WO2006041051A1 - Micro pile and method of constructing the same - Google Patents

Micro pile and method of constructing the same Download PDF

Info

Publication number
WO2006041051A1
WO2006041051A1 PCT/JP2005/018681 JP2005018681W WO2006041051A1 WO 2006041051 A1 WO2006041051 A1 WO 2006041051A1 JP 2005018681 W JP2005018681 W JP 2005018681W WO 2006041051 A1 WO2006041051 A1 WO 2006041051A1
Authority
WO
WIPO (PCT)
Prior art keywords
pile body
casing
micropile
reinforcing material
end portion
Prior art date
Application number
PCT/JP2005/018681
Other languages
French (fr)
Japanese (ja)
Other versions
WO2006041051A8 (en
Inventor
Masahiro Takeguchi
Mitsutaka Hada
Masao Sagara
Terukatsu Sasaya
Katsunori Hirano
Etsuro Saito
Toshihisa Hatano
Kenichirou Sakamoto
Yasumi Wakabayashi
Yuuji Mishima
Setsuo Iwata
Original Assignee
Incorporated Administrative Agency Public Works Research Institute
Fujita Corporation
Hitachi Zosen Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Incorporated Administrative Agency Public Works Research Institute, Fujita Corporation, Hitachi Zosen Corporation filed Critical Incorporated Administrative Agency Public Works Research Institute
Priority to JP2006540929A priority Critical patent/JP4617315B2/en
Publication of WO2006041051A1 publication Critical patent/WO2006041051A1/en
Publication of WO2006041051A8 publication Critical patent/WO2006041051A8/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/74Means for anchoring structural elements or bulkheads
    • E02D5/80Ground anchors
    • E02D5/801Ground anchors driven by screwing

