WO2006038616A1 - Metal mold cooling structure - Google Patents

Metal mold cooling structure Download PDF

Info

Publication number
WO2006038616A1
WO2006038616A1 PCT/JP2005/018351 JP2005018351W WO2006038616A1 WO 2006038616 A1 WO2006038616 A1 WO 2006038616A1 JP 2005018351 W JP2005018351 W JP 2005018351W WO 2006038616 A1 WO2006038616 A1 WO 2006038616A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
cooling
cooling structure
cooling fluid
molding
Prior art date
Application number
PCT/JP2005/018351
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiro Suzuki
Original Assignee
Suzuka Fuji Xerox Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuka Fuji Xerox Co., Ltd. filed Critical Suzuka Fuji Xerox Co., Ltd.
Publication of WO2006038616A1 publication Critical patent/WO2006038616A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • B29C33/04Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means using liquids, gas or steam

Definitions

  • the present invention relates to the structure of a temperature control circuit (for example, a cooling circuit) of a mold used for molding a resin molded product.
  • a temperature control circuit for example, a cooling circuit
  • the quality of dimensions and the like of a molded resin product that is processed by cooling the molten resin depends on the cooling rate of the molten resin.
  • a resin molded product manufactured by extrusion molding affects the quality such as plate thickness due to the difference in die temperature.
  • molten resin is injected into a mold cavity formed by combining a fixed mold and a movable mold, and after cooling, the fixed mold and the movable mold are separated from the mold cavity. It is performed by taking out the solidified molded product.
  • the molten resin is cooled by cooling the mold and transferring the partial force of the mold in contact with the mold cavity surface and the heat of the molten resin to the mold.
  • the fixed mold and the movable mold are provided with a cooling circuit for controlling the temperature of the mold.
  • this cooling circuit (mold cooling structure) is formed with a plurality of holes 5, 6 by drilling a fixed mold 4 and a movable mold 3 constituting the mold. It is common to open and fill plugs 7 and 8 in unnecessary holes to form passages 5 and 6 through which cooling fluid (medium) such as water and air flows.
  • cooling fluid medium
  • Patent Document 1 Japanese Patent Laid-Open No. 09-308955
  • Patent Document 2 Japanese Patent Laid-Open No. 06-262295
  • Patent Document 3 Japanese Utility Model Publication No. 58-107227
  • the present invention has been made in order to solve the problem of power, and a mold cooling structure that easily and inexpensively takes a wide heat transfer area and enhances the cooling effect while maintaining the strength of the mold. Is provided.
  • the “mold” means a mold (movable mold / fixed mold) used for injection molding, an extrusion molding die, a blow molding mold, a vacuum 'pressure molding mold, a hot' mold. Runner hold, nozzles, and processing jigs for parts that require temperature control. Means for solving the problem
  • the mold cooling structure according to claim 1 divides the mold into a plurality of parts, cuts a predetermined portion of the divided surface of the parts, and joins the divided surfaces to each other. Since all or part of the cooling fluid is formed, it is possible to form a cooling fluid passage having a complicated shape at a low cost and to improve the cooling efficiency of the mold.
  • the mold cooling structure according to claim 2 maintains the strength of the mold in a part of the passage (in the cooling circuit) formed by joining the divided surfaces in claim 1. For this reason, support columns (such as a spacer block) are provided to receive the grease pressure, so that the mold cooling efficiency is improved, even if the passage through which the cooling fluid flows is large, even if the mold strength is not reduced. If you can make it V, it will have an effect.
  • the mold cooling structure according to claim 3 is the heat treatment of claim 1 or claim 2, in which the split surfaces are joined by sandwiching a metal having a melting point lower than that of the material constituting the movable mold or the fixed mold. Since they are joined, the divided surfaces can be joined easily, and the cooling efficiency of the mold can be improved at low cost.
  • the mold cooling structure according to claim 4 is characterized in that, in claim 1 or claim 2, since the joining of the split surfaces is electric fusion, it is easy to dissimilar and Z or the same kind of mold material strength. Therefore, it is possible to join the divided surfaces to each other and improve the cooling efficiency of the mold at a low cost.
  • the present invention makes it easy to lengthen the passage of the cooling fluid without lowering the strength of the mold, increase the capacity, and increase the heat transfer area. If the cooling efficiency can be improved, there will be an effect!
  • FIGS. 1 to 6 A first embodiment according to the present invention will be described with reference to FIGS. 1 to 6.
  • FIG. 1 is a side view of a fixed mold using a mold cooling structure according to the present invention
  • FIG. 6 is a side view of a conventional fixed mold. In both cases, the passage of the cooling fluid is indicated by a broken line.
  • the fixed mold 1 having the mold cooling structure 2 having a complicated shape shown in FIG. 6 is formed with the shape of the mold cooling structure 2 using, for example, copper, and a nickel plating (electron) is formed thereon.
  • the fixed mold 1 was manufactured by putting the fixed mold 1 in a nitric acid solution or the like and dissolving the copper. processing).
  • Such a method requires a lot of cost, and also requires a waste liquid treatment of nitric acid in which copper is dissolved.
  • the fixed mold 10 shown in FIG. 1 has the same mold cooling structure 14 as the mold cooling structure 2 shown in FIG. ! /
  • the upper mold 11 shown in the side view in FIG. 2 the bottom view in FIG. 3, the side view in FIG. 4, and the lower mold 12 shown in the plan view in FIG. Has been configured.
  • the upper die 11 and the lower die 12 are processed separately.
  • the upper mold 11 has a mold cooling structure for the upper half by cutting the dividing surface 13 by milling or the like. 14 is formed.
  • the lower die 12 forms the lower half mold cooling structure 15 by cutting the dividing surface 19, and the cooling fluid inlet 16 and outlet 17 are also cut and drilled using a drill or the like.
  • the cutting and drilling cover may be a discharge cover. Also, if necessary, you can combine the above-mentioned electronic cabinets.
  • a copper plate 18 is manufactured by hollowing out predetermined portions so as not to obstruct the mold cooling structure formed when the dividing surface 13 of the upper mold 11 and the dividing surface 19 of the lower mold 12 are joined. Then, the copper plate 18 is sandwiched between the dividing surface 13 of the upper mold 11 and the dividing surface 19 of the lower mold 12, and a weight (not shown) is put on the upper mold 11.
  • heat treatment is performed in the electric furnace at a temperature (for example, about 1200 degrees) lower than the melting temperature of iron (for example, NAK88) constituting the upper mold 11 and the lower mold 12 which is higher than the melting temperature of copper. Then, the copper melts and diffuses into the iron that constitutes the upper mold 11 and the lower mold 12, so that the upper mold 11 and the lower mold 12 can be joined with sufficient strength after cooling. Can be produced.
  • a temperature for example, about 1200 degrees
  • the melting temperature of iron for example, NAK88
  • the metal used for joining the upper mold 11 and the lower mold 12 sandwiched between the divided surface 13 and the divided surface 19 has a lower melting point than the metal constituting the upper mold 11 and the lower mold 12.
  • Any material that diffuses into the metal may be used. For example, for iron, nickel, silver, gold, manganese, lead, tin, zinc, solder and the like.
  • copper or nickel kneaded into a paste may be applied to the joint surface for heat treatment.
  • the upper mold 11 and the lower mold 12 are separately processed and joined to form a mold cooling structure 14 having a complicated shape. Can be manufactured easily, and the cooling efficiency of the mold can be improved at low cost.
  • Example 1 in the case where the upper die 11 and the lower die 12 are made of the same material, different forces, for example, when the upper die 11 is made of nickel and the lower die 12 is made of iron, Since the expansion rate of each metal is different, bonding may not be possible by heat treatment.
  • a pressurization type electric bonding method (elect mouth bonding), which is a bonding method using an electric current, is effective.
  • an iron plate or nickel plate 18 is sandwiched between the dividing surface 13 of the upper mold 11 and the dividing surface 19 of the lower mold 12, and a large current flows while applying vertical force pressure. Then, the iron plate or nickel plate 18 melts and diffuses into nickel and iron, so that the upper die 11 and the lower die 12 can be joined.
  • an adhesive such as epoxy may be applied before or after bonding to eliminate the gap between the bonding surfaces.
  • surface treatment for example, painting, coating, etc.
  • the joining instead of the iron plate or the nickel plate 18, a fine iron wire or a nickel wire may be used.
  • the upper die 11 and the lower die 12 may be directly overlapped and joined using a pressure type electric joining method without using the iron plate or the nickel plate 18. In this case, if the dividing surfaces to be overlapped are provided with irregularities that are not flat, and the current is concentrated on the convex portions, the joining is ensured.
  • Example 3
  • the mold cooling structure according to the present invention is used for a sprue 1 'runner.
  • the cooling of the sprue's runner controls the cooling in the molding cycle. Therefore, using the mold cooling structure according to the present invention for the sprue's runner shortens the molding cycle. This is an effective means.
  • the sprue 1 'runner using this invention is demonstrated in detail.
  • the sprue 'bush used in the sprue' runner is divided into two parts, a shaft part 20 and a cylindrical part 21, and the outer peripheral surface (split surface) of the shaft part 20 Grooves 22 are formed in a spiral shape.
  • the shaft portion 20 is inserted into the cylindrical portion 21 and bonded by the heat treatment or pressure type electric bonding method shown in Example 1 or Example 2, so that the mold cooling structure according to the present invention is used.
  • a spruce bush can be manufactured.
