WO2006041007A1 - イオン伝導体 - Google Patents

イオン伝導体 Download PDF

Info

Publication number
WO2006041007A1
WO2006041007A1 PCT/JP2005/018541 JP2005018541W WO2006041007A1 WO 2006041007 A1 WO2006041007 A1 WO 2006041007A1 JP 2005018541 W JP2005018541 W JP 2005018541W WO 2006041007 A1 WO2006041007 A1 WO 2006041007A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
crosslinkable functional
functional group
integer
Prior art date
Application number
PCT/JP2005/018541
Other languages
English (en)
French (fr)
Inventor
Meiten Koh
Akiyoshi Yamauchi
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2006041007A1 publication Critical patent/WO2006041007A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/02Polyalkylene oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to an ionic conductor comprising an amorphous fluorine-containing polyether compound having a fluoroether group in the side chain.
  • Powerful ion conductors are useful as lithium secondary batteries, solar cells, and polymer electrolytes for capacitors.
  • Lithium secondary batteries, solar cells, and capacitor electrolytes are currently mainly organic molecules.
  • the technology is aimed at polymer electrolytes in order to avoid leakage of electrolyte solutions. Development is progressing.
  • a polymer electrolyte As such a polymer electrolyte, a polymer gel type that combines a polymer containing an ethylene oxide (EO) unit with an electrolyte salt (metal salt) and an organic solvent. Things are known.
  • EO ethylene oxide
  • metal salt electrolyte salt
  • the EO-electrolyte salt ion conductor has a high viscosity, so the dissociated ions move smoothly! /, Kana! /, And the electrolyte salt dissolves in multiple phases. Because it is a crystalline polymer, its ionic conductivity is affected by the phase change, particularly the melting of the EO crystalline phase, so the ionic conductivity is low at room temperature1, and the crystallization rate is slow. There is an essential problem that the conductivity changes with time.
  • a diatalylate containing a fluorine-containing polyether (n is 10 to 20) is crosslinked, and a metal salt and an organic solvent are disclosed.
  • JP-A-11-53937 proposes the use of a copolymer of a fluorephrine unit and an alkyl butyl ether or alkyl allyl ether unit having a carbonate bond.
  • An object of the present invention is to provide an ionic conductor capable of achieving a higher ionic conductivity than such a conventional one.
  • the present inventors can further reduce the viscosity of the resulting fluorine-containing polyether compound by introducing a fluoroether unit into the side chain of the EO unit, and therefore, without using an organic solvent.
  • the inventors have found that the ionic conductivity can be increased by about one order, and have completed the present invention.
  • the present invention includes an ion conductive compound (I) and an electrolyte salt ( ⁇ ),
  • the ion conductive compound (I) is represented by the formula (1):
  • Rf is crosslinkable functional group which may have a Furuoroeteru group
  • R 1 is a group or a bond that binds the Rf main chain
  • ether having an Furuoroeteru group in the side chain represented by the unit
  • AE is the formula (2b):
  • R has a hydrogen atom, an alkyl group optionally having a crosslinkable functional group, a crosslinkable functional group! An aliphatic cyclic hydrocarbon group or a crosslinkable functional group. An aromatic hydrocarbon group; R 1 is an ether unit represented by a group or a bond that bonds R to the main chain);
  • a and B are the same force or different and contain a hydrogen atom, a fluorine atom and Z or a crosslinkable functional group !, or an alkyl group, a fluorine atom and Z or a phenyl group which may contain a crosslinkable functional group , —COOH group, —OR 2 (R 2 is a hydrogen atom or fluorine atom and Z or an alkyl group which may contain a crosslinkable functional group), ester group or carbonate group].
  • the present invention relates to an ionic conductor which is an amorphous fluorine-containing polyether compound having a fluoroether group or a cross-linked product thereof.
  • the ionic conductor of the present invention comprises a specific polymer ion conductive compound (I) and an electrolyte salt (II).
  • the specific polymer ion conductive compound (I) used in the present invention has the formula (1):
  • Rf is crosslinkable functional group which may have a Furuoroeteru group
  • R 1 is a group or a bond that binds the Rf main chain
  • ether having an Furuoroeteru group in the side chain represented by the unit
  • AE is the formula (2b):
  • R has a hydrogen atom, an alkyl group optionally having a crosslinkable functional group, a crosslinkable functional group! An aliphatic cyclic hydrocarbon group or a crosslinkable functional group. An aromatic hydrocarbon group; R 1 is an ether unit represented by a group or a bond that bonds R to the main chain);
  • a and B are the same force or different and contain a hydrogen atom, a fluorine atom and Z or a crosslinkable functional group !, or an alkyl group, a fluorine atom and Z or a phenyl group which may contain a crosslinkable functional group , —COOH group, —OR 2 (R 2 is a hydrogen atom or fluorine atom and Z or an alkyl group which may contain a crosslinkable functional group), ester group or carbonate group].
  • Amorphous fluorine-containing polyether having fluoroether group Compound.
  • the amorphous fluorine-containing polyether compound (1) having a fluoroether group in the side chain is obtained by introducing a fluoroether side chain into a conventional ethylene oxide (EO) unit. Increase the viscosity of the compound.
  • EO ethylene oxide
  • the fluoroether group Rf is excellent in acid resistance and nonflammability, it exhibits excellent stability for use at high temperatures.
  • Rf is preferably represented by the formula (2a-1):
  • Rf 1 is one (OCFCFCF) CFCFCFO)-,-(OCFZ'CF
  • OCFCFCH OCHCHCF
  • OCFCHCH OCFCHCH
  • X is a hydrogen atom, a halogen atom, an ether bond having a carbon number of 120, and Z or a crosslinkable functional group, and may be at least one selected from fluorine-containing alkyl groups, provided that X In which Rf 1 does not exist, and Rf 1 does not contain an O—O 2 structure).
  • Rf 1 is (OCFZ'CF) (OCF CF CF) (OCH CF
  • One (OCFZtF) is preferred to be one or more repeating units.
  • nl is preferably small.
  • Preferable specific examples include, for example, — (OCF CF) —, — (OCF CF CF) —, — (OCF CF CF) —, — (OCF CF CF) —, — (OCF CF CF)
  • CF) 0) — is preferable because it has excellent thermal stability and oxidation resistance and is easy to synthesize.
  • X may include a hydrogen atom, a halogen atom, an ether bond having 120 carbon atoms, and Z or a crosslinkable functional group, and may be at least one selected from fluorine-containing alkyl groups.
  • Rf 1 does not have, and Rf 1 does not contain —O—O structure.
  • Rf in the formula (2a) examples include the formula (2a-2):
  • n2 is an integer of 0 to 2). This product is easy to synthesize and is inexpensive in cost.
  • n3 is 0 or 1
  • n4 is 0 or 1
  • n5 is an integer of 0 to 2).
  • Preferred! / include the following (exemplified by Rf! /).
  • Dl include, for example,
  • n is an integer from 1 to 200, n2 is the same as above
  • n is an integer from 1 to 200, n2 is the same as above
  • n is an integer from 1 to 200, n2 is the same as above
  • n is an integer from:! to 200, n2 is the same as above
  • Rf—R 1 — is particularly excellent in reactivity and easy to synthesize.
  • m is 0, that is, the compound (la) having only the fluoroether group-containing unit (D1), and m is There are compounds (lb) containing one or more, that is, both a fluoroether group-containing unit (D1) and an alkyl ether unit (AE).
  • n is preferably 6 or less, more preferably 4 or less, and particularly 2 or less.
  • an amorphous fluorine-containing polyether compound (lb) combined with an alkyl ether unit (AE) having a high dielectric constant can also be used. Incorporation of alkyl ether units (AE) increases the crystallinity, so nZm is about 0.1 / 99.9, or 1/99 to 50/50.
  • R may have a hydrogen atom, a crosslinkable functional group, an alkyl group, or a crosslinkable functional group! /, May! It has an aromatic hydrocarbon group or a crosslinkable functional group, and may be an aromatic hydrocarbon group.
  • the alkyl group is preferably a linear or branched alkyl group having 1 to 20 carbon atoms, such as methyl, ethyl and the like.
  • Preferred examples of the aliphatic cyclic hydrocarbon group include cycloalkyl groups having 4 to 8 carbon atoms. Examples thereof include cyclopentyl and cyclohexyl.
  • Preferred examples of the aromatic hydrocarbon group include phenol and benzyl.
  • Substituted by these groups is preferably a crosslinkable functional group U.
  • Specific examples include X in the above formula (2a-1) (excluding H, F and fluorine-containing groups). Along with preferable examples.
  • R are preferably a linear or branched alkyl group having 1 to 20 carbon atoms from the viewpoint of excellent polymerizability, strength, and electrolyte solubility, and particularly methyl and ethyl. preferable.
  • the bondability with the main chain represented by R 1 is a force that can adopt the above four types, particularly the direct bond type and the ether type.
  • a and B are the same or different and contain a hydrogen atom, a fluorine atom and a crosslinkable functional group.
  • A Preferable specific examples of A include, for example,
  • n 7 is an integer of 1 to: L 0), and from the viewpoint of improving crosslinking reactivity and dielectric constant,
  • n 8 is an integer from 1 to 5)
  • CH 3 is preferred.
  • Preferable specific examples of B include, for example,
  • n 9 is an integer from 1 to 10.
  • n 10 is an integer from 1 to 5)