Definitions

  • the present invention relates to a micropile and a construction method thereof.
  • Micropile is a general term for cast-in-place piles and embedded piles with a diameter of 300mm or less. Construction pile foundations, seismic reinforcement of existing structures (increase pile method), ground reinforcement, slope Widely used in many applications, including stability. There are various types of micropile, for example, those described in Patent Documents 1 to 6 below.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-140583
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-027149
  • Patent Document 3 Japanese Patent Laid-Open No. 2000-290906
  • Patent Document 4 Japanese Patent Laid-Open No. 2001-146743
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2001-323459
  • Patent Document 6 Japanese Patent Laid-Open No. 2002-275907
  • micropile built in the field does not have the hassle of handling long off-the-shelf piles, so it is very suitable for seismic reinforcement of existing structures with limited heads. It has advantages such as being.
  • a micropile there is a strong demand to further improve the resistance against indentation force, pull-out force, and bending stress acting on the micropile. This is strongly demanded when using micropile, because many micropile are often used as one pile group, especially if the resistance of micronail is increased. If the bearing capacity and horizontal resistance are increased, the required number of micropiles can be reduced, thereby shortening the construction period and reducing the construction cost.
  • the present invention has been devised in view of the above circumstances, and an object of the present invention is to provide a micropile and a method for constructing the same that have improved resistance to resistance and, in particular, improved support and horizontal resistance. It is to provide.
  • the micropile according to the present invention is a micropile for connecting a structure and a support layer in the ground, and is hardened by pressure injection into an excavation hole formed in the ground.
  • a pile body made of grout, wherein at least a lower end portion of the pile body extends in the support layer, and the pile body is embedded in the grout of the pile body so as to extend in a longitudinal direction of the pile body.
  • the outer peripheral surface is covered with the grout of the pile body, and the steel bar
  • the mold reinforcement extends from the upper end of the pile body to the lower end of the pile body, and the lower end portion of the mold reinforcement extends the lower end force of the steel pipe reinforcement and is covered with the grout of the pile body,
  • the space between the inner peripheral surface of the steel pipe reinforcement and the outer peripheral surface of the steel bar reinforcement is filled with the grout of the pile body! It is characterized by scolding.
  • the micropile construction method according to the present invention is based on the micropile construction method for connecting a structure and a support layer in the ground, and excavating the ground while adding a plurality of casing segments.
  • the steel plate type reinforcing material and the steel bar type reinforcing material extend in the longitudinal direction of the drilling hole substantially concentrically with each other, the steel bar type reinforcing material is arranged in the center, and the steel pipe type reinforcing material is located above the drilling hole. Extending from the end into the lower end portion of the excavation hole, and the steel bar reinforcement extends from the upper end of the excavation hole to the lower end of the excavation hole.
  • Steel pipe type reinforcement A reinforcement insertion step for extending the lower end force of the material, a step for filling the digging hole with grout, and lifting the casing to remove at least some of the plurality of casing segments.
  • the micropile according to the present invention transmits a load in the longitudinal direction of the micropile via a steel pipe type reinforcing material and a steel bar type reinforcing material extending substantially concentrically with each other.
  • the outer periphery is covered with grout that has been pressurized and hardened, and the grout Z ground joint is formed over a long area of the outer peripheral surface of the micropile. In particular, it has excellent support and horizontal resistance. As a result, the required number of micropiles can be reduced compared to the conventional micropile, thereby shortening the construction period and reducing the construction cost.
  • FIG. 1A is a longitudinal cross-sectional view of a micropile according to an embodiment of the present invention
  • FIG. 1B is a cross-sectional view of the micronail taken along line BB in FIG. 1A
  • FIG. 1A is a cross-sectional view of the microphone pile along the line CC of FIG. 1A
  • FIG. 1D is a cross-sectional view of the micropile along the line DD of FIG. 1A.
  • FIG. 2 is an explanatory diagram of a construction procedure in the micropile construction method according to the embodiment of the present invention.
  • FIG. 3A is a chart showing the layer structure of the ground in which the micropile for testing was constructed in the micropile bow I punching test according to the present invention
  • FIG. 3B is the hardness of each layer of the ground
  • FIG. 3C is a longitudinal sectional view of the test micropile.
  • FIG. 4 Loaded on a micropile in a pull-out test of a micronile according to the present invention. It is the graph which showed the load cycle of drawing force.
  • FIG. 5 is a graph showing the relationship between the amount of vertical displacement at the top of the micropile and the loaded bow I extraction force in three test micropiles loaded according to the load cycle of FIG.
  • FIG. 6 is a graph of axial force acting on one test micropile at each pulling force calculated based on the results of the bow I pull-out test of the micropile according to the present invention.
  • FIGS. 7A to 7C are diagrams showing application examples of the micro-lens according to the present invention. Explanation of symbols
  • the micropile 10 according to the embodiment of the present invention shown in FIGS. 1A to 1D includes a structure 16 and a support layer in the ground, which are built on the ground with a soft layer 12 and a support layer 14 below the soft layer It is a pile for connecting with 14.
  • the micropile 10 has a pile body 18. This pile body 18 is pressurized and injected into a drilling hole formed in the ground. The bottom end portion extends through the support layer 14.
  • a steel pipe type reinforcing member 20 and a steel bar type reinforcing member 30 are embedded.
  • the reinforcing members 20 and 30 are arranged substantially concentrically with each other and extend in the longitudinal direction of the pile body 18.
  • the steel bar type reinforcing member 30 is arranged at the center, that is, extends substantially in the center of the micropile 10.
  • the steel pipe type reinforcing member 20 is configured by connecting ends of a plurality of steel pipe segments 22 via steel pipe joints 24, and the steel bar type reinforcing member 30 is made of a deformed bar (rib bar).
  • the ends of the plurality of steel bar segments 32 are connected via a steel bar force bra 34.
  • the steel bar segment 32 is attached with a centralizer 36 composed of four hoop-shaped steel wires in a radial combination.
  • the centralizer 36 is used as a steel pipe type reinforcement 20
  • the steel bar type reinforcing material 30 is held concentrically with the steel pipe type reinforcing material 20 by inertially abutting the inner peripheral surface of the steel pipe type.
  • a pile head connection structure for connecting the pile head of the micropile 10 to the structure 16 is provided at the upper end of the pile body 18, and this pile head connection structure is made of a steel base plate 40.
  • the upper end of the steel pipe type reinforcing member 20 is welded and joined to the base plate 40, and the upper end of the steel bar type reinforcing member 30 is screwed and joined with a nut.
  • the steel pipe type reinforcing member 20 extends from the upper end of the pile body 18 to the lower end portion of the pile body 18 (as described above, this lower end portion extends through the support layer 14).
  • the outer peripheral surface is covered with a grout of the pile body 18.
  • the steel bar type reinforcing material 30 extends from the upper end of the pile body 18 to the lower end of the pile body 18, and the lower end portion of the steel pipe type reinforcing material 20 also extends and is covered with the grout of the pile body 18. I'll be.
  • the space between the inner peripheral surface of the steel pipe type reinforcing member 20 and the outer peripheral surface of the steel bar type reinforcing member 30 is filled with grout of the pile body 18.
  • each steel pipe segment 22 has four reinforcing bar pieces each having a diameter of about 10 mm and a length of about 100 mm on the outer periphery of the central portion in the longitudinal direction. Radially arranged to extend in the longitudinal direction of the segment 22 and welded to the steel pipe segment 22, the steel reinforcement 20 is concentric with the casing 52 by means of these four rebar pieces. A centizer for holding in position is constructed.
  • FIG. 2A to FIG. 2G a method for constructing a micronoir according to an embodiment of the present invention for constructing the micropile 10 described above will be described.
  • some components such as the steel pipe joint 24 and the steel bar coupler 34 are omitted for easy understanding.
  • this construction method first, as shown in FIGS. 2A and 2B, a ground is excavated while adding a plurality of casing segments 52, and a drilling hole having a casing 50 constituted by the casing segments 52 is provided. 60 is formed so that the lower end portion of the borehole 60 extends through the support layer 14.
  • a steel pipe having an outer diameter of 9-5 / 8 inch is used as the casing segment 52.
  • the casing segments 52 To add the casing segments 52 to each other, their ends are connected to a steel pipe joint (not shown). It joins so that removal is possible. More specifically, this excavation is performed using a boring machine (not shown). The ground is dug by the drill bit 64 attached to the lower end of the drilling rod 62 of the boring machine, and the casing segment 52 is added each time the depth of the drill hole increases by a predetermined depth.
  • a cutting blade is attached to the lower end of the first casing segment 52 and the casing 50 is rotated by a boring machine, or the ground is dug.
  • a method in which excavation by a simple casing 50 and excavation by a drill rod 62 inserted in the casing 50 are used together may be used.
  • the steel pipe type reinforcement 20 While joining, the steel pipe type reinforcement 20 is inserted into the casing 50, and the ends of the steel bar segments 32 are connected to a steel bar force bra. (See Fig. 1; not shown in Figs.2A to 2G), the steel bar reinforcement member 20 is added to the steel bar reinforcement member 30 and the steel bar reinforcement member 20 is inserted into the casing 50. Go to insert. At this time, the steel pipe type reinforcing member 20 is held in a concentric position with respect to the casing 50 by the action of the centizer (not shown) of the steel pipe segment 22 described above, and the centizer 36 (see The steel bar type reinforcing member 30 is held in a concentric position with respect to the steel pipe type reinforcing member 20 by the action of reference 1 (not shown in FIGS. 2A to 2G).
  • the steel pipe type reinforcing member 20 and the steel bar type reinforcing member 30 are concentric with each other. It extends in the longitudinal direction, and the steel bar reinforcement 30 is centered with respect to the drilling hole 60 (and therefore with respect to the microphone mouth pile 10), and the steel pipe reinforcement 20 is drilled. From the upper end of the hole 60, it extends through the support layer 14 to the lower end portion of the drilling hole 60. The lower end portion of the steel bar type reinforcing member 30 extends to the lower end of the excavation hole 60 so that the lower end portion of the steel pipe type reinforcing member 20 also extends.
  • the inner diameter of the casing 50 is 220 mm
  • the outer diameter of the steel pipe joint 24, which is the largest outer diameter portion of the steel pipe type reinforcement member 20, is 195 mm. Therefore, the inner peripheral surface of the casing 50 and the steel pipe type reinforcement are used.
  • an annular gap 66 is secured between the outer peripheral surface of the material 20 (in FIG. 1B, the gap between the inner peripheral surface of the casing segment 52 and the steel pipe segment 22 is secured. Shown! / Speak).
  • grout is injected into the casing 50 and the grout hole 60 is filled with grout.
  • the step of filling grout hole 60 with grout may be performed prior to the step of inserting reinforcing members 20 and 30 into excavation hole 60.
  • the casing 50 is filled with water, a tremey pipe (not shown) is inserted into the casing 50 from above, and the discharge port at the lower end of the tremey pipe is placed near the lower end of the casing 50. After positioning, the discharge loca also discharges the grout and replaces the water in the casing 50 with the dirt.
  • the casing 50 is lifted to remove at least some of the plurality of casing segments 52, thereby exposing the inner wall surface of the excavation hole 60 that was previously covered by the casing 50 ( Figure 2E). At this time, one or several casing segments 52 are left at the upper end portion of the excavation hole 60 and the reinforcing casing 54 is constituted by the remaining casing segments.
  • the reinforcing sleeve 54 is formed by embedding the upper end portion of the reinforcing sleeve 54 in the structure 16 after the microphone opening pile 10 is completed and embedding the lower end portion in the ground. Is to increase.
  • a separately prepared sleeve member may be fitted to the upper end of the pile body 18 to form a reinforcing sleeve. Good.
  • the length of the reinforcing sleeve 54 may be appropriately determined according to the j8 value that is the characteristic value of the pile.
  • a pile 18 having a grout Z ground joint is formed on the outer peripheral surface thereof by pressurizing and hardening further grout into the excavation hole 60 (Fig. 2F).
  • the grout Z ground joint portion is formed over a long range excluding only the portion covered with the reinforcing sleeve 54 out of the total length of the outer peripheral surface of the micropile 10.
  • the surrounding ground is strengthened by the penetration of part of the injected grout into the surrounding ground.
  • the procedure for pressurizing the grout into the borehole 60 was to remove all the remaining casing segments except for the remaining casing segments among the multiple casing segments 52 that consisted of the casing 50. Later, the pressurized injection of grout into the borehole 60 may be performed in one operation, or the pressurized injection of grout into the borehole 60 is repeated each time one casing segment 52 is removed. Let's run it.
  • a steel base plate 40 is welded and joined to the upper end of the steel pipe type reinforcing member 20, and the upper end of the steel bar type reinforcing member 30 is screwed and joined to the base plate 40 with a nut ( ( Figure 2G).
  • a head-linking structure is provided.
  • the micropile 10 is completed, and then the earth and sand around the reinforcing sleeve 54 are backfilled to embed the lower end portion of the reinforcing sleeve 54 in the ground, and the upper end portion of the reinforcing sleeve 54.
  • Structure 16 footing Build up.
  • the load in the longitudinal direction of the micropile 10 passes through the steel pipe type reinforcing member 20 and the steel bar type reinforcing member 30 that extend substantially concentrically with each other.
  • the grout Z ground joint is formed over a long range of the outer peripheral surface of the micronoil 10, it has a large resistance against pulling force and pushing force.
  • the structure in which the space between the inner peripheral surface of the steel pipe type reinforcing member 20 and the outer peripheral surface of the centrally arranged steel bar type reinforcing member 30 is filled with grout is suitable for bending load and shear load acting on the micropile 10.
  • the micropile 10 can exert a great horizontal resistance by providing a large resistance and additionally installing the reinforcing sleeve 54 for the required length. Therefore, compared with the conventional micropile, the required number of micropile can be reduced, thereby shortening the construction period and reducing the construction cost.
  • data obtained by testing a micropile of a specific example are shown below.
  • the test micropile 70 shown in Fig. 3C was built in the test yard, and a vertical pull-out test on the vertical axis on the pile shaft was performed using the loading test equipment. Prior to the construction of Micropile 70, core boring was performed to sample the ground in the test yard. As shown in the chart of Fig. 3A, the layer structure of the ground found from the sample is a buried layer from the surface to a depth of 2.9 m, and below, a depth of 2.9 m force to 4.0 m is a loam layer and a depth of 4.0 m force.
  • Fine sand layer up to 6.2m, clay layer from 6.2m to 7.7m depth, second fine sand layer from 7.7m to 8.8m depth, silt layer from 8.8m to 10.5m depth, and 10.5m depth ahead The third fine sand layer.
  • N values were measured on the samples, and the results shown in the graph of Fig. 3B were obtained.
  • the vertical axis represents the depth from the ground surface
  • the horizontal axis represents the N value.
  • the soft layer 12 with an N value of 10 or less is constructed from the buried soil layer on the surface to the silt layer reaching a depth of 10.5 m.
  • This fine sand layer constitutes a support layer 14 having an N value of 30 or more.
  • FIG. 3C shows a longitudinal sectional view of the test micropile 70.
  • the outer diameter of the casing used for this purpose was 244.5 mm. Therefore, the outer diameter of the micropile 70 has a value obtained by adding the radial expansion generated by pressure injection of the grout to the outer diameter of the casing. Also, the total length of the micropile 70 is set to 15,500 mm according to the layer structure of the ground, the upper part of about 500 mm protrudes on the ground surface, and the middle part of about 10,000 mm passes through the soft layer 12. The lower end portion of the support layer 14 was extended by about 5,000 mm.
  • the steel pipe type reinforcing member 20 was extended from the upper end of the micronoyle 70 to a position of 2,000 mm before the lower end of the micropile 70.
  • the steel bar type reinforcing material 30 was made to extend from the upper end to the lower end of the micropile 70. Furthermore, in order to measure the axial load acting on the steel bar type reinforcing material 30, nine sets of strain gauges S1 to S9 were attached to various heights on the outer surface of the steel bar type reinforcing material 30. The positions of the strain gauges S1 to S9 are as shown in Fig. 3C.
  • the ground surface GL which is the reference for the pasting position shown in the figure, is the ground surface at the construction position of the micropile 70 and is 0.5 m lower than the ground surface of the original ground.
  • this loading cycle consists of a total of five loading periods, each of the first to fourth loading periods being approximately 1 hour long, and the fifth loading period being approximately 2 hours long. did.
  • the pulling force was maintained at 180.2 kN for about 30 minutes in the first half and 359.5 kN for about 30 minutes in the second half.
  • the pulling force was maintained at 538.9 kN for about 30 minutes in the first half and 726.1 kN for about 30 minutes in the second half.
  • the pulling force was maintained at 902.0kN for about 30 minutes in the first half and 1080.5kN for about 30 minutes in the second half.
  • the pulling force was maintained at 1259.8kN for about 30 minutes in the first half and 1454.8kN for about 30 minutes in the second half.
  • the pulling force is maintained at 1626.4 kN for the first approximately 30 minutes, 1799.7 kN for the next approximately 30 minutes, 1977.3 kN for the third approximately 30 minutes, and the last For about 30 minutes, it was maintained at 2156.7 kN.
  • the above pull-out test was performed on three test micropiles.
  • the graph of Fig. 5 shows the results.
  • the horizontal axis represents the ascent (vertical displacement) of the upper end of the test micropile
  • the vertical axis represents the loaded vertical pulling force.
  • the three test micro-knobs have a yield strength exceeding 1500 kN, and this yield strength is approximately the portion extending through the support layer with an N value of 30 or more. It is recognized as a very large value for a 5,000 mm micropile.
  • the graph of Fig. 6 shows the results.
  • This graph shows the axial force calculated based on the readings of the strain gauges S1 to S9 affixed to the steel bar type reinforcing material 30, and acts on the micropile 70 as shown in this graph.
  • the axial force is shallower than the depth of 10.5 m and extends through the soft layer 12, and the axial force decreases in the lower part. Therefore, for the micropile 70, Even in the soft layer 12, a sufficiently effective peripheral friction force acts.
  • FIG. 7A to FIG. 7C are diagrams showing application examples of the micropile 80 according to the present invention.
  • the micropile according to the present invention can be used, for example, as a support pile for connecting the footing 82 of the pier and the support layer (Fig. 7A), or as a pile for fixing the footing 84 of the abutment. It can also be used in conjunction with the new footing extension 90 to reinforce the existing pier foundation 86 supported by the support pile 88 ( Figure 7C). ).

Abstract

A micro pile increased in supporting force and horizontal resistance force and a method of constructing the micro pile. The micro pile (10) for connecting a structure (16) to a support layer (14) in the ground comprises a pile body (18) formed of a grout pressurizingly filled in an excavated hole formed in the ground and hardened. The bottom end portion of the pile body (18) is extended in the support layer (14). Steel tube type reinforcement materials (20) and steel bar type reinforcement materials (30) are buried in the grout of the pile body (18) so as to be disposed roughly concentrical to each other and extended in the longitudinal direction of the pile body (18), and the steel bar type reinforcement materials (30) are positioned at the roughly center of the pile body (18). The steel tube type reinforcement materials (20) extend from the upper end of the pile body (18) into the lower end portion of the pile body (18), and the outer peripheral surfaces thereof are covered by the grout of the pile body (18). The steel bar type reinforcement materials (30) extend from the upper end of the pile body (18) to the lower end (18) of the pile body, and the lower end portions thereof extend from the lower ends of the steel tube type reinforcement materials (20) and are covered by the grout of the pile body (18).

Description

明 細 書  Specification
マイクロパイルおよびその構築方法  Micropile and its construction method
技術分野  Technical field
[0001] 本発明は、マイクロパイルおよびその構築方法に関する。  [0001] The present invention relates to a micropile and a construction method thereof.
背景技術  Background art
[0002] マイクロパイルとは直径 300mm以下の小径の場所打ち杭及び埋込み杭の総称であ り、構造物の杭基礎の構築、既設構造物の耐震補強 (増杭工法)、地盤補強、斜面 の安定ィ匕などをはじめとする数多くの用途に広く用いられている。マイクロパイルには 様々な形式のものがあり、例えば下記の特許文献 1〜6に記載されているものなどが ある。  [0002] Micropile is a general term for cast-in-place piles and embedded piles with a diameter of 300mm or less. Construction pile foundations, seismic reinforcement of existing structures (increase pile method), ground reinforcement, slope Widely used in many applications, including stability. There are various types of micropile, for example, those described in Patent Documents 1 to 6 below.
特許文献 1 :特開平 10— 140583号公報  Patent Document 1: Japanese Patent Laid-Open No. 10-140583
特許文献 2 :特開 2000— 027149号公報  Patent Document 2: Japanese Patent Laid-Open No. 2000-027149
特許文献 3:特開 2000 - 290906号公報  Patent Document 3: Japanese Patent Laid-Open No. 2000-290906
特許文献 4:特開 2001— 146743号公報  Patent Document 4: Japanese Patent Laid-Open No. 2001-146743
特許文献 5:特開 2001— 323459号公報  Patent Document 5: Japanese Unexamined Patent Publication No. 2001-323459
特許文献 6:特開 2002— 275907号公報  Patent Document 6: Japanese Patent Laid-Open No. 2002-275907
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] 様々なマイクロパイルのうちでも、特に、現場で築造するマイクロパイルは、長尺の 既製杭を取扱う面倒がないため、空頭制限のある既設構造物の耐震補強という用途 に非常に適しているなどの利点を有する。し力しながら、その種のマイクロパイルに関 して、マイクロパイルに作用する押込み力、引抜き力、及び曲げ応力に対する耐カを 更に向上させることが強く求められている。これが強く求められているのは、マイクロ パイルを使用する際には、多くの場合、多数のマイクロパイルを 1つの杭群として使用 することから、マイクロノ ィルの耐カを高めれば、また特に、その支持力及び水平抵 抗カを高めれば、マイクロパイルの必要本数を減少させることができ、それによつて 工期の短縮並びに施工コストの低減を達成できるからである。 [0004] 本発明は前記事情に鑑み案出されたものであって、本発明の目的は、耐カを高め 、また特に、支持力並びに水平抵抗力を向上させたマイクロパイルおよびその構築 方法を提供することにある。 [0003] Among various types of micropile, the micropile built in the field does not have the hassle of handling long off-the-shelf piles, so it is very suitable for seismic reinforcement of existing structures with limited heads. It has advantages such as being. However, for such a micropile, there is a strong demand to further improve the resistance against indentation force, pull-out force, and bending stress acting on the micropile. This is strongly demanded when using micropile, because many micropile are often used as one pile group, especially if the resistance of micronail is increased. If the bearing capacity and horizontal resistance are increased, the required number of micropiles can be reduced, thereby shortening the construction period and reducing the construction cost. [0004] The present invention has been devised in view of the above circumstances, and an object of the present invention is to provide a micropile and a method for constructing the same that have improved resistance to resistance and, in particular, improved support and horizontal resistance. It is to provide.
課題を解決するための手段  Means for solving the problem
[0005] 前記目的を達成するため、本発明に係るマイクロパイルは、構造物と地盤中の支持 層とを連結するためのマイクロパイルにおいて、地盤に形成された掘削孔に加圧注 入されて硬化したグラウトから成る杭体であって、少なくともその下端部分が前記支持 層の中を延在して 、る杭体と、前記杭体のグラウトの中に埋設されて前記杭体の長 手方向に延在する互いに略々同心的な鋼管型補強材及び中心配置の棒鋼型補強 材と、前記杭体の上端に設けられ、前記鋼管型補強材及び前記棒鋼型補強材が接 合された、該マイクロパイルの杭頭を前記構造物に連結するための杭頭連結構造と を備え、前記鋼管型補強材は、前記杭体の上端から前記杭体の前記下端部分の中 まで延在して、その外周面が前記杭体のグラウトで覆われており、前記棒鋼型補強 材は、前記杭体の上端から前記杭体の下端まで延在して、その下端部分が前記鋼 管型補強材の下端力 延出して前記杭体のグラウトで覆われており、前記鋼管型補 強材の内周面と前記棒鋼型補強材の外周面との間の空間に、前記杭体のグラウトが 充填されて!ヽることを特徴とする。  [0005] In order to achieve the above object, the micropile according to the present invention is a micropile for connecting a structure and a support layer in the ground, and is hardened by pressure injection into an excavation hole formed in the ground. A pile body made of grout, wherein at least a lower end portion of the pile body extends in the support layer, and the pile body is embedded in the grout of the pile body so as to extend in a longitudinal direction of the pile body. The extending steel pipe type reinforcing material and the centrally arranged steel bar type reinforcing material, and the steel pipe type reinforcing material and the steel bar type reinforcing material, which are provided at the upper end of the pile body, are joined. A pile head connection structure for connecting a pile head of a micropile to the structure, and the steel pipe type reinforcing material extends from the upper end of the pile body into the lower end portion of the pile body, The outer peripheral surface is covered with the grout of the pile body, and the steel bar The mold reinforcement extends from the upper end of the pile body to the lower end of the pile body, and the lower end portion of the mold reinforcement extends the lower end force of the steel pipe reinforcement and is covered with the grout of the pile body, The space between the inner peripheral surface of the steel pipe reinforcement and the outer peripheral surface of the steel bar reinforcement is filled with the grout of the pile body! It is characterized by scolding.
[0006] また、本発明に係るマイクロパイルの構築方法は、構造物と地盤中の支持層と連結 するためのマイクロパイルの構築方法にぉ 、て、複数のケーシングセグメントを継ぎ 足しながら地盤を掘削して、それらケーシングセグメントで構成されたケーシングを備 えた掘削孔を、少なくともその下端部分が前記支持層の中を延在するようにして形成 するステップと、前記掘削孔に、複数の鋼管セグメントの端部どうしを連結して構成さ れる鋼管型補強材と、複数の棒鋼セグメントの端部どうしを連結して構成される棒鋼 型補強材とを挿入するステップであって、その際に、前記鋼管型補強材及び前記棒 鋼型補強材が互いに略々同心的に前記掘削孔の長手方向に延在し、前記棒鋼型 補強材が中心配置され、前記鋼管型補強材が前記掘削孔の上端から前記掘削孔の 前記下端部分の中まで延在し、且つ、前記棒鋼型補強材が前記掘削孔の上端から 前記掘削孔の下端まで延在して、この棒鋼型補強材の下端部分が前記鋼管型補強 材の下端力 延出するようにする、補強材挿入ステップと、前記掘削孔にグラウトを充 填するステップと、前記ケーシングを引き揚げて前記複数のケーシングセグメントのう ちの少なくとも幾つかを除去することにより、前記ケーシングにより覆われていた前記 掘削孔の内壁面を露出させるステップと、前記掘削孔にグラウトを加圧注入して硬化 させることにより、その外周面にグラウト Z地盤接合部を有する杭体を形成するステツ プと、前記杭体の上端に、前記鋼管型補強材及び前記棒鋼型補強材に接合された 、該マイクロパイルの杭頭を前記構造物に連結するための杭頭連結構造を設けるス テツプとを含むことを特徴とする。 [0006] The micropile construction method according to the present invention is based on the micropile construction method for connecting a structure and a support layer in the ground, and excavating the ground while adding a plurality of casing segments. A step of forming a drilling hole having a casing constituted by the casing segments so that at least a lower end portion thereof extends through the support layer; and a plurality of steel pipe segments are formed in the drilling hole. A step of inserting a steel pipe type reinforcing material configured by connecting ends and a steel bar type reinforcing material configured by connecting ends of a plurality of steel bar segments, wherein the steel pipe The steel plate type reinforcing material and the steel bar type reinforcing material extend in the longitudinal direction of the drilling hole substantially concentrically with each other, the steel bar type reinforcing material is arranged in the center, and the steel pipe type reinforcing material is located above the drilling hole. Extending from the end into the lower end portion of the excavation hole, and the steel bar reinforcement extends from the upper end of the excavation hole to the lower end of the excavation hole. Steel pipe type reinforcement A reinforcement insertion step for extending the lower end force of the material, a step for filling the digging hole with grout, and lifting the casing to remove at least some of the plurality of casing segments. A step of exposing the inner wall surface of the excavation hole covered by the casing, and a grout having a grout Z ground joint on the outer peripheral surface thereof by pressurizing and hardening the grout into the excavation hole. Steps to be formed and a pile head connection structure for connecting the pile heads of the micropile to the structure joined to the steel pipe type reinforcing material and the steel bar type reinforcing material at the upper end of the pile body It is characterized by including a step.
発明の効果  The invention's effect
[0007] 本発明に係るマイクロパイルは、互いに略々同心的に延在する鋼管型補強材及び 棒鋼型補強材を介してマイクロパイルの長手方向の荷重が伝達され、また、鋼管型 補強材の外周が加圧注入されて硬化したグラウトで覆われており、マイクロパイルの 外周面の長い範囲に亘つてグラウト Z地盤接合部が形成されることから、引抜き力及 び押込み力に対する大きな耐カを有し、また特に、支持力並びに水平抵抗力に優れ たものとなる。そのため従来のマイクロパイルと比べて、マイクロパイルの必要本数を 減少させることができ、それによつて、工期の短縮並びに施工コストの低減を達成す ることがでさる。  [0007] The micropile according to the present invention transmits a load in the longitudinal direction of the micropile via a steel pipe type reinforcing material and a steel bar type reinforcing material extending substantially concentrically with each other. The outer periphery is covered with grout that has been pressurized and hardened, and the grout Z ground joint is formed over a long area of the outer peripheral surface of the micropile. In particular, it has excellent support and horizontal resistance. As a result, the required number of micropiles can be reduced compared to the conventional micropile, thereby shortening the construction period and reducing the construction cost.
図面の簡単な説明  Brief Description of Drawings
[0008] [図 1]図 1Aは本発明の実施例に係るマイクロパイルの縦断面図、図 1Bは図 1Aの B —B線に沿ったマイクロノ ィルの横断面図、図 1Cは図 1Aの C— C線に沿ったマイク 口パイルの横断面図、図 1Dは図 1Aの D— D線に沿ったマイクロパイルの横断面図 である。  [0008] FIG. 1A is a longitudinal cross-sectional view of a micropile according to an embodiment of the present invention, FIG. 1B is a cross-sectional view of the micronail taken along line BB in FIG. 1A, and FIG. 1A is a cross-sectional view of the microphone pile along the line CC of FIG. 1A, and FIG. 1D is a cross-sectional view of the micropile along the line DD of FIG. 1A.
[図 2]本発明の実施例に係るマイクロパイルの構築方法における施工手順の説明図 である。  FIG. 2 is an explanatory diagram of a construction procedure in the micropile construction method according to the embodiment of the present invention.
[図 3]図 3 Aは本発明に係るマイクロパイルの弓 I抜き試験における、試験用マイクロパ ィルを構築した地盤の層構成を示したチャートであり、図 3Bはその地盤の各層の固 さを示した N値のグラフであり、図 3Cは試験用マイクロパイルの縦断面図である。  [FIG. 3] FIG. 3A is a chart showing the layer structure of the ground in which the micropile for testing was constructed in the micropile bow I punching test according to the present invention, and FIG. 3B is the hardness of each layer of the ground. FIG. 3C is a longitudinal sectional view of the test micropile.
[図 4]本発明に係るマイクロノ ィルの引抜き試験において、マイクロパイルに載荷した 引抜き力の荷重サイクルを示したグラフである。 [Fig. 4] Loaded on a micropile in a pull-out test of a micronile according to the present invention. It is the graph which showed the load cycle of drawing force.
[図 5]図 4の荷重サイクルに従って載荷した 3本の試験用マイクロパイルにおけるマイ クロパイル上端の鉛直変位量と載荷した弓 I抜き力との関係を示したグラフである。  FIG. 5 is a graph showing the relationship between the amount of vertical displacement at the top of the micropile and the loaded bow I extraction force in three test micropiles loaded according to the load cycle of FIG.
[図 6]本発明に係るマイクロパイルの弓 I抜き試験の結果に基づ!/、て算出した、夫々の 引抜き力において 1本の試験用マイクロパイルに作用した軸力のグラフである。  FIG. 6 is a graph of axial force acting on one test micropile at each pulling force calculated based on the results of the bow I pull-out test of the micropile according to the present invention.
[図 7]図 7A〜図 7Cは本発明に係るマイクロノ ィルの適用例を示した図である。 符号の説明  [FIG. 7] FIGS. 7A to 7C are diagrams showing application examples of the micro-lens according to the present invention. Explanation of symbols
[0009] 10 マイクロノ イノレ  [0009] 10 micronore
12 軟弱層  12 Soft layer
14 支持層  14 Support layer
16 構造物  16 Structure
18 个几体  18 individual bodies
20 鋼管型補強材  20 Steel pipe type reinforcement
22 岡管セグメント  22 Oka tube segment
30 棒鋼型補強材  30 Steel bar reinforcement
32 棒岡セグメント  32 Tsubasa segment
50 ケーシング  50 casing
52 ケーシングセグ.  52 Casing Seg.
54 補強用スリーブ  54 Reinforcing sleeve
60 掘削孔  60 drilling holes
70 マイクロノ イノレ  70 Micronore
80 マイクロノ イノレ  80 Micronore
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 以下、本発明の実施例に係るマイクロパイルおよびその構築方法について、図面 を参照しつつ説明して行く。図 1A〜図 1Dに示した本発明の実施例に係るマイクロ パイル 10は、軟弱層 12とその下方の支持層 14とを有する地盤中に現場で築造した 、構造物 16と地盤中の支持層 14と連結するための杭である。マイクロパイル 10は、 杭体 18を有しており、この杭体 18は、地盤に形成された掘削孔に加圧注入されて硬 化したグラウトから成り、その下端部分が支持層 14の中を延在している。杭体 18のグ ラウトの中に、鋼管型補強材 20及び棒鋼型補強材 30が埋設されている。それら補強 材 20、 30は、互いに略々同心的に配置されて杭体 18の長手方向に延在している。 棒鋼型補強材 30は中心配置されており、即ち、マイクロパイル 10の略々中心を延在 している。鋼管型補強材 20は、複数の鋼管セグメント 22の端部どうしを鋼管用継手 2 4を介して連結して構成されており、棒鋼型補強材 30は、異形棒鋼 (リブ付き棒鋼)か ら成る複数の棒鋼セグメント 32の端部どうしを棒鋼用力ブラ 34を介して連結して構成 されている。棒鋼セグメント 32には、 4本のフープ状の鋼線を放射状に組合せて構成 したセントライザ 36が取付けられており、マイクロパイル 10を構築する際には、このセ ントライザ 36が鋼管型補強材 20の内周面に弹性的に当接することによって、棒鋼型 補強材 30が鋼管型補強材 20に対して同心的な位置に保持されるようにしてある。 杭体 18の上端に、マイクロパイル 10の杭頭を構造物 16に連結するための杭頭連 結構造体が設けられており、この杭頭連結構造体は、鋼製のベースプレート 40から 成る。ベースプレート 40には、鋼管型補強材 20の上端が溶接されて接合されており 、また、棒鋼型補強材 30の上端がナットで螺着されて接合されている。鋼管型補強 材 20は、杭体 18の上端から、この杭体 18の下端部分 (既述のごとぐこの下端部分 は支持層 14の中を延在して 、る部分である)の中まで延在しており、その外周面が 杭体 18のグラウトで覆われている。棒鋼型補強材 30は、杭体 18の上端から、この杭 体 18の下端まで延在しており、その下端部分が鋼管型補強材 20の下端カも延出し て杭体 18のグラウトで覆われて 、る。鋼管型補強材 20の内周面と棒鋼型補強材 30 の外周面との間の空間には、杭体 18のグラウトが充填されている。更に、杭体 18の 上端部分は、その外周面が補強用スリーブ 54で覆われて、この補強用スリーブ 54に より補強されている。補強用スリーブ 54は、マイクロパイル 10を構築するために地盤 に掘削孔を形成するとき使用したケーシング 50 (図 2A〜図 2G参照)を構成していた 複数のケーシングセグメント 52のうちの、残置された 1個のケーシングセグメント 52で 構成されており、その上端部分が構造物 16に埋設され、下端部分が地盤に埋設さ れている。尚、図面には示さなかったが、各々の鋼管セグメント 22には、その長手方 向中央部の外周に、径約 10mm、長さ約 100mmの 4本の鉄筋片カ その各々が鋼管 セグメント 22の長手方向に延在するようにして放射状に配置されて、鋼管セグメント 2 2に溶接されており、それら 4本の鉄筋片によって、鋼管型補強材 20をケーシング 52 に対して同心的な位置に保持するためのセントライザが構成されている。 Hereinafter, a micropile and its construction method according to an embodiment of the present invention will be described with reference to the drawings. The micropile 10 according to the embodiment of the present invention shown in FIGS. 1A to 1D includes a structure 16 and a support layer in the ground, which are built on the ground with a soft layer 12 and a support layer 14 below the soft layer It is a pile for connecting with 14. The micropile 10 has a pile body 18. This pile body 18 is pressurized and injected into a drilling hole formed in the ground. The bottom end portion extends through the support layer 14. In the grout of the pile body 18, a steel pipe type reinforcing member 20 and a steel bar type reinforcing member 30 are embedded. The reinforcing members 20 and 30 are arranged substantially concentrically with each other and extend in the longitudinal direction of the pile body 18. The steel bar type reinforcing member 30 is arranged at the center, that is, extends substantially in the center of the micropile 10. The steel pipe type reinforcing member 20 is configured by connecting ends of a plurality of steel pipe segments 22 via steel pipe joints 24, and the steel bar type reinforcing member 30 is made of a deformed bar (rib bar). The ends of the plurality of steel bar segments 32 are connected via a steel bar force bra 34. The steel bar segment 32 is attached with a centralizer 36 composed of four hoop-shaped steel wires in a radial combination. When the micropile 10 is constructed, the centralizer 36 is used as a steel pipe type reinforcement 20 The steel bar type reinforcing material 30 is held concentrically with the steel pipe type reinforcing material 20 by inertially abutting the inner peripheral surface of the steel pipe type. A pile head connection structure for connecting the pile head of the micropile 10 to the structure 16 is provided at the upper end of the pile body 18, and this pile head connection structure is made of a steel base plate 40. The upper end of the steel pipe type reinforcing member 20 is welded and joined to the base plate 40, and the upper end of the steel bar type reinforcing member 30 is screwed and joined with a nut. The steel pipe type reinforcing member 20 extends from the upper end of the pile body 18 to the lower end portion of the pile body 18 (as described above, this lower end portion extends through the support layer 14). The outer peripheral surface is covered with a grout of the pile body 18. The steel bar type reinforcing material 30 extends from the upper end of the pile body 18 to the lower end of the pile body 18, and the lower end portion of the steel pipe type reinforcing material 20 also extends and is covered with the grout of the pile body 18. I'll be. The space between the inner peripheral surface of the steel pipe type reinforcing member 20 and the outer peripheral surface of the steel bar type reinforcing member 30 is filled with grout of the pile body 18. Furthermore, the outer peripheral surface of the upper end portion of the pile body 18 is covered with a reinforcing sleeve 54 and is reinforced by the reinforcing sleeve 54. The reinforcing sleeve 54 is left out of the plurality of casing segments 52 that formed the casing 50 (see FIGS. 2A to 2G) used when forming a drilling hole in the ground to construct the micropile 10. The upper end portion is embedded in the structure 16 and the lower end portion is embedded in the ground. Although not shown in the drawings, each steel pipe segment 22 has four reinforcing bar pieces each having a diameter of about 10 mm and a length of about 100 mm on the outer periphery of the central portion in the longitudinal direction. Radially arranged to extend in the longitudinal direction of the segment 22 and welded to the steel pipe segment 22, the steel reinforcement 20 is concentric with the casing 52 by means of these four rebar pieces. A centizer for holding in position is constructed.
[0012] 次に、図 2A〜図 2Gを参照して、以上に説明したマイクロパイル 10を構築するため の、本発明の実施例に係るマイクロノィルの構築方法について説明する。尚、図 2A 〜図 2Gにおいては、図を見易くするために、鋼管用継手 24や棒鋼用カプラ 34など をはじめとする幾つかの構成要素を図示省略した。この構築方法においては、先ず、 図 2A及び図 2Bに示したように、複数のケーシングセグメント 52を継ぎ足しながら地 盤を掘削して、それらケーシングセグメント 52で構成されたケーシング 50を備えた掘 削孔 60を形成し、その際に、この掘削孔 60の下端部分が支持層 14の中を延在する ようにする。図示例では、ケーシングセグメント 52として、外径が 9-5/8インチの鋼管 を使用しており、ケーシングセグメント 52どうしを継ぎ足すには、それらの端部どうしを 、鋼管用継手 (不図示)を介して取外し可能に接合する。より詳しくは、この掘削は、 ボーリングマシン (不図示)を用いて行う。ボーリングマシンの削孔ロッド 62の下端に 取付けた削孔ビット 64によって地盤を掘り進め、掘削孔の深さが所定深さ増すごとに 、ケーシングセグメント 52を継ぎ足すようにする。尚、掘削孔 60を形成するための別 の方法として、最初のケーシングセグメント 52の下端に切刃を取付けておき、ボーリ ングマシンでケーシング 50を回転させることによって地盤を掘り進める方法、或いは 、そのようなケーシング 50による掘削とそのケーシング 50の中に揷通した削孔ロッド 6 2による掘削とを併用する方法などを用いてもよい。  [0012] Next, with reference to FIG. 2A to FIG. 2G, a method for constructing a micronoir according to an embodiment of the present invention for constructing the micropile 10 described above will be described. In FIG. 2A to FIG. 2G, some components such as the steel pipe joint 24 and the steel bar coupler 34 are omitted for easy understanding. In this construction method, first, as shown in FIGS. 2A and 2B, a ground is excavated while adding a plurality of casing segments 52, and a drilling hole having a casing 50 constituted by the casing segments 52 is provided. 60 is formed so that the lower end portion of the borehole 60 extends through the support layer 14. In the illustrated example, a steel pipe having an outer diameter of 9-5 / 8 inch is used as the casing segment 52. To add the casing segments 52 to each other, their ends are connected to a steel pipe joint (not shown). It joins so that removal is possible. More specifically, this excavation is performed using a boring machine (not shown). The ground is dug by the drill bit 64 attached to the lower end of the drilling rod 62 of the boring machine, and the casing segment 52 is added each time the depth of the drill hole increases by a predetermined depth. As another method for forming the excavation hole 60, a cutting blade is attached to the lower end of the first casing segment 52 and the casing 50 is rotated by a boring machine, or the ground is dug. For example, a method in which excavation by a simple casing 50 and excavation by a drill rod 62 inserted in the casing 50 are used together may be used.
[0013] ケーシング 50を備えた掘削孔 60が完成したならば、ケーシング 50内を水洗し、肖 ij 孔ロッド 60を引き揚げて抜去する。続いて、図 2Cに示したように、掘削孔 60に (即ち 、ケーシング 50内に)、複数の鋼管セグメント 22の端部どうしを連結して構成される鋼 管型補強材 20と、複数の棒鋼セグメント 32の端部どうしを連結して構成される棒鋼 型補強材 30とを挿入する。このとき、鋼管セグメント 22の端部どうしを鋼管用継手 24 (図 1参照、図 2A〜図 2Gでは図示省略)を介して連結することによって、鋼管型補 強材 20に更なる鋼管セグメント 22を継ぎ足しながら、その鋼管型補強材 20をケーシ ング 50の中へ挿入して行き、また、棒鋼セグメント 32の端部どうしを棒鋼用力ブラ 34 (図 1参照、図 2A〜図 2Gでは図示省略)を介して連結することによって、棒鋼型補 強材 30に更なる棒鋼セグメント 32を継ぎ足しながら、その棒鋼型補強材 20をケーシ ング 50の中へ挿入して行く。このとき、上述した鋼管セグメント 22のセントライザ (不 図示)の働きによって、鋼管型補強材 20がケーシング 50に対して同心的な位置に保 持され、また、棒鋼セグメント 32のセントライザ 36 (図 1参照、図 2A〜図 2Gでは図示 省略)の働きによって、棒鋼型補強材 30が鋼管型補強材 20に対して同心的な位置 に保持される。 [0013] When the excavation hole 60 provided with the casing 50 is completed, the inside of the casing 50 is washed with water and the ij hole rod 60 is lifted and removed. Subsequently, as shown in FIG. 2C, a steel pipe type reinforcing member 20 constituted by connecting ends of the plurality of steel pipe segments 22 to the borehole 60 (ie, in the casing 50), and a plurality of A steel bar type reinforcing member 30 constituted by connecting ends of the steel bar segments 32 is inserted. At this time, the ends of the steel pipe segments 22 are connected to each other via a steel pipe joint 24 (see FIG. 1, not shown in FIGS. While joining, the steel pipe type reinforcement 20 is inserted into the casing 50, and the ends of the steel bar segments 32 are connected to a steel bar force bra. (See Fig. 1; not shown in Figs.2A to 2G), the steel bar reinforcement member 20 is added to the steel bar reinforcement member 30 and the steel bar reinforcement member 20 is inserted into the casing 50. Go to insert. At this time, the steel pipe type reinforcing member 20 is held in a concentric position with respect to the casing 50 by the action of the centizer (not shown) of the steel pipe segment 22 described above, and the centizer 36 (see The steel bar type reinforcing member 30 is held in a concentric position with respect to the steel pipe type reinforcing member 20 by the action of reference 1 (not shown in FIGS. 2A to 2G).
[0014] 更に、補強材 20、 30をケーシング 50内へ挿入するこの工程においては、図 2Cに 示したように、互いに同心的な鋼管型補強材 20及び棒鋼型補強材 30が掘削孔 60 の長手方向に延在し、また、棒鋼型補強材 30が、掘削孔 60に対して (従って、マイク 口パイル 10に対して)中心配置されるようにすると共に、鋼管型補強材 20が、掘削孔 60の上端から、支持層 14の中を延在して 、る掘削孔 60の下端部分の中まで延在す るようにし、また更に、棒鋼型補強材 30が、掘削孔 60の上端から、掘削孔 60の下端 まで延在して、この棒鋼型補強材 30の下端部分が、鋼管型補強材 20の下端カも延 出するようにする。図示例では、ケーシング 50の内径を 220mmとし、鋼管型補強材 2 0の最大外径部分である鋼管用継手 24の外径を 195mmとしており、そのため、ケー シング 50の内周面と鋼管型補強材 20の外周面との間に、図 1Bに示したように、環 状の隙間 66が確保される(図 1Bでは、ケーシングセグメント 52の内周面と鋼管セグメ ント 22との間の隙間として示されて!/ヽる)。  [0014] Further, in this process of inserting the reinforcing members 20 and 30 into the casing 50, as shown in FIG. 2C, the steel pipe type reinforcing member 20 and the steel bar type reinforcing member 30 are concentric with each other. It extends in the longitudinal direction, and the steel bar reinforcement 30 is centered with respect to the drilling hole 60 (and therefore with respect to the microphone mouth pile 10), and the steel pipe reinforcement 20 is drilled. From the upper end of the hole 60, it extends through the support layer 14 to the lower end portion of the drilling hole 60. The lower end portion of the steel bar type reinforcing member 30 extends to the lower end of the excavation hole 60 so that the lower end portion of the steel pipe type reinforcing member 20 also extends. In the example shown in the figure, the inner diameter of the casing 50 is 220 mm, and the outer diameter of the steel pipe joint 24, which is the largest outer diameter portion of the steel pipe type reinforcement member 20, is 195 mm. Therefore, the inner peripheral surface of the casing 50 and the steel pipe type reinforcement are used. As shown in FIG. 1B, an annular gap 66 is secured between the outer peripheral surface of the material 20 (in FIG. 1B, the gap between the inner peripheral surface of the casing segment 52 and the steel pipe segment 22 is secured. Shown! / Speak).
[0015] 次に、図 2Dに示したように、ケーシング 50内にグラウトを注入して、掘削孔 60にグ ラウトを充填する。尚、掘削孔 60にグラウトを充填するステップは、掘削孔 60に補強 材 20、 30を挿入するステップに先行して実行するようにしてもよい。グラウトを注入す るには、ケーシング 50内に水を満たし、そのケーシング 50の中に上方からトレミー管 (不図示)を挿入し、そのトレミー管の下端の吐出口をケーシング 50の下端の近傍に 位置付けた上で、その吐出ロカもグラウトを吐出させて、ケーシング 50内の水をダラ ゥトで置換する。そして、掘削孔 60の上端の口元力もオーバーフローしてくるグラウト の比重が、トレミー管を介して注入しているグラウトの比重と同じになったならば、それ によって置換が完了したことが分かる。 [0016] 次に、ケーシング 50を引き揚げて、複数のケーシングセグメント 52のうちの少なくと も幾つかを除去することによって、それまでケーシング 50により覆われていた掘削孔 60の内壁面を露出させる(図 2E)。このとき、掘削孔 60の上端部分に 1つまたは幾つ かのケーシングセグメント 52を掘削孔 60の上端部分に残置して、その残置したケー シングセグメントによって補強用スリーブ 54を構成する。この補強用スリーブ 54は、マ イク口パイル 10が完成した後にこの補強用スリーブ 54の上端部分を構造物 16に埋 設し、下端部分を地盤に埋設することによって、マイクロパイル 10の水平抵抗力を増 大させるものである。尚、補強用スリーブ 54の別構成例として、全てのケーシングセ グメント 52を引き抜いて除去した後に、別に用意したスリーブ部材を杭体 18の上端 に嵌合して補強用スリーブとするようにしてもよい。また、補強用スリーブ 54の長さは 、杭の特性値である j8値に応じて適宜定めればよい。 Next, as shown in FIG. 2D, grout is injected into the casing 50 and the grout hole 60 is filled with grout. The step of filling grout hole 60 with grout may be performed prior to the step of inserting reinforcing members 20 and 30 into excavation hole 60. In order to inject the grout, the casing 50 is filled with water, a tremey pipe (not shown) is inserted into the casing 50 from above, and the discharge port at the lower end of the tremey pipe is placed near the lower end of the casing 50. After positioning, the discharge loca also discharges the grout and replaces the water in the casing 50 with the dirt. Then, if the specific gravity of the grout that overflows the mouth force at the upper end of the borehole 60 becomes the same as the specific gravity of the grout injected through the tremy tube, it is understood that the replacement is completed. [0016] Next, the casing 50 is lifted to remove at least some of the plurality of casing segments 52, thereby exposing the inner wall surface of the excavation hole 60 that was previously covered by the casing 50 ( Figure 2E). At this time, one or several casing segments 52 are left at the upper end portion of the excavation hole 60 and the reinforcing casing 54 is constituted by the remaining casing segments. The reinforcing sleeve 54 is formed by embedding the upper end portion of the reinforcing sleeve 54 in the structure 16 after the microphone opening pile 10 is completed and embedding the lower end portion in the ground. Is to increase. As another structural example of the reinforcing sleeve 54, after all the casing segments 52 have been pulled out and removed, a separately prepared sleeve member may be fitted to the upper end of the pile body 18 to form a reinforcing sleeve. Good. Further, the length of the reinforcing sleeve 54 may be appropriately determined according to the j8 value that is the characteristic value of the pile.
[0017] 次に、掘削孔 60に更なるグラウトを加圧注入して硬化させることにより、その外周面 にグラウト Z地盤接合部を有する杭体 18を形成する(図 2F)。このグラウト Z地盤接 合部は、マイクロパイル 10の外周面の全長のうち、補強用スリーブ 54で覆われた部 分だけを除いた、長い範囲に亘つて形成される。また、グラウトの加圧注入の際に、 注入されるグラウトの一部が周辺地盤へ浸透することによって、周辺地盤も強化され る。掘削孔 60へのグラウトの加圧注入を行う手順としては、ケーシング 50を構成して V、た複数のケーシングセグメント 52のうち、残置するケーシングセグメントを除 ヽた残 り全てのケーシングセグメントを除去した後に、掘削孔 60へのグラウトの加圧注入を 1 回の作業で行うようにしてもよぐ或いは、ケーシングセグメント 52を 1個除去するごと に掘削孔 60へのグラウトの加圧注入を反復して実行するようにしてもょ 、。  [0017] Next, a pile 18 having a grout Z ground joint is formed on the outer peripheral surface thereof by pressurizing and hardening further grout into the excavation hole 60 (Fig. 2F). The grout Z ground joint portion is formed over a long range excluding only the portion covered with the reinforcing sleeve 54 out of the total length of the outer peripheral surface of the micropile 10. In addition, when the grout is injected under pressure, the surrounding ground is strengthened by the penetration of part of the injected grout into the surrounding ground. The procedure for pressurizing the grout into the borehole 60 was to remove all the remaining casing segments except for the remaining casing segments among the multiple casing segments 52 that consisted of the casing 50. Later, the pressurized injection of grout into the borehole 60 may be performed in one operation, or the pressurized injection of grout into the borehole 60 is repeated each time one casing segment 52 is removed. Let's run it.
[0018] 次に、鋼管型補強材 20の上端に鋼製のベースプレート 40を溶接して接合し、また 、このベースプレート 40に、棒鋼型補強材 30の上端をナットで螺着して接合する(図 2G)。これによつて、杭体 18の上端に、鋼管型補強材 20及び棒鋼型補強材 30に接 合された、マイクロパイル 10の杭頭を構造物 16 (図 1参照)に連結するための杭頭連 結構造が設けられる。以上でマイクロパイル 10が完成し、この後、補強用スリーブ 54 の周囲の土砂の埋め戻しを行うことで、補強用スリーブ 54の下端部分を地盤に埋設 し、また、補強用スリーブ 54の上端部分を埋設するようにして構造物 16のフーチング を構築する。 Next, a steel base plate 40 is welded and joined to the upper end of the steel pipe type reinforcing member 20, and the upper end of the steel bar type reinforcing member 30 is screwed and joined to the base plate 40 with a nut ( (Figure 2G). As a result, a pile for connecting the pile head of the micropile 10 connected to the steel pipe type reinforcement 20 and the steel bar type reinforcement 30 to the upper end of the pile body 18 to the structure 16 (see Fig. 1). A head-linking structure is provided. Thus, the micropile 10 is completed, and then the earth and sand around the reinforcing sleeve 54 are backfilled to embed the lower end portion of the reinforcing sleeve 54 in the ground, and the upper end portion of the reinforcing sleeve 54. Structure 16 footing Build up.
[0019] マイクロパイル 10は以上のように構成されているため、互いに略々同心的に延在す る鋼管型補強材 20及び棒鋼型補強材 30を介してマイクロパイル 10の長手方向の荷 重が伝達され、また、マイクロノィル 10の外周面の長い範囲に亘つてグラウト Z地盤 接合部が形成されることから、引抜き力及び押込み力に対する大きな耐カを有する。 また、鋼管型補強材 20の内周面と中心配置した棒鋼型補強材 30の外周面との間の 空間にグラウトが充填されている構造は、マイクロパイル 10に作用する曲げ荷重及び 剪断荷重に対する大きな耐カを有しており、加えて補強用スリーブ 54を必要長設置 することで、マイクロパイル 10は大きな水平抵抗力を発揮することができる。そのため 従来のマイクロパイルと比べて、マイクロパイルの必要本数を減少させることができ、 それによつて、工期の短縮並びに施工コストの低減を達成することができる。本発明 に係るマイクロパイルのこれら優れた利点を明らかにするために、以下に、具体例の マイクロパイルを試験して得られたデータを示す。  Since the micropile 10 is configured as described above, the load in the longitudinal direction of the micropile 10 passes through the steel pipe type reinforcing member 20 and the steel bar type reinforcing member 30 that extend substantially concentrically with each other. In addition, since the grout Z ground joint is formed over a long range of the outer peripheral surface of the micronoil 10, it has a large resistance against pulling force and pushing force. In addition, the structure in which the space between the inner peripheral surface of the steel pipe type reinforcing member 20 and the outer peripheral surface of the centrally arranged steel bar type reinforcing member 30 is filled with grout is suitable for bending load and shear load acting on the micropile 10. The micropile 10 can exert a great horizontal resistance by providing a large resistance and additionally installing the reinforcing sleeve 54 for the required length. Therefore, compared with the conventional micropile, the required number of micropile can be reduced, thereby shortening the construction period and reducing the construction cost. In order to clarify these excellent advantages of the micropile according to the present invention, data obtained by testing a micropile of a specific example are shown below.
[0020] 具体例  [0020] Specific examples
図 3Cに示した試験用マイクロパイル 70を試験ヤードに構築し、載荷試験装置を用 V、て杭軸上の鉛直一方向の引抜き試験を実施した。マイクロパイル 70の構築に先立 ち、コアボーリングを行って試験ヤードの地盤のサンプルを採取した。サンプルから 判明した地盤の層構成は、図 3Aのチャートに示したように、地表から深度 2.9mまで が埋土層であり、以下、深度 2.9m力 4.0mまでがローム層、深度 4.0m力 6.2mまでが 細砂層、深度 6.2mから 7.7mまでが粘土層、深度 7.7mから 8.8mまでが第 2の細砂層、 深度 8.8mから 10.5mまでがシルト層、そして深度 10.5m力 先が第 3の細砂層であつ た。  The test micropile 70 shown in Fig. 3C was built in the test yard, and a vertical pull-out test on the vertical axis on the pile shaft was performed using the loading test equipment. Prior to the construction of Micropile 70, core boring was performed to sample the ground in the test yard. As shown in the chart of Fig. 3A, the layer structure of the ground found from the sample is a buried layer from the surface to a depth of 2.9 m, and below, a depth of 2.9 m force to 4.0 m is a loam layer and a depth of 4.0 m force. Fine sand layer up to 6.2m, clay layer from 6.2m to 7.7m depth, second fine sand layer from 7.7m to 8.8m depth, silt layer from 8.8m to 10.5m depth, and 10.5m depth ahead The third fine sand layer.
[0021] 地盤の各層の固さを知るために、サンプルに対して N値の計測を行い、図 3Bのグ ラフに示した結果を得た。このグラフにおいて、縦軸は地表からの深度を表し、横軸 は N値を表す。グラフから明らかなように、地表の埋土層から、深度 10.5mに達するシ ルト層までは、 N値が 10またはそれ以下の軟弱層 12を構成しており、深度 10.5mから 先の第 3の細砂層は、 N値が 30以上の支持層 14を構成して 、る。  [0021] In order to know the hardness of each layer of the ground, N values were measured on the samples, and the results shown in the graph of Fig. 3B were obtained. In this graph, the vertical axis represents the depth from the ground surface, and the horizontal axis represents the N value. As is apparent from the graph, the soft layer 12 with an N value of 10 or less is constructed from the buried soil layer on the surface to the silt layer reaching a depth of 10.5 m. This fine sand layer constitutes a support layer 14 having an N value of 30 or more.
[0022] 図 3Cに試験用マイクロパイル 70の縦断面図を示した。マイクロパイル 70を構築す るために用いるケーシングの外径は 244.5mmとした。従って、マイクロパイル 70の外 径は、このケーシングの外径に、グラウトを加圧注入することによって発生する径方向 膨張分が加わった値となった。また、地盤の層構成に合わせて、マイクロパイル 70の 全長を 15,500mmに定め、その上端部分の約 500mmの部分が地表上に突出し、中間 部分の約 10,000mmの部分が軟弱層 12の中を延在し、下端部分の約 5,000mmの部 分が支持層 14の中を延在するようにした。鋼管型補強材 20は、マイクロノ ィル 70の 上端からマイクロパイル 70の下端の手前 2,000mmの位置まで延在するようにした。棒 鋼型補強材 30は、マイクロパイル 70の上端から下端まで延在するようにした。更に、 棒鋼型補強材 30に作用する軸方向荷重を計測するために、棒鋼型補強材 30の外 面の様々に異なった高さに、 9組のひずみゲージ S1〜S9を貼付した。それらひずみ ゲージ S1〜S9の貼付位置は図 3Cに記した通りである。尚、同図に示した貼付位置 の基準である地表面 GLは、マイクロパイル 70の構築位置における地表面であって、 原状地盤の地表面より 0.5m低 、位置にある。 FIG. 3C shows a longitudinal sectional view of the test micropile 70. Build micropile 70 The outer diameter of the casing used for this purpose was 244.5 mm. Therefore, the outer diameter of the micropile 70 has a value obtained by adding the radial expansion generated by pressure injection of the grout to the outer diameter of the casing. Also, the total length of the micropile 70 is set to 15,500 mm according to the layer structure of the ground, the upper part of about 500 mm protrudes on the ground surface, and the middle part of about 10,000 mm passes through the soft layer 12. The lower end portion of the support layer 14 was extended by about 5,000 mm. The steel pipe type reinforcing member 20 was extended from the upper end of the micronoyle 70 to a position of 2,000 mm before the lower end of the micropile 70. The steel bar type reinforcing material 30 was made to extend from the upper end to the lower end of the micropile 70. Furthermore, in order to measure the axial load acting on the steel bar type reinforcing material 30, nine sets of strain gauges S1 to S9 were attached to various heights on the outer surface of the steel bar type reinforcing material 30. The positions of the strain gauges S1 to S9 are as shown in Fig. 3C. The ground surface GL, which is the reference for the pasting position shown in the figure, is the ground surface at the construction position of the micropile 70 and is 0.5 m lower than the ground surface of the original ground.
引抜き試験においては、載荷試験装置により、マイクロパイル 70の上端に鉛直方 向の引抜き力を載荷し、その際に、載荷する引抜き力を図 4のグラフに示した載荷サ イタルで変化させた。図示のごとぐこの載荷サイクルは合計 5回の載荷期間から成り 、第 1回〜第 4回の載荷期間の各々は約 1時間の長さとし、第 5回の載荷期間は約 2 時間の長さとした。第 1回載荷期間においては、前半約 30分間は引抜き力を 180.2kN に維持し、後半約 30分間は 359.5kNに維持した。第 2回載荷期間においては、前半 約 30分間は引抜き力を 538.9kNに維持し、後半約 30分間は 726.1kNに維持した。第 3 回載荷期間においては、前半約 30分間は引抜き力を 902.0kNに維持し、後半約 30分 間は 1080.5kNに維持した。第 4回載荷期間においては、前半約 30分間は引抜き力を 1259.8kNに維持し、後半約 30分間は 1454.8kNに維持した。第 5回載荷期間におい ては、最初の約 30分間は引抜き力を 1626.4kNに維持し、次の約 30分間は 1799.7kN に維持し、 3番目の約 30分間は 1977.3kNに維持し、最後の約 30分間は 2156.7kNに 維持した。従って、引抜き力を一定に維持した期間が合計 12回あり、それら期間の 各々にお 、て棒鋼型補強材 30に貼付した 9組のひずみゲージ S1〜S9による計測 値の読み取りを行った。また、各々の読取時に、マイクロパイル 70の上端が最初の位 置からどれほど上昇して 、るかを計測した。 In the pull-out test, a pull-out force in the vertical direction was loaded on the upper end of the micropile 70 by a load test device, and the pull-out force loaded at that time was changed by the load site shown in the graph of FIG. As shown in the figure, this loading cycle consists of a total of five loading periods, each of the first to fourth loading periods being approximately 1 hour long, and the fifth loading period being approximately 2 hours long. did. During the first loading period, the pulling force was maintained at 180.2 kN for about 30 minutes in the first half and 359.5 kN for about 30 minutes in the second half. During the second loading period, the pulling force was maintained at 538.9 kN for about 30 minutes in the first half and 726.1 kN for about 30 minutes in the second half. During the 3rd loading period, the pulling force was maintained at 902.0kN for about 30 minutes in the first half and 1080.5kN for about 30 minutes in the second half. During the 4th loading period, the pulling force was maintained at 1259.8kN for about 30 minutes in the first half and 1454.8kN for about 30 minutes in the second half. During the 5th loading period, the pulling force is maintained at 1626.4 kN for the first approximately 30 minutes, 1799.7 kN for the next approximately 30 minutes, 1977.3 kN for the third approximately 30 minutes, and the last For about 30 minutes, it was maintained at 2156.7 kN. Therefore, there were a total of 12 periods during which the pulling force was maintained constant, and during each of these periods, the measured values were read with nine sets of strain gauges S1 to S9 affixed to the steel bar reinforcement 30. Also, at each reading, the top of the micropile 70 is the first position. We measured how much it rose from the position.
[0024] 以上の引抜き試験を、 3本の試験用マイクロパイルに対して実行した。その結果を 示したのが図 5のグラフである。このグラフにおいて、横軸は試験用マイクロパイルの 上端の上昇量 (鉛直変位量)を表し、縦軸は載荷した鉛直引抜き力を表す。グラフか ら明らかなように、 3本の試験用マイクロノィルは、引抜き力に対する耐力が 1500kN を超えており、この耐力の値は、 N値が 30以上の支持層の中を延在する部分が約 5,0 00mmのマイクロパイルにとって、非常に大きな値であると認められる。  [0024] The above pull-out test was performed on three test micropiles. The graph of Fig. 5 shows the results. In this graph, the horizontal axis represents the ascent (vertical displacement) of the upper end of the test micropile, and the vertical axis represents the loaded vertical pulling force. As is apparent from the graph, the three test micro-knobs have a yield strength exceeding 1500 kN, and this yield strength is approximately the portion extending through the support layer with an N value of 30 or more. It is recognized as a very large value for a 5,000 mm micropile.
[0025] 更に、ひずみゲージの読取値に基づいて、夫々の引抜き力において 1本の試験用 マイクロパイル 70に作用していた軸力を算出した。その結果を示したの力 図 6のグ ラフである。このグラフは、棒鋼型補強材 30に貼付したひずみゲージ S1〜S 9の読 取値に基づいて算出した軸力を示しており、このグラフから分力るように、マイクロパ ィル 70に作用する軸力は、深度 10.5mより浅 、軟弱層 12の中を延在して 、る部分に おいても、下の方ほど軸力が減少しており、従って、マイクロパイル 70に対しては、軟 弱層 12においても十分に有効な周面摩擦力が作用していたことが分力る。  Furthermore, the axial force acting on one test micropile 70 at each pulling force was calculated based on the strain gauge reading. The graph of Fig. 6 shows the results. This graph shows the axial force calculated based on the readings of the strain gauges S1 to S9 affixed to the steel bar type reinforcing material 30, and acts on the micropile 70 as shown in this graph. The axial force is shallower than the depth of 10.5 m and extends through the soft layer 12, and the axial force decreases in the lower part. Therefore, for the micropile 70, Even in the soft layer 12, a sufficiently effective peripheral friction force acts.
産業上の利用可能性  Industrial applicability
[0026] 図 7A〜図 7Cは、本発明に係るマイクロパイル 80の適用例を示した図である。本発 明に係るマイクロパイルは、例えば、橋脚のフーチング 82と支持層とを連結するため の支持杭として使用することもでき(図 7A)、橋台のフーチング 84を固定するための 杭として使用することもでき(図 7B)、また更に、支持杭 88で支持されている既設の 橋脚の基礎 86を補強するために、新設するフーチング拡張部 90と併せて使用する ことも可能である(図 7C)。 FIG. 7A to FIG. 7C are diagrams showing application examples of the micropile 80 according to the present invention. The micropile according to the present invention can be used, for example, as a support pile for connecting the footing 82 of the pier and the support layer (Fig. 7A), or as a pile for fixing the footing 84 of the abutment. It can also be used in conjunction with the new footing extension 90 to reinforce the existing pier foundation 86 supported by the support pile 88 (Figure 7C). ).

Claims

請求の範囲 The scope of the claims
[1] 構造物と地盤中の支持層とを連結するためのマイクロパイルにおいて、  [1] In the micropile for connecting the structure and the support layer in the ground,
地盤に形成された掘削孔に加圧注入されて硬化したグラウトから成る杭体であって 、少なくともその下端部分が前記支持層の中を延在している杭体と、  A pile made of grout that has been hardened by being injected into an excavation hole formed in the ground, and at least a lower end portion of the pile that extends through the support layer;
前記杭体のグラウトの中に埋設されて前記杭体の長手方向に延在する互いに略々 同心的な鋼管型補強材及び中心配置の棒鋼型補強材と、  A steel pipe type reinforcing material and a centrally arranged steel bar type reinforcing material which are embedded in the grout of the pile body and extend in the longitudinal direction of the pile body and are substantially concentric to each other;
前記杭体の上端に設けられ、前記鋼管型補強材及び前記棒鋼型補強材が接合さ れた、該マイクロパイルの杭頭を前記構造物に連結するための杭頭連結構造とを備 え、  A pile head connection structure for connecting the pile head of the micropile to the structure, which is provided at an upper end of the pile body and to which the steel pipe type reinforcing material and the steel bar type reinforcing material are joined;
前記鋼管型補強材は、前記杭体の上端から前記杭体の前記下端部分の中まで延 在して、その外周面が前記杭体のグラウトで覆われており、  The steel pipe type reinforcing material extends from the upper end of the pile body into the lower end portion of the pile body, and an outer peripheral surface thereof is covered with a grout of the pile body,
前記棒鋼型補強材は、前記杭体の上端から前記杭体の下端まで延在して、その下 端部分が前記鋼管型補強材の下端力 延出して前記杭体のグラウトで覆われており 前記鋼管型補強材の内周面と前記棒鋼型補強材の外周面との間の空間に、前記 杭体のグラウトが充填されている、  The steel bar type reinforcing material extends from the upper end of the pile body to the lower end of the pile body, and the lower end portion extends from the lower end force of the steel pipe type reinforcing material and is covered with the grout of the pile body. In the space between the inner peripheral surface of the steel pipe type reinforcing material and the outer peripheral surface of the steel bar type reinforcing material, the grout of the pile body is filled,
ことを特徴とするマイクロパイル。  A micropile characterized by that.
[2] 前記杭体の上端部分の外周面を覆って前記杭体の上端部分を補強する補強用ス リーブを備えており、該補強用スリーブの上端部分が前記構造物に埋設され下端部 分が地盤に埋設されていることを特徴とする請求項 1記載のマイクロパイル。  [2] A reinforcing sleeve for covering the outer peripheral surface of the upper end portion of the pile body and reinforcing the upper end portion of the pile body is provided, and the upper end portion of the reinforcing sleeve is embedded in the structure and the lower end portion is provided. The micropile according to claim 1, wherein is embedded in the ground.
[3] 前記補強用スリーブは、前記掘削孔を形成するために使用されたケーシングを構 成していた複数のケーシングセグメントのうちの、残置された少なくとも 1個のケーシン グセグメントにより構成されていることを特徴とする請求項 2記載のマイクロノィル。  [3] The reinforcing sleeve is constituted by at least one remaining casing segment among a plurality of casing segments constituting the casing used to form the excavation hole. 3. The micronail according to claim 2, wherein:
[4] 前記鋼管型補強材は複数の鋼管セグメントの端部どうしを連結して構成されており 、前記棒鋼型補強材は複数の棒鋼セグメントの端部どうしを連結して構成されて 、る ことを特徴とする請求項 1記載のマイクロパイル。  [4] The steel pipe type reinforcing material is configured by connecting ends of a plurality of steel pipe segments, and the steel bar type reinforcing material is configured by connecting ends of a plurality of steel bar segments. The micropile according to claim 1, wherein:
[5] 構造物と地盤中の支持層と連結するためのマイクロパイルの構築方法にぉ 、て、 複数のケーシングセグメントを継ぎ足しながら地盤を掘削して、それらケーシングセ グメントで構成されたケーシングを備えた掘削孔を、少なくともその下端部分が前記 支持層の中を延在するようにして形成するステップと、 [5] According to the method of constructing a micropile for connecting the structure and the support layer in the ground, the ground is excavated while adding a plurality of casing segments, and the casing sections are excavated. Forming a borehole provided with a casing made of a cement such that at least a lower end portion thereof extends through the support layer;
前記掘削孔に、複数の鋼管セグメントの端部どうしを連結して構成される鋼管型補 強材と、複数の棒鋼セグメントの端部どうしを連結して構成される棒鋼型補強材とを 挿入するステップであって、その際に、前記鋼管型補強材及び前記棒鋼型補強材が 互いに略々同心的に前記掘削孔の長手方向に延在し、前記棒鋼型補強材が中心 配置され、前記鋼管型補強材が前記掘削孔の上端から前記掘削孔の前記下端部分 の中まで延在し、且つ、前記棒鋼型補強材が前記掘削孔の上端から前記掘削孔の 下端まで延在して、この棒鋼型補強材の下端部分が前記鋼管型補強材の下端から 延出するようにする、補強材挿入ステップと、  A steel pipe type reinforcing material configured by connecting ends of a plurality of steel pipe segments and a steel bar type reinforcing material configured by connecting ends of a plurality of steel bar segments are inserted into the excavation hole. In this step, the steel pipe type reinforcing material and the steel bar type reinforcing material extend substantially concentrically in the longitudinal direction of the excavation hole, and the steel bar type reinforcing material is arranged in the center, and the steel pipe The mold reinforcement extends from the upper end of the excavation hole into the lower end portion of the excavation hole, and the steel bar type reinforcement extends from the upper end of the excavation hole to the lower end of the excavation hole. A reinforcing material insertion step, wherein a lower end portion of the steel bar type reinforcing material extends from a lower end of the steel pipe type reinforcing material;
前記掘削孔にグラウトを充填するステップと、  Filling the borehole with grout;
前記ケーシングを引き揚げて前記複数のケーシングセグメントのうちの少なくとも幾 つかを除去することにより、前記ケーシングにより覆われていた前記掘削孔の内壁面 を露出させるステップと、  Lifting the casing to remove at least some of the plurality of casing segments to expose an inner wall of the borehole covered by the casing;
前記掘削孔にグラウトを加圧注入して硬化させることにより、その外周面にグラウト By grouting the grout with pressure and hardening it,
Z地盤接合部を有する杭体を形成するステップと、 Forming a pile body having a Z ground joint;
前記杭体の上端に、前記鋼管型補強材及び前記棒鋼型補強材に接合された、該 マイクロパイルの杭頭を前記構造物に連結するための杭頭連結構造を設けるステツ プと、  A step of providing, at the upper end of the pile body, a pile head connection structure for connecting the pile head of the micropile, which is joined to the steel pipe type reinforcement and the steel bar type reinforcement, to the structure;
を含むことを特徴とするマイクロパイルの構築方法。  A method for constructing a micropile, comprising:
[6] 前記杭体の上端部分の外周面を覆って前記杭体の上端部分を補強する補強用ス リーブを前記杭体の上端部分に設け、該補強用スリーブの上端部分を前記構造物 に埋設し下端部分を地盤に埋設することを特徴とする請求項 5記載のマイクロパイル の構築方法。  [6] A reinforcing sleeve for covering the outer peripheral surface of the upper end portion of the pile body and reinforcing the upper end portion of the pile body is provided on the upper end portion of the pile body, and the upper end portion of the reinforcing sleeve is provided on the structure. 6. The method of constructing a micropile according to claim 5, wherein the method is embedded and the lower end portion is embedded in the ground.
[7] 前記ケーシングを引き揚げて前記複数のケーシングセグメントのうちの少なくとも幾 つかを除去する際に、それら複数のケーシングセグメントのうちの少なくとも 1個のケ 一シングセグメントを前記掘削孔の上端部分に残置し、その残置したケーシングセグ メントで前記補強用スリーブを構成することを特徴とする請求項 6記載のマイクロパイ ルの構築方法。 [7] When the casing is lifted to remove at least some of the plurality of casing segments, at least one casing segment of the plurality of casing segments is left in an upper end portion of the drilling hole. 7. The micropipes according to claim 6, wherein the reinforcing sleeve is constituted by the remaining casing segment. How to build
[8] 前記複数のケーシングセグメントのうち残置すべきケーシングセグメントを除!ヽた全 てのケーシングセグメントを除去した後に、前記掘削孔へのグラウトの加圧注入を 1回 の作業で行うことを特徴とする請求項 5記載のマイクロパイルの構築方法。  [8] The present invention is characterized in that, after removing all the casing segments to be left out of the plurality of casing segments, the grout is injected into the excavation hole by a single operation. The method for constructing a micropile according to claim 5.
[9] 前記複数のケーシングセグメントを 1個除去するごとに、前記掘削孔へのグラウトの 加圧注入を反復して実行することを特徴とする請求項 5記載のマイクロパイルの構築 方法。  9. The method for constructing a micropile according to claim 5, wherein each time the plurality of casing segments are removed, the pressure injection of grout into the borehole is repeatedly performed.
PCT/JP2005/018681 2004-10-08 2005-10-11 Micro pile and method of constructing the same WO2006041051A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006540929A JP4617315B2 (en) 2004-10-08 2005-10-11 Micropile and its construction method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004295722 2004-10-08
JP2004-295722 2004-10-08

Publications (2)

Publication Number Publication Date
WO2006041051A1 true WO2006041051A1 (en) 2006-04-20
WO2006041051A8 WO2006041051A8 (en) 2007-01-11

Family

ID=36148343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018681 WO2006041051A1 (en) 2004-10-08 2005-10-11 Micro pile and method of constructing the same

Country Status (2)

Country Link
JP (1) JP4617315B2 (en)
WO (1) WO2006041051A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008297864A (en) * 2007-06-04 2008-12-11 Sekisui House Ltd Construction method of cast-in-place pile
JP2010037864A (en) * 2008-08-07 2010-02-18 Fujita Corp Cast-in-place pile and construction method
JP2015203266A (en) * 2014-04-16 2015-11-16 株式会社フジタ Method for extending casing segment in micro pile method and connection structure
CN105401571A (en) * 2015-12-17 2016-03-16 中冶沈勘工程技术有限公司 Precast post-grouting special-shaped root pile and construction method thereof
JP2016160582A (en) * 2015-02-27 2016-09-05 株式会社フジタ Micro pile method, and spacer for reinforcement material used with the same
JP2016180233A (en) * 2015-03-24 2016-10-13 株式会社フジタ Water cutoff device used in micro pile method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101635529B1 (en) * 2015-11-17 2016-07-04 이강수 Composite pile construction method
KR101855458B1 (en) * 2016-04-14 2018-05-08 이강수 Composite pile

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824017A (en) * 1981-08-03 1983-02-12 Raito Kogyo Kk Soil stabilization work
JPH0544216A (en) * 1991-08-09 1993-02-23 Arai Gumi Ltd Anchor centralizer
JPH10140583A (en) * 1996-11-15 1998-05-26 Fujita Corp Aseismatic reinforcing method of existing structure foundation by micropile
JPH11131487A (en) * 1997-10-27 1999-05-18 Okabe Co Ltd Slope stabilizing method and structure for preservation of natural scenery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000282462A (en) * 1999-03-31 2000-10-10 Nkk Corp Pile body, pile foundation, and method for constructing pile foundation
JP2001172987A (en) * 1999-12-16 2001-06-26 Shimizu Corp Pile foundation structure and its construction method
JP3927842B2 (en) * 2002-03-13 2007-06-13 エスティーエンジニアリング株式会社 Construction method of double pipe digging small diameter pile
JP2004183444A (en) * 2002-12-06 2004-07-02 Hirose & Co Ltd Slope reinforcing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824017A (en) * 1981-08-03 1983-02-12 Raito Kogyo Kk Soil stabilization work
JPH0544216A (en) * 1991-08-09 1993-02-23 Arai Gumi Ltd Anchor centralizer
JPH10140583A (en) * 1996-11-15 1998-05-26 Fujita Corp Aseismatic reinforcing method of existing structure foundation by micropile
JPH11131487A (en) * 1997-10-27 1999-05-18 Okabe Co Ltd Slope stabilizing method and structure for preservation of natural scenery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008297864A (en) * 2007-06-04 2008-12-11 Sekisui House Ltd Construction method of cast-in-place pile
JP2010037864A (en) * 2008-08-07 2010-02-18 Fujita Corp Cast-in-place pile and construction method
JP2015203266A (en) * 2014-04-16 2015-11-16 株式会社フジタ Method for extending casing segment in micro pile method and connection structure
JP2016160582A (en) * 2015-02-27 2016-09-05 株式会社フジタ Micro pile method, and spacer for reinforcement material used with the same
JP2016180233A (en) * 2015-03-24 2016-10-13 株式会社フジタ Water cutoff device used in micro pile method
CN105401571A (en) * 2015-12-17 2016-03-16 中冶沈勘工程技术有限公司 Precast post-grouting special-shaped root pile and construction method thereof

Also Published As

Publication number Publication date
JPWO2006041051A1 (en) 2008-05-15
JP4617315B2 (en) 2011-01-26
WO2006041051A8 (en) 2007-01-11

Similar Documents

Publication Publication Date Title
JP5274145B2 (en) Cast-in-place pile and its construction method
JP4617315B2 (en) Micropile and its construction method
KR100964796B1 (en) Method for constructing the steel pipe-concrete composite pile structurized of burying and unifying into the bedrock, and a pile construction
KR101332848B1 (en) Method for constructing micro pile using deformed or screw steel pipe and pressure grouting
KR101394235B1 (en) Method for constructing complex pile for great soft ground
JP5677728B2 (en) Tunnel reinforcement method, tunnel reinforcement structure
KR20110041391A (en) Pile structure
JP2008057184A (en) Method of constructing underground wall by using h-shaped pc pile
JP4712456B2 (en) Foundation reinforcement method
JP2019019633A (en) Construction method of continuous underground wall and steel pipe pile
KR20100124028A (en) Construction method of lower end expanded type cast-in-place piles
CN107100160A (en) A kind of construction technology for lower storage reservoir check dam vibro-replacement stone column
KR100638178B1 (en) Marine structure and construction method thereof
KR102247848B1 (en) Cast-in-place pile using Pressurized grouting and construction method
JPH10299005A (en) Footing equipped with sloped pile bundled and method of construction work
KR20210047205A (en) Multi points extension apparatus for underground steel pipe and steel pipe pile section extension method using the same
Nguyen et al. Bidirectional tests on two shaft-grouted barrette piles in Mekong Delta, Vietnam
KR20080039020A (en) Phc pile
RU2360071C1 (en) Method of reinforcement of foundations
KR100687496B1 (en) Construction method of pile for building
KR102073630B1 (en) Sacrificial Steel Pipe Cutting Method Using Sacrificial Steel Pipe for Field Drilled Shaft and Construction Method for Stiffness Increase on the Pile
KR101919607B1 (en) Ground reinforcement method using jacked steel pipe pile
KR102070912B1 (en) Phc pile for soil retaining wall, mold assembly and manufacturing method thereof
KR20210047280A (en) Steel pipe pile section extension method using multi points extension apparatus for underground steel pipe
JP3919852B2 (en) Method for construction of cast-in-place pile

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006540929

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05793713

Country of ref document: EP

Kind code of ref document: A1