  • the holes 23 and 24 provided in the cylindrical portion 21 are an inlet and an outlet for the cooling fluid.
  • the sprue bush produced in this way was incorporated into an injection mold, and the surface temperature of a part of the sprue after 100 shot molding was measured.
  • the force was about 70 degrees.
  • the cooling fluid can flow into the groove 22 formed in a spiral shape. It was cooled to about 40 degrees. Note that air was used as the cooling fluid. After confirming that the molten resin was injected from the heating cylinder of the molding machine (that is, after receiving a signal indicating completion of the primary pressure), the cooling medium air was blown from the hole 24 to be cooled, and the air was discharged through the hole 23 to the atmosphere. Released into. After that, the mold opening signal of the injection molding machine was received and air blowing was stopped.
  • the mold cooling structure according to the present invention is used for a runner portion.
  • FIG. 10 shows a cross-sectional view of the runner portion provided on the PL surface of the movable mold 30 and the fixed mold 31.
  • the runner portion of the fixed die 31 is divided into two parts, an upper die 33 having a recess 32 through which molten resin flows, and a lower die 34. A plurality of grooves 36 are cut along the recess 32.
  • the upper die 33 is inserted into the recess of the lower die 34 and joined by the joining method shown in Example 1 or Example 2, thereby forming a runner portion with improved cooling efficiency in the lower die 34. can do.
  • the runner flowing portion and the main body portion of the fixed mold 31 are separate parts. There is a slight gap between the body parts. Since this gap acts as a heat insulating layer, the cooling fluid flowing in the groove 36 is a force that drastically reduces the temperature of the runner 32. Fixed temperature 31 The temperature of the main body is not lowered so much. Can be obtained.
  • a large-capacity cooling fluid passage is formed using the mold cooling structure according to the present invention.
  • FIG. 11 shows a side view of the fixed mold 50, in which a mold cooling structure 51 and a post 56 (to be described later) are indicated by broken lines.
  • the upper mold 52 and the lower mold 53 are bonded by using the bonding method shown in the first or second embodiment.
  • the large-capacity space 54 formed by cutting on the respective divided surfaces of the upper mold 52 and the lower mold 53 is formed close to the cavity surface 55. Yes.
  • the large-capacity space 54 is widely cut in the three directions of XYZ, and can flow a large amount of cooling fluid. In other words, large cuts are made in the direction perpendicular to the paper surface of Fig. 11 to form a large-capacity passage.
  • the large-capacity mold cooling structure 54 in the fixed mold 50 is provided with a plurality of cylindrical columns 56 for the purpose of reinforcing the strength. This column 56 is planted from the lower mold 53. It functions to support the upper mold 52.
  • the powerful configuration allows large volumes of cooling fluid to be sent to near the cavity surface without lowering the mold strength, so that the molten resin can be cooled in a short time, greatly increasing the molding cycle. Can be shortened.
  • Example 5 the force shown when the upper mold 52 and the lower mold 53 are divided in the horizontal direction, as shown in Fig. 13, when the large capacity portion 60 is formed in a part of the upper mold. In some cases, horizontal division alone is not possible! /.
  • the upper die 52 is divided into the vertical direction, the upper die 52 is composed of the parts 61 and 62, and the upper die 52 is formed with a portion 60 having a larger capacity. This is different from the example.
  • the fixed mold 50 is composed of a total of three parts: a lower mold 53 and an upper mold 52 composed of parts 61 and 62, and all of the divided surfaces thereof are the first embodiment or the second embodiment. It is joined by the joining method shown in.
  • the hot runner hold was divided into two parts and cut so that a flow path of molten resin was formed when the respective divided surfaces were joined. Also, the flow path of the molten resin and the curved portion of the flow path were cut so as to form a smooth curve.
  • the bonding is performed by applying paste-kneaded copper to the divided surfaces, heat-treating using an electric furnace at 1,200 ° C for 5 hours, chemically polishing with nitric acid, and then polishing the threaded portion of the nozzle. .
  • FIG. 14 is a front view of an extrusion molding die according to the present invention
  • FIG. 15 is a perspective view showing an assembled state of the die shown in FIG.
  • the die 70 is provided with a space 77 for extruding a U-shaped molded product.
  • a large-capacity space 76 for flowing a cooling fluid such as water is provided at a position close to the space 77 in order to cool the resin passing through the space 77.
  • This large-capacity space 76 is realized by configuring the die 70 with two parts 71 and 72 as shown in FIG. That is, the part 71 is cut deeply into the vicinity of the space 77, and the part 72 is cut into a substantially convex shape by cutting the plate material so that a sufficiently large space 76 is formed when the part 71 is joined to the part 71.
  • a plurality of support columns 75 are implanted in the part 72.
  • the divided surfaces can be joined to the component 71 and the component 72.
  • water as a cooling fluid is injected into the space 76 from the inlet 73, and the water that has absorbed the heat of the die is discharged from the outlet 74.
  • the force shown in the case where the mold cooling structure is formed on the fixed mold may be formed on the movable mold or the fixed mold and the movable mold. .
  • the insert may be divided into parts and covered, and each part may be joined by the joining method of the present invention to produce a insert having a complicated shape. .
  • the cooling fluid in addition to water and air, the heat of vaporization of oil or a vaporizable substance (for example, chlorofluorocarbon, halon, alcohol, ether) may be used.
  • a vaporizable substance for example, chlorofluorocarbon, halon, alcohol, ether
  • the valve When air is used as the cooling fluid, the valve is opened based on the information that the molten resin has been injected into the mold from the temperature sensor provided near the cavity surface, and air cooling is performed. It can be started when the mold is opened and the molded product is taken out, or air cooling can be performed continuously regardless of the process.
  • Trecell's MuCell and Asahi Kasei's AMOTEC the foam molding, the foam injection molding method and the gas-assisted molding method, and the Sumitomo Chemical SP mold, in-mold molding method and Also apply to the method that combines with the gas-assisted molding method.
  • the heat and cool developed and sold by Ono Sangyo, Cisco, and GE Plastics also include molds used for compression molding, injection compression molding, transfer molding, cast molding, vacuum molding, pneumatic molding, It can also be applied to processing jigs that require temperature control of extrusion dies.
  • the mold temperature is increased with heated steam before injection, the molten resin is injected with water and then cooled with water, or the surface of the mold is heated using high frequency induction heating.
  • the cooling structure of the present invention is also effective for cooling a molding method that aims to improve the appearance by similarly heating the mold surface using a halogen lamp according to the above.
  • the cooling effect can be further improved by using microbubble water as the cooling fluid.
  • microbubble water using air as the cooling fluid
  • an inert gas such as nitrogen is used instead of air
  • the inside of the mold cooling structure is surface-treated, and a multilayer structure such as iron and copper, iron and SUS, iron and silver, etc. It is possible to cope with this problem by using a medium other than water. It is also effective to use water with a fungicide Means.
  • the resin that can be used in the present invention includes ABS, HIPS and other styrenes, PE and PP, olefins, PVC and other burs, polyamides, amides, polyesters, ester, and ethers. All of the thermoplastic resins represented by fats, all of the thermosetting resins represented by urea and phenol, polymer blends and polymer alloys of the resins, and inorganic and Z or organic fibers in the resins. Examples include composites containing minerals.
  • the present invention relates to a mold used for injection molding, a die part for extrusion molding, a mold for blow molding, a cooling circuit for a mold for vacuum / compression molding, a hot runner manifold and a nozzle, Applicable to machining jigs for parts that require temperature control.
  • FIG. 1 is a sectional view of a fixed mold according to the present invention (Example 1).
  • FIG. 2 is a side view of an upper mold of a fixed mold according to the present invention (Example 1).
  • FIG. 3 is a bottom view of the upper mold of the fixed mold according to the present invention (Example 1).
  • FIG. 4 is a side view of the lower mold of the fixed mold according to the present invention (Example 1).
  • FIG. 5 is a plan view of the lower mold of the fixed mold according to the present invention (Example 1).
  • FIG. 6 is a side view for explaining a conventional fixed mold (Example 1).
  • FIG. 7 is a side view of a sprue bush according to the present invention (Example 3).
  • FIG. 8 is a side view of a shaft portion of a sprue bush according to the present invention (Example 3).
  • FIG. 9 is a side view of the cylindrical portion of the sprue bush according to the present invention (Example 3).
  • FIG. 10 is a side view of a runner according to the present invention (Example 4).
  • FIG. 11 is a side view of a fixed mold according to the present invention (Example 5).
  • FIG. 12 is a side view for explaining a conventional mold.
  • FIG. 13 is a side view of a fixed mold according to the present invention (Example 6).
  • FIG. 14 is a front view of an extrusion die according to the present invention (Example 8).
  • FIG. 15 is a perspective view showing an assembled state of an extrusion die according to the present invention (Example 8). Explanation of symbols 10 Fixed type 11 Upper type

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

The entire or a part of a path of a cooling fluid is formed by dividing a movable mold and/or a fixed mold into two in a lateral direction, cutting one of or both dividing planes, and joining the dividing planes so as to cool a metal mold composed of the movable mold and the fixed mold. Thus, a flow volume of the cooling fluid is increased while maintaining the strength of the metal mold, and cooling effects are improved.