  • CH 3 is preferred.
  • the number average molecular weight of the amorphous fluorine-containing polyether compound (1) having a fluoroether group in the side chain is 500 or more, more preferably 1000 or more, particularly 1500 or more.
  • the upper limit is preferably 100000, more preferably 80000, and especially 50000 in terms of the solubility of the electrolyte.
  • the power to give a specific example of an amorphous fluorine-containing polyether compound having a fluoroether group in the side chain represented by the formula (1) is not limited thereto.
  • Amorphous fluorine-containing polyether compound (lb) [0076] [Chemical 29]
  • n is an integer from 1 to 200
  • m is an integer from 1 to 20000
  • the amorphous fluorine-containing polyether compound (1) having a fluorine-containing group in the side chain used in the present invention is, for example, an ion polymerization using a key-on such as O-, C-, and N as an initiator.
  • the ion conductive compound (I) may be a crosslinked product! /.
  • the cross-linked product can be produced by introducing a cross-linkable functional group into the amorphous fluorine-containing polyether compound (1) having a fluoro ether group in the side chain and, if necessary, cross-linking using a cross-linking agent. .
  • a crosslinked product By using a crosslinked product, the mechanical strength of the ionic conductor is greatly improved.
  • Examples of the crosslinkable functional group include a bur group, an acryl group, a glycidyl group, an epoxy group, a hydroxyl group, a carboxyl group, an allyloyl group, a cyano group, an alkoxysilyl group, and the like.
  • Z or B, Rf in formula (2a), R in formula (2b) may be introduced.
  • a method in which a compound having a crosslinkable functional group is reacted for post-modification can be employed.
  • the crosslinking agent may be appropriately selected from polyfunctional compounds having two or more of the above-mentioned crosslinkable functional groups in one molecule.
  • crosslinking agent examples include, for example,
  • n 11 is an integer from 1 to 8)
  • a cross-linking agent described in, for example, 79826 can also be used.
  • Crosslinking may be performed by a known crosslinking system suitable for a combination of a crosslinkable functional group and a crosslinking agent.
  • electrolyte (II) which is one component of the ionic conductor of the present invention will be described.
  • Examples of the electrolyte (i) that can be used in the present invention include conventionally known metal salts, ionic liquids, inorganic polymer type salts, organic polymer type salts, and the like.
  • electrolytes are particularly suitable compounds depending on the intended use of the ionic conductor.
  • suitable electrolytes are exemplified for each application, but are not limited to the illustrated specific examples. In other applications, the following exemplified electrolytes can be appropriately used.
  • the metal salt for the solid electrolyte of the lithium secondary battery includes boron-on type, oxygen-on type, nitrogen-on type, carbon-on type, and phosphorus-on type.
  • Various organic metal salts can be used, and oxygen ion type and nitrogen ion type are preferable.
  • oxygen-on type specifically, CF SO Li, C F SO Li, C F SO Li, CH
  • Nitrogen-on types include (CF SO) NLi (TFSl), (C F SO) NLi (BETI), (C
  • LiPF LiPF, LiBF, LiAsF, LiCIO and the like can be used.
  • LiPF or LiBF LiPF or LiBF
  • Et NBF Et is ethylene
  • Et NC F SO is particularly preferable, Et NBF, Et NPF is preferably used
  • LiPF LiPF, LiBF, LiAsF, LiCIO, NaPF, NaBF, NaAsF
  • NaCIO, KPF, KBF, KAsF, KCIO, etc. can be used, especially LiPF, L
  • R la R 2a R 3a R 4a NI (R la to R 1 ⁇ 2 are the same or different, and an alkyl group having 1 to 3 carbon atoms), Lil, Nal , KI,
  • Etc. can be exemplified.
  • an ionic liquid is used as the electrolyte (II), organic and inorganic ions and polyalkylimidazolium cations, N for lithium secondary batteries, capacitors, and solid electrolytes of dye-sensitized solar cells.
  • examples include salts with alkylpyridium cation, tetraalkylammonium cation and tetraalkylphosphonium cation, with 1,3 dialkylimidazolium salt being particularly preferred! /.
  • polyalkylimidazolium cations include 1,3-dialkylimidazolium cations such as 1-ethyl-3-methylimidazolium cation (EMI +) and 1-butyl-3-methylimidazolium cation (BMI +); 1,2 dimethyl 3 Trialkylimidazolium cations such as propylimidazolium cation (DMPI +) are preferred!
  • 1,3-dialkylimidazolium cations such as 1-ethyl-3-methylimidazolium cation (EMI +) and 1-butyl-3-methylimidazolium cation (BMI +)
  • EMI + 1-ethyl-3-methylimidazolium cation
  • BMI + 1-butyl-3-methylimidazolium cation
  • DMPI + propylimidazolium cation
  • EMIA1C1 EMIBF, EMIPF, EMIAsF, EMII, EMICH C
  • MI CF SO
  • BMI C F SO
  • DMPIAICI DMPIBF
  • DMPIPF DMPIAICI
  • PIAsF PIAsF
  • DMPII DMPII
  • DMPICH COO DMPICF COO
  • DMPIC F COO DMPIC
  • F SO examples include F SO, DMPIC F SO, DMPI (CF SO) N, DMPI (C F SO) N
  • Oxides such as ⁇ , ⁇ and DMPII are particularly suitable for solid electrolytes in dye-sensitized solar cells.
  • the amount of electrolyte ( ⁇ ) blended varies depending on the required current density, application, type of electrolyte, etc., but the polymer ion conductive compound (1) is 0.1 parts by weight per 100 parts by weight. Or even It is preferably 1 part by mass or more, particularly 2 parts by mass or more, 200 parts by mass or less, more preferably 100 parts by mass or less, particularly 50 parts by mass or less.
  • the electrolyte ( ⁇ ⁇ ⁇ ) is retained by impregnating or dissolving it in the amorphous fluorine-containing polyether compound (1) constituting the polymer ion conductive compound (I).
  • the amorphous fluorine-containing polyether compound (1) is solid but has a low viscosity, so that the ionic conductivity is high as it is.
  • an aprotic organic solvent (III) is added to form a gel (plasticized) gel electrolyte.
  • Examples of the organic solvent (III) used in the gel electrolyte include ethylene carbonate, propylene power carbonate, butylene carbonate, y butyrolatatane, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3 dioxolane, 4-Methyl-1,3- dioxolane, methyl formate, methyl acetate, methyl propionate, dimethyl carbonate, ethyl methyl carbonate, jetyl carbonate, acetonitrile, dimethyl sulfoxide, methyl pyrrolidone, etc., especially dielectric constant and oxidation resistance From the standpoint of improving the properties and electrochemical stability, ethylene carbonate, propylene carbonate, jetino carbonate, ⁇ -butylate ratatone, 1,2 dimethoxyethane, 1,3 dioxolan, and acetonitrile are preferred.
  • the organic solvent (III) is preferably used in such an amount that the solid content in the ionic conductor is 10% by mass or more, more preferably 50% by mass or more, and particularly 100% by mass.
  • the ionic conductor of the present invention may contain other additives as required.
  • other additives include metal oxides and glass.
  • the ion conductor of the present invention has high ion conductivity and is excellent in oxidation resistance and mechanical strength. Therefore, the polymer electrolyte of a lithium secondary battery, the polymer electrolyte of a capacitor, and a thick battery. It is particularly useful as a polymer electrolyte for positive cells (particularly dye-sensitized solar cells). It can also be used as electrolytes for various sensors, electrolytes for electochromic elements, and ion conductors used for various electrolysis.
  • NMR BRUKER AC-300 is used.
  • the number average molecular weight was determined by gel permeation chromatography (GPC) using Tosoh's GPC HLC-8020, Shodex column (one GPC KF-801 and one GPC KF-802). , GPC KF-806M connected in series) and tetrahydrate-furan (THF) as a solvent at a flow rate of 1 mlZ.
  • GPC gel permeation chromatography
  • T thermal decomposition temperature
  • Viscosity Using a VISCONE CV series cone plate type rotational viscometer made by Tokai Yagami Co., Ltd., measuring cones with a viscosity range of 50 to 8000 mPa's, rotating at 94 rpm, and temperature of 80 ° C.
  • a 100 ml glass eggplant-shaped flask equipped with a stirrer was thoroughly purged with nitrogen, then 0.19 g of CH ONa and 70 g of dimethylformamide were added under a nitrogen stream at room temperature.
  • reaction solution was poured into pure water.
  • the liquid separated into the lower layer was extracted using HCFC1 41b. After drying the extracted solution with MgSO, HCFC141b can be distilled off.
  • the obtained high-viscosity liquid was vacuum-dried to obtain 12.3 g of the colorless and transparent homopolymer of the above compound (I 3).
  • This polymer was analyzed by 19 F-NMR and —NMR analysis.
  • the number average molecular weight measured by GPC analysis using tetrahydrofuran (THF) as a solvent was 5,830 and the weight average molecular weight was 8,567.
  • a supersaturated amount of LiCIO as an electrolyte was dissolved in a mixture of 2 g of the polymer obtained in Synthesis Example 2 and 0.2 g of propylene carbonate, and left standing in a 6 ml sample bottle. -After the turn
  • a solid was deposited in the transparent polymer mixture phase, lower layer.
  • the upper layer was taken out, after manufactured create a rectangular film was measured for ionic conductivity was 7. 8 X 10- 4 SZcm.
  • the polymer ion conductor of the present invention itself has high ion conductivity even near room temperature, is nonflammable with low viscosity, and has excellent acid resistance, and is a secondary lithium ion. It can satisfy the characteristics required as a polymer electrolyte for batteries, capacitors and solar cells.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)
  • Polyethers (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Hybrid Cells (AREA)

