force of the driving means is transmitted to the input shaft of the first cam mechanism A to operate the first cam mechanism A, and this first cam mechanism A The rotational force of the output shaft 1 of the second cam mechanism B enters via the connecting means C. The second cam mechanism B is actuated by transmission to the force shaft 5 (see Fig. 2).
すると、 第 2カム機構 Bの X方向用出力軸 6が回転し、 この X方向用出力軸 6の回転力が動作変換手段 Dを介してリニアプレート 1 0に伝達される。 即ち 、 X方向用出力軸 6に固定されている揺動アーム 7と、 この揺動アーム 7先端 のローラ 8と、 このローラ 8を受けると共に、 リニテプレート 1 0に固定され ているローラ受体 9とによって、 リニアプレート 1 0が X方向に往復移動する 。 しかも、 このリニアプレート 1 0の往復移動と共に、 一対のスライドプレー ト 1 5、 1 6も X方向に往復移動する (図 5、 図 6参照) 。  Then, the X direction output shaft 6 of the second cam mechanism B rotates, and the rotational force of the X direction output shaft 6 is transmitted to the linear plate 10 via the motion conversion means D. That is, the swing arm 7 fixed to the X-direction output shaft 6, the roller 8 at the tip of the swing arm 7, the roller 8 and the roller receiver 9 fixed to the linite plate 10. As a result, the linear plate 10 reciprocates in the X direction. Moreover, as the linear plate 10 reciprocates, the pair of slide plates 15 and 16 also reciprocate in the X direction (see FIGS. 5 and 6).
加えて、 第 1カム機構 Aが作動すると、 Y方向用出力軸 2が回転し、 この Y 方向用出力軸 2の回転力が動作変換手段 Gを介して一対のスライドプレート 1 5、 1 6に伝達される。 即ち、 Y方向用出力軸 2に固定されている揺動レバー 2 0と、 この揺動レバ一 2 0の両端部分に装着されているガイドビン 2 1 と、 このガイ ドビン 2 1が X方向に於いてのみ移動自在となるガイド溝 2 3を備え ると共に、 一対のスライドブレート 1 5、 1 6に固定されるガイドブロック 2 2とによって、 一対のスライドプレート 1 5、 1 6は Y方向に往復移動する ( 図 5、 図 6、図 7参照) 。  In addition, when the first cam mechanism A is activated, the Y-direction output shaft 2 rotates, and the rotational force of the Y-direction output shaft 2 is applied to the pair of slide plates 15 and 16 via the motion conversion means G. Communicated. That is, the swing lever 20 fixed to the Y-direction output shaft 2, the guide bins 21 attached to both ends of the swing lever 20, and the guide bins 21 in the X direction A pair of slide plates 15 and 16 are reciprocated in the Y direction by a guide block 23 and a guide block 22 fixed to the pair of slide plates 15 and 16, respectively. Move (see Figure 5, Figure 6, and Figure 7).
そして、 第 1カム機構 Aの Y方向用出力軸 2と第 2カム機構 Bの X方向用出 力軸 6の正回転または逆回転動作や停止状態のタイミングや、 そのスピード等 の組合せによって、 一対のスライ ドプレート 1 5、 1 6 (作動体 S 1、 S 2 ) は、 例えば、 図 8に示すような種々の動作モードを実現できるようになる。 以 下、 各動作モードについて説明する。  Depending on the combination of the forward rotation or reverse rotation operation of the Y-direction output shaft 2 of the first cam mechanism A and the X-direction output shaft 6 of the second cam mechanism B, the stop timing, the speed, etc. The sliding plates 15 and 16 (operating bodies S 1 and S 2) can realize various operation modes as shown in FIG. 8, for example. Each operation mode is described below.