Description

明 細 書  Specification
金型冷却構造  Mold cooling structure
技術分野  Technical field
[0001] 本発明は、榭脂成形品の成形に用いる金型の温調回路 (例えば、冷却回路)の構 造に関する。  The present invention relates to the structure of a temperature control circuit (for example, a cooling circuit) of a mold used for molding a resin molded product.
背景技術  Background art
[0002] 溶融榭脂を冷却して加工する榭脂成形品は、溶融樹脂の冷却速度によって寸法 等の品質が左右される。例えば、押し出し成形により製造する榭脂成形品は、ダイの 温度の違いによって板厚などの品質に影響がでる。  [0002] The quality of dimensions and the like of a molded resin product that is processed by cooling the molten resin depends on the cooling rate of the molten resin. For example, a resin molded product manufactured by extrusion molding affects the quality such as plate thickness due to the difference in die temperature.
以下に、射出成形による成形品の製造を詳細に説明する。  Hereinafter, the production of a molded product by injection molding will be described in detail.
射出成形による成形品の製造は、固定型と可動型を合わせることにより形成される 金型キヤビティに、溶融榭脂を射出し、冷却した後、固定型と可動型を離して金型キ ャビティから固化した成形品を取り出すことにより行われる。  In the manufacture of molded products by injection molding, molten resin is injected into a mold cavity formed by combining a fixed mold and a movable mold, and after cooling, the fixed mold and the movable mold are separated from the mold cavity. It is performed by taking out the solidified molded product.
ここで、溶融樹脂の冷却は、金型を冷却し、金型のキヤビティ面と溶融樹脂が接す る部分力 溶融樹脂の熱を金型に移動さることにより行う。このために、固定型および 可動型には、金型の温度をコントロールするための冷却回路が設けられている。  Here, the molten resin is cooled by cooling the mold and transferring the partial force of the mold in contact with the mold cavity surface and the heat of the molten resin to the mold. For this reason, the fixed mold and the movable mold are provided with a cooling circuit for controlling the temperature of the mold.
[0003] この冷却回路 (金型冷却構造)は、図 12に示すように、金型を構成する固定型 4お よび可動型 3に、ドリル穴等の加工を施して複数の穴 5、 6をあけ、不必要な穴に埋め 栓 7、 8をして、水、空気等の冷却流体 (媒体)を流す通路 5、 6を形成して構成するの が一般的である。 [0003] As shown in Fig. 12, this cooling circuit (mold cooling structure) is formed with a plurality of holes 5, 6 by drilling a fixed mold 4 and a movable mold 3 constituting the mold. It is common to open and fill plugs 7 and 8 in unnecessary holes to form passages 5 and 6 through which cooling fluid (medium) such as water and air flows.
[0004] 図 12に示した金型冷却構造の場合、冷却流体はストレートの通路 5、 6を流れるた め、層流となって通路 5、 6の伝熱面に熱境膜を形成するので、溶融樹脂の冷却効率 (熱伝導の効率)を悪くするという問題がある。  In the mold cooling structure shown in FIG. 12, since the cooling fluid flows through the straight passages 5 and 6, a laminar flow forms a thermal boundary film on the heat transfer surface of the passages 5 and 6. There is a problem that the cooling efficiency (the efficiency of heat conduction) of the molten resin is deteriorated.
[0005] 力かる問題を解決する手段として、冷却流体の通路に仕切り板 (じゃま板)や、スパ ィラルの溝を設ける等して乱流を発生させる手段が用いられている (例えば、特許文 献 1〜3参照)。  [0005] As means for solving such a problem, means for generating turbulent flow by providing a partition plate (baffle plate) or a spiral groove in the cooling fluid passage is used (for example, patent documents). (See tributes 1-3).
特許文献 1:特開平 09 - 308955号公報 特許文献 2:特開平 06 - 262295号公報 Patent Document 1: Japanese Patent Laid-Open No. 09-308955 Patent Document 2: Japanese Patent Laid-Open No. 06-262295
特許文献 3:実開昭 58— 107227号公報  Patent Document 3: Japanese Utility Model Publication No. 58-107227
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] しかし、仕切り板やスパイラルの溝の加工は、多くの工数と費用を要する。また、冷 却流体に対する抵抗が増し、その結果冷却流体の流量が低下するので、大きな冷却 効率を望めな 、と 、う問題がある。 However, the processing of the partition plate and the spiral groove requires a lot of man-hours and costs. In addition, since the resistance to the cooling fluid increases and as a result the flow rate of the cooling fluid decreases, there is a problem that a large cooling efficiency cannot be expected.
この流量の低下という問題については、冷却流体の通路を構成する穴の直径を大 きくすることで解決でき、伝熱面積を大きくすることができる。しかし、金型の強度が低 下するという別の問題が生じる。  This problem of a decrease in the flow rate can be solved by increasing the diameter of the holes constituting the cooling fluid passage, and the heat transfer area can be increased. However, another problem arises that the strength of the mold is reduced.
[0007] 本発明は、力かる問題を解決するためになされたものであり、金型の強度を維持し たまま、容易かつ安価に伝熱面積を広く取り、冷却効果を高める金型冷却構造を提 供するものである。 [0007] The present invention has been made in order to solve the problem of power, and a mold cooling structure that easily and inexpensively takes a wide heat transfer area and enhances the cooling effect while maintaining the strength of the mold. Is provided.
本発明において、「金型」とは、射出成形に用いられる金型 (可動型 ·固定型)、押し 出し成形用のダイ、ブロー成形用の金型、真空'圧空成形用金型、ホット'ランナーの マ-ホールドやノズル、温度コントロールを必要とする部品の加工治具等を 、う。 課題を解決するための手段  In the present invention, the “mold” means a mold (movable mold / fixed mold) used for injection molding, an extrusion molding die, a blow molding mold, a vacuum 'pressure molding mold, a hot' mold. Runner hold, nozzles, and processing jigs for parts that require temperature control. Means for solving the problem
[0008] 請求項 1に記載の金型冷却構造は、金型を複数の部品に分割し、部品の分割面の 所定箇所を切削加工し、分割面を接合した場合に、冷却流体の通路の全部または 一部が形成されるため、安価に複雑な形状の冷却流体の通路を形成することができ 、金型の冷却効率を向上させることができると!/、う効果を奏するものである。  [0008] The mold cooling structure according to claim 1 divides the mold into a plurality of parts, cuts a predetermined portion of the divided surface of the parts, and joins the divided surfaces to each other. Since all or part of the cooling fluid is formed, it is possible to form a cooling fluid passage having a complicated shape at a low cost and to improve the cooling efficiency of the mold.
[0009] 請求項 2に記載の金型冷却構造は、請求項 1にお 、て、分割面を接合して形成し た通路の一部 (冷却回路の中)に金型の強度を維持するため、榭脂圧を受けるため の支柱 (例えば、スぺーサーブロック等)を設けたので、冷却流体が流れる通路を大 容量にしても金型の強度の低下がなぐ金型の冷却効率を向上させることができると V、う効果を奏するものである。  [0009] The mold cooling structure according to claim 2 maintains the strength of the mold in a part of the passage (in the cooling circuit) formed by joining the divided surfaces in claim 1. For this reason, support columns (such as a spacer block) are provided to receive the grease pressure, so that the mold cooling efficiency is improved, even if the passage through which the cooling fluid flows is large, even if the mold strength is not reduced. If you can make it V, it will have an effect.
[0010] 請求項 3に記載の金型冷却構造は、請求項 1または請求項 2において、分割面の 接合は、可動型または固定型を構成する材料よりも融点の低 ヽ金属を挟んで熱処理 接合したので、容易に分割面同士を接合でき、安価に金型の冷却効率を向上させる ことができるという効果を奏するものである。 [0010] The mold cooling structure according to claim 3 is the heat treatment of claim 1 or claim 2, in which the split surfaces are joined by sandwiching a metal having a melting point lower than that of the material constituting the movable mold or the fixed mold. Since they are joined, the divided surfaces can be joined easily, and the cooling efficiency of the mold can be improved at low cost.
[0011] 請求項 4に記載の金型冷却構造は、請求項 1または請求項 2において、分割面の 接合は、電気融着であるので、容易に異種および Zまたは同種類の金型材質力 な る分割面同士を接合でき、安価に金型の冷却効率を向上させることができるという効 果を奏するものである。  [0011] The mold cooling structure according to claim 4 is characterized in that, in claim 1 or claim 2, since the joining of the split surfaces is electric fusion, it is easy to dissimilar and Z or the same kind of mold material strength. Therefore, it is possible to join the divided surfaces to each other and improve the cooling efficiency of the mold at a low cost.
発明の効果  The invention's effect
[0012] 本発明は、金型の強度を低下させることなぐ冷却流体の通路を長くすること、大容 量にすること、および伝熱面積を広く取ることが容易にでき、安価に金型の冷却効率 を向上させることができると!/、う効果を奏する。  [0012] The present invention makes it easy to lengthen the passage of the cooling fluid without lowering the strength of the mold, increase the capacity, and increase the heat transfer area. If the cooling efficiency can be improved, there will be an effect!