Abstract

 室温付近でも高いイオン伝導率をもち、粘性が低く、不燃性でかつ耐酸化性に優れたものであり、リチウム二次電池、キャパシタや太陽電池の高分子電解質として要求される特性を満足し得るイオン伝導体を提供する。高分子イオン伝導性化合物(I)と電解質塩(II)とを含み、該イオン伝導性化合物(I)が、側鎖にフルオロエーテル基を有する非晶性含フッ素ポリエーテル化合物またはその架橋物である高分子イオン伝導体。

Description

明 細 書
イオン伝導体
技術分野
[0001] 本発明は、側鎖にフルォロエーテル基を有する非晶性含フッ素ポリエーテルィ匕合 物からなるイオン伝導体に関する。力かるイオン伝導体は、リチウム二次電池や太陽 電池、キャパシタの高分子電解質などとして有用である。
背景技術
[0002] リチウム二次電池や太陽電池、キャパシタの電解質は、現在のところ有機分子のも のが主流であるが、電解質溶液の漏出などの回避の点などから、高分子電解質の方 向に技術開発が進んで 、る。
[0003] そのような高分子電解質としては、エチレンォキシド (EO)単位を含むポリマーと電 解質塩 (金属塩)とを組み合わせたものと、さらに有機溶媒とを組み合わせた高分子 ゲル型のものが知られている。
[0004] し力しながら、 EO—電解質塩系のイオン伝導体は、粘性が高 、ので解離したィォ ンの移動がスムーズに!/、かな!/、点、電解質塩の溶解が多相系結晶性高分子である ため、イオン伝導率が相変化、特に EO結晶相の融解の影響を受けるので室温付近 でのイオン伝導率が低 1、点、また結晶化速度が遅!、ためイオン伝導率が経時的に 変化する点といった本質的な問題がある。
[0005] そこで粘性を下げ、また室温付近でのイオン伝導率を高めるためにポリエーテルの 種類を変化させて非晶性を高める試みが種々なされてきた。その結果、温度依存性 はかなり小さくなつてきたものの、イオン伝導率はそれほど向上せず、実用化レベル にはなかなか到達できて ヽな 、のが現状である。
[0006] 粘性を下げる試みとして、 EOに嵩高い CF基を導入することも提案されている。た
3
とえば特開平 8— 22270号公報では、
[0007] [化 1]
I 単位と、
[0008] [化 2]
^ (OCH2CH2^ ~ 単位を組み合わせた含フッ素ポリエーテルィ匕合物とアルカリ金属塩と有機溶媒とから なるイオン伝導体が提案されて!ヽる。
[0009] また、特開平 9—48832号公報では、
[0010] [化 3]
CH2 = CRCOO-0-CH2-CH— OHrOCRC = CH2
(nは 10〜20)という含フッ素ポリエーテルを含むジアタリレートを架橋し、これに金属 塩と有機溶媒が開示されている。
[0011] さらに特開平 11— 53937号公報ではフルォロォレフイン単位とカーボネート結合を 有するアルキルビュルエーテルまたはアルキルァリルエーテル単位との共重合体を 使用することが提案されて 、る。
[0012] またポリフルォロエーテル単位を主鎖に含む化合物をイオン伝導体として使用する こと力 S特開 2003 - 257240号公報に記載されて 、る。
[0013] し力しこれらの特許文献に記載されて 、る含フッ素エーテル単位を有する化合物 は、粘性の低下作用が不充分であるために、いずれの化合物も有機溶媒でゲル化し て初めて大きなイオン伝導率が得られるものである。
発明の開示
[0014] 本発明は、このような従来のものに比べて、より大きなイオン伝導率が達成できるィ オン伝導体を提供することを目的とする。
[0015] 本発明者らは、 EO単位の側鎖にフルォロエーテル単位を導入することにより、得ら れる含フッ素ポリエーテルィ匕合物の粘性をさらに下げることができ、したがって、有機 溶媒を使用しなくてもイオン伝導率を 1オーダー程度も大きくすることができることを 見出し、本発明を完成するに至った。
[0016] すなわち本発明は、イオン伝導性化合物 (I)と電解質塩 (Π)とを含み、 該イオン伝導性化合物 (I)が、式(1):
A -(D) - B (1)
[式中、 Dは式(2):
一(D1) —(AE) — (2)
n m
(式中、 D1は、式(2a):
[0017] [化 4]
(R1) -R f —— CH-CH3-0—— (2 a)
(式中、 Rfは架橋性官能基を有していてもよいフルォロエーテル基; R1は Rfと主鎖を 結合する基または結合手)で示される側鎖にフルォロエーテル基を有するエーテル 単位;
AEは、式(2b):
[0018] [化 5]
(Rリ R (CH-CH2-0)—— (2 b)
(式中、 Rは水素原子、架橋性官能基を有していてもよいアルキル基、架橋性官能基 を有して!ヽてもよ!ヽ脂肪族環式炭化水素基または架橋性官能基を有して!ヽてもよ!、 芳香族炭化水素基; R1は Rと主鎖を結合する基または結合手)で示されるエーテル 単位;
nは 1〜200の整数; mは 0〜20000の整数);
Aおよび Bは同じ力または異なり、水素原子、フッ素原子および Zまたは架橋性官能 基を含んで!、てもよ 、アルキル基、フッ素原子および Zまたは架橋性官能基を含ん でいてもよいフエニル基、—COOH基、—OR2 (R2は水素原子またはフッ素原子およ び Zまたは架橋性官能基を含んでいてもよいアルキル基)、エステル基またはカーボ ネート基]で表される側鎖にフルォロエーテル基を有する非晶性含フッ素ポリエーテ ルイ匕合物またはその架橋物であるイオン伝導体に関する。
発明を実施するための最良の形態 [0019] 本発明のイオン伝導体は、特定の高分子イオン伝導性ィ匕合物 (I)と電解質塩 (II)と からなる。
[0020] 本発明で使用する特定の高分子イオン伝導性ィ匕合物 (I)は、式(1):
A -(D) - B (1)
[式中、 Dは式(2):
一(D1) —(AE) — (2)
n m
(式中、 D1は、式(2a):
[0021] [化 6]
(R1) -R f —— CH-CH3-0—— (2 a)
(式中、 Rfは架橋性官能基を有していてもよいフルォロエーテル基; R1は Rfと主鎖を 結合する基または結合手)で示される側鎖にフルォロエーテル基を有するエーテル 単位;
AEは、式(2b):
[0022] [化 7]
(R1) 一 R (CH-CH2-0)—— (2 b)
(式中、 Rは水素原子、架橋性官能基を有していてもよいアルキル基、架橋性官能基 を有して!ヽてもよ!ヽ脂肪族環式炭化水素基または架橋性官能基を有して!ヽてもよ!、 芳香族炭化水素基; R1は Rと主鎖を結合する基または結合手)で示されるエーテル 単位;
nは 1〜200の整数; mは 0〜20000の整数);
Aおよび Bは同じ力または異なり、水素原子、フッ素原子および Zまたは架橋性官能 基を含んで!、てもよ 、アルキル基、フッ素原子および Zまたは架橋性官能基を含ん でいてもよいフエニル基、—COOH基、—OR2 (R2は水素原子またはフッ素原子およ び Zまたは架橋性官能基を含んでいてもよいアルキル基)、エステル基またはカーボ ネート基]で表される側鎖にフルォロエーテル基を有する非晶性含フッ素ポリエーテ ル化合物である。
[0023] この側鎖にフルォロエーテル基を有する非晶性含フッ素ポリエーテルィ匕合物(1)は 、従来のエチレンォキシド (EO)単位にフルォロエーテル側鎖を導入したものであり、 化合物の非晶性が高まり、化合物を低粘度化することができる。
[0024] また、 EO単位は CFなどで分岐しても電解質中の金属と相互に作用して粘度をあ
3
げる性質がある力 フルォロエーテル基 Rf中の酸素原子は金属との相互作用がない ので、さらに低粘度化を進めることができる。
[0025] さらにフルォロエーテル基 Rfは耐酸ィ匕性に優れており、不燃性でもあるため、高温 での使用に対して優れた安定性を示す。
[0026] 式(2a)において、 Rfの好ましいものとしては、式(2a— 1):
Rf1 - X (2a - 1)
(式中 Rf1 は一(OCFCFCF) CFCFCFO) -, - (OCFZ'CF
2 2 2 nl 2 2 2 nl 2
) ― (OCF CFZ1) ― - (OCFZ2) ― - (CFZ20) ― - (OCH CF CF nl 2 nl nl nl 2 2 2
OCFCFCH) OCHCHCF) OCFCHCH) nl 2 2 2 nl 2 2 2 nl 2 2 2 nl
- (OCF CF CF CF ) CF CFCFCFO) OCFZCH)
2 2 2 2 nl 2 2 2 2 nl 2 nl
(CH CFZ20) (OCH (CH )CF CF ) (OCF CF CH (CH ))
- (CFZ'CF O) ― (CF CF CF O) ― (CH CF CF O) ― (OCZ3 )
2 nl 2 2 2 nl 2 2 2 nl 2
—および—(CZ3 O) - (式中、 Ί Ζ2は同じかまたは異なってもよい Η Fまたは C nl 2 nl
F; Z3は CF; nlは 1 3の整数)よりなる群力 選ばれる少なくとも 1種を含むフルォ
3 3
口エーテル単位; Xは水素原子またはハロゲン原子または炭素数 1 20のエーテル 結合および Zまたは架橋性官能基を含んで 、てもよ 、含フッ素アルキル基力 選ば れる少なくとも 1種であって、ただし X中において前記 Rf1は有さず、 Rf1中に O— O の構造を含まな 、)で示される基があげられる。
[0027] —Rf 1 は、なかでも (OCFZ'CF ) (OCF CF CF ) (OCH CF
2 nl 2 2 2 nl 2 2
CF) ― ―(OCFZ2) ― ―(OCZ3) -, -(CFZ'CF O) ― ―(CFCFCF
2 nl nl 2 nl 2 nl 2 2
O) ― —(CHCFCFO) ― —(CFZ20) —および—(CZ30) —力、ら選ば
2 nl 2 2 2 nl nl 2 nl
れる 1種または 2種以上の繰り返し単位であることが好ましぐ特には一(OCFZtF )
2 (OCFCFCF) ― ―(OCHCFCF) -, - (CFZ'CF O) C FCFCFO) —および—(CHCFCFO) —から選ばれる 1種または 2種以上の
2 2 2 nl 2 2 2 nl
繰り返し単位、さらには一(OCFZiCF ) (OCF CF CF ) (CFZ'CF
2 nl 2 2 2 nl 2
O) —および—(CFCFCFO) —力 選ばれる 1種または 2種以上の繰り返し単 nl 2 2 2 nl
位であることが好ましい。
[0028] フルォロエーテル基は誘電率を下げる傾向があるため、 nlは小さい方が好ましい。
[0029] 好適な具体例としては、たとえば—(OCF CF )—、― (OCF CF CF )—、― (OC
2 2 2 2 2
F ) (OCH CF CF ) (OCF(CF )CF ) OCF(CF )) (C(
2 2 2 2 3 2 3
CF ) )0)―、― (OCFHCF ) - (OCFH) - (CF CF O) - (CF CF
3 2 2 2 2 2 2
CF O) (CF O) (CH CF CF O) (CF(CF )CF O) CF(
2 2 2 2 2 3 2
CF )0) (OC(CF ) ))—、一 (CFHCF O) (CFHO)一などがあげら
3 3 2 2
れ、特に—(OCF CF)-, - (OCF CF CF )―、― (OCF ) ― (OCH CF CF
2 2 2 2 2 2 2 2 (OCF(CF )CF ) OCF(CF )) (CF CF O) (CF CF
2 3 2 3 2 2 2 2
CF O) (CF O) (CH CF CF O) (CF(CF )CF O) CF(
2 2 2 2 2 3 2
CF )0)—などが、熱安定性、耐酸化性に優れ、合成が容易な点力 好ましい。
3
[0030] また、 Xは水素原子またはハロゲン原子または炭素数 1 20のエーテル結合およ び Zまたは架橋性官能基を含んで 、てもよ 、含フッ素アルキル基力 選ばれる少な くとも 1種であって、ただし X中において前記 Rf1は有さず、 Rf1中に— O— O の構造 を含まないことを特徴とする基であり、好ましい具体例としては、たとえば H、 F、 -C H OH、 -CH = CH CH CH = CH COOCH COOH CONH、
2 2 2 2 3 2 CON(CH ) 、
3 2
[0031] [化 8]
CHsOCH2— CH— CH2、 一 CH,— CH— CH,、 iL"
\ \。z
〇 o
II
C H 2― O― C— Oし H: CH 0-C-CH=CH o 〇
C一 O— NHCH2CH = CH2、 一 CH2— O— C一 C F = CH2, 一 C≡N、 一 CH NH
2 2
などがあげられる。これらのうち架橋性に優れ、誘電率の向上性に優れる点から
-CH OH、 -COOCH、 一 COOH、 一 CONH、 一 CON(CH ) 、
2 3 2 3 2
[0032] [化 9]
O
II
— CH2OCH2— CH— CH2、 _CH2_0_C— OCH3
Ο'
〇 o 一 CH2— O— C— CH=CH2、 — CH2— O— C— CF = CH2 が好ましい。
[0033] 式(2a)における Rfの好ましいものの例としては、式(2a— 2):
[0034] [化 10]
CF3 CF3
1 I
CF3-^CF2CF20)— ^CFCF^^CF (2 a— 2)
(式中、 n2は 0〜2の整数)で示されるフルォロエーテル基もあげられる。このものは 合成が容易であり、コスト的に安価であり、分岐 CFの
3 導入により低粘度化が図れる 点で好ましい。
[0035] また前記式(2a)および(2b)にお 、て、主鎖と Rfまたは Rを結合する R1としては、式 [0036] [化 11]
(式中、 n3は 0または 1、 n4は 0または 1、 n5は 0〜2の整数)で示される結合基が好ま しくあげられる。
[0037] 好まし!/、 としてはつぎのものがあげられる(Rfで例示して!/、る)。
(i)直結型:
n3=n4=n5 = 0の場合で、 R1が結合手であるもの。
(ii)ァノレキレン型: -(CH) —Rf(mlは 1〜3の整数)
2 ml
(iii)エーテル型:
-CH -O-CH—Rfまたは CH -O-CH (CH ) —Rf (m2は 1
2 2 2 2 2 m2
数)
(iv)エステル型:
[0038] [化 12]
_し― Π—— Ρし Η n 2—— P f i
O
[0039] つぎに、 Dlの好適な具体例としては、たとえば
(i)直結型:
たとえば式(2a— 2— 1):
[0040] [化 13]
CF3 CF3 CF34CF2CF2OHCFCF20 ~ 2CF
→CH-CH2~OHr
(nは 1〜200の整数、 n2は前記と同じ)
(ii)ァノレキレン型:
たとえば式(2a— 2— 2):
[0041] [化 14]
CF3 CF3
\ I
CF CF2CF2〇 ~ CFCF20)-^r2CF-CH2
→CH-CH2-OHr 式(2a— 2— 3):
[0042] [化 15] CF3 CF3
Figure imgf000010_0001
~ fCH— CH2— OHr
(nは 1〜200の整数、 n2は前記と同じ)
(iii)エーテル型:
たとえば式(2a— 2— 4):
[0043] [化 16]
CF3 CF3
i ί
CF3-C F2CFzO) ~ (C FCF20 - CF-CH3-0-CH2
I
~ (0Η-0Η2-Ο)-ί -, 式(2a— 2— 5):
[0044] [化 17]
CF3 CF3
CF CF2CF2〇) ~ (CFCF2OHr2CF— CH,— 0— CH2
I
CH2
Figure imgf000010_0002
(nは 1〜200の整数、 n2は前記と同じ)
(iv)エステル型:
たとえば式(2a— 2— 6):
[0045] [化 18]
CF3 CF3
CF3 CF2CF2 O) ~ FCF20)-^-2 CF— COO—CH2
I
~ (CH-CH2-OHr
(nは:!〜 200の整数、 n2は前記と同じ)
などがあげられる。
[0046] これらのうち、特に反応性に優れ合成が容易である点から、 Rf—R1—としては、 [0047] [化 19]
CF3 CF3
I I CF3~ CF2CF2OHCFCF20 ~TiCF— CH2— 、
CF3 CF3
CF3- CF2CF20) ~~ ^CFCF2OHr2CF-CH2-0-CH2- 、
CF3 CF3 CF3- CF2CF
Figure imgf000011_0001
— COO—CH2_
(n2は前記と同じ)
が好ましい。
[0048] 本発明で用いる非晶性含フッ素ポリエーテルィ匕合物(1)として、式(1)において、 m が 0、すなわちフルォロエーテル基含有単位 (D1)のみ力もなる化合物(la)と、 mが 1以上、すなわちフルォロエーテル基含有単位 (D1)とアルキルエーテル単位 (AE) の両方を含む化合物(lb)とがある。
[0049] フルォロエーテル基含有単位 (D1)のみカゝらなる非晶性含フッ素ポリエーテル化合 物(la)の場合、フルォロエーテル基の誘電率が低いため、繰返し数 nは小さい方が イオン伝導率を高める点力 好ましい。この観点から、 nは好ましくは 6以下、さらには 4以下、特に 2以下である。
[0050] フルォロエーテル基の誘電率を補填するためには、誘電率の高いアルキルエーテ ル単位 (AE)を組み合わせた非晶性含フッ素ポリエーテルィ匕合物(lb)とすることも できる。アルキルエーテル単位 (AE)を組み入れると結晶性が上がるため、 nZmは 0 . 1/99.9程度、さらには 1/99〜50/50力 子ましい。
[0051] 式(2b)にお 、て、 Rは水素原子、架橋性官能基を有して 、てもよ 、アルキル基、 架橋性官能基を有して!/、てもよ!、脂肪族環式炭化水素基または架橋性官能基を有 して 、てもよ!/、芳香族炭化水素基である。
[0052] アルキル基としては、炭素数 1〜20の直鎖状または分岐鎖状のアルキル基が好ま しくあげられ、たとえばメチル、ェチルなどがあげられる。
[0053] 脂肪族環式炭化水素基としては炭素数 4〜8のシクロアルキル基が好ましくあげら れ、たとえばシクロペンチル、シクロへキシルなどが例示できる。