まず、 図 8の ( I ) に示す動作モ一ドは、 一対のスライドブレート 1 5、 1 6 (作動体 S 1、 S 2 ) が、 ワークを X方向に搬送した (矢印①) 後、 相互が 離れるように Y方向に移動させ (矢印②) 、 X方向で戻るように移動させ (矢 印③) 、 相互が接近するように Y方向に移動させる (矢印④) 、 というような、 ①〜④の動作を繰り返すモードである。  First, the operation mode shown in (I) of Fig. 8 is that the pair of slide blades 15 and 16 (actuators S 1 and S 2) transport the workpiece in the X direction (arrow ①), and then Move in the Y direction to move away (arrow ②), move back in the X direction (arrow ③), move in the Y direction so that they approach each other (arrow ④), This mode repeats the operation of ④.
また、 図 8の ( I I ) に示す動作モードは、 一対のスライドブレー卜 1 5、 1 6 (作動体 S 1、 S 2 ) が、 ワークを X方向に搬送した (矢印①) 後、 相互 が離れるように Y方向に移動させると共に、 X方向で戻るように移動させ (矢 印②) 、 X方向で戻るように移動させ (矢印③) 、 X方向で戻り終るまでに、 相互が接近するように Y方向に移動させる (矢印④) 、 というような、①〜④ の動作を繰り返すモードである。 In the operation mode shown in (II) of Fig. 8, the pair of slide braces 15 and 16 (actuators S 1 and S 2) transport the workpiece in the X direction (arrow ①), and then Move it away in the Y direction and move it back in the X direction (arrow Mark ②), move in the X direction (arrow ③), and move in the Y direction so that they come close to each other until they return in the X direction (arrow ④) It is a mode to repeat.
更に、 図 8の ( I I I ) は、 一対のスライドブレート 1 5、 1 6 (作動体 S 1、 S 2) が、 ワークを X方向に搬送した (矢印①) 後、 相互が離れるように Y方向に移動すると共に、 X方向で戻るように移動.させ (矢印②) 、 X方向で 戻り終るまでに、 相互が接近するように Y方向に移動させる (矢印③) 、とい うような、①〜③の動作を繰り返すモードである。  Furthermore, (III) in Fig. 8 shows that the pair of slide blades 15 and 16 (actuators S 1 and S 2) transport the workpiece in the X direction (arrow ①), and then move away from each other in the Y direction. And move back in the X direction (arrow ②), and move back in the Y direction so that they approach each other (arrow ③) before returning to the X direction (arrow ③) This mode repeats the operation of ③.
そして、 図 8の ( I V) は、 一対のスライドプレート 1 5、 1 6 (作動体 S 1、 S 2) が、 適宜ワーク (搬送物) を X方向に搬送した後 (①) 、 X方向で 戻り終るまでに、 相互が離れるように Y方向に移動させた後、 相互が接近する ように Y方向に移動させる (②) 、 というような、①〜②の動作を繰り返すモ —ドである。  (IV) in Fig. 8 shows that after a pair of slide plates 15 and 16 (actuating bodies S 1 and S 2) appropriately transport the workpiece (conveyed object) in the X direction (①), This is a mode that repeats the operations of ① to ②, such as moving in the Y direction so that they are separated from each other before moving back, and then moving in the Y direction so that they are close to each other (②).
それから、 図 8の ( I V) に示す動作モードは、 一対のスライドブレート 1 5、 1 6 (作動体 S 1、 S 2) が、 ワークを X方向に搬送した (矢印①) 後、 他方のスライドブレート 1 6 (作動体 S 2) が、 一方のスライドブレー卜 1 5 (作動体 S 1 ) から離れるように Y方向に移動させ (矢印②) 、 一対のスライ ドプレート 1 5、 1 6 (作動体 S 1、 S 2) 力 X方向で戻るように移動させ (矢印③) 、 他方のスライ ドプレート 1 6 (作動体 S 2) が、 一方のスライド プレート 1 5 (作動体 S 1 ) に接近するように Y方向に移動させる (矢印④) 、 どいうような、①〜④の動作を繰り返すモードである。  Then, the operation mode shown in Fig. 8 (IV) is that the pair of slide plates 15 and 16 (actuators S 1 and S 2) transport the workpiece in the X direction (arrow ①) and then the other slide The blade 1 6 (actuator S 2) is moved in the Y direction (arrow ②) away from one slide brace 1 5 (actuator S 1), and a pair of slide plates 1 5 and 1 6 (actuator Body S1, S2) Force to move back in the X direction (arrow ③), the other slide plate 16 (actuator S2) approaches one slide plate 15 (actor S1) Move in the Y direction as shown (arrow ④).
次に、 図 8の (V I ) 、 (V I 1 ) 、 (V I I I ) で示される動作モードは、 —対のスライ ドブレート 1 5、 1 6 (作動体 S 1、 S 2) が、 ワークを X方向 に搬送した (矢印①) 後、 相互が離れるように Y方向に移動させ (矢印②) 、 X方向で戻るように移動させ (矢印③) 、 相互が接近するように Y方向に移動 させる (矢印④) 、 というような、①〜④の動作を繰り返すモードである。  Next, the operation modes indicated by (VI), (VI 1), and (VIII) in Fig. 8 are as follows: The pair of slide blades 15 and 16 (actuators S 1 and S 2) move the workpiece in the X direction. After moving to (arrow ①), move them in the Y direction so that they are separated from each other (arrow ②), move them back in the X direction (arrow ③), and move them in the Y direction so that they approach each other (arrow) ④) In this mode, the operation of ① ~ ④ is repeated.
図 8の (V I ) 、 (V I I I ) で示される各動作モードは、 例えば、 他方の スライドブレー卜 1 6 (作動体 S 2) と、 一方のスライ ドブレ一ト 1 5 (作動 体 S 1 ) との搬送ストローク (X方向の移動量) が異なり、 ワークを X方向に 搬送する際に、 ワークに旋回力を与えて、 ワークの向きを制御できるようにし たモードであり、 図 8の (V I I ) 、 (V I I I ) で示される各動作モードは、 例えば、 他方のスライ ドブレ一ト 1 6 (作動体 S 2) と、 一方のスライドブレ ート 1 5 (作動体 S 1 ) との Y方向の移動量が異なるようにしたモードである。 産業上の利用可能性 Each operation mode indicated by (VI) and (VIII) in FIG. 8 includes, for example, the other slide braid 16 (actuator S 2), one slide braid 15 (actor S 1), and the like. The transport stroke (movement amount in the X direction) is different and the workpiece is moved in the X direction. This is a mode in which a turning force is applied to the workpiece during transport so that the orientation of the workpiece can be controlled. Each operation mode shown in (VII) and (VIII) of FIG. 8 is, for example, the other slide braid. This is a mode in which the amount of movement in the Y direction between the first 16 (operating body S 2) and one slide bullet 15 (operating body S 1) is different. Industrial applicability
以上説明したように、本発明の XYァクチユエ一ターは、各種商品の組立機や 、 印刷機、 検査機等による作業工程中で用いられ、 ワークを正確にかつ高速に 搬送させることができ、 しかも、 装置自身の構成をより簡素化、 コンパク ト化 できるように工夫されたものである。  As described above, the XY actuator according to the present invention is used in an operation process by an assembly machine, a printing machine, an inspection machine, etc. for various products, and can convey a workpiece accurately and at high speed. The device itself has been devised to make it simpler and more compact.

