WO2006045488A1 - Condensateur d'un systeme de turbocompresseur et procede d'utilisation d'un tel systeme - Google Patents

Condensateur d'un systeme de turbocompresseur et procede d'utilisation d'un tel systeme Download PDF

Info

Publication number
WO2006045488A1
WO2006045488A1 PCT/EP2005/011188 EP2005011188W WO2006045488A1 WO 2006045488 A1 WO2006045488 A1 WO 2006045488A1 EP 2005011188 W EP2005011188 W EP 2005011188W WO 2006045488 A1 WO2006045488 A1 WO 2006045488A1
Authority
WO
WIPO (PCT)
Prior art keywords
condensate
exhaust gas
arrangement according
charge air
compressor
Prior art date
Application number
PCT/EP2005/011188
Other languages
German (de)
English (en)
Inventor
Jochen Eitel
Gerhard FRÄNKLE
Peter Geskes
Rainer Lutz
Rolf Müller
Eberhard Pantow
Original Assignee
Behr Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr Gmbh & Co. Kg filed Critical Behr Gmbh & Co. Kg
Priority to EP05812456A priority Critical patent/EP1825130A1/fr
Priority to US11/577,616 priority patent/US20080028757A1/en
Publication of WO2006045488A1 publication Critical patent/WO2006045488A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/045Constructional details of the heat exchangers, e.g. pipes, plates, ribs, insulation, materials, or manufacturing and assembly
    • F02B29/0468Water separation or drainage means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/24Layout, e.g. schematics with two or more coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/35Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for cleaning or treating the recirculated gases, e.g. catalysts, condensate traps, particle filters or heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/02Air cleaners
    • F02M35/022Air cleaners acting by gravity, by centrifugal, or by other inertial forces, e.g. with moistened walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/06Combinations of different methods of purification afterburning and filtering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0437Liquid cooled heat exchangers
    • F02B29/0443Layout of the coolant or refrigerant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a turbocharger arrangement and a method for operating a turbocharger according to the preamble of claim 1 or claim 19.
  • the return of exhaust gas is known, with both a high-pressure exhaust gas recirculation and a low-pressure exhaust gas recirculation is possible.
  • the exhaust gas stream is cooled to temperatures of about 15O 0 C to 200 0 C and admixed with the intake air.
  • the cooled intake air usually a partial flow of the engine coolant is used, but also the use of other coolant is known.
  • Exhaust gas recirculation is all the more effective the lower the gas outlet temperatures at the exhaust gas cooler are.
  • High-pressure exhaust gas recirculation In the case of high-pressure exhaust gas recirculation, exhaust gas is usually taken off in front of the turbine and the charge air is supplied to the charge air cooler. The cooling of the recirculated exhaust gas takes place by the hot engine coolant, so that due to the high temperatures usually no Exhaust gas condensate is formed. High-pressure exhaust gas recirculation achieves a significant reduction in nitrogen oxide emissions, but with a simultaneous increase in particulate emissions. The particle or particulate matter emission can be reduced by particle filters.
  • the exhaust gas is removed after the turbine, preferably after a particle filter, taken from the exhaust gas flow, cooled and fed to the compressor on the suction side. Due to the greater cooling of the recirculated exhaust gas, a further reduction of the nitrogen oxide emission is possible, however, forms due to the strong cooling of the recirculated exhaust gas condensate, which is sour starK, which essentially goes back to the formed nitric acid HNO 3 , so that it Corrosion comes. If condensate mist is fed to the compressor, it can also damage the compressor because of its high speed (about 120000 to 150000 rpm).
  • turbocharger arrangement and a method for operating a turbocharger, in which the risk of corrosion is as low as possible.
  • This object is achieved by a turbocharger arrangement and a method having the features of claim 1 and of claim 19.
  • Advantageous refinements are the subject of the claims.
  • the term "charge air” is understood to mean both the intake air and the intake air mixed with the recirculated exhaust gas.
  • a turbocharger arrangement in particular a motor vehicle with an internal combustion engine, is provided with exhaust gas recirculation, the arrangement having an exhaust gas cooler and a charge air cooler for cooling recirculated exhaust gas and / or charge air and a compressor for compressing the charge air and a condensate separator.
  • the condensate separator By means of the condensate separator, the corrosive fraction of the exhaust gas located in the condensate, which forms when the dew point temperature is reached and reached, can be removed from the exhaust gas stream or the charge air stream and ensured that no or only minimal condensate occurs in the following region collects, which promotes an eventual corrosion of the components.
  • the condensate separator is hereby preferably arranged directly after the cooler for cooling the recirculated exhaust gas and / or after the charge air cycle here and / or directly in front of the charge air compressor.
  • the condensate separator may preferably be a centrifugal or cyclone separator.
  • a filter for example made of stainless steel or plastic fabric or fleece, which serves as a condensate separator, is possible.
  • the condensate separation can be done in several stages to increase the effectiveness. Different condensate separators can be combined as required.
  • a valve for throttling the exhaust gas flow or the charge air flow is preferably provided so that the pressure level can be raised and the condensate can be discharged without additional aids.
  • tools such as a pump or other arrangement, which allows a temporary increase in pressure Sammelbe ⁇ container possible.
  • a check valve may be provided which allows outflow of the condensate, but prevents backflow of condensate and / or air from the outside.
  • the condensate drain can have such a discharge gradient that the weight force on the condensate corresponds at least to the suction pressure, so that a suck back of condensate can be prevented.
  • the condensate separator is preferably arranged directly downstream of the cooler, in particular directly downstream of the exhaust gas cooler. Also, an arrangement after the intercooler is useful. In order to protect the compressor against damage by condensate droplets, an arrangement directly in front of the compressor is also expedient. In this case, the shaft of the compressor can advantageously be used as drive or part of a centrifugal separator.