[0054] 芳香族炭化水素基としては、たとえばフエ-ル、ベンジルなどが好ましくあげられる
[0055] またこれらの基に置換されて 、てもよ 、架橋性官能基の好ま U、具体例としては、 前記式(2a— 1)における X(ただし H、 Fおよび含フッ素基は除く)力 好ましい例示と 共にあげられる。
[0056] Rの具体例としては好ましくは、重合性、強度、電解質の溶解性に優れる点から炭 素数 1〜20の直鎖状または分岐鎖状のアルキル基があげられ、特にメチル、ェチル が好ましい。
[0057] またさらに、式(2b)においても、 R1で示される主鎖との結合型には前記の 4つの型 が採用できる力 特に直結型とエーテル型が好ましい。
[0058] つぎに、 AEの好適な具体例としては、たとえば
(i)直結型:
たとえば式(2b— 1):
[0059] [化 20]
R
—iCU-CH2-O ^r-
(mは 1〜20000の整数)
(ii)ァノレキレン型:
直結型 (i)に含まれる。
(iii)エーテル型:
たとえば式(2b— 2):
[0060] [化 21]
し h 2™ li ― iv ~ CH—CH2— 0~^
(mは 1〜20000の整数)
(iv)エステル型: たとえば式(2b— 3):
[0061] [化 22]
C H 2— 0— C ( = 0) — R — tし H - C H Of—^ ~"
(mは 1〜20000の整数) などがあげられる。
[0062] 具体例としては、たとえば
[0063] [化 23]
- CH?-CH?-O , 、 ^CH-CH2-O , - CH-CH,-OH,
CH. C,H,
Figure imgf000014_0001
• CH— CH「0)~, -(CH~CH,-O
Figure imgf000014_0002
-fCH-CH2-O ~ CH-CH2-O
CH,-0-CH. CH,— O— C7FL
~tし H— C H ?— O^— ,
Figure imgf000014_0003
.
Figure imgf000014_0004
などがあげられる。
本発明で用いる側鎖にフルォロエーテル基を有する非晶性含フッ素ポリエーテル 化合物(1)において、 Aおよび Bは同じかまたは異なり、水素原子、フッ素原子およ ぴ または架橋性官能基を含んでいてもよいアルキル基、特に炭素数 1〜: L0のフッ 素原子および Zまたは架橋性官能基を含んで 、てもよ 、アルキル基、フッ素原子お よび/または架橋性官能基を含んでいてもよいフエニル基、—COOH基、—OR2(R 2は水素原子またはフッ素原子および Zまたは架橋性官能基を含んで 、てもよ 、ァ ルキル基、特に炭素数 ι〜 10のフッ素原子および Zまたは架橋性官能基を含んで いてもよいアルキル基)、エステル基またはカーボネート基である。ただし、 Dの末端 が酸素原子の場合は COOH基、 -OR2,エステル基およびカーボネート基ではな い。
[0065] Aの好ましい具体例としては、たとえば
[0066] [化 24]
H 、 -OH 、 X (CHf^rr、 〇 KN X (CH3-^^T O- o o
II II
(式中、 Xは H、 CH3 = CH-C- 、 CH2— CF— C— 、
O O
I! II
CH2 = CH-C-0- 、 CH2 = CF— C—◦— 、
Figure imgf000015_0001
ϋ H '
〇 。 ■ C-O- 、 -NH. -N など
c― 、 〈〇 \
CH,
n 7は、 1〜: L 0の整数) があげられ、架橋反応性や誘電率の向上の面から、
[0067] [化 25] X (CH2)~n8または X (CH2H80- o o
I! !l Xは H、 CH2 = CH— C—、 CH2 = CF— C―、
Figure imgf000016_0001
CH3
-N ; n 8は 1〜5の整数)
\
CH3 が好ましい。
[0068] Bの好ましい具体例としては、たとえば
[0069] [化 26]
^1 、 > \ Cし 1 I i. \ ί ) o O II II
(式中、 Yは H 、 CH2 = CH— C一 、 CH2=CF-C
O O
CH, = CH-C^O- C H ^> ~ ^ F— c— O'
Figure imgf000016_0002
n 9は、 1〜 10の整数) があげられ、架橋反応性や誘電率の向上の面から、
[0070] [化 27]
Y (CH2^TTまたは Υ (θΗ,-^γοΟ-
0 O
II II
(式中、 Yは H 、 CH2 = CH-C- 、 CH2 = CF-C- 、
O O CH3 O— C— 、 C3H7 - O— C— 、 -NH2
CH3
/
— N ; n 10は 1〜5の整数)
\
CH3 が好ましい。
[0071] 側鎖にフルォロエーテル基を有する非晶性含フッ素ポリエーテルィ匕合物(1)の数 平均分子量としては、 500以上、さらには 1000以上、特に 1500以上であるのが低 粘度化ゃ非晶性になりやすい点で好ましぐ上限は 100000、さらには 80000、特に 50000が、電解質の溶解性が良好な点で好ま ヽ。
[0072] つぎに式(1)で示される側鎖にフルォロエーテル基を有する非晶性含フッ素ポリエ 一テルィ匕合物の具体例をあげる力 これらに限定されるものではない。
[0073] 非晶性含フッ素ポリエーテルィ匕合物(la):
[0074] [化 28]
C F 3 C F3
Figure imgf000017_0001
H (O一 C n 2— H) ~ ^ On
(nおよび n2は前記と同じ)
[0075] 非晶性含フッ素ポリエーテルィ匕合物( lb): [0076] [化 29]
CF3 CF3
I I CF3--(CF2CF20^— (CFCF20^r2CF-CH2-0-CH2
I
H ~ (0-CH2-CH2 -sr(0-CH2-CH)-17OH
(nは 1〜200の整数、 mは 1〜20000の整数)
[0077] 本発明で用いる側鎖に含フッ素基を有する非晶性含フッ素ポリエーテルィ匕合物(1 )は、たとえば O—、 C―、 Nといったァ-オンを開始剤とするァ-オン重合反応;ルイス 酸、ブレンステッド酸を開始剤とするカチオン重合反応;前記 Dl、 AEまたはそれらの 誘導体を含む低分子量重合体を開始剤として用いるァ-オン重合反応ゃカチオン 重合反応;前記 D 1、 AEまたはそれらの誘導体を含む低分子量重合体を前駆体とし て用いる重縮合反応や重付加反応により製造できる。
[0078] 本発明にお 、て、イオン伝導性化合物 (I)は、架橋物であってもよ!/、。架橋物は、 側鎖にフルォロエーテル基を有する非晶性含フッ素ポリエーテルィ匕合物(1)に架橋 性官能基を導入し、要すれば架橋剤を用いて架橋することによって製造することがで きる。架橋物にすることにより、イオン伝導体の機械的強度が大きく向上する。
[0079] 架橋性官能基としては、たとえばビュル基、アクリル基、グリシジル基、エポキシ基、 水酸基、カルボキシル基、アタリロイル基、シァノ基、アルコキシシリル基などがあげら れ、式(1)の Aおよび Zまたは B、式(2a)の Rf、式(2b)の Rに導入すればよい。その ほか、架橋性官能基を有する化合物を反応させて後変性する方法なども採用できる
[0080] 架橋剤としては、上記の架橋性官能基を 1分子中に 2個以上有する多官能性ィ匕合 物から適宜選択すればよい。
[0081] 架橋剤の具体例としては、たとえば
[0082] [化 30] CH2— OX
Figure imgf000019_0001
、 CH2-OX
r- TtLX ― r V
し r 2 り Λ
S i (OC2H5) 4
Figure imgf000019_0002
O
II
(式中、 Xは— CH2— CH = CH2 、 -C-CH=CH2
O
II
— C— CF = CH2 、 — CH2— CH— CH2 、 H ; n 11は 1〜 8の整数)
\ /
O
などがあげられ、架橋反応性が良好で、機械的強度向上に優れていることから、 [化 31]
Figure imgf000019_0003
CH2-OX CH3
O O
(式中、 Xは— C一 CH=CH2 、 — C_CF = CH2 、 — CH2— CH— CH2 )
\ /
O
が好ましい。
[0084] そのま力特開 2002— 100405号公報、特開平 9 48832号公報、特開 2002— 2
79826号公報などに記載の架橋剤も使用可能である。
[0085] 架橋は、架橋性官能基と架橋剤の組み合わせに好適な公知の架橋系で行えばよ い。
[0086] つぎに本発明のイオン伝導体の一方の成分である電解質 (II)について説明する。 [0087] 本発明で使用可能な電解質 (Π)は従来公知の金属塩、イオン性液体、無機高分子 型の塩、有機高分子型の塩などがあげられる。
[0088] これらの電解質はイオン伝導体の使用目的によって特に好適な化合物がある。つ ぎに用途別に好適な電解質を例示するが、例示した具体例に限定されるものではな ぐまた、他の用途においては、以下の例示の電解質を適宜使用することができる。