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 以下に実施例を用いて、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail using examples.
実施例 1  Example 1
[0014] 本発明に係る第 1実施例を、図 1乃至図 6を用いて説明する。  A first embodiment according to the present invention will be described with reference to FIGS. 1 to 6.
図 1は、本発明にかかる金型冷却構造を用いた固定型の側面図であり、図 6は、従 来の固定型の側面図である。いずれも冷却流体の通路を破線で示している。  FIG. 1 is a side view of a fixed mold using a mold cooling structure according to the present invention, and FIG. 6 is a side view of a conventional fixed mold. In both cases, the passage of the cooling fluid is indicated by a broken line.
[0015] 従来、図 6に示す複雑な形状の金型冷却構造 2を有する固定型 1は、例えば銅を 用いて金型冷却構造 2の形状を作成し、その上にニッケルメツキ(電铸)を施して厚 ヽ ニッケル層を形成し、このニッケル層を加工して固定型 1を製造した後、固定型 1を硝 酸溶液等に入れて銅を溶解させることにより製造していた (電铸加工)。このような方 法は、多くの費用を必要とし、さらに銅を溶解した硝酸の廃液処理が必要であった。  [0015] Conventionally, the fixed mold 1 having the mold cooling structure 2 having a complicated shape shown in FIG. 6 is formed with the shape of the mold cooling structure 2 using, for example, copper, and a nickel plating (electron) is formed thereon. After forming the thick nickel layer and processing the nickel layer to produce the fixed mold 1, the fixed mold 1 was manufactured by putting the fixed mold 1 in a nitric acid solution or the like and dissolving the copper. processing). Such a method requires a lot of cost, and also requires a waste liquid treatment of nitric acid in which copper is dissolved.
[0016] これに対し、図 1に示す固定型 10は、図 6に示した金型冷却構造 2と同じ金型冷却 構造 14を有して 、るにもかかわらず、前記した問題は生じな!/、。 On the other hand, the fixed mold 10 shown in FIG. 1 has the same mold cooling structure 14 as the mold cooling structure 2 shown in FIG. ! /
[0017] すなわち、固定型 10は、図 2に側面図、図 3に底面図を示した上型 11と、図 4に側 面図、図 5に平面図を示した下型 12とが接合されて構成されている。 That is, in the fixed mold 10, the upper mold 11 shown in the side view in FIG. 2, the bottom view in FIG. 3, the side view in FIG. 4, and the lower mold 12 shown in the plan view in FIG. Has been configured.
以下に、固定型 10の製造方法について詳細に説明する。  Hereinafter, a method for manufacturing the fixed mold 10 will be described in detail.
[0018] まず、上型 11と、下型 12をそれぞれ別個に加工する。 First, the upper die 11 and the lower die 12 are processed separately.
上型 11は、分割面 13をフライス加工等の切削加工により、上半分の金型冷却構造 14を形成する。 The upper mold 11 has a mold cooling structure for the upper half by cutting the dividing surface 13 by milling or the like. 14 is formed.
同様にして、下型 12は、分割面 19を切削加工により、下半分の金型冷却構造 15 を形成し、冷却流体の入口 16と出口 17も切削加工、ドリルなどを用いた穴あけカロェ する。切削加工、穴あけカ卩ェは、放電カ卩ェであっても良い。また、必要に応じて、前 記電铸カ卩ェを組み合わせても良 、。  Similarly, the lower die 12 forms the lower half mold cooling structure 15 by cutting the dividing surface 19, and the cooling fluid inlet 16 and outlet 17 are also cut and drilled using a drill or the like. The cutting and drilling cover may be a discharge cover. Also, if necessary, you can combine the above-mentioned electronic cabinets.
[0019] 次に、上型 11の分割面 13と、下型 12の分割面 19を接合した場合に形成される金 型冷却構造の邪魔にならないように所定箇所をくり抜いた銅板 18を製造し、銅板 18 を上型 11の分割面 13と下型 12の分割面 19の間に挟み込んで、上型 11の上から図 示しない重りを乗せる。  Next, a copper plate 18 is manufactured by hollowing out predetermined portions so as not to obstruct the mold cooling structure formed when the dividing surface 13 of the upper mold 11 and the dividing surface 19 of the lower mold 12 are joined. Then, the copper plate 18 is sandwiched between the dividing surface 13 of the upper mold 11 and the dividing surface 19 of the lower mold 12, and a weight (not shown) is put on the upper mold 11.
その後、電気炉内で銅の溶融温度よりも高ぐ上型 11及び下型 12を構成する鉄( 例えば、 NAK88)の溶融温度より低い温度(例えば、約 1200度)で熱処理をする。 そうすると、銅が溶融し、上型 11及び下型 12を構成する鉄中に拡散するため、冷却 後に上型 11と下型 12を十分な強度で接合することができ、 1つの金型冷却構造を有 する固定型 10を製造することができる。  Thereafter, heat treatment is performed in the electric furnace at a temperature (for example, about 1200 degrees) lower than the melting temperature of iron (for example, NAK88) constituting the upper mold 11 and the lower mold 12 which is higher than the melting temperature of copper. Then, the copper melts and diffuses into the iron that constitutes the upper mold 11 and the lower mold 12, so that the upper mold 11 and the lower mold 12 can be joined with sufficient strength after cooling. Can be produced.
[0020] 分割面 13と分割面 19の間に挟み込み、上型 11及び下型 12を接合するために用 いる金属は、上型 11及び下型 12を構成する金属よりも融点が低ぐ該金属中に拡散 する材料であれば良い。例えば、鉄に対しては、ニッケル、銀、金、マンガン、鉛、錫 、亜鉛、半田等である。  [0020] The metal used for joining the upper mold 11 and the lower mold 12 sandwiched between the divided surface 13 and the divided surface 19 has a lower melting point than the metal constituting the upper mold 11 and the lower mold 12. Any material that diffuses into the metal may be used. For example, for iron, nickel, silver, gold, manganese, lead, tin, zinc, solder and the like.
[0021] また、銅板 18の代わりに、ペースト状に練った銅あるいはニッケル等を接合面に塗 つて熱処理をしても良い。  [0021] Instead of the copper plate 18, copper or nickel kneaded into a paste may be applied to the joint surface for heat treatment.
[0022] 本実施例に示したように、固定型 10を製造するに当たり、上型 11と下型 12を別々 に加工して接合することにより、複雑な形状の金型冷却構造 14であっても容易に製 造することができ、安価に金型の冷却効率を向上させることができる。 [0022] As shown in the present embodiment, when the fixed mold 10 is manufactured, the upper mold 11 and the lower mold 12 are separately processed and joined to form a mold cooling structure 14 having a complicated shape. Can be manufactured easily, and the cooling efficiency of the mold can be improved at low cost.
尚、横方向の強度不足が懸念される場合は、縦方向へのボルト締め等によって補 強しても良い。また、熱によって形状が変形する場合などは、後で仕上げ加工を施し ても良い。  If there is a concern about insufficient strength in the horizontal direction, it may be reinforced by bolting in the vertical direction. In addition, when the shape is deformed by heat, finishing may be performed later.
実施例 2  Example 2
[0023] 本発明に係る他の実施例について、以下に詳細に説明する。 説明を簡単にするため、実施例 1との相違点のみを説明し、同一である部分は同一 の符号を付して説明を省略する。 [0023] Other embodiments according to the present invention will be described in detail below. In order to simplify the description, only differences from the first embodiment will be described, and the same portions are denoted by the same reference numerals and description thereof will be omitted.
[0024] 実施例 1においては、上型 11と下型 12の材質が同じ場合を示した力 異種の場合 、例えば、上型 11の材質がニッケル、下型 12の材質が鉄の場合は、それぞれの金 属の膨張率が異なるので、熱処理では接合できな 、場合がある。  [0024] In Example 1, in the case where the upper die 11 and the lower die 12 are made of the same material, different forces, for example, when the upper die 11 is made of nickel and the lower die 12 is made of iron, Since the expansion rate of each metal is different, bonding may not be possible by heat treatment.
[0025] かかる場合にぉ ヽては、電流を用いた接合法である加圧式電気接合法 (エレクト口 ボンド)が有効である。  In such a case, a pressurization type electric bonding method (elect mouth bonding), which is a bonding method using an electric current, is effective.
以下に加圧式電気接合法 (例えば、スポット溶接、プロジェクシヨン溶接等の原理) を用いた接合について説明する。  A description will be given below of joining using a pressure type electric joining method (for example, the principle of spot welding, projection welding, etc.).
[0026] 図 1と同様、鉄板またはニッケル板 18を、上型 11の分割面 13と、下型 12の分割面 19間に挟み込み、上下力 圧力を加えながら、大きな電流を流す。そうすると、鉄板 またはニッケル板 18が融けてニッケルおよび鉄の中に拡散するため、上型 11と下型 12を接合することができる。  As in FIG. 1, an iron plate or nickel plate 18 is sandwiched between the dividing surface 13 of the upper mold 11 and the dividing surface 19 of the lower mold 12, and a large current flows while applying vertical force pressure. Then, the iron plate or nickel plate 18 melts and diffuses into nickel and iron, so that the upper die 11 and the lower die 12 can be joined.