Claims

請求の範囲 The scope of the claims
1 . 一対の作動体を、 第 1の方向 (X方向) 及びこの方向に対して直交する ような第 2の方向 (Y方向) に移動せしめるよう構成された X Yァクチユエ一 ターにおいて、  1. In an XY actuator configured to move a pair of actuators in a first direction (X direction) and a second direction (Y direction) perpendicular to this direction,
- 駆動手段によって作動される第 1カム機構であって、前記駆動手段に接続さ れる入力軸、並びに第 1および第 2の出力軸を有するものと、  -A first cam mechanism actuated by drive means having an input shaft connected to said drive means, and first and second output shafts;
前記第 1カム機構の第 1の出力軸に連繋手段を介して接続される入力軸、並 びに少なくとも 1つの出力軸を有する第 2カム機構と、  An input shaft connected to the first output shaft of the first cam mechanism via a connecting means, and a second cam mechanism having at least one output shaft;
前記第 2カム機構の出力軸の正回転または逆回転を往復運動に変換する第 1 の動作変換手段を介して、前記第 2カム機構に接続され、 かつ前記第 1の方向 へ往復移動可能に配設された少なくとも 1つのリニアプレートと、  It is connected to the second cam mechanism via a first motion converting means for converting a forward rotation or a reverse rotation of the output shaft of the second cam mechanism into a reciprocating motion, and is capable of reciprocating in the first direction. At least one linear plate disposed;
前記リニアプレー卜上に移動可能に配設され、前記第 1カム機構の第 2の出 力軸の正回転または逆回転を往復運動に変換する第 2の動作変換手段を介して 、前記第 1カム機構に接続され、 かつ前記第 2の方向へ往復移動可能に配設さ れた一対のスライドプレートとを備え、  Via the second motion conversion means, which is movably disposed on the linear plate and converts the forward rotation or reverse rotation of the second output shaft of the first cam mechanism into a reciprocating motion. A pair of slide plates connected to the cam mechanism and arranged to reciprocate in the second direction,
前記一対のスライドブレー卜に対応して一対の作動体が配設されていること を特徴とする X Yァクチユエ一ター。  A pair of actuating bodies are disposed corresponding to the pair of slide brakes.
2 . 前記第 2カム機構は、第 1および第 2の出力軸を有し、 その第 1および 第 2の出力軸の正回転または逆回転を往復運動に変換する第 1および第 2の動 作変換手段を介して、それぞれ前記第 2カム機構に接続された第 1および第 2 のリニアプレー卜が前記第 1の方向へ往復移動可能に配設され、 前記第 1およ び第 2のリニアプレー卜に対応した第 1 および第 2のスライ ドブレー卜が、前 記第 2の方向に往復移動可能に配設され、 2. The second cam mechanism has first and second output shafts, and first and second operations for converting forward rotation or reverse rotation of the first and second output shafts into reciprocating motion. The first and second linear plate rods connected to the second cam mechanism via the converting means are arranged to be reciprocally movable in the first direction, and the first and second linear plates are arranged. First and second slide blades corresponding to the play rod are disposed so as to be reciprocally movable in the second direction,
前記第 2カム機構の第 1および第 2の出力軸の正回転または逆回転によって、 前記第 1およぴ第スライ ドブレー卜のそれぞれが、前記第 1および第 2リニア プレートと共に、前記第 1の方向に往復移動されるように構成されていること を特徴とする請求項 1に記載の X Yァクチユエ一ター。 Each of the first and second slide blades, together with the first and second linear plates, causes the first and second linear plates to rotate by forward or reverse rotation of the first and second output shafts of the second cam mechanism. Configured to reciprocate in the direction The XY feature unit according to claim 1, wherein:
3 . 前記第 1および第 2のスライ ドブレートのどちらか一方が、 前記第 1力 ム機構の第 2の出力軸の正回転または逆回転によって、 前記第 2の方向におい て往復移動可能となるように構成されていることを特徴とする請求項 1または 2に記載の X Yァクチユエ一ター。 3. Either one of the first and second slide blades can be reciprocated in the second direction by forward rotation or reverse rotation of the second output shaft of the first force mechanism. The XY feature unit according to claim 1, wherein the XY feature unit is configured as follows.
4 . 前記第 1および第 2のスライドブレー卜は、前記第 1カム機構の第 2の 出力軸の正回転または逆回転によって、前記第 2の方向において互いに接近し たリ、互いに遠ざかるような往復移動をするように構成されていることを特徴 とする請求項 1または 2に記載の X Yァクチユエ一タ一。 4. The first and second slide brake rods are reciprocated so as to approach each other and move away from each other in the second direction by forward rotation or reverse rotation of the second output shaft of the first cam mechanism. 3. The XY feature unit according to claim 1, wherein the XY feature unit is configured to move.
5 . 前記第 1および第 2のスライドブレー卜は、前記第 2カム機構の出力軸 の正回転または逆回転によって、前記第 1の方向において互いに接近したり、互 いに遠ざかるような往復移動をするように構成されていることを特徴とする請 求項 2または 3に記載の X Yァクチユエ一ター。 5. The first and second slide braids reciprocate so as to approach each other or move away from each other in the first direction by forward or reverse rotation of the output shaft of the second cam mechanism. 4. The XY actuator according to claim 2 or 3, wherein the XY actuator is configured to
6 . 前記一^のスライ ドブレー卜のそれぞれは、作動体として形成されてい ることを特徴とする請求項 1〜 5のいずれか 1項に記載の X Yァクチユエ一タ ― 6. Each of the one slide blades is formed as an actuating body, and the XY actuator according to any one of claims 1 to 5,
PCT/JP2004/016277 2004-10-27 2004-10-27 Xy-actuator WO2006046311A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CNA2004800443184A CN101052576A (en) 2004-10-27 2004-10-27 XY driver
PCT/JP2004/016277 WO2006046311A1 (en) 2004-10-27 2004-10-27 Xy-actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/016277 WO2006046311A1 (en) 2004-10-27 2004-10-27 Xy-actuator