  • the condensate separator must also be arranged in an area in which condensate droplets are present. This is usually the case in an area in which the temperature of the exhaust gas stream or of the exhaust gas stream Charge air flow to the dew point (taking into account the other parameters, in particular pressure and chemical composition) reaches or falls below.
  • the exhaust gas or the charge air is in a region in which the exhaust gas or the charge air has a temperature which corresponds to the dew point or falls below the same deflected, in particular beauf ⁇ with a velocity component in the tangential direction, so that preferably the longitudinal movement a Rotationsbeweg is superimposed, but also a deflection of the air flow can be sufficient.
  • the velocity component in the tangential direction Due to the velocity component in the tangential direction, the forming condensate droplets are moved outward and can be deposited on the wall, from where they can collect, be forwarded and discharged.
  • the average tangential velocity component is preferably at least as great as the mean velocity component in the longitudinal direction, preferably at least twice as large.
  • the Kondensatabscheider is preferably coupled to the shaft of the compressor or fixed, so that a high speed with little design effort and without additional drive is possible.
  • the condensate separator preferably has a displacer or Schleu der Sciences, which is rotatably mounted on the shaft or formed by a Be ⁇ rich the shaft.
  • This follower body is preferably made of a light metal or a light metal alloy, such as aluminum, titanium or magnesium, or made of a plastic. Alternatively or additionally, it may have a surface coating, for example an oxalic layer, which protects it from corrosion.
  • the body is vorzugs ⁇ wise fluidically designed such that it despite the deflection no turbulence generated. Furthermore, it is minimized in terms of its mass to avoid mass forces.
  • the displacer or spinner is preferably arranged in the normal flow direction of the charge air upstream of the impeller of the compressor and preferably directs the charge air flow by at least 90 °, preferably by two times 180 °.
  • a Z-type deflection by z-about 180 ° leads to a very good separation of the condensate drops, with a part of the condensate drops knock off the body and thrown from there as a result of centrifugal force to the inner channel or housing wall.
  • the kinetic energy of the condensate drops can be used for removing the condensate from the interior.
  • the condensate separator is preferably arranged in the compressor housing and / or integrated in the compressor housing.
  • the compressor housing preferably has bores for the condensate drain.
  • the assembly includes a thermal condensate removal which enables detoxification of the condensate, so that acid, the acids condensate in Kon ⁇ contained, in particular the nitric acid, the sulfuric and are converted into their non-hazardous gases and "water, the sulfurous acid. This can then be added to the exhaust gas and delivered to the environment via the exhaust.
  • a thermal condensate removal which enables detoxification of the condensate, so that acid, the acids condensate in Kon ⁇ contained, in particular the nitric acid, the sulfuric and are converted into their non-hazardous gases and "water, the sulfurous acid. This can then be added to the exhaust gas and delivered to the environment via the exhaust.
  • the thermal condensate removal is preferably multi-stage, in particular three-stage, formed.
  • an exhaust-heated heat exchanger for heating the condensate is preferably provided.
  • a thermal reactor is preferably provided, which preferably comprises a PTC heating element and regulates automatically when no condensate is obtained.
  • thermosohermal reaction Actuator provided for a Resterhitzung, in particular in the form of a elektri ⁇ 's radiator, which heats the vaporized condensate to 350 to 450 c C, so that the nitric acid vapor on its innocuous Comp components nitrogen, water and oxygen converts.
  • internals are preferably provided for increasing the surface area so that the chemical process sequence can be optimized. It can be provided for each Kondensatabscheider a thermal condensate sat entsorgung, but preferably a common condensate disposal is provided for several Kondensatabscheider.
  • the heating of the thermal condensate removal may preferably be at low operating temperatures (122 ° C), the lead 2 formation of NO, are operated getak ⁇ tet, to allow, for example, load-dependent metering of NO 2 so that the NO x limits to be met.
  • an additional blower can be provided, which ensures egg conservation of the MAK values, irrespective of the function of the condensate discharge.
  • lines are provided between the condensate separator and the condensate removal line, which lines have an automatic conveying effect as a result of capillary forces and / or their arrangement, so that pumps can be dispensed with.
  • turbocharger arrangements will be explained in detail with reference to several exemplary embodiments with reference to the drawing. Show it:
  • 1 is a schematic diagram of a Vorricrrtung for cooling exhaust gas, as it can be used in a turbocharger assembly according to the invention
  • 2 is a schematic view of a firstticiansbei ⁇ game
  • FIG. 3 is a schematic view of a second embodiment
  • FIG. 6 is a schematic view of a fifth amongsbei ⁇ game
  • FIG. 7 is a schematic representation of a turbocharger arrangement with high-pressure exhaust gas recirculation
  • FIG. 8 is a schematic representation of a turbocharger arrangement with low-pressure exhaust gas recirculation
  • Fig. 9 is a schematic view of a seventh Ausflowt! example with a first variant of a centrifugal separator
  • FIG. 10 is a schematic view of an eighth Aussolidu ngsbei ⁇ game with a second variant of a centrifugal separator
  • 11 is a schematic representation of a turbocharger arrangement with low-pressure exhaust gas recirculation with two-stage cooling of the recirculated exhaust gas
  • 12 shows a schematic representation of a turbocharger arrangement with low-pressure exhaust gas recirculation with thermal condensate disposal
  • FIG. 13 shows a schematic detail of the thermal condensate disposal of FIG. 12.
  • Fig. 1 shows a small section of a turbocharger arrangement.
  • a device 1 for cooling recirculated exhaust gas of a power tool is shown with an internal combustion engine which has a condensate separator 3 arranged downstream of a coolant-cooled exhaust gas cooler 2 with an exhaust gas outlet 4 and a condensate outlet 5.
  • the flow direction of the exhaust stream is indicated by arrows.
  • the recirculated exhaust gas stream has passed through a particle filter before the branching off of the exhaust gas stream, so that as far as possible no particles, in particular no larger particles, are separated off in addition to the condensate, which deposits and thereby reduces the maintenance effort. increase wall.
  • especially small particles can serve as condensation seeds and have a positive effect on the condensation.
  • the deposition of the condensate droplets takes place in the condensate separator 3 by a Ver ⁇ settlement of the exhaust gas flow in rotation, so that the condensate droplets are not only taken in the axial direction of the exhaust stream but insbesonde ⁇ re also conveyed to the outside and largely accumulate on the wall, from where they can descend due to gravity down and can be dissipated.
  • the pressure loss through the condensate 3 is relatively low.
  • the deposition of the aggressive condensate the components arranged behind are protected, so that the risk of corrosion can be significantly reduced.
  • a centrifugal force separator which is conventional in principle is provided as condensate deflector 3, which is part of the device 1.
  • the precipitate condensate flows down through the condensate outlet 5, where an opening is arranged with a collecting container 7, in which the condensate is collected.
  • the collecting container 7 ⁇ / vird if allowed to emptied. It should be noted that there is a negative pressure compared to the environment, so that the condensate must be sucked n, so far no Druckhi, for example, by stopping the A-bgasstroms takes place.
  • a detailed description of possible centrifugal shut-off eider takes place later with reference to Figures 9 and 10th
  • a shut-off valve 8 arranged in the exhaust gas flow is provided according to the second exemplary embodiment shown in FIG. If the condensate to be removed, the Absperr ⁇ valve 8 is short-circuited, so that the pressure in the device increases and the condensate can drain off. It can be stored in a collecting container (not shown) until it is emptied.
  • a pump 9 is arranged downstream of the collecting container 7, which pump is automatically actuated when a certain filling level of the collecting container 7 is reached, so that, in particular in the case of a low pressure Exhaust gas recirculation, which is connected to a pressure below the ambient level, no stopping of the exhaust gas flow as in the second embodiment erforder ⁇ is required to raise the negative pressure in the collecting container 7 to ambient level.
  • a further possibility of an increase in pressure in the collecting container 7 is according to the fourth embodiment shown in FIG. 5 the provision of two valves 10 at the condensate inlet and condensate outlet thereof and a thin tube 11 with a regulating valve 12 which connects the collecting container 7 to the high-pressure side of the charge air line , so that when opening the control valve 12, the valve 10 is automatically closed at Konden ⁇ sateinlass, the pressure in the collecting container 7 increases and upon reaching a pressure level increased relative to the environment, the second valve 10 opens automatically at the condensate outlet, so that the Kon ⁇ condensate dissipated can be.
  • a turbulence generator 13 is integrated in the line downstream of the exhaust gas cooler 2 in conjunction with a downstream annular channel 14 as condensate separator 3.
  • the turbulence generator 13 By the turbulence generator 13, the exhaust gas stream with a Superimposed on rotational movement, so that in turn the condensate droplets forming on the basis of the reduced temperature after the exhaust gas cooler 2 are carried to the outside and deposited on the wall. Due to the speed component of the exhaust gas flow in the longitudinal direction, the condensate is entrained in the longitudinal direction and thus enters the channel 14, where it is discharged downwards and collects in a collecting container 7 according to the first embodiment. For emptying the collecting tank 7, in particular in the case of low-pressure exhaust gas recirculation, measures according to the embodiments described above are possible, for example.
  • the arrangement of the condensate separator does not necessarily have to be directly downstream of the exhaust gas cooler.
  • an arrangement after a subsequent intercooler is useful, especially if the temperature only reaches or falls below the dew point, so that in this case the charge air is cooled, which consists of de r intake air and the recirculated exhaust gas. Accordingly, in principle, the pure intake air can be dried.
  • a filter according to the exhaust gas cooler which has a synthetic fleece, is arranged as a condensate separator.
  • the condensate forming thereon collects and runs downwards, where it is collected in a collecting container.
  • FIGS. 7 and 8 show examples of a possible arrangement of a condensate separator 3 in the case of high-pressure exhaust gas recirculation (FIG. 7) and in the case of low-pressure exhaust gas recirculation (FIG. 8).
  • the configuration can be made in all cases according to the embodiments described above.
  • the lines of Nieder ⁇ pressure side are in Figures 7 and 8 by thick solid lines shown, the high pressure side by dashed lines.
  • the Strömungs ⁇ directions are each illustrated by arrows.
  • the diversion of the exhaust gas to be recirculated takes place from the exhaust gas flow coming from the engine M on the high-pressure side, ie before a pressure reduction.
  • the intake air is compressed in a compressor V, flows through a charge air cooler L, and is then supplied with the recirculated, cooled exhaust gas 3, which is dry after flowing through the condensate separator 3. Subsequently, the charge air flow is fed to the engine M.
  • FIG. 8 shows an example of a low-pressure exhaust gas recirculation, wherein the exhaust gas to be recirculated is branched off from the exhaust gas flow coming from the engine M on the low-pressure side, that is to say after a pressure reduction.
  • the exhaust gas to be recirculated is branched off from the exhaust gas flow coming from the engine M on the low-pressure side, that is to say after a pressure reduction.
  • the compressor V and the subsequent charge air cooler L and to protect it from corrosion it is guided through the exhaust gas cooler 2 and the condensate separator 3 and only then supplied to the intake air.
  • the charge air flow which is now formed by the recirculated exhaust gas and the intake air, is cooled in the intercooler L and fed to the engine M.
  • a centrifugal separator with a rotating displacer or spinner 20 can be provided as condensate separator 3, in which case the displacer or spinner 20 on the elongated shaft 21 of the turbocharger, on which the compressor wheel 22 is arranged, is mounted before entering the Ver ⁇ denser V.
  • the rotational speed of the centrifugal separator is coupled to the rotational speed of the compressor impeller 22, which is generally from 120,000 to 150,000 rpm.
  • the deflection of the charge air flow due to the displacer or Schleuder ⁇ body 20 in conjunction with the compressor inlet is geometrically designed here so that more condensate drops are deposited, which have not deposited on the displacement or spinner 20.
  • the displacer or spinner 20 is cup-shaped, the opening pointing in the direction of the compressor V. Due to the Z-like deflection of the charge air flow, in this case by 2 x about 180 °, were ⁇ the most condensate drops deposited before the charge air enters the compressor V.
  • the presently made of an aluminum alloy displacer or spinner 20 is inserted end auf ⁇ on the shaft 21 and soldered to the same.
  • FIG. 10 shows a displacer or spinner 20 for a radial condensate discharge according to the eighth exemplary embodiment of a condensate separator 3.
  • the air is deflected outwards by approximately 90 °, so that the condensate droplets are displaced onto the displacer or spinner meet body 20 from which they are hurled due to the centrifugal force with high kinetic energy to the outside in an annular condensate drain leading to the channel 5, which has a schematically indicated Ven ⁇ tilmechanismus 23, which als ⁇ the high kinetic energy auf ⁇ striking condensate lets through, but prevents condensate backflow into the compressor chamber.
  • the presently made of plastic displacer or spinner 20 is inserted end auf ⁇ on the shaft 21 and glued to the same, with as additional security, the Wei- lenende have a hexagonal shape and the displacer or Schleuder ⁇ body 20 have a corresponding inner shape.
  • FIG. 11 shows a low-pressure exhaust gas recirculation with two-stage cooling of the recirculated exhaust gas (exhaust gas cooler 2) in addition to the (presently) one-stage charge air cooling (charge air cooler L).
  • exhaust gas cooler 2 the exhaust gas coming from the engine M flows through the turbine T and, in the relaxed, cooled state, a subsequently arranged filter F is removed from the exhaust gas by means of its particles.
  • Valve-controlled a part of the exhaust gas purified by particles can be recirculated at a branch, the remainder of the exhaust gas passes through the exhaust to the outside.
  • the exhaust gas recirculation quantity is determined by the settling pressure gradient of exhaust back pressure and intake negative pressure, so that high exhaust gas recirculation quantities are possible with simple means.
  • the recirculated part of the exhaust gas is passed through a two-stage exhaust gas cooler 2, wherein in the first stage 2 'a pre-cooling by the engine coolant, which circulates in an otherwise conventionally designed engine cooling circuit, takes place. If necessary, the exhaust gas temperature is further reduced in the second stage 2 ", while the second stage 2" is part of a low-temperature cooling circuit.
  • This has an air-cooled Niedertem ⁇ temperature cooler NK, which is arranged in the air stream following the motor coolant cooling high-temperature radiator HK, a compressor K for circulating the coolant or refrigerant and in parallel branches a charge air cooler L and the second stage. 2 of the exhaust gas cooler 2, wherein the cooling or refrigerant distribution is controlled by means of valves.
  • a valve-controlled if necessary available bypass B is provided, which runs parallel to the engine N / 1 and charge air can lead past the same.
  • a condensate separator 3 is provided, with the aid of which condensate can be removed from the cold recirculated exhaust gas before it is mixed with the fresh air sucked in.
  • a further condensate in particular a centrifugal separator as described above with clutchnah ⁇ me to the figures 9 or 10.
  • a thermal condensate discharge 30 For disposal of the accumulating condensate, which is classified as hazardous substance and therefore can not be stored on board a vehicle, a thermal condensate discharge 30 is provided.
  • the acids formed can be converted into non-critical components with the aid of a multi-stage thermal reactor.
  • the condensate formed can be used for the precooling of the recirculated exhaust gas.
  • FIG. 12 An example of the arrangement of such a condensate discharge 30 in ei ⁇ ner low-pressure exhaust gas recirculation is shown schematically in Figures 12 and 13.
  • condensate which collects on the exhaust gas cooler 2, in front of the compressor V and in or after the charge air cooler L via lines gene to a central condensate collector 31 out of which it is fed via a line to a thermal reactor 32, the part of thermal condensate discharge 30 is.
  • the thermal reactor 32 is subsequently integrated with the filter F in an exhaust manifold of the engine.
  • the condensate-carrying lines in particular the Lei ⁇ tion from the condensate collector 31 to the thermal reactor 32, vor ⁇ lying on a cross section, which allows a promotion of the condensate due to capillary forces, so that can be despised on pumps.
  • there is no essential storage of the resulting condensate in the engine system but the condensate is disturbed. directly passed to the thermal reactor 32, heated therein and then discharged.
  • the condensate is used in a first stage S1 for cooling the recirculated exhaust gas, for which purpose a correspondingly formed heat exchanger forms the first stage 2 'of the exhaust duct 2, ie is arranged before the actual exhaust gas cooler 2 enters that substantially the entire enthalpy change of the condensate can be used for the first stage S 1 of the cooling of the exhaust gas.
  • This causes a heating of the condensate.
  • ribs or corresponding measures which increase the surface area are provided for optimizing the heat transfer of the exhaust gas heat to the condensate.
  • a second step S2 the evaporation of the heated Konden ⁇ sats, whereby the further heating presently follows er ⁇ by means of a self-regulating PTC-Heizeemperents (Positive Thermal Coefficient) to about 250 to 300 0 C, and takes place in a third step S3, a Reheating to 350 to 450 0 C.
  • PTC-Heizelements Positive Thermal Coefficient
  • the PTC heating element is designed such that it automatically stops when no condensate has accumulated.
  • the Resterhitzung the evaporated condensate in the third stage is carried out in the present case by means of an electrically heated Rohr ⁇ heater, which has a surface temperature of 350 to 450 ° C and Einbau ⁇ th or packing with a large surface area and possibly catalytic action.
  • nitric acid decomposes into NO 2 , N 2 , H 2 O and O 2 and sulfuric acid or sulfurous acid in H 2 O and SO 2 or SO 3 according to the following reactions: 4 HNO 3 -> 4 NO 2 + 2 H 2 O + O 2 4 HNO 3 -> 2 N 2 + 2 H 2 O + 5 O 2 H 2 SO 4 -> SO 3 + H 2 OH 2 SO 3 -> SO 2 + H 2 O
  • the now harmless condensate is fed to the exhaust gas stream and disposed of via the exhaust.
  • an additional blower can be provided, which ensures compliance with the limit values regardless of the function of the condensate discharge 30.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

L'invention concerne un système, notamment un système de turbocompresseur d'un véhicule comportant un moteur à combustion interne à recirculation des gaz d'échappement. Le système selon l'invention comporte un élément de refroidissement de gaz d'échappement (2) et un élément de refroidissement d'air de compression (L) destinés à refroidir les gaz d'échappement et/ou l'air de compression recyclés, un compresseur (V) destiné à comprimer l'air de compression et au moins un condensateur (3).
PCT/EP2005/011188 2004-10-25 2005-10-18 Condensateur d'un systeme de turbocompresseur et procede d'utilisation d'un tel systeme WO2006045488A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05812456A EP1825130A1 (fr) 2004-10-25 2005-10-18 Condensateur d'un systeme de turbocompresseur et procede d'utilisation d'un tel systeme
US11/577,616 US20080028757A1 (en) 2004-10-25 2005-10-18 Condenser in a Turbo-Compressor System and Method for Operating One Such System

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102004051922.6 2004-10-25
DE102004051922 2004-10-25
DE102005023957 2005-05-20
DE102005023957.9 2005-05-20

Publications (1)

Publication Number Publication Date
WO2006045488A1 true WO2006045488A1 (fr) 2006-05-04

Family

ID=35717711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/011188 WO2006045488A1 (fr) 2004-10-25 2005-10-18 Condensateur d'un systeme de turbocompresseur et procede d'utilisation d'un tel systeme

Country Status (3)

Country Link
US (1) US20080028757A1 (fr)
EP (1) EP1825130A1 (fr)
WO (1) WO2006045488A1 (fr)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1724453A1 (fr) * 2005-05-20 2006-11-22 Behr GmbH & Co. KG Mécanisme de turbocompresseur et procédé d'utilisation de celui-ci
WO2008129076A1 (fr) * 2007-04-24 2008-10-30 Mann+Hummel Gmbh Agencement d'air comburant et de gaz d'échappement pour un moteur à combustion interne
FR2922960A1 (fr) * 2007-10-24 2009-05-01 Valeo Systemes Thermiques Systeme de reinjection de gaz de carter et echangeur de chaleur mis en oeuvre dans ledit systeme
US7654078B2 (en) 2006-05-08 2010-02-02 Honeywell International, Inc. Exhaust gas particle collector
FR2936023A1 (fr) * 2008-09-12 2010-03-19 Valeo Systemes Thermiques Systeme d'evacuation de produits de condensation formes dans un circuit d'alimentation en air d'un moteur d'un vehicule automobile et procede de gestion d'un tel systeme
WO2010072887A1 (fr) * 2008-12-22 2010-07-01 Wärtsilä Finland Oy Procédé et agencement pour la suppression des particules dans un gaz d'échappement
EP2251074A1 (fr) * 2009-05-13 2010-11-17 Deere & Company Dispositif de pré-séparation de l'air d'un moteur à combustion avec vanne à papillon des gaz réglable en fonction de la charge du moteur
DE102013215347A1 (de) 2012-09-21 2014-05-15 Ford Global Technologies, Llc Verfahren zum Abführen von Flüssigkeit aus einem Ansaugtrakt einer Turboladeranordnung sowie Turboladeranordnung zur Durchführung eines derartigen Verfahrens
US20150176480A1 (en) * 2013-12-20 2015-06-25 Ford Global Technologies, Llc System and methods for engine air path condensation management
WO2015111679A1 (fr) * 2014-01-22 2015-07-30 Toyota Jidosha Kabushiki Kaisha Moteur à combustion interne
EP2232041A4 (fr) * 2007-12-07 2015-08-26 Scania Cv Ab Dispositif et procédé pour le retour de gaz d'échappement dans un moteur à combustion
EP3001022A1 (fr) * 2014-07-11 2016-03-30 Robert Bosch Gmbh Système de recirculation de gaz d'échappement basse pression pour moteur à combustion
EP3179067A1 (fr) * 2015-12-11 2017-06-14 MAN Truck & Bus AG Turbocompresseur pour une véhicule
EP2463494A3 (fr) * 2010-12-07 2017-07-05 Hyundai Motor Company Appareil de système de refroidissement de véhicule et procédé de contrôle l'utilisant
EP2199585A4 (fr) * 2007-10-17 2018-01-10 Toyota Jidosha Kabushiki Kaisha Dispositif de recirculation des gaz d'échappement pour moteur à combustion interne
CN108697958A (zh) * 2015-12-17 2018-10-23 臼井国际产业株式会社 气液分离装置
CN108697959A (zh) * 2015-12-17 2018-10-23 臼井国际产业株式会社 气液分离用旋流产生装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007089567A1 (fr) * 2006-01-27 2007-08-09 Borgwarner Inc. Unité de réintroduction d'un condensat de recyclage des gaz d'échappement à basse pression avant ou au niveau du compresseur
DE102007030277A1 (de) * 2007-06-28 2009-01-08 Mann + Hummel Gmbh Turbolader für eine Brennkraftmaschine
US8061138B2 (en) * 2008-06-24 2011-11-22 Ford Global Technologies, Llc System for controlling contaminant deposition in exhaust gas recirculation coolers
IL196231A (en) * 2008-12-28 2014-03-31 Aharon Eyal Methods and devices for low pollution energy generation
US20130180508A1 (en) * 2010-05-27 2013-07-18 International Engine Intellectual Property Company Llc System and method of controlling an amount of condensation in an engine air intake system
US9032939B2 (en) * 2012-08-20 2015-05-19 Ford Global Technologies, Llc Method for controlling a variable charge air cooler
JP5569627B2 (ja) * 2013-06-27 2014-08-13 株式会社デンソー ミキシング装置
JP6386363B2 (ja) * 2014-12-12 2018-09-05 株式会社オティックス 内燃機関用の過給装置
GB2531629B (en) * 2015-08-04 2017-01-11 Latif Qureshi Masood A device to suppress contrail formation
US10408119B2 (en) * 2017-04-13 2019-09-10 GM Global Technology Operations LLC Charge air cooler condensation management device
JP7095234B2 (ja) * 2017-06-22 2022-07-05 いすゞ自動車株式会社 排ガス再循環装置
DE102017210648A1 (de) * 2017-06-23 2018-12-27 Ford Global Technologies, Llc Kondensatfalle in einem Verdichter-Einlass
DE102018211300A1 (de) * 2017-07-18 2019-01-24 Mahle International Gmbh Kondensatabscheider
US11060445B1 (en) 2020-01-14 2021-07-13 Honda Motor Co., Ltd. Heat exchanger and power source system including same
FR3109605B1 (fr) * 2020-04-28 2022-04-08 Renault Sas Siphon a condensats-EGR
CN113606063A (zh) * 2021-08-25 2021-11-05 安徽江淮汽车集团股份有限公司 可排出冷凝水的汽车egr系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3618576A (en) * 1970-05-18 1971-11-09 Paul F Dixon Recirculating exhaust gas system for internal combustion engines
DE3310933A1 (de) * 1983-03-25 1984-09-27 Robert Bosch Gmbh, 7000 Stuttgart Einrichtung zur entfernung von festbestandteilen aus den abgasen von brennkraftmaschinen
US4503813A (en) * 1983-07-07 1985-03-12 Combustion Control Developments Ltd. Engine combustion control system and method employing condensation of some exhaust gas
FR2702005A1 (fr) * 1993-02-23 1994-09-02 Renault Dispositif de recirculation des gaz d'échappement d'un moteur à combustion interne.
DE10113449A1 (de) * 2000-03-23 2001-09-27 Avl List Gmbh Brennkraftmaschine, vorzugsweise mit einem Abgasturbolader
US6301887B1 (en) * 2000-05-26 2001-10-16 Engelhard Corporation Low pressure EGR system for diesel engines
US20010045090A1 (en) * 1999-07-22 2001-11-29 Gray Charles L. Low emission, diesel-cycle engine
US20040050373A1 (en) * 2002-07-30 2004-03-18 Gao Jason Zhisheng Method and system to extend lubricant life in internal combustion EGR systems
US20040079079A1 (en) * 2002-10-23 2004-04-29 Martin Steven P. Charge air condensation collection system for engines with exhaust gas recirculation
EP1548269A1 (fr) * 2003-12-22 2005-06-29 Iveco S.p.A. Procédé de recirculation des gaz d'échappement dans un moteur à combustion interne et moteur à combustion interne mettant en oeuvre ce procédé

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1340058A (en) * 1919-12-02 1920-05-11 Alvan R Lambert Air-cleaner for internal-combustion engines
US2147670A (en) * 1934-04-26 1939-02-21 Motor Power Inc Method and apparatus for treating and utilizing exhaust gases of internal combustionengines
US2158863A (en) * 1938-02-25 1939-05-16 Gen Electric Separator
US3308610A (en) * 1964-03-31 1967-03-14 Robbins & Myers Fluid apparatus for removing mist or vapors from the air
US3683626A (en) * 1970-12-14 1972-08-15 Estin Hans H Exhaust purification
US3857687A (en) * 1973-10-09 1974-12-31 W Cook Centrifugal filter
FR2275240A1 (fr) * 1974-06-21 1976-01-16 Stein Industrie Dispositif de pre-separation des gouttes d'eau d'un ecoulement biphasique
JPS5392973A (en) * 1977-01-26 1978-08-15 Sanetsu Kk Oil mist remover
US4877431A (en) * 1988-10-14 1989-10-31 Aercology Incorporated Radial impingement separator
KR0164529B1 (ko) * 1996-06-26 1998-12-15 김광호 배출가스 처리장치 및 방법
US6658880B1 (en) * 2000-02-04 2003-12-09 S.F.T. Services Sa Method and device for depolluting combustion gases

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3618576A (en) * 1970-05-18 1971-11-09 Paul F Dixon Recirculating exhaust gas system for internal combustion engines
DE3310933A1 (de) * 1983-03-25 1984-09-27 Robert Bosch Gmbh, 7000 Stuttgart Einrichtung zur entfernung von festbestandteilen aus den abgasen von brennkraftmaschinen
US4503813A (en) * 1983-07-07 1985-03-12 Combustion Control Developments Ltd. Engine combustion control system and method employing condensation of some exhaust gas
FR2702005A1 (fr) * 1993-02-23 1994-09-02 Renault Dispositif de recirculation des gaz d'échappement d'un moteur à combustion interne.
US20010045090A1 (en) * 1999-07-22 2001-11-29 Gray Charles L. Low emission, diesel-cycle engine
DE10113449A1 (de) * 2000-03-23 2001-09-27 Avl List Gmbh Brennkraftmaschine, vorzugsweise mit einem Abgasturbolader
US6301887B1 (en) * 2000-05-26 2001-10-16 Engelhard Corporation Low pressure EGR system for diesel engines
US20040050373A1 (en) * 2002-07-30 2004-03-18 Gao Jason Zhisheng Method and system to extend lubricant life in internal combustion EGR systems
US20040079079A1 (en) * 2002-10-23 2004-04-29 Martin Steven P. Charge air condensation collection system for engines with exhaust gas recirculation
EP1548269A1 (fr) * 2003-12-22 2005-06-29 Iveco S.p.A. Procédé de recirculation des gaz d'échappement dans un moteur à combustion interne et moteur à combustion interne mettant en oeuvre ce procédé

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1724453A1 (fr) * 2005-05-20 2006-11-22 Behr GmbH & Co. KG Mécanisme de turbocompresseur et procédé d'utilisation de celui-ci
US7654078B2 (en) 2006-05-08 2010-02-02 Honeywell International, Inc. Exhaust gas particle collector
JP2010525231A (ja) * 2007-04-24 2010-07-22 マン ウント フンメル ゲゼルシャフト ミット ベシュレンクテル ハフツング 排ガスターボチャージャを具えた内燃機関
US20100205949A1 (en) * 2007-04-24 2010-08-19 Mann+Hummel Gmbh Combustion Air and Exhaust Gas Arrangement of an Internal Combustion Engine
WO2008129076A1 (fr) * 2007-04-24 2008-10-30 Mann+Hummel Gmbh Agencement d'air comburant et de gaz d'échappement pour un moteur à combustion interne
EP2199585A4 (fr) * 2007-10-17 2018-01-10 Toyota Jidosha Kabushiki Kaisha Dispositif de recirculation des gaz d'échappement pour moteur à combustion interne
FR2922960A1 (fr) * 2007-10-24 2009-05-01 Valeo Systemes Thermiques Systeme de reinjection de gaz de carter et echangeur de chaleur mis en oeuvre dans ledit systeme
EP2232041A4 (fr) * 2007-12-07 2015-08-26 Scania Cv Ab Dispositif et procédé pour le retour de gaz d'échappement dans un moteur à combustion
FR2936023A1 (fr) * 2008-09-12 2010-03-19 Valeo Systemes Thermiques Systeme d'evacuation de produits de condensation formes dans un circuit d'alimentation en air d'un moteur d'un vehicule automobile et procede de gestion d'un tel systeme
WO2010072887A1 (fr) * 2008-12-22 2010-07-01 Wärtsilä Finland Oy Procédé et agencement pour la suppression des particules dans un gaz d'échappement
EP2251074A1 (fr) * 2009-05-13 2010-11-17 Deere & Company Dispositif de pré-séparation de l'air d'un moteur à combustion avec vanne à papillon des gaz réglable en fonction de la charge du moteur
US8151774B2 (en) 2009-05-13 2012-04-10 Deere & Company Engine combustion air cyclonic pre-cleaner embodying throttling member adjusted in accordance with engine load
EP2463494A3 (fr) * 2010-12-07 2017-07-05 Hyundai Motor Company Appareil de système de refroidissement de véhicule et procédé de contrôle l'utilisant
DE102013215347A1 (de) 2012-09-21 2014-05-15 Ford Global Technologies, Llc Verfahren zum Abführen von Flüssigkeit aus einem Ansaugtrakt einer Turboladeranordnung sowie Turboladeranordnung zur Durchführung eines derartigen Verfahrens
DE102013215347B4 (de) * 2012-09-21 2015-12-10 Ford Global Technologies, Llc Verfahren zum Abführen von Flüssigkeit aus einem Ansaugtrakt einer Turboladeranordnung sowie Turboladeranordnung zur Durchführung eines derartigen Verfahrens
US9334790B2 (en) 2012-09-21 2016-05-10 Ford Global Technologies, Llc System and method for discharging liquid out of an intake tract of a turbocharger arrangement
US9382836B2 (en) * 2013-12-20 2016-07-05 Ford Global Technologies, Llc System and methods for engine air path condensation management
US20150176480A1 (en) * 2013-12-20 2015-06-25 Ford Global Technologies, Llc System and methods for engine air path condensation management
JP2015137590A (ja) * 2014-01-22 2015-07-30 トヨタ自動車株式会社 内燃機関
WO2015111679A1 (fr) * 2014-01-22 2015-07-30 Toyota Jidosha Kabushiki Kaisha Moteur à combustion interne
EP3001022A1 (fr) * 2014-07-11 2016-03-30 Robert Bosch Gmbh Système de recirculation de gaz d'échappement basse pression pour moteur à combustion
CN107023379A (zh) * 2015-12-11 2017-08-08 曼卡车和巴士股份公司 机动车的废气涡轮增压机
EP3179067A1 (fr) * 2015-12-11 2017-06-14 MAN Truck & Bus AG Turbocompresseur pour une véhicule
CN107023379B (zh) * 2015-12-11 2020-10-30 曼卡车和巴士股份公司 机动车的废气涡轮增压机
RU2727819C2 (ru) * 2015-12-11 2020-07-24 Ман Трак Унд Бас Аг Работающий на отработавших газах турбонагнетатель для автомобиля, приводное устройство с таким турбонагнетателем и автомобиль
US10145296B2 (en) 2015-12-11 2018-12-04 Man Truck & Bus Ag Exhaust-gas turbocharger for a motor vehicle
EP3391952A4 (fr) * 2015-12-17 2019-08-07 Usui Co., Ltd. Dispositif de séparation gaz-liquide
EP3391953A4 (fr) * 2015-12-17 2019-08-07 Usui Co., Ltd. Générateur d'écoulement tourbillonnant pour une séparation gaz-liquide
CN108697959A (zh) * 2015-12-17 2018-10-23 臼井国际产业株式会社 气液分离用旋流产生装置
CN108697958A (zh) * 2015-12-17 2018-10-23 臼井国际产业株式会社 气液分离装置
US10828590B2 (en) 2015-12-17 2020-11-10 Usui Co., Ltd. Gas-liquid separator
US10881996B2 (en) 2015-12-17 2021-01-05 Usui Co., Ltd. Swirling flow generator for gas-liquid separation
CN108697958B (zh) * 2015-12-17 2021-03-12 臼井国际产业株式会社 气液分离装置
CN108697959B (zh) * 2015-12-17 2021-05-28 臼井国际产业株式会社 气液分离用旋流产生装置

Also Published As

Publication number Publication date
EP1825130A1 (fr) 2007-08-29
US20080028757A1 (en) 2008-02-07

Similar Documents

Publication Publication Date Title
WO2006045488A1 (fr) Condensateur d'un systeme de turbocompresseur et procede d'utilisation d'un tel systeme
EP1724453B1 (fr) Mécanisme de turbocompresseur et procédé d'utilisation de celui-ci
DE102005050133A1 (de) Turboladeranordnung und Verfahren zum Betreiben eines Turboladers
DE102017200800B4 (de) Verfahren zum Betreiben einer aufgeladenen Brennkraftmaschine mit Ladeluftkühlung
DE102013215347B4 (de) Verfahren zum Abführen von Flüssigkeit aus einem Ansaugtrakt einer Turboladeranordnung sowie Turboladeranordnung zur Durchführung eines derartigen Verfahrens
WO2012048786A1 (fr) Recyclage des gaz d'échappement à évacuation du condensat
DE102010027216A1 (de) Abgasrückführsystem für eine Brennkraftmaschine
DE102011002552A1 (de) Aufgeladene Brennkraftmaschine und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE102006033314A1 (de) Wärmetauschersystem und Verfahren zum Betreiben eines derartigen Wärmetauschersystems
DE102010048466A1 (de) Abgasrückführung mit Kondensat-Abführung
EP2354520A2 (fr) Véhicule automobile doté d'une installation de gaz d'échappement
DE102010041982A1 (de) Abgasrückführfilter, Brennkraftmaschine
WO2011035967A1 (fr) Moteur à combustion interne
DE102012009314A1 (de) Verbrennungsmotor
DE102017118455A1 (de) Abgasnachbehandlungssystem für einen Verbrennungsmotor und Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors
DE102013206690A1 (de) Brennkraftmaschine mit Ladeluftkühler und Abgasrückführung und Verfahren zum Herstellen einer derartigen Brennkraftmaschine
EP1926905B1 (fr) Systeme d'echange thermique et procede pour faire fonctionner un systeme de ce type
DE202017102032U1 (de) Brennkraftmaschine mit Ladeluftkühlung
AT506198B1 (de) Brennkraftmaschine mit zumindest einer kondensatquelle
DE102017127092B4 (de) Steuerbare Turboladervorrichtung einer Brennkraftmaschine
DE102010063694A1 (de) Anordnung zum Transport eines gasförmigen Mediums
EP3751106B1 (fr) Système et méthode de purification des gaz d'échappement
DE102015219625B4 (de) Aufgeladene Brennkraftmaschine mit Niederdruck-Abgasrückführung und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE102011087259A1 (de) Brennkraftmaschine mit einer Anordnung zur Rückführung von Abgas und Zuführung von gekühlter Ladeluft
DE102014216101A1 (de) Aufgeladene Brennkraftmaschine mit Abgasrückführung und Verfahren zum Betreiben einer derartigen Brennkraftmaschine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV LY MD MG MK MN MW MX MZ NA NG NO NZ OM PG PH PL PT RO RU SC SD SG SK SL SM SY TJ TM TN TR TT TZ UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IS IT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005812456

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11577616

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005812456

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11577616

Country of ref document: US