必要に応じて、接合前、あるいは後に、エポキシ等の接着剤を塗り、接合面の隙間 をなくしても良い。また、接合面だけではなぐ防鲭を目的に、内部の冷却流体の流 路 (冷却構造)に表面処理 (例えば、ペインティング、コーティング等)を行っても良い  If necessary, an adhesive such as epoxy may be applied before or after bonding to eliminate the gap between the bonding surfaces. In addition, surface treatment (for example, painting, coating, etc.) may be performed on the flow path (cooling structure) of the internal cooling fluid for the purpose of protection not only at the joint surface.
[0027] 接合は、鉄板またはニッケル板 18に代えて、細 、鉄線またはニッケル線を用いても 良い。また、鉄板またはニッケル板 18を使わず、直接上型 11と下型 12を重ね合わせ て加圧式電気接合法を用いて接合しても良い。この場合、重ね合わせる分割面は、 平面ではなぐ凹凸を設け、凸部に電流が集中するようにすれば接合が確実となる。 実施例 3 For the joining, instead of the iron plate or the nickel plate 18, a fine iron wire or a nickel wire may be used. Alternatively, the upper die 11 and the lower die 12 may be directly overlapped and joined using a pressure type electric joining method without using the iron plate or the nickel plate 18. In this case, if the dividing surfaces to be overlapped are provided with irregularities that are not flat, and the current is concentrated on the convex portions, the joining is ensured. Example 3
[0028] 本第 3実施例は、本発明にかかる金型冷却構造をスプル一'ランナーに用いたもの である。  [0028] In the third embodiment, the mold cooling structure according to the present invention is used for a sprue 1 'runner.
射出成形において、スプル一'ランナーの冷却が成形サイクルでの冷却を律速する ので、スプル一'ランナーに、本発明にかかる金型冷却構造を用いることは成形サイ クルを短縮ィ匕する上にぉ 、て有効な手段となる。  In injection molding, the cooling of the sprue's runner controls the cooling in the molding cycle. Therefore, using the mold cooling structure according to the present invention for the sprue's runner shortens the molding cycle. This is an effective means.
以下に、本発明を用いたスプル一'ランナーについて詳細に説明する。 [0029] 図 7乃至図 9に示すように、スプル一'ランナーで用いられるスプル一'ブッシュを、 軸部 20と筒部 21の 2部品に分割し、軸部 20の外周面 (分割面)に溝 22をスパイラル 状に形成する。 Below, the sprue 1 'runner using this invention is demonstrated in detail. [0029] As shown in Figs. 7 to 9, the sprue 'bush used in the sprue' runner is divided into two parts, a shaft part 20 and a cylindrical part 21, and the outer peripheral surface (split surface) of the shaft part 20 Grooves 22 are formed in a spiral shape.
その後、軸部 20を筒部 21に挿入して実施例 1または実施例 2で示した熱処理また は加圧式電気接合法により接合させることにより、本発明にかかる金型冷却構造を用 Vヽたスプル一 ·ブッシュを製作することができる。  Thereafter, the shaft portion 20 is inserted into the cylindrical portion 21 and bonded by the heat treatment or pressure type electric bonding method shown in Example 1 or Example 2, so that the mold cooling structure according to the present invention is used. A spruce bush can be manufactured.
尚、筒部 21に設けた穴 23及び穴 24は、冷却流体の入口と出口である。  The holes 23 and 24 provided in the cylindrical portion 21 are an inlet and an outlet for the cooling fluid.
[0030] このようにして製作したスプルー 'ブッシュを射出成形用金型に組み込み、 100ショ ット成形した後のスプル一部の表面温度を測定した。 [0030] The sprue bush produced in this way was incorporated into an injection mold, and the surface temperature of a part of the sprue after 100 shot molding was measured.
温調回路のないスプル一'ブッシュの場合は約 70度であった力 本実施例にかか るスプル一 ·ブッシュの場合は、スパイラル状に形成した溝 22に冷却流体を流すこと ができるため、約 40度まで冷却されていた。尚、冷却流体として、エアーを用いた。こ の冷却媒体のエアーは、成形機加熱筒から溶融樹脂が射出されたことを確認した後 (即ち、一次圧完了の信号を受けた後)、穴 24から吹き込んで冷却し、穴 23を通じて 大気中に放出した。その後、射出成形機の型開き信号を受け、エアー吹き込みを停 止させた。  In the case of the sprue 1 bush without the temperature control circuit, the force was about 70 degrees. In the case of the sprue 1 bush according to this embodiment, the cooling fluid can flow into the groove 22 formed in a spiral shape. It was cooled to about 40 degrees. Note that air was used as the cooling fluid. After confirming that the molten resin was injected from the heating cylinder of the molding machine (that is, after receiving a signal indicating completion of the primary pressure), the cooling medium air was blown from the hole 24 to be cooled, and the air was discharged through the hole 23 to the atmosphere. Released into. After that, the mold opening signal of the injection molding machine was received and air blowing was stopped.
[0031] このようにして、スプルーの冷却が改善されるので、後述する実施例 4のランナー温 調との併用で射出成形におけるスプル一'ランナーの金型内冷却時間を約 35%短 縮することができる。  [0031] In this way, since the cooling of the sprue is improved, the cooling time in the mold of the sprue runner in the injection molding is shortened by about 35% in combination with the runner temperature control of Example 4 described later. be able to.
本第 3実施例ではエアー冷却を用いたが、水や、気化熱を利用した冷却も可能で ある。  Although air cooling is used in the third embodiment, cooling using water or heat of vaporization is also possible.
実施例 4  Example 4
[0032] 本第 4実施例は、本発明にかかる金型冷却構造をランナー部に用いたものである。  [0032] In the fourth embodiment, the mold cooling structure according to the present invention is used for a runner portion.
図 10は、可動型 30と固定型 31の PL面に設けたランナー部の断面図を示したもの である。  FIG. 10 shows a cross-sectional view of the runner portion provided on the PL surface of the movable mold 30 and the fixed mold 31.
[0033] 図 10に示すように、固定型 31のランナー部は、溶融樹脂が流れる凹部 32を有する 上型 33と、下型 34の 2部品に分割し、上型 33は、その分割面 35に複数の溝 36を凹 部 32に沿って切削加工されている。 [0034] この上型 33を、下型 34の凹部に挿入し、実施例 1または実施例 2に示した接合方 法で接合することにより、冷却効率が向上したランナー部を下型 34に形成することが できる。 [0033] As shown in FIG. 10, the runner portion of the fixed die 31 is divided into two parts, an upper die 33 having a recess 32 through which molten resin flows, and a lower die 34. A plurality of grooves 36 are cut along the recess 32. [0034] The upper die 33 is inserted into the recess of the lower die 34 and joined by the joining method shown in Example 1 or Example 2, thereby forming a runner portion with improved cooling efficiency in the lower die 34. can do.
[0035] 射出成形における冷却工程において、このように構成したランナー部の溝 36に冷 却流体、例えば空気を流すと凹部 32に存在する溶融榭脂を短時間で冷却すること ができる。  [0035] In the cooling step in the injection molding, when a cooling fluid, for example, air is passed through the groove 36 of the runner portion configured as described above, the molten resin present in the recess 32 can be cooled in a short time.
実際に、本第 4実施例に力かるランナーを有する金型を用いて成形品を生産した 場合、従来のランナーを用いた金型の場合と比較して、射出成形の生産性 (金型内 の冷却時間 35%短縮)および生産タクトが約 16%向上した。  In fact, when a molded product is produced using a mold having a runner that is powerful in this fourth embodiment, the productivity of injection molding (inside the mold) is higher than that of a mold using a conventional runner. Cooling time of 35%) and production tact improved by about 16%.
[0036] また、上型 33を下型 34の凹部に挿入し、ランナー流れる部分と固定型 31の本体 部(下型 34)が別部品になっているため、上型 33と固定型 31の本体部の間に若干 の隙間ができる。そして、この隙間が断熱層の働きをするので、溝 36に流れる冷却流 体は、ランナー 32の温度を大幅に低下させる力 固定型 31本体部の温度はあまり低 下させな 、と 、う効果を得ることができる。 [0036] Since the upper mold 33 is inserted into the recess of the lower mold 34, the runner flowing portion and the main body portion of the fixed mold 31 (lower mold 34) are separate parts. There is a slight gap between the body parts. Since this gap acts as a heat insulating layer, the cooling fluid flowing in the groove 36 is a force that drastically reduces the temperature of the runner 32. Fixed temperature 31 The temperature of the main body is not lowered so much. Can be obtained.
実施例 5  Example 5
[0037] 本第 5実施例は、本発明にかかる金型冷却構造を用いて、大容量の冷却流体の通 路を形成したものである。  [0037] In the fifth embodiment, a large-capacity cooling fluid passage is formed using the mold cooling structure according to the present invention.
図 11は、固定型 50の側面図を示したものであり、金型冷却構造 51および後述する 支柱 56を破線で示して 、る。  FIG. 11 shows a side view of the fixed mold 50, in which a mold cooling structure 51 and a post 56 (to be described later) are indicated by broken lines.