[0089] まず、リチウム二次電池の固体電解質用の金属塩としては、ホウ素ァ-オン型、酸 素ァ-オン型、窒素ァ-オン型、炭素ァ-オン型、リンァ-オン型などの各種有機金 属塩を用いることができ、酸素ァ-オン型、窒素ァ-オン型を用いることが好ましい。
[0090] 酸素ァ-オン型としては、具体的には、 CF SO Li、 C F SO Li、 C F SO Li、 CH
3 3 4 9 3 8 17 3
SO Li、 C H SO Li、 LiSO C F SO Li、 CF CO Li、 C H CO Li、 Li C Oなどを
3 3 6 5 3 3 2 4 3 3 2 6 5 2 2 4 4 用いればよぐ特に、 CF SO Li、 C F SO Li、 C F SO Liを用いることが好ましい。
3 3 4 9 3 8 17 3
[0091] 窒素ァ-オン型としては、(CF SO ) NLi (TFSl)、(C F SO ) NLi(BETI)、 (C
3 2 2 2 5 2 2
F SO ) (C F SO ) NLiゝ (CF SO ) (C F SO ) NLiゝ (CF CO) NLiゝ (CF CO) (
3 2 4 9 2 3 2 8 17 2 3 2 3
CF CO ) NLi、 ( (CF ) CHOSO ) NLi、 (C F CH OSO ) NLiなどを用いればよ
3 2 3 2 2 2 2 5 2 2 2
く、特に、 (CF SO ) NLi (TFSI)、 (C F SO ) NLi (BETI)を用いることが好ましい
3 2 2 2 5 2 2
[0092] 無機金属塩としては、 LiPF、 LiBF、 LiAsF、 LiCIOなどを用いることができ、特
6 4 6 4
に、 LiPF、 LiBFを用いることが好ましい。
6 4
[0093] キャパシタの固体電解質用としては、有機金属塩として、 Et NBF (Etはエチレン。
4 4
以下同様)、 Et NCIO、 Et NPF、 Et NAsF、 Et NCF SO、 Et N (CF SO ) N
4 4 4 6 4 6 4 3 3 4 3 2 2
、 Et NC F SOを用いればよぐ特に、 Et NBF、 Et NPFを用いることが好ましい
4 4 9 3 4 4 4 6
[0094] 無機金属塩としては、 LiPF、 LiBF、 LiAsF、 LiCIO、 NaPF、 NaBF、 NaAsF
6 4 6 4 6 4
、 NaCIO、 KPF、 KBF、 KAsF、 KCIOなどを用いることができ、特に、 LiPF、 L
6 4 6 4 6 4 6 iBF、 NaPF、 NaBFを用いることが好ましい。
4 6 4
[0095] 色素増感太陽電池の固体電解質用としては、 RlaR2aR3aR4aNI (Rla〜R½は同じかま たは異なり、炭素数 1〜3のアルキル基)、 Lil、 Nal、 KI、
[0096] [化 32]
Figure imgf000021_0001
などが例示できる。
[0097] 電解質 (II)としてイオン性液体を使用するときは、リチウム二次電池やキャパシタ、 色素増感太陽電池の固体電解質用として、有機および無機のァ-オンとポリアルキ ルイミダゾリウムカチオン、 N アルキルピリジ-ゥムカチオン、テトラアルキルアンモ ユウムカチオン、テトラアルキルフォスフォユウムカチオンとの塩があげられ、特に 1, 3 ジアルキルイミダゾリゥム塩が好まし!/、。
[0098] ポリアルキルイミダゾリウムカチオンとしては、 1ーェチルー 3—メチルイミダゾリゥム カチオン(EMI+)、 1ーブチルー 3—メチルイミダゾリウムカチオン(BMI+)などの 1, 3 ジアルキルイミダゾリゥムカチオン;1, 2 ジメチル 3 プロピルイミダゾリゥムカ チオン(DMPI+)などのトリアルキルイミダゾリウムカチオンなどが好まし!/、。
[0099] 好まし!/、無機ァ-オンとしては、たとえば A1C1―、 BF―、 PF―、 AsF―、 Γなどが、有
4 4 6 6
機ァ-オンとしてはたとえば CH COO—、 CF COO—、 C F COO—、 CF SO―、 C F S
3 3 3 7 3 3 4 9
O―、 (CF SO ) N―、 (C F SO ) N—などがあげられる。
3 3 2 2 2 5 2 2
[0100] 具体例としては、 EMIA1C1、 EMIBF、 EMIPF、 EMIAsF、 EMII、 EMICH C
4 4 6 6 3
00、 EMICF COO、 EMIC F COO、 EMICF SO、 EMIC F SO、 EMI (CF S
3 3 7 3 3 4 9 3 3
O ) N、 EMI (C F SO ) N、 BMIAICI、 BMIBF、 BMIPF、 BMIAsF、 ΒΜΠ、 B
2 2 2 5 2 2 4 4 6 6
MICH COO、 BMICF COO、 BMIC F COO、 BMICF SO、 BMIC F SO、 B
3 3 3 7 3 3 4 9 3
MI (CF SO ) N、 BMI (C F SO ) N、 DMPIAICI、 DMPIBF、 DMPIPF、 DM
3 2 2 2 5 2 2 4 4 6
PIAsF、 DMPII、 DMPICH COO、 DMPICF COO、 DMPIC F COO、 DMPIC
6 3 3 3 7
F SO、 DMPIC F SO、 DMPI (CF SO ) N、 DMPI (C F SO ) Nなどが例示で
3 3 4 9 3 3 2 2 2 5 2 2
きる。
[0101] 特に色素増感太陽電池の固体電解質用としては、 ΕΜΠ、 ΒΜΠ、 DMPIIなどのョ ゥ化物が好適である。
[0102] 電解質 (Π)の配合量は要求される電流密度、用途、電解質の種類などによって異 なるが、高分子イオン伝導性ィ匕合物 (1) 100質量部に対し 0. 1質量部以上、さらには 1質量部以上、特に 2質量部以上で、 200質量部以下、さらには 100質量部以下、特 に 50質量部以下とすることが好ま 、。
[0103] 本発明にお ヽて電解質 (Π)は、高分子イオン伝導性化合物 (I)を構成する非晶性 含フッ素ポリエーテルィ匕合物(1)に含浸または溶解することにより保持される。
[0104] 電解質 (Π)を高分子イオン伝導性化合物 (I)に保持させる方法としては、高分子ィ オン伝導性化合物 (I)と電解質 (Π)を混練する方法;電解質 (Π)を溶媒に溶解した溶 液に高分子イオン伝導性化合物 (I)を混合した後、溶媒を留去する方法;高分子ィォ ン伝導性化合物 (I)を加熱溶融させ、これに電解質 (Π)を混練する方法などが採用 できる。
[0105] 本発明のイオン伝導体において、非晶性含フッ素ポリエーテルィ匕合物(1)は固体 状ではあるものの粘性が低いので、イオン伝導率はそのままでも高い。しかしイオン 伝導率をさらに向上させる必要がある場合、非プロトン性の有機溶媒 (III)を配合して ゲル状 (可塑化された)のゲル電解質としてもょ 、。
[0106] ゲル電解質に使用する有機溶媒 (III)としては、エチレンカーボネート、プロピレン力 ーボネート、ブチレンカーボネート、 y ブチロラタトン、 1, 2—ジメトキシェタン、テト ラヒドロフラン、 2—メチルテトラヒドロフラン、 1, 3 ジォキソラン、 4ーメチルー 1, 3— ジォキソラン、蟻酸メチル、酢酸メチル、プロピオン酸メチル、ジメチルカーボネート、 ェチルメチルカーボネート、ジェチルカーボネート、ァセトニトリル、ジメチルスルホキ シド、メチルピロリドンなどがあげられ、特に誘電率や耐酸化性、電気化学的安定性 の向上の点からエチレンカーボネート、プロピレンカーボネート、ジェチノレカーボネー ト、 Ί—ブチ口ラタトン、 1, 2 ジメトキシェタン、 1, 3 ジォキソラン、ァセトニトリルが 好ましい。
[0107] 有機溶媒 (III)は、イオン伝導体中の固形分を 10質量%以上、さらには 50質量% 以上、特に 100質量%とする量を使用することが好ましい。
[0108] 本発明のイオン伝導体には必要に応じて、他の添加剤を配合してもよい。他の添 加剤としては、たとえば金属酸ィ匕物、ガラスなどがあげられる。
[0109] 本発明のイオン伝導体は、高 ヽイオン伝導率を有し、耐酸化性や機械的強度に優 れているので、リチウム二次電池の高分子電解質、キャパシタの高分子電解質、太 陽電池 (特に色素増感型太陽電池)の高分子電解質として特に有用である。そのほ 力 各種センサーの電解質、エレクト口クロミック素子の電解質、各種の電気分解に 用いるイオン伝導体などとしても使用できる。
実施例
[0110] つぎに本発明を実施例および比較例に基づいて説明するが、本発明は力かる例の みに限定されるものではない。
[0111] なお、本発明で採用した測定法は以下のとおりである。
[0112] NMR: BRUKER社製 AC— 300を使用。
[0113] 19F— NMR:
測定条件: 282MHz (トリクロ口フルォロメタン =Oppm)
一 NMR:
測定条件: 300MHz (テトラメチルシラン =Oppm)
[0114] GPC :
数平均分子量は、ゲルパーミエーシヨンクロマトグラフィー(GPC)により、東ソー(株 )製の GPC HLC— 8020を用い、 Shodex社製のカラム(GPC KF— 801を 1本、 GPC KF— 802を 1本、 GPC KF— 806Mを 2本直列に接続)を使用し、溶媒とし てテトラハイド口フラン (THF)を流速 lmlZ分で流して測定したデータより算出する。
[0115] TGA:
1. 0%熱分解温度(T )は、セイコーインストルメンッ (株)製の TGZDTA— 620
dl.O
0を用いて室温から 20°CZminで昇温したときのデータより算出する。
[0116] DSC :
DSC (示差走査熱量計)を用いて、 1st runを昇温速度 10°CZ分で 200°Cまで上 げ、 200°Cで 1分間維持したのち降温速度 10°CZ分で 25°Cまで冷却し、ついで昇 温速度 10°CZ分で得られる 2nd runの吸熱曲線の中間点を Tgとする。使用した示 差走査熱量計は、セイコー電子 (株)製の示差走査熱量計。
[0117] IR:
Perkin Elmer社製フーリエ変換赤外分光光度計 1760Xで室温にて測定する。
[0118] 粘度: 東海八神 (株)製の VISCONE CVシリーズのコーンプレート型回転粘度計を用い 、測定粘度範囲 50〜8000mPa'sのコーン、回転数 94rpm、温度 80°Cで測定を行
[0119] イオン伝導率:
交流 4端子法にて、室温にてイオン伝導率の測定を行う。インピーダンス測定装置 としては東陽テク-力(株)製の SI1280Bを用い、周波数は 104Hz〜: LC^Hzの範囲 で測定を行う。
[0120] 合成例 1 (側鎖に含フッ素エーテル構造を有する重合体の合成)
撹拌装置を備えた 100mlのガラス製ナス型フラスコに、充分に窒素置換を行なった のち、側鎖に含フッ素エーテルを含有するつぎの式 (I 1)で示される化合物: [0121] [化 33]
CH2— CH— CH2— O— CH2— CF— O— C3F7
\ / I
O CF3 を lOgと、 HCFC141bを 40g入れ、 BF -OEtを 0.025ml窒素気流下 0°Cで滴下し
3 2
たのち、 24時間撹拌を行なった。反応後 HCFC141bを留去したのち、得られた液 体をへキサンに注ぎ、分離した。再度得られた液体を純水に注ぎ、分離したのち真 空乾燥させ、無色透明の重合体 4. lgを得た。この重合体を19 F— NMR、 'Η-ΝΜ R分析により分析したところ、側鎖末端が含フッ素エーテルであるユニット (1—1)の単 独重合体であった。また、テトラヒドロフラン (THF)を溶媒に用いる GPC分析により測 定した数平均分子量は 2, 636、重量平均分子量は 3, 124であった。さらに、空気中 での TGA、 DSC測定の結果、 Td = 163.3°C、 Tg=—65.0°Cであった。
1.0
[0122] 19F— NMR: (CD COCD ) :— 80.1〜一 81.2ppm(lF)、—81.2〜一 82. Opp
3 3
m(3F)、 -82.0〜― 82.8pm(3F)、—82.8〜― 84.4ppm(lF)、—129.2〜
-130.9ppm(2F)、—132.7〜― 134.3pm (IF)
iH—NMR: (CD COCD ) :2.7〜4. lppm(5H)、4.1〜4.6ppm(2H)
3 3
[0123] この重合体について、コーンプレート型回転粘度計により粘度測定を行ったところ、 20. ImPa'sを示した。 [0124] 実施例 1
合成例 1で得た重合体に電解質として LiCIOを過飽和量溶解させ、 6mlサンプル
4
ビン中でー晚静置した。一晩後、上層に透明な重合体相、下層に固体が析出した。 上層を取り出し、長方形の膜を作製したのち、イオン伝導率の測定を行ったところ、 8
. 7 X 10— 4SZcmであった。
[0125] 合成例 2 (側鎖に含フッ素エーテル構造を有する重合体の合成)
撹拌装置を備えた 100mlのガラス製ナス型フラスコに、充分に窒素置換を行なった のち、側鎖に含フッ素エーテルを含有するつぎの式 (1— 2)で示される化合物: [0126] [化 34]
0 - C 3 F 7
Figure imgf000025_0001
を 7. 4gと、 HCFC141bを 50g入れ、 BF -OEtを 0. 017ml窒素気流下 0°Cで滴下
3 2
したのち、 24時間撹拌を行なった。反応後 HCFC141bを留去したのち、得られた液 体をへキサンに注ぎ、分離した。再度得られた液体を純水に注ぎ、分離したのち真 空乾燥させ、無色透明の重合体 7. 2gを得た。この重合体を19 F— NMR、 'Η-ΝΜ R分析により分析したところ、側鎖末端が含フッ素エーテルであるユニット (1— 2)の単 独重合体であった。また、 TGA、 DSC測定の結果、 Td = 164. 3°C、 Tg=— 72.
1.0
0°Cであった。この化合物はテトラヒドロフラン (THF)に溶解しな力つたため、 GPCに よる分析は行なうことができな力つた。
[0127] 19F-NMR: (neat):- 81. 9〜― 82. 4ppm(3F) ,—82. 4〜― 83. 4ppm (2F)
、 -83. 4〜― 84. 2pm (5F)、—84. 2〜― 87. 0ppm(3F)、—130. 9〜― 132.
8ppm (2F) , - 134. 4〜― 136. 4pm (IF) ,—146. 0〜― 148. Opm (IF) NMR: (neat) : 1. 65〜4. 10ppm(5H)、4. 10〜4. 62ppm (2H)
[0128] この重合体について、コーンプレート型回転粘度計により粘度測定を行ったところ、
48. 5mPa' sを示した。
[0129] 実施例 2
合成例 2で得た重合体に電解質として LiCIOを過飽和量溶解させ、 6mlサンプル
4
ビン中でー晚静置した。一晩後、上層に透明な重合体相、下層に固体が析出した。 上層を取り出し、長方形の膜を作製したのち、イオン伝導率の測定を行ったところ、 6 . 7 X 10— 6SZcmであった。
[0130] 合成例 3 (側鎖にトリフルォロメチル基を有するポリマーの合成:比較)
撹拌装置を備えた 100mlのガラス製ナス型フラスコに、充分に窒素置換を行なった のち窒素気流下で CH ONaを 0. 19g、ジメチルホルムアミドを 70g加え室温下で 15
3
分間攪拌を行った。攪拌後 o°cで側鎖にトリフルォロメチル基を有するつぎの化合物 (1- 3) :
[0131] [化 35]
Figure imgf000026_0001
を 20g反応溶液に滴下したのち、 40°Cで終夜攪拌を行った。ついで CH Iを 5. Ogカロ
3 え 15分間攪拌したのち、反応溶液を純水に注いだ。下層に分離した液体を HCFC1 41bを用いて抽出した。抽出溶液を MgSOで乾燥した後、 HCFC141bを留去し得
4
られた高粘度の液体を真空乾燥させ、無色透明の上記化合物 (I 3)の単独重合体 12. 3gを得た。この重合体を19 F— NMR、 — NMR分析により分析した。また、テト ラヒドロフラン (THF)を溶媒に用いる GPC分析により測定した数平均分子量は 5, 8 30、重量平均分子量は 8, 567であった。さらに、空気中の TGA、 DSC測定の結果 、Td = 163. 4。C、Tg=— 34. 5。Cであった。
1.0
[0132] 19F— NMR: (CD COCD ) :— 73. 2〜― 76. 7ppm (3F)
3 3
— NMR: (CD COCD ) : 3. 5〜4. lppm (lH)、4. 1〜4. 2ppm (lH)、4. 2〜
3 3
4. 5ppm (lH)
[0133] この重合体について、コーンプレート型回転粘度計により粘度測定を行ったところ、
137mPa' sを示した。
[0134] 比較例 1
合成例 3で得た重合体に電解質として LiCIOを過飽和量溶解させ、 6mlサンプル
4
ビン中でー晚静置した。一晩後、上層に透明な重合体相、下層に固体が析出した。 上層を取り出し、長方形の膜を作製したのち、イオン伝導率の測定を行ったところ、 2 . 4 X 10— 8SZcmであった。
[0135] 比較例 2
重量平均分子量が 4, 000のポリエチレンォキシドについて、粘度とイオン伝導率を 測定したところ、粘度は 148mPa' s、イオン伝導率は 7. 5 X 10— 8SZcmであった。
[0136] 実施例 3
合成例 2で得た重合体 2gとプロピレンカーボネート 0. 2gの混合物に電解質として LiCIOを過飽和量溶解させ、 6mlサンプルビン中でー晚静置した。ー晚後、上層に
4
透明な重合体混合物相、下層に固体が析出した。上層を取り出し、長方形の膜を作 製したのち、イオン伝導率の測定を行ったところ、 7. 8 X 10— 4SZcmであった。
産業上の利用可能性
[0137] 本発明の高分子イオン伝導体は、それ自体で室温付近でも高 ヽイオン伝導率をも ち、粘性が低ぐ不燃性でかつ耐酸ィ匕性に優れたものであり、リチウム二次電池、キヤ パシタや太陽電池の高分子電解質として要求される特性を満足しうるものである。

Claims

請求の範囲 イオン伝導性化合物 (I)と電解質塩 (II)とを含み、 該イオン伝導性化合物 (I)が、式(1): A -(D) - B (1) [式中、 Dは式(2): 一(D1) —(AE) — (2) n m (式中、 D1は、式(2a):
[化 1]
(R1) -R f 1し H— C H — V 2 a )
(式中、 Rfは架橋性官能基を有していてもよいフルォロエーテル基; R1は Rfと主鎖を 結合する基または結合手)で示される側鎖にフルォロエーテル基を有するエーテル 単位;
AEは、式(2b):
[化 2]
(R1) 一 R
—— (CH-CH2-0)—— (2 b)
(式中、 Rは水素原子、架橋性官能基を有していてもよいアルキル基、架橋性官能基 を有して!ヽてもよ!ヽ脂肪族環式炭化水素基または架橋性官能基を有して!ヽてもよ!、 芳香族炭化水素基; R1は Rと主鎖を結合する基または結合手)で示されるエーテル 単位;
nは 1〜200の整数; mは 0〜20000の整数);
Aおよび Bは同じ力または異なり、水素原子、フッ素原子および Zまたは架橋性官能 基を含んで!、てもよ 、アルキル基、フッ素原子および Zまたは架橋性官能基を含ん でいてもよいフエニル基、—COOH基、—OR2 (R2は水素原子またはフッ素原子およ び Zまたは架橋性官能基を含んでいてもよいアルキル基)、エステル基またはカーボ ネート基]で表される側鎖にフルォロエーテル基を有する非晶性含フッ素ポリエーテ ルイ匕合物またはその架橋物であるイオン伝導体。
[2] 前記式(2a)において、 Rfが、式(2a— 1):
Rf1 - X (2a - 1)
(式中、 一 Rf1 は一(OCFCFCF) —、 一 (CFCFCFO) -, - (OCFZ'CF
2 2 2 nl 2 2 2 nl 2
) —、― (OCF CFZ1) ―、 - (OCFZ2) ―、 - (CFZ20) ―、 - (OCH CF CF nl 2 nl nl nl 2 2 2
) 一、 一 (OCFCFCH) —、 一 (OCHCHCF) —、 一 (OCFCHCH) —、 nl 2 2 2 nl 2 2 2 nl 2 2 2 nl 一 (OCFCFCF CF) —、 一 (CF CFCFCFO) —、 —(OCFZCH) —、 —
2 2 2 2 nl 2 2 2 2 nl 2 nl
(CH CFZ20) 一、 一 (OCH(CH)CFCF) —、 一 (OCF CF CH(CH )) —、
2 nl 3 2 2 nl 2 2 3 nl
- (CFZ'CF O) —、― (CF CF CF O) —、― (CH CF CF O) —、― (OCZ3 )
2 nl 2 2 2 nl 2 2 2 nl 2
—および—(CZ3 O) - (式中、 Τ、 Ζ2は同じかまたは異なってもよい Η、 Fまたは C
2
F; Ζ3は CF; nlは 1〜3の整数)よりなる群力 選ばれる少なくとも 1種を含むフルォ
3 3
口エーテル単位; Xは水素原子、ハロゲン原子または炭素数 1〜20のエーテル結合 および Zまたは架橋性官能基を含んで 、てもよ 、含フッ素アルキル基力 選ばれる 少なくとも 1種であって、ただし X中において前記 Rf1は有さず、 1¾1中に一0— 0—の 構造を含まな!/ヽ)で示される請求の範囲第 1項記載のイオン伝導体。
[3] 前記式(2a)において、 Rfが、式(2a— 2):
[化 3]
CF3 CF3
1 I
CF CF2CF2OHCFCF20^ r2CF (2 a— 2)
(式中、 n2は 0〜2の整数)で示されるフルォロエーテル基である請求の範囲第 1項 記載のイオン伝導体。
[4] 前記式(2a)および(2b)において、 R1が式:
[化 4]
(式中、 n3は 0または 1、 n4は 0または 1、 n5は 0〜2の整数)で示される結合基である 請求の範囲第 1項〜第 3項のいずれかに記載のイオン伝導体。
[5] さらに有機溶媒 (III)を含む請求の範囲第 1項〜第 4項のいずれかに記載のイオン 伝導体。
請求の範囲第 1項〜第 5項のいずれかに記載のイオン伝導体力 なる高分子電解 質。
PCT/JP2005/018541 2004-10-15 2005-10-06 イオン伝導体 WO2006041007A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004301933A JP4982943B2 (ja) 2004-10-15 2004-10-15 イオン伝導体
JP2004-301933 2004-10-15

Publications (1)

Publication Number Publication Date
WO2006041007A1 true WO2006041007A1 (ja) 2006-04-20

Family

ID=36148302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018541 WO2006041007A1 (ja) 2004-10-15 2005-10-06 イオン伝導体

Country Status (2)

Country Link
JP (1) JP4982943B2 (ja)
WO (1) WO2006041007A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106633023A (zh) * 2016-11-25 2017-05-10 江苏梅兰化工有限公司 一种全氟聚醚的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6533305B2 (ja) * 2015-05-12 2019-06-19 シーオ インコーポレーテッドSeeo, Inc. リチウム電池用電解質としてのpeoポリマーおよびフッ素化ポリマーを含むコポリマー

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07114941A (ja) * 1993-08-26 1995-05-02 Japan Energy Corp イオン伝導体
JPH08183854A (ja) * 1994-12-28 1996-07-16 Japan Energy Corp 含フッ素ポリエーテル、その製法、及びそれを含むイオン伝導体
JPH0948832A (ja) * 1995-08-03 1997-02-18 Japan Energy Corp イオン伝導体
JP2000234020A (ja) * 1998-12-17 2000-08-29 Nisshinbo Ind Inc 高分子電解質用ポリマー及びイオン導電性高分子電解質用組成物
JP2003007337A (ja) * 2001-06-21 2003-01-10 Daiso Co Ltd ポリマー二次電池
WO2004059664A1 (ja) * 2002-12-25 2004-07-15 Daikin Industries, Ltd. 含フッ素エーテル鎖を含む含フッ素ポリマーからなる固体電解質

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222270A (ja) * 1994-12-13 1996-08-30 Japan Energy Corp イオン伝導体
CN100367415C (zh) * 2002-10-03 2008-02-06 大金工业株式会社 含有含氟醚链的含氟聚合物固体电解质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07114941A (ja) * 1993-08-26 1995-05-02 Japan Energy Corp イオン伝導体
JPH08183854A (ja) * 1994-12-28 1996-07-16 Japan Energy Corp 含フッ素ポリエーテル、その製法、及びそれを含むイオン伝導体
JPH0948832A (ja) * 1995-08-03 1997-02-18 Japan Energy Corp イオン伝導体
JP2000234020A (ja) * 1998-12-17 2000-08-29 Nisshinbo Ind Inc 高分子電解質用ポリマー及びイオン導電性高分子電解質用組成物
JP2003007337A (ja) * 2001-06-21 2003-01-10 Daiso Co Ltd ポリマー二次電池
WO2004059664A1 (ja) * 2002-12-25 2004-07-15 Daikin Industries, Ltd. 含フッ素エーテル鎖を含む含フッ素ポリマーからなる固体電解質

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106633023A (zh) * 2016-11-25 2017-05-10 江苏梅兰化工有限公司 一种全氟聚醚的制备方法

Also Published As

Publication number Publication date
JP2006114400A (ja) 2006-04-27
JP4982943B2 (ja) 2012-07-25

Similar Documents

Publication Publication Date Title
KR100953999B1 (ko) 전해액
US8329344B2 (en) Electrolytic solution
CN101331556B (zh) 离子传导体
JP4748153B2 (ja) 電解液
JP4710902B2 (ja) 電解液
WO2006041008A1 (ja) イオン伝導体
KR101222093B1 (ko) 올리고에테르 설페이트를 포함하는 이온 전도성 물질
WO2015085515A1 (en) Composition for highly conductive polymer electrolytes
WO2006041007A1 (ja) イオン伝導体
US20070037061A1 (en) Polymer electrolyte complex
KR101559961B1 (ko) 다수의 하이드록시기를 가지는 방향족환을 포함하는 중합체를 이용한 고분자 전해질 막 및 이의 용도
Lin Novel Lithium Salt and Polymer Electrolytes for Polymer Lithium Batteries

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05790606

Country of ref document: EP

Kind code of ref document: A1