Publications (1)

Publication Number Publication Date
WO2006046311A1 true WO2006046311A1 (en) 2006-05-04

Family

ID=36227563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016277 WO2006046311A1 (en) 2004-10-27 2004-10-27 Xy-actuator

Country Status (2)

Country Link
CN (1) CN101052576A (en)
WO (1) WO2006046311A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105855879A (en) * 2016-06-16 2016-08-17 上海托展机电设备有限公司 Driver assembly line

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH039311U (en) * 1989-06-16 1991-01-29
JPH10139125A (en) * 1996-11-11 1998-05-26 Sankyo Seisakusho:Kk Carrier device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH039311U (en) * 1989-06-16 1991-01-29
JPH10139125A (en) * 1996-11-11 1998-05-26 Sankyo Seisakusho:Kk Carrier device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105855879A (en) * 2016-06-16 2016-08-17 上海托展机电设备有限公司 Driver assembly line

Also Published As

Publication number Publication date
CN101052576A (en) 2007-10-10

Similar Documents

Publication Publication Date Title
EP2060367A2 (en) Transfer apparatus
JP2011156621A (en) Transfer device
JP2010284716A (en) Die
JP2000135530A (en) Material transfer device
KR101450886B1 (en) Interlocking device of tool changing and door opening/closing for atc of machine tool
WO2006046311A1 (en) Xy-actuator
US7018160B2 (en) Handling device for repositioning parts
RU2346804C2 (en) Manipulator for parts transfer
KR101401107B1 (en) Interlocking device of tool changing and door opening/closing for atc of machine tool
JP3921666B2 (en) XY actuator
JP3876030B2 (en) Transport device
KR100880031B1 (en) Xy-actuator
JP5481692B2 (en) Material feeder
JP2007044708A (en) Work transfer device
GB1584576A (en) Article transfer mechanism
JP4008290B2 (en) Semiconductor device transfer device
JP5628869B2 (en) XZ actuator
RU2333829C1 (en) Manipulator for items transfer
US4323151A (en) Article transfer mechanism
JP2672796B2 (en) Transfer positioning device
RU2224638C2 (en) Hand type apparatus for handling articles
JP2002284330A (en) Transfer carrying device
RU2217297C1 (en) Hand type apparatus for transferring articles
JP5881106B2 (en) Work reversal installation mechanism
JP2002273673A (en) Pick-and-place unit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NA NI NO NZ PG PH PL PT RO RU SC SD SE SG SK SY TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077008718

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200480044318.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 04793310

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP