WO2006045016A2 - Produit de substitution de batterie au lithium integre pour batteries d'accumulateurs au plomb - Google Patents

Produit de substitution de batterie au lithium integre pour batteries d'accumulateurs au plomb Download PDF

Info

Publication number
WO2006045016A2
WO2006045016A2 PCT/US2005/037740 US2005037740W WO2006045016A2 WO 2006045016 A2 WO2006045016 A2 WO 2006045016A2 US 2005037740 W US2005037740 W US 2005037740W WO 2006045016 A2 WO2006045016 A2 WO 2006045016A2
Authority
WO
WIPO (PCT)
Prior art keywords
cell
lead
battery
lithium battery
lithium
Prior art date
Application number
PCT/US2005/037740
Other languages
English (en)
Other versions
WO2006045016A9 (fr
WO2006045016A3 (fr
WO2006045016A8 (fr
Inventor
Stephen W. Moore
Duane D. Kruger
Original Assignee
Enerdel, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enerdel, Inc. filed Critical Enerdel, Inc.
Publication of WO2006045016A2 publication Critical patent/WO2006045016A2/fr
Publication of WO2006045016A3 publication Critical patent/WO2006045016A3/fr
Publication of WO2006045016A8 publication Critical patent/WO2006045016A8/fr
Publication of WO2006045016A9 publication Critical patent/WO2006045016A9/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to lithium battery systems having voltage shaping circuitry designed to mimic the electrical behavior of lead acid batteries.
  • Lead acid batteries have proliferated into thousands of consumer and commercial products in the marketplace. Users have become accustomed to the electrical behavior and size and shape of sealed lead-acid batteries in products ranging from medical infusion pumps, neighborhood scooters, and computer battery backup un-interruptible power supplies. [0003] The available battery form factors, configurations, and integration for lead acid batteries are standardized across the industry. Charging and maintenance electronics for lead- acid batteries are also highly developed and inexpensive. However, the calendar life, cycle life, maintenance cost, and weight of lead acid batteries are limiting factors in their overall usefulness. Many users of systems which include lead-acid batteries are desirous of an alternative battery that would overcome one or more of these limitations.
  • a battery system provided by Valence Technology Inc., Austin, TX provides a lithium ion replacement for a 12V lead acid battery packed in standard lead acid sizes.
  • the lithium ion replacement for a 12V lead acid battery provided by Valence Technology Inc. may have the right size and shape for lead acid replacement, but the electrical characteristics remain that of a lithium battery.
  • a lithium battery system provides electrical characteristics comparable to electrical characteristics of a lead acid battery.
  • the system includes at least one lithium battery cell and electronics including a voltage converter.
  • the voltage converter is coupled to an output of the Li cell and converts the output of the lithium cell to an electrical output characteristic of a lead-acid battery.
  • the voltage converter can comprise a bidirectional switching converter.
  • the system can further comprise electronics coupled to the Li cell for monitoring and managing the cell, the electronics having structure for providing at least one selected from the group consisting of charge control, overcharge protection, discharge protection, and cell equalization.
  • An outer case is preferably provide, wherein the lithium battery cell and the electronics are disposed in the outer case, where the outer case has a size and shape of standard lead acid batteries.
  • a single lithium cell can be used which after (boost) conversion provides 12 to 14 Volts 25 0 C.
  • 3 cells are used, with the voltage converter again comprises a voltage boost converter, hi another embodiment, 4 cells are used and the voltage converter comprises a voltage buck converter.
  • a method of substituting a lithium battery for a lead-acid battery comprises the steps of providing a lithium battery system comprising at least one lithium battery cell and electronics including a voltage converter, the voltage converter coupled to an output of the Li cell, and converting the output of the lithium cell using the voltage converter to an electrical output characteristic of a lead-acid battery.
  • the lithium battery system preferably includes an outer case, wherein said lithium battery cell and said electronics are disposed in the case, wherein the case provides a size and shape characteristic of a lead acid battery.
  • the method can further comprise the step of installing the battery system in a system specified for a lead acid battery.
  • Fig. 1 shows an exemplary packaged Li battery system including a voltage converter which is designed to be a drop-in substitute for a lead acid battery, according to an embodiment of the invention.
  • Fig. 2 shows voltage discharge curves for a conventional 6-cell lead-acid battery as compared to the discharge curve of an unconverted single Li cell.
  • Fig. 3 shows a discharge voltage comparison illustrating the results from boosting a single 5Ah Lithium cell according to the invention with a constant boost to match the output voltage of a standard 2 Ah 12V lead-acid battery.
  • Fig. 4 shows a discharge voltage comparison illustrating the results from boosting a single 5Ah Lithium cell according to the invention with a variable boost to more closely match the output voltage of a standard 2 Ah 12V lead-acid battery as compared to the constant boost result shown in Fig. 3.
  • a lithium battery system which provides electrical characteristics comparable to a lead acid battery comprises at least one lithium battery cell, and a voltage converter.
  • the voltage converter is coupled to an output of the Li cell and converts the output of the Li cell to electrical characteristics of a lead-acid battery.
  • the inventive battery system thus replaces an industry- standard lead-acid battery with a drop-in lithium battery that in a preferred embodiment requires no changes to the form factor, configuration, or system integration.
  • the phrase "converts the output of the Li cell to electrical characteristics of a lead-acid battery” is defined as making the output voltage from the lithium battery system match the output voltage of the lead acid battery (for a given application) within 10%, preferably within 5%, and most preferably within 2% over the complete discharge curve. Matching the entire voltage vs. state of charge (SOC) thus meets system requirements that use voltage as a signal, such as for low battery alarms that use voltage as the trigger.
  • SOC state of charge
  • the invention is applicable to all Li battery types, including, but not limited to Li metal, Li ion and Li polymer batteries. Although generally described for converting electrical characteristics of lithium batteries to that of lead acid batteries, more generally, the invention allows one battery type to provide the electrical characteristics of another battery type.
  • the lithium battery system is a packaged system including an outer case that is of the same size and shape of industry-standard lead-acid batteries. Inside the case there is at least one lithium battery cell, electronics to monitor and manage the lithium battery cell(s), electronics to provide the necessary voltage boost to match the lithium battery cell(s) to the standard lead-acid interface, thus allowing the lithium battery to be a direct replacement for the lead-acid battery in the application.
  • FIG. 1 shows an exemplary packaged battery system 100 according to an embodiment of the invention.
  • a plurality of lithium battery cells 101 are configured in series and/or parallel inside of the case 102, the cell number and configuration depending on the desired electrical properties. Although described as being a plurality of cells, there may also be just one lithium battery cell in system 100.
  • Electronics 103 monitors and manages the lithium cells 101 by preferably providing charge control, overcharge protection, discharge protection, cell equalization, and other standard safety and maintenance functions. These functions, if desired to be in addition to standard lead acid battery capabilities, include are State of Health (SOH) algorithms, State of Charge (SOC) algorithms, and thermal monitoring and protection curcuits. These functions can be comunicated outside the battery to a host device.
  • Electronics 103 also generally include memory, such as for storing characteristic voltage curve data of a lead acid battery for a given application, structure for measuring battery current output, its state of charge, arid resistance as a function of the state of charge.
  • Microprocessor-based management electronics for these functions are well known in the art. Beginning in the 1990s, some battery modules have included logic chips (either microcontrollers or programmed custom logic chips). These chips are commonly referred to as “Smart Battery Modules” which have been used for charge/discharge control, communications, and related functions such as overtemperature and overcurrent monitoring, or for a "gas gauge” function which estimates battery life. For example, United States Patent No.
  • 5,929,606 to Faulk entitled "Ripple-suppressed converting battery module” discloses a universal battery pack which contains an integral DC-DC switching power converter, with an asymmetric ripple-suppression topology which suppresses ripple at the power output terminals during discharging is an exemplary smart battery module that can be used with the invention.
  • United States Patent No. 5,929,606 to Faulk is incorporated by refrence into the present application.
  • the electronics according to the invention is preferably, but not required to be, chip- based.
  • One function of electronics 103 is for converting the standard lead-acid charging voltages to voltages acceptable for charging lithium cells. In reverse, the electronics 103 convert the discharge voltage of the lithium cells to the standard discharge voltage of lead-acid batteries.
  • System also up-integrates the cell or plurality of cells 101 to the standard lead-acid interface.
  • System 100 includes a bi-directional DC-DC switching voltage converter 104 for this purpose, which may be of the buck, boost, buck-boost, cuk, flyback, forward, or other known converter topology.
  • Electronics 103 and converter 104 can be combined into a single device.
  • the output of voltage converter 104 is provided across terminals 108 and and 109, which are standard for lead acid batteries.
  • the voltage converter 104 takes the voltage curve obtained from a lithium battery 201 shown in Figure 2 and "maps" its voltage to the voltage curve characteristic of a lead-acid battery 202.
  • the characteristic voltage curve of the lead acid battery is generally pre ⁇ programmed into the electronics 103. Data for the characteristic voltage curve can be obtained by measuring output characteristics of a lead acid battery in a given application (having a certain load) or by calculating the output characteristics using known equations for lead acid batteries.
  • the unmapped lithium battery voltage may be more or less than the standard lead- acid battery voltage level. Depending on the number of cells and the voltage converter 104 used, the lithium voltage provided will be "boosted" to match the standard lead-acid level, or “bucked” to match the standard lead-acid level.
  • a conventional automobile operates at 13.6V nominal, the voltage being set by a standard 6-cell lead acid automobile battery in the automobile.
  • the nominal lithium voltage for standard automotive application is either 10.9V (3 cells) or 14.6V (4 cells). If the lead acid battery is replaced by a 3 cell lithium battery, the voltage will be too low. If the lead acid battery is replaced by a 4 cell lithium battery, the voltage will be too high.
  • Electronics provided systems according to the invention can adapt the voltage of the lithium battery up or down to 13.6V, to match the original specification of the automobile.
  • Figure 3 provides data showing a discharge voltage comparison illustrating the results of boosting a single 5Ah lithium cell by a constant factor of 3.5 X according to the invention 301 to match the output voltage of a standard Yuasa (Yuasa Battery, Inc. Reading, PA) 2 Ah lead- acid battery 302.
  • Yuasa specifications include a valve regulated sealed lead acid battery, 12 Volt, 2 Ah, Dimensions: L 148mm x W 20mm x H 90mm having standard blade terminals. Better results (not shown) can be obtained by varying the boost factor as a function of time to more closely match the lead acid discharge curve.
  • FIG. 4 shows a discharge voltage comparison illustrating the results from boosting a single 5AIi Lithium cell according to the invention 401 with a variable boost level. It can be seen that the variable boost level more closely matches the output voltage of the standard 2 All 12 V lead-acid battery 302 by comparing the results shown in Fig. 4 as compared to the results shown in Fig. 3.
  • the invention may be used in applications for systems that require nominal lead acid voltages. There exists a large market of lead acid batteries in which regular replacements are required. The invention allows lithium battery systems to displace lead acid batteries during these replacement cycles.

Abstract

L'invention concerne un système de batterie au lithium présentant des caractéristiques électriques comparables à celles d'une batterie d'accumulateurs au plomb. Ce système comprend au moins un élément de batterie au lithium et des composants électroniques comprenant un convertisseur de tension. Ce convertisseur de tension est couplé à une sortie de l'élément Li, et convertit cette sortie en sortie électrique caractéristique d'une batterie d'accumulateurs au plomb.
PCT/US2005/037740 2004-10-20 2005-10-20 Produit de substitution de batterie au lithium integre pour batteries d'accumulateurs au plomb WO2006045016A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US62029804P 2004-10-20 2004-10-20
US60/620,298 2004-10-20

Publications (4)

Publication Number Publication Date
WO2006045016A2 true WO2006045016A2 (fr) 2006-04-27
WO2006045016A3 WO2006045016A3 (fr) 2006-06-15
WO2006045016A8 WO2006045016A8 (fr) 2008-12-11
WO2006045016A9 WO2006045016A9 (fr) 2009-01-22

Family

ID=36168620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/037740 WO2006045016A2 (fr) 2004-10-20 2005-10-20 Produit de substitution de batterie au lithium integre pour batteries d'accumulateurs au plomb

Country Status (1)

Country Link
WO (1) WO2006045016A2 (fr)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2393152A1 (fr) * 2010-06-04 2011-12-07 STILL GmbH Dispositif de commande de batterie
US8957623B2 (en) 2011-03-16 2015-02-17 Johnson Controls Technology Company Systems and methods for controlling multiple storage devices
EP2887420A1 (fr) * 2013-12-19 2015-06-24 Linde Material Handling GmbH Batterie de propulsion pour machine-outil mobile
EP3219536A1 (fr) 2016-03-15 2017-09-20 Linde Material Handling GmbH Système modulaire pour batterie de traction à recharge rapide pour chariot de manutention
EP3220469A1 (fr) 2016-03-15 2017-09-20 Linde Material Handling GmbH Batterie de traction pour chariot élévateur, gerbeur
US9800071B2 (en) 2015-02-24 2017-10-24 Green Cubes Technology Corporation Methods and system for add-on battery
DE102016219452A1 (de) * 2016-10-07 2018-04-12 Robert Bosch Gmbh Batterieeinheit und Verfahren zum Betrieb einer Batterieeinheit
CN109273783A (zh) * 2018-09-11 2019-01-25 众声物联(天津)科技有限公司 锂电池替换铅酸电池智能bms架构及使用方法
WO2020165195A1 (fr) * 2019-02-14 2020-08-20 Robert Bosch Gmbh Unité batterie et procédé permettant de faire fonctionner une unité batterie
CN111596218A (zh) * 2020-06-19 2020-08-28 深圳市福光动力通信设备有限公司 用锂电池组模拟铅酸电池组充放电特性的装置
EP3709475A1 (fr) * 2019-03-15 2020-09-16 Robert Bosch GmbH Élément de maintien pour un accumulateur ainsi qu'accumulateur doté d'un tel élément de maintien
US11128005B2 (en) 2013-07-30 2021-09-21 Cps Technology Holdings Llc Lithium ion battery with lead acid form factor
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11349432B2 (en) 2010-11-09 2022-05-31 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11489330B2 (en) 2010-11-09 2022-11-01 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11620885B2 (en) 2012-01-30 2023-04-04 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US11682918B2 (en) 2006-12-06 2023-06-20 Solaredge Technologies Ltd. Battery power delivery module
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11870250B2 (en) 2016-04-05 2024-01-09 Solaredge Technologies Ltd. Chain of power devices
US11867729B2 (en) 2009-05-26 2024-01-09 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11929620B2 (en) 2012-01-30 2024-03-12 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11962243B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5646501A (en) * 1995-11-02 1997-07-08 Lucent Technologies Inc. Flexible power architecture which supports multiple battery technologies for use with a portable device
US5945806A (en) * 1997-08-29 1999-08-31 Compaq Computer Corporation Variable-voltage programmable battery module
US6118248A (en) * 1998-04-02 2000-09-12 The Procter & Gamble Company Battery having a built-in controller to extend battery service run time

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5646501A (en) * 1995-11-02 1997-07-08 Lucent Technologies Inc. Flexible power architecture which supports multiple battery technologies for use with a portable device
US5945806A (en) * 1997-08-29 1999-08-31 Compaq Computer Corporation Variable-voltage programmable battery module
US6118248A (en) * 1998-04-02 2000-09-12 The Procter & Gamble Company Battery having a built-in controller to extend battery service run time

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594881B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594882B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11682918B2 (en) 2006-12-06 2023-06-20 Solaredge Technologies Ltd. Battery power delivery module
US11658482B2 (en) 2006-12-06 2023-05-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11962243B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11961922B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11594880B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11575260B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11575261B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
US11867729B2 (en) 2009-05-26 2024-01-09 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
EP2393152A1 (fr) * 2010-06-04 2011-12-07 STILL GmbH Dispositif de commande de batterie
US11349432B2 (en) 2010-11-09 2022-05-31 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11489330B2 (en) 2010-11-09 2022-11-01 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9819064B2 (en) 2011-03-16 2017-11-14 Johnson Control Technology Company Systems and methods for overcharge protection and charge balance in combined energy source systems
US9300018B2 (en) 2011-03-16 2016-03-29 Johnson Controls Technology Company Energy source system having multiple energy storage devices
US8957623B2 (en) 2011-03-16 2015-02-17 Johnson Controls Technology Company Systems and methods for controlling multiple storage devices
US10290912B2 (en) 2011-03-16 2019-05-14 Johnson Controls Technology Company Energy source devices and systems having a battery and an ultracapacitor
US10158152B2 (en) 2011-03-16 2018-12-18 Johnson Controls Technology Company Energy source system having multiple energy storage devices
US9425492B2 (en) 2011-03-16 2016-08-23 Johnson Controls Technology Company Energy source systems having devices with differential states of charge
US11929620B2 (en) 2012-01-30 2024-03-12 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11620885B2 (en) 2012-01-30 2023-04-04 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US11128005B2 (en) 2013-07-30 2021-09-21 Cps Technology Holdings Llc Lithium ion battery with lead acid form factor
CN104733651A (zh) * 2013-12-19 2015-06-24 林德材料处理有限责任公司 用于移动式工作机的牵引用电池
EP2887420A1 (fr) * 2013-12-19 2015-06-24 Linde Material Handling GmbH Batterie de propulsion pour machine-outil mobile
US10581261B2 (en) 2015-02-24 2020-03-03 Green Cubes Technology Corporation Methods and system for add-on battery
US9800071B2 (en) 2015-02-24 2017-10-24 Green Cubes Technology Corporation Methods and system for add-on battery
US11133694B2 (en) 2015-02-24 2021-09-28 Green Cubes Technology, Llc Methods and system for add-on battery
DE102016104758A1 (de) 2016-03-15 2017-09-21 Linde Material Handling Gmbh Traktionsbatterie für Flurförderzeug
DE102016104759A1 (de) 2016-03-15 2017-09-21 Linde Material Handling Gmbh Modulares System für schnellladefähige Traktionsbatterie für Flurförderzeug
EP3220469A1 (fr) 2016-03-15 2017-09-20 Linde Material Handling GmbH Batterie de traction pour chariot élévateur, gerbeur
EP3219536A1 (fr) 2016-03-15 2017-09-20 Linde Material Handling GmbH Système modulaire pour batterie de traction à recharge rapide pour chariot de manutention
US11870250B2 (en) 2016-04-05 2024-01-09 Solaredge Technologies Ltd. Chain of power devices
DE102016219452A1 (de) * 2016-10-07 2018-04-12 Robert Bosch Gmbh Batterieeinheit und Verfahren zum Betrieb einer Batterieeinheit
WO2018065597A1 (fr) * 2016-10-07 2018-04-12 Robert Bosch Gmbh Unité de batterie et procédé de fonctionnement d'une unité de batterie
CN109273783B (zh) * 2018-09-11 2024-01-02 众声物联(天津)科技有限公司 锂电池替换铅酸电池智能bms架构及使用方法
CN109273783A (zh) * 2018-09-11 2019-01-25 众声物联(天津)科技有限公司 锂电池替换铅酸电池智能bms架构及使用方法
WO2020165195A1 (fr) * 2019-02-14 2020-08-20 Robert Bosch Gmbh Unité batterie et procédé permettant de faire fonctionner une unité batterie
EP3709475A1 (fr) * 2019-03-15 2020-09-16 Robert Bosch GmbH Élément de maintien pour un accumulateur ainsi qu'accumulateur doté d'un tel élément de maintien
CN111596218A (zh) * 2020-06-19 2020-08-28 深圳市福光动力通信设备有限公司 用锂电池组模拟铅酸电池组充放电特性的装置
CN111596218B (zh) * 2020-06-19 2022-08-02 深圳市福光动力通信设备有限公司 用锂电池组模拟铅酸电池组充放电特性的装置

Also Published As

Publication number Publication date
WO2006045016A9 (fr) 2009-01-22
WO2006045016A3 (fr) 2006-06-15
WO2006045016A8 (fr) 2008-12-11

Similar Documents

Publication Publication Date Title
WO2006045016A2 (fr) Produit de substitution de batterie au lithium integre pour batteries d'accumulateurs au plomb
US11128152B2 (en) Systems and methods for adaptive fast-charging for mobile devices and devices having sporadic power-source connection
US20190319460A1 (en) Systems and methods for series battery charging
US20100121511A1 (en) Li-ion battery array for vehicle and other large capacity applications
CN105308825B (zh) 用于dc-ac逆变器的预充电和电压供应系统
CN101953016B (zh) 用于组合电池芯和组合电池芯系统的充电方法
JP5839210B2 (ja) バッテリー充電装置及び方法
CN107078528B (zh) 电源的充电方法、充电控制系统、充电装置及无人机
CN1179640A (zh) 电池充电装置
KR20170022416A (ko) 배터리 시스템
JP7048855B2 (ja) Bms間の通信システム及び方法
CN102299392A (zh) 采用锂离子电池构成的充电电池及控制方法
US20060250112A1 (en) Battery charger
US20220216721A1 (en) Control system and method for improving battery output energy efficiency, and electronic device
CN103493329A (zh) 具有内部蓄电池的低成本快速充电器以及方法
EP2854254A1 (fr) Station de chargement avec système d'équilibrage de cellule de batterie
CN114598008A (zh) 储能电源装置、储能电源控制方法、装置和单片机
JP3581699B2 (ja) 給電システム及びその制御方法
CN107733000A (zh) 充电方法和充电器
CN101312296B (zh) 电池模块的充电方法
CN202142621U (zh) 采用锂离子电池构成的充电电池
US20170077720A1 (en) Systems and methods for adaptive fast-charging for mobile devices and devices having sporadic power-source connection
CN111478389A (zh) 一种充电储能系统及充电桩设备
CN116826209A (zh) 获取电池包内电池连接的方法、系统、存储介质及设备
CN107733033B (zh) 一种基于pd协议的pps移动电源系统及控制方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05809992

Country of ref document: EP

Kind code of ref document: A2