[0038] 固定型 50は、上型 52と下型 53が、実施例 1または実施例 2に示した接合方法を用 いて接合されている。そして、上型 52と下型 53を接合する前に、上型 52と下型 53の それぞれの分割面に切削加工により形成された大容量の空間 54は、キヤビティ面 55 の近くまで形成されている。 [0038] In the fixed mold 50, the upper mold 52 and the lower mold 53 are bonded by using the bonding method shown in the first or second embodiment. Before joining the upper mold 52 and the lower mold 53, the large-capacity space 54 formed by cutting on the respective divided surfaces of the upper mold 52 and the lower mold 53 is formed close to the cavity surface 55. Yes.
図示を省略する力 大容量の空間 54は、 XYZの 3方向について広く切削加工され ており、大量の冷却流体を流すことができる。言いかえると、図 11の紙面に垂直な方 向にも大きく切削加工が施されており、大容量の通路が形成されている。  Force not shown The large-capacity space 54 is widely cut in the three directions of XYZ, and can flow a large amount of cooling fluid. In other words, large cuts are made in the direction perpendicular to the paper surface of Fig. 11 to form a large-capacity passage.
[0039] また、固定型 50における大容量の金型冷却構造 54には、強度を補強する目的で複 数の円筒形状の支柱 56が設けられている。この支柱 56は、下型 53からから植設さ れており、上型 52を支える働きをするものである。 [0039] The large-capacity mold cooling structure 54 in the fixed mold 50 is provided with a plurality of cylindrical columns 56 for the purpose of reinforcing the strength. This column 56 is planted from the lower mold 53. It functions to support the upper mold 52.
[0040] 力かる構成により、金型強度を低下させることなぐ大容量の冷却流体をキヤビティ 面近くまで送ることができるため、溶融榭脂を短時間で冷却することができ、成形サイ クルを大幅に短縮させることができる。 [0040] The powerful configuration allows large volumes of cooling fluid to be sent to near the cavity surface without lowering the mold strength, so that the molten resin can be cooled in a short time, greatly increasing the molding cycle. Can be shortened.
実施例 6  Example 6
[0041] 本発明に係る他の実施例について、以下に詳細に説明する。  [0041] Other embodiments according to the present invention will be described in detail below.
説明を簡単にするため、実施例 5との相違点のみを説明し、同一である部分は同一 の符号を付して説明を省略する。  In order to simplify the description, only differences from the fifth embodiment will be described, and the same portions are denoted by the same reference numerals and description thereof will be omitted.
[0042] 実施例 5においては、上型 52と下型 53を横方向に分割した場合を示した力 図 13 に示すように、上型の一部に容量の大きな部分 60を形成する場合は、横方向の分 割のみでは対応できな!/、場合がある。 [0042] In Example 5, the force shown when the upper mold 52 and the lower mold 53 are divided in the horizontal direction, as shown in Fig. 13, when the large capacity portion 60 is formed in a part of the upper mold. In some cases, horizontal division alone is not possible! /.
[0043] 本第 6実施例は、縦方向に分割し、上型 52が、部品 61と部品 62から構成され、上 型 52にさらに容量の大きな部分 60が形成されている点が第 5実施例と異なる点であ る。 [0043] In the sixth embodiment, the upper die 52 is divided into the vertical direction, the upper die 52 is composed of the parts 61 and 62, and the upper die 52 is formed with a portion 60 having a larger capacity. This is different from the example.
[0044] この場合、固定型 50は、下型 53と、部品 61および部品 62からなる上型 52の計 3 つの部品からなり、その全ての分割面が、第 1実施例または第 2実施例で示した接合 方法で接合されて 、るものである。  [0044] In this case, the fixed mold 50 is composed of a total of three parts: a lower mold 53 and an upper mold 52 composed of parts 61 and 62, and all of the divided surfaces thereof are the first embodiment or the second embodiment. It is joined by the joining method shown in.
[0045] 力かる構成により、金型冷却構造として非常に複雑なものでも容易に製造すること ができる。 [0045] Due to the powerful configuration, even a very complicated mold cooling structure can be easily manufactured.
実施例 7  Example 7
[0046] ホット'ランナーマ-ホールドを 2分割し、それぞれの分割面を接合したときに溶融 榭脂の流路が形成されるように切削加工した。また、溶融樹脂の流路および流路の 曲がる部分を、スムーズな曲線となるように切削加工した。  [0046] The hot runner hold was divided into two parts and cut so that a flow path of molten resin was formed when the respective divided surfaces were joined. Also, the flow path of the molten resin and the curved portion of the flow path were cut so as to form a smooth curve.
前記接合は、分割面にペースト状に練った銅を塗布し、 1, 200°Cで 5時間電気炉 を用いて熱処理して行ない、硝酸によって化学研磨した後、ノズルのネジ部を仕上げ 研磨した。内外部に化学 Niメツキを施し、再び 200°C4時間のベーキングを行ない、 Niメツキの硬度を高め、上下からネジ止めし、補強した後、別にカ卩ェしておいたノズ ル、ヒーター、熱電対などを組み付けホット'ランナーを完成させた。 実施例 8 The bonding is performed by applying paste-kneaded copper to the divided surfaces, heat-treating using an electric furnace at 1,200 ° C for 5 hours, chemically polishing with nitric acid, and then polishing the threaded portion of the nozzle. . Apply chemical Ni plating on the inside and outside, and bake again at 200 ° C for 4 hours to increase the hardness of the Ni plating, screw it from the top and bottom, reinforce it, and then separately clean the nozzle, heater, thermoelectric A hot runner was completed by assembling pairs. Example 8
[0047] 図 14は、本発明に係る押し出し成形用のダイの正面図であり、図 15は、図 14に示 したダイの組み立て状態を示す斜視図である。  FIG. 14 is a front view of an extrusion molding die according to the present invention, and FIG. 15 is a perspective view showing an assembled state of the die shown in FIG.
[0048] 図 14に示すように、ダイ 70は、コの字状の成形品を押し出し成形するために、空間 77が設けられている。そして、空間 77を通過する榭脂を冷却するために、空間 77に 近接した位置に、水等の冷却流体を流すための大容量の空間 76が設けられている  [0048] As shown in FIG. 14, the die 70 is provided with a space 77 for extruding a U-shaped molded product. A large-capacity space 76 for flowing a cooling fluid such as water is provided at a position close to the space 77 in order to cool the resin passing through the space 77.
[0049] この大容量の空間 76は、図 15に示すように、ダイ 70を部品 71と部品 72の 2つの部 品で構成することにより実現している。すなわち、部品 71は、空間 77の近傍まで深く 切削加工し、部品 72は、部品 71と接合したときに十分大きな空間 76ができるように 板材を切削加工して略凸形状としている。そして、大容量の空間 76を形成してもダイ 70の強度を維持するために、部品 72に複数の支柱 75を植設している。 This large-capacity space 76 is realized by configuring the die 70 with two parts 71 and 72 as shown in FIG. That is, the part 71 is cut deeply into the vicinity of the space 77, and the part 72 is cut into a substantially convex shape by cutting the plate material so that a sufficiently large space 76 is formed when the part 71 is joined to the part 71. In order to maintain the strength of the die 70 even when the large-capacity space 76 is formed, a plurality of support columns 75 are implanted in the part 72.
[0050] 部品 71と部品 72は、実施例 1または実施例 2に記載した 、ずれかの方法で分割面 を接合することができる。  [0050] As described in the first embodiment or the second embodiment, the divided surfaces can be joined to the component 71 and the component 72.
また、冷却流体としての水は、入り口 73から空間 76内に注入され、ダイの熱を吸収 した水は、出口 74から排出される。  Also, water as a cooling fluid is injected into the space 76 from the inlet 73, and the water that has absorbed the heat of the die is discharged from the outlet 74.
[0051] 前記した実施例は、説明のために例示したものであって、本発明としてはそれらに 限定されるものではなぐ特許請求の範囲、発明の詳細な説明および図面の記載か ら当業者が認識することができる本発明の技術的思想に反しない限り、変更および 付カロが可能である。  [0051] The above-described embodiments have been illustrated for the purpose of explanation, and the present invention is not limited thereto. From the scope of the claims, the detailed description of the invention, and the drawings, those skilled in the art will understand. As long as it is not contrary to the technical idea of the present invention that can be recognized, changes and attachments can be made.
[0052] 例えば、実施例 1〜5においては、固定型に金型冷却構造を形成した場合を示した 力 可動型に形成しても良ぐ固定型と可動型の双方に形成しても良い。  [0052] For example, in Examples 1 to 5, the force shown in the case where the mold cooling structure is formed on the fixed mold may be formed on the movable mold or the fixed mold and the movable mold. .
また、金型入子の加工において、入子を各パーツ毎に分割してカ卩ェし、それぞれ のパーツを本発明の接合法によって接合し、複雑な形状の入子を製造しても良い。  Further, in the mold insert processing, the insert may be divided into parts and covered, and each part may be joined by the joining method of the present invention to produce a insert having a complicated shape. .
[0053] また、冷却流体としては、水やエアー以外に、オイル、気化性の物質 (例えばフロン 、ハロン、アルコール、エーテル、)の気化熱を利用しても良い。  [0053] As the cooling fluid, in addition to water and air, the heat of vaporization of oil or a vaporizable substance (for example, chlorofluorocarbon, halon, alcohol, ether) may be used.
冷却流体としてエアーを用いる場合は、キヤビティ面近傍に設けられた温度センサ 一から溶融樹脂が金型内に射出されたという情報によって弁を開き、エアー冷却を 開始して金型を開いて成形品を取り出す時に終了させても、工程の如何にかかわら ず連続的にエアー冷却を行っても良 、。 When air is used as the cooling fluid, the valve is opened based on the information that the molten resin has been injected into the mold from the temperature sensor provided near the cavity surface, and air cooling is performed. It can be started when the mold is opened and the molded product is taken out, or air cooling can be performed continuously regardless of the process.
[0054] また、実施例においては、一般の射出成形(中実射出成形法)を示したが、旭化成 工業の AGI、 GPI、 CGM、 H2M、出光石油化学の GIM、新日鉄化学の PFP、英国 のシンプレス、米国の GAIN Technology,独国のエアーモーノレド、コンツーノレなど に代表されるガスアシスト成形法などに代表される中空射出成形法、及び米国の UC C法、 USM法、或いは、東芝機械と旭ダウとが開発した TAF法、 EX— CELL— O社 法、へッティンガーの発泡成形や、 New— SF、 GCP法、ァライドケミカル社の技法等 、更に超臨界状態の気態 (体)を用いた米国 トレクセル社の MuCell (ミューセル)や 旭化成工業の AMOTECに代表される発泡射出成形法と、発泡成形、発泡射出成 形法と前記ガスアシスト成形法と融合された方法、更には住友化学の SPモールド、ィ ンモールド成形法との前記ガスアシスト成形法とを融合させた方法にも適用される。 小野産業やシスコ、 GEプラスチックスが開発し、販売しているヒートアンドクールにも 、圧縮成型、射出圧縮成型、トランスファー成形、注型成形、真空成形、圧空成形な どに使用する金型や、押出し成形のダイなどへ温度のコントロールを要求される加工 治具にも適用可能である。 [0054] In the examples, general injection molding (solid injection molding method) was shown, but Asahi Kasei's AGI, GPI, CGM, H 2 M, Idemitsu Petrochemical's GIM, Nippon Steel Chemical's PFP, Hollow injection molding methods represented by UK-based thin press, US GAIN Technology, German air-monored, gas-assisted molding methods represented by Contourure, etc., U.S. UCC method, USM method, or Toshiba Machine TAF method developed by Asahi Dow, EX—CELL—O Company method, Hettinger's foam molding, New-SF, GCP method, Allied Chemical's technique, etc. The foam injection molding method represented by U.S. Trecell's MuCell and Asahi Kasei's AMOTEC, the foam molding, the foam injection molding method and the gas-assisted molding method, and the Sumitomo Chemical SP mold, in-mold molding method and Also apply to the method that combines with the gas-assisted molding method. The heat and cool developed and sold by Ono Sangyo, Cisco, and GE Plastics also include molds used for compression molding, injection compression molding, transfer molding, cast molding, vacuum molding, pneumatic molding, It can also be applied to processing jigs that require temperature control of extrusion dies.
[0055] また、ヒートアンドクールの様に射出前に加熱水蒸気によって金型温度を高め、溶 融榭脂を射出後、水冷する場合や、高周波誘導加熱を用いて金型表面を加熱する BSMや、それに準ずるハロゲンランプを用いて同じく金型表面を加熱し外観の向上 を狙う成形法の冷却にも本発明の冷却構造が有効である。  [0055] Also, as in heat and cool, the mold temperature is increased with heated steam before injection, the molten resin is injected with water and then cooled with water, or the surface of the mold is heated using high frequency induction heating. The cooling structure of the present invention is also effective for cooling a molding method that aims to improve the appearance by similarly heating the mold surface using a halogen lamp according to the above.
[0056] さらに、冷却流体を超音波振動することで、成形品の離型性の向上や、溶融榭脂 の流動性の向上にもつながると予想される。  [0056] Furthermore, it is expected that ultrasonic vibration of the cooling fluid will lead to an improvement in the mold release of the molded product and an improvement in the fluidity of the molten resin.
また、冷却流体に、マイクロバブル水を用いることにより、冷却効果をさらに向上さ せることができる。しかし、冷却流体としてエアーを用いたマイクロバブル水の場合、 溶存酸素が増え、金型冷却構造が腐食するという懸念がある。これに対しては、エア 一の代わりに窒素などの不活性なガスを用いる、金型冷却構造の内部を表面処理す る、鉄と銅、鉄と SUS、鉄と銀等の多層構造とする、または水以外の媒体を用いる等 で対応すること〖こより対応することができる。防鲭剤を入れた水をもちいるのも有効な 手段である。 In addition, the cooling effect can be further improved by using microbubble water as the cooling fluid. However, in the case of microbubble water using air as the cooling fluid, there is a concern that dissolved oxygen increases and the mold cooling structure corrodes. For this, an inert gas such as nitrogen is used instead of air, the inside of the mold cooling structure is surface-treated, and a multilayer structure such as iron and copper, iron and SUS, iron and silver, etc. It is possible to cope with this problem by using a medium other than water. It is also effective to use water with a fungicide Means.
[0057] また、本発明で実施可能な榭脂は、 ABS、 HIPSなどのスチレン系、 PE、 PPなどの ォレフィン系、塩ビなどのビュル系、ポリアミドなどアミド系、ポリエステルなどエステル 系、エーテル系榭脂に代表される熱可塑性榭脂の全て、およびユリア、フエノールの 代表される熱硬化性榭脂の全て、および前記樹脂のポリマーブレンドやポリマーァロ ィ、更には前記樹脂に無機および Zまたは有機繊維やミネラルを配合した複合材が あげられる。  [0057] The resin that can be used in the present invention includes ABS, HIPS and other styrenes, PE and PP, olefins, PVC and other burs, polyamides, amides, polyesters, ester, and ethers. All of the thermoplastic resins represented by fats, all of the thermosetting resins represented by urea and phenol, polymer blends and polymer alloys of the resins, and inorganic and Z or organic fibers in the resins. Examples include composites containing minerals.
産業上の利用可能性  Industrial applicability
[0058] 本発明は、射出成形に用いられる金型、押し出し成形用のダイ部、ブロー成形用の 金型、真空 ·圧空成形用金型の冷却回路やホット'ランナーのマ二ホールドやノズル 、温度コントロールを必要とする部品の加工治具に適用される。 [0058] The present invention relates to a mold used for injection molding, a die part for extrusion molding, a mold for blow molding, a cooling circuit for a mold for vacuum / compression molding, a hot runner manifold and a nozzle, Applicable to machining jigs for parts that require temperature control.
図面の簡単な説明  Brief Description of Drawings
[0059] [図 1]本発明に係る固定型の断面図である(実施例 1) FIG. 1 is a sectional view of a fixed mold according to the present invention (Example 1).
[図 2]本発明に係る固定型の上型の側面図である(実施例 1)  FIG. 2 is a side view of an upper mold of a fixed mold according to the present invention (Example 1).
[図 3]本発明に係る固定型の上型の底面図である(実施例 1)  FIG. 3 is a bottom view of the upper mold of the fixed mold according to the present invention (Example 1).
[図 4]本発明に係る固定型の下型の側面図である(実施例 1)  FIG. 4 is a side view of the lower mold of the fixed mold according to the present invention (Example 1).
[図 5]本発明に係る固定型の下型の平面図である(実施例 1)  FIG. 5 is a plan view of the lower mold of the fixed mold according to the present invention (Example 1).
[図 6]従来の固定型を説明する側面図である(実施例 1)  FIG. 6 is a side view for explaining a conventional fixed mold (Example 1).
[図 7]本発明に係るスプルー ·ブッシュの側面図である(実施例 3)  FIG. 7 is a side view of a sprue bush according to the present invention (Example 3).
[図 8]本発明に係るスプルー ·ブッシュの軸部の側面図である(実施例 3)  FIG. 8 is a side view of a shaft portion of a sprue bush according to the present invention (Example 3).
[図 9]本発明に係るスプルー ·ブッシュの筒部の側面図である(実施例 3)  FIG. 9 is a side view of the cylindrical portion of the sprue bush according to the present invention (Example 3).
[図 10]本発明に係るランナー部の側面図である(実施例 4)  FIG. 10 is a side view of a runner according to the present invention (Example 4).
[図 11]本発明に係る固定型の側面図である(実施例 5)  FIG. 11 is a side view of a fixed mold according to the present invention (Example 5).
[図 12]従来の金型を説明するための側面図である  FIG. 12 is a side view for explaining a conventional mold.
[図 13]本発明に係る固定型の側面図である(実施例 6)  FIG. 13 is a side view of a fixed mold according to the present invention (Example 6).
[図 14]本発明に係る押し出し成形用のダイの正面図である(実施例 8)  FIG. 14 is a front view of an extrusion die according to the present invention (Example 8).
[図 15]本発明に係る押し出し成形用のダイの組み立て状態を示す斜視図である(実 施例 8) 符号の説明 10 固定型 11 上型 FIG. 15 is a perspective view showing an assembled state of an extrusion die according to the present invention (Example 8). Explanation of symbols 10 Fixed type 11 Upper type
12 下型 12 Lower mold
14 金型冷却構造 16 人口  14 Mold cooling structure 16 Population
17 出口 17 Exit

Claims

請求の範囲 The scope of the claims
[1] 金型を複数の部品に分割し、  [1] Divide the mold into multiple parts,
該部品の分割面の所定箇所を切削加工し、  Cutting a predetermined part of the divided surface of the part,
該分割面を接合した場合に、冷却流体の通路の全部または一部が形成されること を特徴とする金型冷却構造  A mold cooling structure characterized in that all or part of the cooling fluid passage is formed when the divided surfaces are joined.
[2] 前記分割面を接合して形成した前記通路の一部に支柱が設けられていることを特 徴とする請求項 1に記載の金型冷却構造  [2] The mold cooling structure according to claim 1, wherein a column is provided in a part of the passage formed by joining the divided surfaces.
[3] 前記分割面の接合は、前記可動型または固定型を構成する材料よりも融点の低い 金属を挟んで熱処理接合したことを特徴とする請求項 1または請求項 2に記載の金 型冷却構造 [3] The mold cooling according to claim 1 or 2, wherein the split surfaces are joined by heat treatment with a metal having a melting point lower than that of the material constituting the movable mold or the fixed mold. Construction
[4] 前記分割面の接合は、電気融着であることを特徴とする請求項 1または請求項 2に 記載の金型冷却構造  [4] The mold cooling structure according to claim 1 or 2, wherein the joining of the divided surfaces is electric fusion.
PCT/JP2005/018351 2004-10-05 2005-10-04 Metal mold cooling structure WO2006038616A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-292070 2004-10-05
JP2004292070 2004-10-05
JP2004325622 2004-11-09
JP2004-325622 2004-11-09

Publications (1)

Publication Number Publication Date
WO2006038616A1 true WO2006038616A1 (en) 2006-04-13

Family

ID=36142689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018351 WO2006038616A1 (en) 2004-10-05 2005-10-04 Metal mold cooling structure

Country Status (1)

Country Link
WO (1) WO2006038616A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015131393A (en) * 2014-01-09 2015-07-23 日本軽金属株式会社 Mold for resin injection molding
JP2020105612A (en) * 2018-12-28 2020-07-09 日本製鉄株式会社 Cooling method and cooling device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6427920A (en) * 1987-07-24 1989-01-30 Mitsubishi Heavy Ind Ltd Mold
JPH0524320U (en) * 1991-09-03 1993-03-30 宇部興産株式会社 Mold for molding
JPH09225998A (en) * 1996-02-21 1997-09-02 Kao Corp Mold for blow molding
JPH09308955A (en) * 1996-05-21 1997-12-02 Ahresty Corp Cooling structure for metallic mold
JP2002370265A (en) * 2001-06-18 2002-12-24 Mitsubishi Materials Corp Mold apparatus for molding and method for controlling its temperature
JP2003103324A (en) * 2001-09-26 2003-04-08 Suwa Netsukogyo Kk Manufacturing method of mold
JP2004174606A (en) * 2003-12-24 2004-06-24 Suwa Netsukogyo Kk Metallic mold including heating/cooling circuit of fluid and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6427920A (en) * 1987-07-24 1989-01-30 Mitsubishi Heavy Ind Ltd Mold
JPH0524320U (en) * 1991-09-03 1993-03-30 宇部興産株式会社 Mold for molding
JPH09225998A (en) * 1996-02-21 1997-09-02 Kao Corp Mold for blow molding
JPH09308955A (en) * 1996-05-21 1997-12-02 Ahresty Corp Cooling structure for metallic mold
JP2002370265A (en) * 2001-06-18 2002-12-24 Mitsubishi Materials Corp Mold apparatus for molding and method for controlling its temperature
JP2003103324A (en) * 2001-09-26 2003-04-08 Suwa Netsukogyo Kk Manufacturing method of mold
JP2004174606A (en) * 2003-12-24 2004-06-24 Suwa Netsukogyo Kk Metallic mold including heating/cooling circuit of fluid and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015131393A (en) * 2014-01-09 2015-07-23 日本軽金属株式会社 Mold for resin injection molding
JP2020105612A (en) * 2018-12-28 2020-07-09 日本製鉄株式会社 Cooling method and cooling device
JP7265117B2 (en) 2018-12-28 2023-04-26 日本製鉄株式会社 Cooling method and cooling device

Similar Documents

Publication Publication Date Title
KR102044825B1 (en) A method for the manufacture of a mould part with channel for temperature regulation and a mould part made by the method
US20060115551A1 (en) Injection-mold pin
US20170106469A1 (en) Ultrasonic additive manufacturing assembly and method
WO2008038694A1 (en) Sprue bush and its production method
US20160056511A1 (en) Heat exchanger component
JPH09220735A (en) Injection molding nozzle
JP6325176B2 (en) Hot runner mold apparatus for molding ultra-thin annular resin body and mold system including the hot runner mold apparatus
JPH0839571A (en) Electromagnetic induction heating type mold for molding resin
WO2006038616A1 (en) Metal mold cooling structure
JP2005058568A (en) Golf club and method of manufacturing the same
EP1154886B1 (en) Moulds and method of making the same
JP2008221801A (en) Mold component member and its manufacturing method
JP7033470B2 (en) How to make a heat sink
JP4973350B2 (en) Mold assembly
US20200147846A1 (en) Tool for plastic injection molding and method for manufacturing the tool
JPH0531725A (en) Mold and preparation thereof
JP2002361681A (en) Holding method of hollow molded article of synthetic resin, molded article and mold therefor
JP2006062204A (en) Mold assembly
CN110696358B (en) Electrical integration integrated 3D printing forming method
JP6624574B2 (en) Mold and mold manufacturing method
JPH09168855A (en) Method an device for production of die for resin forming
JP4973351B2 (en) Mold assembly
JP2004050825A (en) Die
US10800025B2 (en) Monobloc tool for the production of molded parts
CN212636383U (en) Three-color injection mold for automobile parts

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP