WO2006038298A1 - Apparatus for producing ozone water - Google Patents

Apparatus for producing ozone water Download PDF

Info

Publication number
WO2006038298A1
WO2006038298A1 PCT/JP2004/014821 JP2004014821W WO2006038298A1 WO 2006038298 A1 WO2006038298 A1 WO 2006038298A1 JP 2004014821 W JP2004014821 W JP 2004014821W WO 2006038298 A1 WO2006038298 A1 WO 2006038298A1
Authority
WO
WIPO (PCT)
Prior art keywords
ozone
water
gas
ozone gas
tube
Prior art date
Application number
PCT/JP2004/014821
Other languages
French (fr)
Japanese (ja)
Inventor
Norikazu Takada
Original Assignee
Grow Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grow Co., Ltd. filed Critical Grow Co., Ltd.
Priority to CNA2004800441780A priority Critical patent/CN101052460A/en
Priority to JP2006539118A priority patent/JPWO2006038298A1/en
Priority to PCT/JP2004/014821 priority patent/WO2006038298A1/en
Publication of WO2006038298A1 publication Critical patent/WO2006038298A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2326Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles adding the flowing main component by suction means, e.g. using an ejector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • B01F23/23761Aerating, i.e. introducing oxygen containing gas in liquids
    • B01F23/237612Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • B01F23/23761Aerating, i.e. introducing oxygen containing gas in liquids
    • B01F23/237613Ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4338Mixers with a succession of converging-diverging cross-sections, i.e. undulating cross-section
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/78Details relating to ozone treatment devices
    • C02F2201/782Ozone generators

Abstract

[PROBLEMS] To provide an apparatus for producing an ozone water which can dissolve an ozone gas into a raw water at a high concentration and also can produce it at a low cost. [MEANS FOR SOLVING PROBLEMS] An apparatus for producing an ozone water which comprises an aspirator (120) for contacting a raw water with an ozone gas formed in a section (110) for generating an ozone gas, and a gas-liquid dissolution section being connected to the aspirator (120) and comprising a tube (130) having concave portions (131) and convex portions (132) formed alternately on the inside surface thereof, and which dissolves an ozone gas into the raw water at a high concentration, through allowing a mixed fluid of an ozone gas and the raw water to flow in the tube (130).

Description

明 細 書  Specification
オゾン水製造装置  Ozone water production equipment
技術分野  Technical field
[0001] 本発明は、オゾンガスを原料水に接触させ溶解させてオゾン水を生成するオゾン水 製造装置に関し、さら〖こ詳しくは、オゾンガスを水に溶解させる気液溶解部を、内部 表面に凹部と凸部とが交互に形成されるチューブより構成したオゾン水製造装置に 関するものである。  TECHNICAL FIELD [0001] The present invention relates to an ozone water production apparatus that generates ozone water by bringing ozone gas into contact with raw material water, and more specifically, a gas-liquid dissolving portion that dissolves ozone gas in water and a recess formed in the inner surface. The present invention relates to an ozone water production apparatus composed of tubes in which protrusions and convex portions are alternately formed.
背景技術  Background art
[0002] オゾン (ィ匕学式 03)は、強い酸ィ匕カを有して殺菌や脱臭に極めて有効であること が知られており、その利用形態としては、オゾンガスの他に、オゾンガスを水に溶解さ せて生成されるオゾン水がある。オゾン水は、医療、食品等の分野において、手洗い 用の洗浄水として使用されたり、医療用機器、食品製造機器、食器等の殺菌洗浄等 に用いられている。また、オゾンは塩素や次亜塩素酸ソーダ、過酸化水素水といった 他の殺菌剤や酸化剤のように残留性がなぐしかも有害有機物を分解、無害化する 作用も認められていることから、環境問題が深刻となってきている中でその利用範囲 は今後さらに広がっていくものと思われる。  [0002] Ozone (a chemical formula 03) is known to have a strong acid squid and is extremely effective for sterilization and deodorization. There is ozone water produced by dissolving in water. Ozone water is used as washing water for hand-washing in the medical and food fields, and is used for sterilization and washing of medical equipment, food production equipment, dishes, and the like. In addition, ozone is not only persistent but also has the effect of decomposing and detoxifying harmful organic substances like other disinfectants and oxidants such as chlorine, sodium hypochlorite, and hydrogen peroxide. The scope of use is expected to further expand in the future as problems become more serious.
[0003] オゾン水はオゾンガス発生器によって生成されたオゾンガスを水に接触させて溶 解させること〖こよって生成される。オゾンガスを製造する方法としては、主に無声放電 法と電解法がある。無声放電法とは、平行平板状若しくは同軸円筒状に配置された 一対の電極間に酸素含有気体を流しつつ、放電を生じさせてオゾンガスを発生させ るものである。無声放電法によるオゾンガス発生器としては、例えば、 2重管構造の放 電管の外側を固体誘電体の管で覆い、それら放電管と固体誘電体の管の間に電解 質溶液もしくは水を密封し、一方、放電管の内側の管の内部を電解質溶液、水もしく は空気で冷却するように構成したものがある(特許文献 1参照)。また、電解法とは、 水中に電解質膜を挟んで一対の電極をお!、て、両極間に直流電圧をかけて水の電 気分解を起こさせて、その際酸素発生側に酸素と同時にオゾンを発生させる方法で ある。電解法によるオゾンガス発生器としては、例えば、固体重合体電解質隔膜の両 側に、電極面に給水部を接触させて設けた陽極と陰極の一対の電極を配設するとと もに、給水部に水を補給する導水部を接続したものがある (特許文献 2参照)。 [0003] Ozone water is produced by bringing ozone gas produced by an ozone gas generator into contact with water and dissolving it. There are mainly silent discharge method and electrolysis method for producing ozone gas. The silent discharge method is a method in which ozone gas is generated by causing discharge while flowing an oxygen-containing gas between a pair of electrodes arranged in a parallel plate shape or a coaxial cylindrical shape. As an ozone gas generator using the silent discharge method, for example, a double dielectric tube is covered with a solid dielectric tube, and an electrolyte solution or water is sealed between the discharge tube and the solid dielectric tube. On the other hand, there is a configuration in which the inside of the discharge tube is cooled by an electrolyte solution, water, or air (see Patent Document 1). Also, the electrolysis method consists of a pair of electrodes with an electrolyte membrane sandwiched in water! A direct voltage is applied across the two electrodes to cause electrolysis of water, and at the same time oxygen is added to the oxygen generation side. This is a method of generating ozone. Examples of ozone gas generators based on electrolysis include solid polymer electrolyte diaphragms. On the side, a pair of electrodes of an anode and a cathode provided with the water supply part in contact with the electrode surface is disposed, and a water guide part for replenishing water is connected to the water supply part (see Patent Document 2) .
[0004] オゾン水製造装置は通常、上記のようなオゾンガス発生器と、このオゾンガス発生 器によって生成されるオゾンガスを原料水に溶解させる気液溶解部とを備えてなる。 気液溶解部としては、例えば、水槽の下方からオゾンガスを吹き込むパブリング法に よるものや、原料水の配管の一部に狭隘部を設けてそこにオゾンガスを吹き込むェ ジェクタ一法によるもの、ポンプで水とオゾンガスを撹拌する撹拌法によるもの、多孔 質膜に水を流して、その外側にオゾンガスを流して水中にオゾンガスを吸収させる隔 膜溶解法によるもの等がある。このうち、ェジェクタ一法によるものは、装置の構成を 簡素化できるので、コスト面と小型化の面において有利である。 [0004] An ozone water production apparatus usually includes the ozone gas generator as described above and a gas-liquid dissolving part for dissolving ozone gas generated by the ozone gas generator in raw water. Examples of the gas-liquid dissolving part include a publishing method in which ozone gas is blown from the bottom of the water tank, a ejector method in which a narrow part is provided in a part of the raw water piping, and ozone gas is blown into it, and a pump. There are a stirring method in which water and ozone gas are stirred, and a diaphragm dissolution method in which water is passed through a porous membrane and ozone gas is allowed to flow outside the porous membrane to absorb ozone gas. Of these, the ejector method is advantageous in terms of cost and size because the configuration of the apparatus can be simplified.
[0005] このェジェクタ一法に静止型ミキサーを組み合わせてなる気液溶解部を備えるォゾ ン水製造装置が提案されている (特許文献 3参照)。静止型ミキサーとは、螺旋状に 回転した複数個の羽根を連結したものをパイプ内に設置して構成されるものであり、 このノイブ内部を 2種以上の流体が通流する際に、 2種以上の流体が複数個の羽根 の存在によって分割、混合を繰り返し撹拌混合されるものである。静止型ミキサーとし ては、例えば、気体や液体といった流体が通流する筒状の部材の内部に、時計方向 に螺旋状に 180° 回転して螺旋状に形成される第 1羽根部材と、反時計方向に螺旋 状に 180° 回転して形成される第 2羽根部材が配設されるとともに、第一羽根部材と 第 2羽根部材との境界部に孔が設けられて複数の流体通路が形成されるものがある (特許文献 4参照)。このような静止型ミキサーを採用することによって、オゾンガスと 原料水との混合効率を向上させることができる。 [0005] An ozone water production apparatus having a gas-liquid dissolving part, which is a combination of this ejector method and a static mixer, has been proposed (see Patent Document 3). A static mixer is constructed by connecting a plurality of spirally rotating blades in a pipe. When two or more fluids flow through the inside of the noise, More than seed fluid is divided and mixed by the presence of a plurality of blades and stirred and mixed. As a stationary mixer, for example, a first blade member formed in a spiral shape by rotating 180 ° clockwise in a spiral shape inside a cylindrical member through which a fluid such as gas or liquid flows, A second blade member that is formed by rotating 180 ° in a clockwise direction is disposed, and a hole is provided at the boundary between the first blade member and the second blade member to form a plurality of fluid passages. (See Patent Document 4). By adopting such a static mixer, the mixing efficiency of ozone gas and raw water can be improved.
[0006] し力しながら、一方で静止型ミキサーは製造工程が複雑であり製造コストがかかるこ とから、これを採用したオゾンガス製造装置は高価となって 、た。 [0006] However, on the other hand, a static mixer has a complicated manufacturing process and high manufacturing costs, and thus an ozone gas manufacturing apparatus using the static mixer is expensive.
特許文献 1:特開 2003— 206108号公報  Patent Document 1: Japanese Patent Laid-Open No. 2003-206108
特許文献 2 :特開平 7-157301号公報  Patent Document 2: JP-A-7-157301
特許文献 3:登録実用新案第 3100194号公報  Patent Document 3: Registered Utility Model No. 3100194
特許文献 4:特許第 33392692号公報  Patent Document 4: Japanese Patent No. 33392692
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0007] そこで、本発明は、静止型ミキサーを採用するオゾン水製造装置に匹敵する気液 混合性能を有しながら、安価で製造可能なオゾン水製造装置を提供することを課題 とするちのである。  [0007] Therefore, the present invention has an object to provide an ozone water production apparatus that can be manufactured at low cost while having a gas-liquid mixing performance comparable to an ozone water production apparatus that employs a static mixer. is there.
課題を解決するための手段  Means for solving the problem
[0008] 上記課題を解決するために、請求項 1に記載の発明が採った手段は、オゾンガスを 原料水に溶解させてオゾン水を生成するオゾン水製造装置であって、オゾンガス発 生部にて生成されたオゾンガスと原料水とを接触させるァスピレータと、該ァスビレー タに接続されて内部表面に凹部と凸部とが交互に形成されたチューブ力 なり、該チ ユーブ内をオゾンガスと原料水とが流動することによりオゾンガスを原料水中に溶解さ せる気液溶解部とを備えることを特徴とするオゾン水製造装置である。  [0008] In order to solve the above-mentioned problem, the means adopted by the invention according to claim 1 is an ozone water production apparatus for generating ozone water by dissolving ozone gas in raw water, in the ozone gas generation section. An aspirator for contacting the generated ozone gas and raw water, and a tube force connected to the aspirator and having recesses and protrusions alternately formed on the inner surface, and the inside of the tube is filled with ozone gas and raw water. And a gas-liquid dissolving part that dissolves ozone gas in the raw material water by flowing.
[0009] すなわち、請求項 1に記載のオゾン水製造装置は、ァスピレータを介して気液溶解 部たるチューブの内部にオゾンガスと原料水とを流入させ、オゾンガスと原料水とが チューブ内を流動する際に凹部及び凸部に衝突して乱流状態を形成することにより 原料水中にオゾンガスを溶解させるものである。内部に凹部と凸部とが形成されたチ ユーブを気液溶解部として採用することで、従来の静止型ミキサーよりも低コストで同 等の気液混合性能が得られるようになる。  That is, in the ozone water production apparatus according to claim 1, ozone gas and raw material water are caused to flow into the inside of the tube, which is a gas-liquid dissolving part, via the aspirator, and the ozone gas and raw material water flow in the tube. At this time, the ozone gas is dissolved in the raw material water by colliding with the concave and convex portions to form a turbulent state. By adopting a tube having concave and convex portions inside as the gas-liquid dissolving part, the same gas-liquid mixing performance can be obtained at a lower cost than the conventional static mixer.
[0010] また、請求項 2に記載の発明が採った手段は、チューブは、内部表面に交互に形 成される複数の凹部及び凸部が、それぞれ軸長方向に連続してらせん形状に形成 されて 、ることを特徴とする請求項 1に記載のオゾン水製造装置である。  [0010] Further, according to the means of the invention described in claim 2, the tube has a plurality of recesses and projections alternately formed on the inner surface, each formed in a spiral shape in the axial length direction. The ozone water production apparatus according to claim 1, wherein
[0011] チューブ内部に形成される凹部と凸部とを、それぞれ軸長方向に連続してらせん形 状に形成することにより、オゾンガスと原料水とがチューブ内で凹部と凸部に沿って 螺旋状に回転しながら流動することとなるので、溶解効率をより向上させることができ る。  [0011] By forming a concave portion and a convex portion formed inside the tube in a spiral shape continuously in the axial length direction, ozone gas and raw material water spiral along the concave portion and the convex portion in the tube. Therefore, dissolution efficiency can be further improved.
[0012] また、請求項 3に記載の発明が採った手段は、チューブは、少なくともその内部表 面がオゾン耐性を有する材質より形成されていることを特徴とする請求項 1または 2に 記載のオゾン水製造装置である。  [0012] Further, according to the means taken by the invention of claim 3, the tube is formed of a material having at least an inner surface of which has ozone resistance, according to claim 1 or 2. Ozone water production device.
[0013] チューブの内部表面をオゾン耐性を有する材質より形成することで、オゾンガスの 接触によるチューブの腐食劣化を防止することができる。 [0013] By forming the inner surface of the tube from a material having ozone resistance, ozone gas Corrosion deterioration of the tube due to contact can be prevented.
発明の効果  The invention's effect
[0014] 請求項 1に記載のオゾン水製造装置によれば、ァスピレータに接続される気液溶解 部を、内部表面に凹部と凸部とが交互に形成されるチューブより形成したことによつ て、ァスピレータで接触したオゾンガスと原料水とがチューブ内を流動する際に凹部 と凸部とにより抵抗を受けて乱流状態となって、オゾンガスを原料水中に高濃度で溶 解させることが可能となる。また、気液溶解部を低コストで作成することが可能となるの で、オゾンガスの溶解性に優れたオゾン水製造装置を安価で提供することができる。  [0014] According to the ozone water producing apparatus according to claim 1, the gas-liquid dissolving part connected to the aspirator is formed from a tube in which concave parts and convex parts are alternately formed on the inner surface. When the ozone gas and raw material water contacted by the aspirator flow in the tube, they are resisted by the concave and convex portions and become turbulent, so that the ozone gas can be dissolved in the raw water at a high concentration. It becomes. In addition, since the gas-liquid dissolving part can be created at low cost, an ozone water production apparatus having excellent ozone gas solubility can be provided at low cost.
[0015] 請求項 2に記載のオゾン水製造装置によれば、請求項 1に記載のオゾン水製造装 置の効果に加えて、チューブの内部表面に形成される複数の凹部及び凸部がそれ ぞれ軸長方向に連続してらせん形状に形成されることにより、オゾンガスと原料水と がより乱流状態を形成しやすくなるので、オゾンガスの溶解効率をより向上させること ができる。  [0015] According to the ozone water production apparatus according to claim 2, in addition to the effect of the ozone water production apparatus according to claim 1, a plurality of recesses and projections formed on the inner surface of the tube are provided. Since the ozone gas and the raw material water are more likely to form a turbulent flow state by being continuously formed in a spiral shape in the axial direction, the ozone gas dissolution efficiency can be further improved.
[0016] 請求項 3に記載のオゾン水製造装置によれば、チューブの内部表面をオゾン耐性 を有する材質より形成したことにより、オゾンガスとの接触によって生じる腐食劣化が 起こりにくくなつて装置のトラブルを防止できるとともに、メンテナンスの頻度も少なくて 済むことからランニングコストを安価に抑えることができる。  [0016] According to the ozone water production apparatus according to claim 3, since the inner surface of the tube is formed of a material having ozone resistance, the corrosion deterioration caused by the contact with ozone gas is less likely to occur. This can be prevented and the frequency of maintenance can be reduced, so the running cost can be kept low.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 本発明に係るオゾン水製造装置は、オゾンガス発生部と、ァスピレータと、気液溶 解部と、気液分離部とを備える。  The ozone water production apparatus according to the present invention includes an ozone gas generation unit, an aspirator, a gas-liquid dissolution unit, and a gas-liquid separation unit.
[0018] オゾンガス発生部には、既存のオゾンガス発生器を用いることができ、例えば、平 行平板状若しくは同軸円筒状に配置された一対の電極間に酸素含有気体を流しつ つ、放電を生じさせてオゾンガスを発生させる無声放電式のオゾンガス発生器、水中 に電解質膜を挟んで一対の電極をお 、て、両極間に直流電圧をかけて水の電気分 解を起こさせて、その際酸素発生側に酸素と同時にオゾンを発生させる電解式のォ ゾンガス発生器等を用いることができる。  [0018] An existing ozone gas generator can be used for the ozone gas generating section. For example, a discharge is generated while an oxygen-containing gas flows between a pair of electrodes arranged in a parallel plate shape or a coaxial cylindrical shape. Silent discharge type ozone gas generator that generates ozone gas through a pair of electrodes with an electrolyte membrane sandwiched in water, and a DC voltage is applied between the two electrodes to cause electrical decomposition of the water. An electrolytic ozone gas generator that generates ozone simultaneously with oxygen can be used on the generation side.
[0019] ァスピレータは、原料水とオゾンガス発生部にて生成されたオゾンガスとを接触させ るものである。すなわち、ァスピレータを上水道等の原料水供給手段とオゾンガス発 生部とに接続し、原料水がァスピレータを通過するに伴ってァスピレータ内に生じる 負圧によってオゾンガス発生部において生成されたオゾンガスをァスピレータ内に導 入して原料水と接触させることができる。 [0019] The aspirator is for bringing the raw material water into contact with the ozone gas generated in the ozone gas generation section. That is, the aspirator is connected to raw water supply means such as waterworks and ozone gas generator. The ozone gas generated in the ozone gas generating section can be introduced into the aspirator by the negative pressure generated in the aspirator as the raw water passes through the aspirator and brought into contact with the raw water.
[0020] 尚、原料水としては、水道水をフィルター濾過して鉄鲭、有機物、塩素などの不純 物を除去した浄水や、水道水力ゝら逆浸透膜 (RO膜)などを使用した純水器で精製さ れた純水、医療用として市販されている蒸留水、滅菌精製水、注射用水等、不純物 がなるベく除去されたものを使用することが好ましい。  [0020] As raw water, tap water is filtered to remove impurities such as iron trough, organic matter, and chlorine, or pure water using reverse osmosis membrane (RO membrane) from tap water. It is preferable to use water from which impurities have been removed, such as pure water purified by a vessel, distilled water commercially available for medical use, sterilized purified water, and water for injection.
[0021] 気液溶解部は、上記ァスピレータにて原料水と接触させたオゾンガスを、原料水中 に溶解させてオゾン水を生成するものである。気液溶解部は、内部表面に凹部と凸 部とが形成されたチューブが用いられる。内部表面の形状としては、例えば、蛇腹状 に形成されたものや凹部と凸部とがそれぞれ軸長方向に連続してらせんを形成する ものが挙げられ、このうち、らせん形状を成すものがオゾンガスと原料水の滞留がなく 乱流状態を形成しやす 、ことから特に好ま 、。  [0021] The gas-liquid dissolving section is for generating ozone water by dissolving ozone gas brought into contact with raw material water in the aspirator in the raw water. For the gas-liquid dissolving part, a tube having a concave part and a convex part formed on the inner surface is used. Examples of the shape of the inner surface include those formed in a bellows shape, and those in which a concave portion and a convex portion each form a spiral in the axial length direction, and among these, a spiral shape is ozone gas. It is especially preferred because it is easy to form a turbulent state without any retention of raw material water.
[0022] チューブの内径は特に限定されるものではなぐ原料水の流量に応じて加減すれ ばよい。また、チューブの長さについても特に限定されるものではないが、 50mm— 1 OOOmmの範囲で設定するとよぐこのうち、特に 150mmとすることが好ましい。長さ を 50mmよりも短くすると、十分なオゾン濃度を有するオゾン水を得ることができず、 一方、 1000mmよりも長くしても、それ以上のオゾン水濃度が得られないからである。  [0022] The inner diameter of the tube is not particularly limited, and may be adjusted according to the flow rate of the raw material water. Further, the length of the tube is not particularly limited, but it is preferable to set it within the range of 50 mm-1 OOOmm. This is because if the length is shorter than 50 mm, ozone water having a sufficient ozone concentration cannot be obtained, and if it is longer than 1000 mm, no more ozone water concentration can be obtained.
[0023] また、チューブの少なくとも内部表面は、オゾン耐性を有する材質より形成すること が好ましい。内部表面をオゾン耐性を有する材質とすることで、チューブの腐食劣化 が生じに《なるからである。オゾン耐性を有する材質としては、例えば、ポリテトラフ ルォロエチレン四フッ化工チレン榭脂等のフッ素榭脂や、純チタン、セラミック、ガラス 等が挙げられ、チューブ全体をこれら材質より形成してもよいし、内部表面をこれら材 質でコーティング処理してもよ 、。  [0023] Further, at least the inner surface of the tube is preferably formed of a material having ozone resistance. This is because the inner surface is made of a material having ozone resistance, which causes corrosion deterioration of the tube. Examples of the material having ozone resistance include fluorine resin such as polytetrafluoroethylene tetrafluoroethylene resin, pure titanium, ceramic, glass, etc., and the entire tube may be formed of these materials. The surface can be coated with these materials.
[0024] また、オゾン水製造装置には、気液溶解部にて生成されたオゾン水を貯留するとと もに、水中に溶解されなかった余剰のオゾンガスを分離する気液分離部が設けられ るとよい。気液分離部で分離された余剰のオゾンガスは、気液分離部に接続されるォ ゾンガス処理部を介して酸素に分解されてカゝら外部に排出されるようにする。オゾン ガスは殺菌、脱臭等に極めて有用なものである反面、高濃度のオゾンガスは人体に とって危険性があることから、これによる事故を防ぐためである。オゾンガスの処理方 法には、活性炭分解法、触媒法、熱分解法等があり、これら方法による既存のオゾン ガス処理装置を用いることが可能である。 [0024] Further, the ozone water production apparatus is provided with a gas-liquid separation unit that separates excess ozone gas that has not been dissolved in water, while storing ozone water generated in the gas-liquid dissolution unit. Good. The surplus ozone gas separated in the gas-liquid separation unit is decomposed into oxygen through an ozone gas processing unit connected to the gas-liquid separation unit, and discharged to the outside. ozone The gas is extremely useful for sterilization, deodorization, etc., but high-concentration ozone gas is dangerous for the human body. The ozone gas treatment methods include activated carbon decomposition method, catalyst method, thermal decomposition method, etc., and existing ozone gas treatment equipment using these methods can be used.
実施例  Example
[0025] 以下に、本発明の実施の形態を図に基づいて説明する。図 1は、本実施例に係る オゾン水製造装置 100の概略図を示して 、る。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a schematic diagram of an ozone water production apparatus 100 according to this embodiment.
[0026] オゾン水製造装置 100は、オゾンガス発生部 110と、ァスピレータ 120と、気液溶解 部たるスパイラルチューブ 130と、気液分離部 140と、オゾンガス処理部 150とオゾン 水出力部 160とを有している。  [0026] The ozone water production apparatus 100 has an ozone gas generation unit 110, an aspirator 120, a spiral tube 130 as a gas-liquid dissolution unit, a gas-liquid separation unit 140, an ozone gas treatment unit 150, and an ozone water output unit 160. is doing.
[0027] オゾンガス発生部 110は、図示しない酸素ボンベに接続されており、この酸素ボン ベより供給される酸素ガスを平行平板状に配置された一対の電極間に流しつつ、交 流高電圧を印加してオゾンガスを発生させる無声放電式のものを採用している。この オゾンガス発生部は、ァスピレータ 120に接続されており、発生したオゾンガスはァス ビレータ 120内へと流入する。  [0027] The ozone gas generation unit 110 is connected to an oxygen cylinder (not shown), and an alternating high voltage is generated while flowing an oxygen gas supplied from the oxygen cylinder between a pair of electrodes arranged in a parallel plate shape. A silent discharge type that generates ozone gas when applied is adopted. This ozone gas generation part is connected to the aspirator 120, and the generated ozone gas flows into the aspirator 120.
[0028] ァスピレータ 120は、図示しない濾過フィルタを介して上水道に接続されるとともに 、上述のオゾンガス発生部 110に接続されており、内部には濾過フィルタにより濾過 された浄水が流入する管路と、これに連通するオゾンガスが流入する管路とが形成さ れている。そして、このァスピレータ 120内を浄水が流入する際に生じる負圧によって オゾンガスが吸引され、浄水と混合される。また、ァスピレータ 120は次に詳述するス パイラルチューブ 130に接続されていて、ァスピレータ 120内で混合されたオゾンガ スと浄水とがスパイラルチューブ 130に向かって流出するようになっている。  [0028] The aspirator 120 is connected to the water supply via a filtration filter (not shown), and is connected to the ozone gas generation unit 110. A pipe line into which purified water filtered by the filtration filter flows, A conduit for ozone gas to flow into it is formed. The ozone gas is sucked by the negative pressure generated when purified water flows into the aspirator 120 and mixed with purified water. The aspirator 120 is connected to a spiral tube 130 described in detail below, and ozone gas and purified water mixed in the aspirator 120 flow out toward the spiral tube 130.
[0029] スノィラルチューブ 130は、一端がァスピレータ 120に接続され、他端は後述する 気液分離部 140に接続されている。図 2は、本実施例に係るオゾン水製造装置に配 設される気液混合部としてのスノィラルチューブ 130を示している。図 2に示すように 、スノィラルチューブ 130は、その内面に複数の凹部 131と凸部 132とが交互に形 成され、さらに複数の凹部 131及び凸部 132は、それぞれ軸長方向に連続して形成 されてらせん構造を採っている。また、スパイラルチューブ 130は、耐ォゾン性を有す る PTFE (ポリテトラフルォロエチレン四フッ化工チレン)より形成されて!、る。スパイラ ルチューブ 130の内径及び長さはそれぞれ 10mm、 150mmに設定されて!、る。 [0029] One end of the snail tube 130 is connected to the aspirator 120, and the other end is connected to a gas-liquid separator 140 described later. FIG. 2 shows a snoral tube 130 as a gas-liquid mixing unit disposed in the ozone water production apparatus according to the present embodiment. As shown in FIG. 2, the snow tube 130 has a plurality of recesses 131 and protrusions 132 alternately formed on the inner surface thereof, and the plurality of recesses 131 and protrusions 132 are each continuous in the axial length direction. Formed into a spiral structure. In addition, the spiral tube 130 is resistant to ozone. Made of PTFE (polytetrafluoroethylene tetrafluoroethylene)! RU The inner diameter and length of the spiral tube 130 are set to 10 mm and 150 mm, respectively.
[0030] このスパイラルチューブ 130内を、ァスピレータ 120より流出するオゾンガスと浄水と の混合液が通過する。このとき、オゾンガスと浄水との混合液は、スパイラルチューブ 130内の凹部 131及び凸部 132と衝突するとともに、らせん状に回転して乱流状態と なる。こうして混合液が乱流状態となることにより、オゾンガスを浄水中に効率良く溶 解させることができるのである。  [0030] A mixed liquid of ozone gas and purified water flowing out from the aspirator 120 passes through the spiral tube 130. At this time, the mixed solution of ozone gas and purified water collides with the concave portion 131 and the convex portion 132 in the spiral tube 130, and rotates in a spiral to become a turbulent state. In this way, the mixed liquid becomes a turbulent state, so that the ozone gas can be efficiently dissolved in the purified water.
[0031] 気液分離部 140は、スパイラルチューブ 130で生成されたオゾン水と、浄水中に溶 解されなかった余剰のオゾンガスとを分離するとともに、オゾン水を貯留するものであ る。気液分離部 140は、内部の底面より垂設される隔壁 141によってオゾン水流入部 142とオゾン水貯留部 143との 2室に分割されている。オゾン水流入部 142には、ス パイラルチューブ 130に接続されて余剰のオゾンガスとオゾン水とが流入する。一方 、オゾン水貯留部 143は、オゾン水流入部 142で余剰のオゾンガスが除去されたォ ゾン水を貯留するものであって、オゾン水を外部に出力するオゾン水出力部 160に 接続されている。なお、オゾン水流入部 142とオゾン水貯留部 143とは上方で連通し ている。  [0031] The gas-liquid separation unit 140 separates the ozone water generated in the spiral tube 130 from the surplus ozone gas that has not been dissolved in the purified water, and stores the ozone water. The gas-liquid separation part 140 is divided into two chambers, an ozone water inflow part 142 and an ozone water storage part 143, by a partition wall 141 suspended from the inner bottom surface. Excess ozone gas and ozone water flow into the ozone water inflow section 142 connected to the spiral tube 130. On the other hand, the ozone water storage unit 143 stores ozone water from which excess ozone gas has been removed at the ozone water inflow unit 142, and is connected to an ozone water output unit 160 that outputs ozone water to the outside. . The ozone water inflow section 142 and the ozone water storage section 143 communicate with each other upward.
[0032] スパイラルチューブ 130からオゾン水流入部 142に流入してきたオゾン水中に溶解 されなかつた余剰のオゾンガスは、オゾン水流入部にて気泡となつてオゾン水中から 分離され、余剰のオゾンガスが除かれたオゾン水はオゾン水貯留部 143に貯留され る。そして、貯留されたオゾン水は、オゾン水出力部 160より図示しないスィッチの操 作によって外部に出力される。一方、オゾン水より分離された余剰のオゾンガスは、ォ ゾンガス処理部 150へと流入する。本実施例におけるオゾンガス処理部 150は、二 酸ィ匕マンガンを触媒に用いた 、わゆる触媒法によるものを採用して 、る。このオゾン ガス処理部 150にて二酸ィ匕マンガンと接触したオゾンガスは酸素に変換されて外部 に放出される。  [0032] Excess ozone gas that has not been dissolved in the ozone water flowing into the ozone water inflow portion 142 from the spiral tube 130 is separated from the ozone water as bubbles at the ozone water inflow portion, and the excess ozone gas is removed. The ozone water is stored in the ozone water storage unit 143. The stored ozone water is output to the outside by an operation of a switch (not shown) from the ozone water output unit 160. On the other hand, surplus ozone gas separated from the ozone water flows into the ozone gas processing unit 150. The ozone gas processing unit 150 in this embodiment employs a so-called catalytic method using manganese dioxide as a catalyst. The ozone gas that has come into contact with manganese dioxide in the ozone gas processing unit 150 is converted into oxygen and released to the outside.
[0033] 次に、本実施例に係るオゾン水製造装置 100にて生成されるオゾン水中のオゾン ガス濃度を測定した。表 1は、その測定結果を示している。尚、測定条件は、給水量 及び給水圧力をそれぞれ 3. 5LZmin、 0. 15Mpa、酸素供給量及び送出圧力をそ れぞれ lL/min、 0. 15Mpa、供給オゾンガス濃度及び供給オゾンガス量をそれぞ れ 80gZNm3、 8g/ オゾン水出水量及び水温をそれぞれ 3. 5L/min, 25°C、 として行い、オゾン水を 3回に分けてサンプリングし、それぞれのオゾンガス濃度を測 定して平均値を求めた。尚、比較例 1は、内径 10mm、長さ 150mmのストレートチュ 一ブを気液溶解部として用い、比較例 2は、内径 10mm、長さ 1000mmのストレート チューブを気液溶解部として用いた。また、比較例 3には、気液溶解部に静止型ミキ サーを用いた。 [0033] Next, the ozone gas concentration in the ozone water produced by the ozone water producing apparatus 100 according to this example was measured. Table 1 shows the measurement results. The measurement conditions were: water supply volume and water supply pressure of 3.5 LZmin and 0.15 MPa, oxygen supply volume and delivery pressure, respectively. Respectively, lL / min, 0.15Mpa, supply ozone gas concentration and supply ozone gas were 80gZNm3, 8g / ozone water discharge and water temperature respectively 3.5L / min, 25 ° C, and ozone water Sampling was performed in three batches, and each ozone gas concentration was measured to obtain an average value. In Comparative Example 1, a straight tube having an inner diameter of 10 mm and a length of 150 mm was used as the gas-liquid dissolving part, and in Comparative Example 2, a straight tube having an inner diameter of 10 mm and a length of 1000 mm was used as the gas-liquid dissolving part. In Comparative Example 3, a static mixer was used for the gas-liquid dissolving part.
[0034] [表 1] [0034] [Table 1]
Figure imgf000010_0001
表 1に示すように、本実施例におけるオゾンガス濃度の平均値は、比較例 1と比べて 1. 39ppm上回り、比較例 2と比べても 1. 42ppm上回った。また、静止型ミキサーを 用いた比較例 3と比べても同等以上の値を示した。この試験結果から、気液溶解部と してスパイラルチューブ 130を用いた本実施例に係るオゾン水製造装置 100は、優 れたオゾンガス溶解性能を有することが確認された。
Figure imgf000010_0001
As shown in Table 1, the average value of the ozone gas concentration in this example was 1.39 ppm higher than that of Comparative Example 1 and 1.42 ppm higher than that of Comparative Example 2. In addition, even when compared with Comparative Example 3 using a static mixer, the value was equal to or greater. From this test result, it was confirmed that the ozone water production apparatus 100 according to the present example using the spiral tube 130 as the gas-liquid dissolving part had excellent ozone gas dissolving performance.
[0035] このように、本実施例に係るオゾン水製造装置 100は、気液溶解部としてスパイラ ルチューブ 130を採用することにより、従来の静止型ミキサーに匹敵するオゾンガス 溶解効率を備えるオゾン水製造装置 100を安価で提供することができる。 As described above, the ozone water production apparatus 100 according to the present embodiment employs the spiral tube 130 as the gas-liquid dissolution unit, thereby providing an ozone water production apparatus having ozone gas dissolution efficiency comparable to that of a conventional static mixer. 100 can be offered at low cost.
産業上の利用可能性  Industrial applicability
[0036] ァスピレータに接続される気液溶解部を、内部表面に凹部と凸部とが交互に形成さ れたチューブ力 構成することで、高濃度のオゾンガスを含むオゾン水が生成可能と なるとともに、装置を安価で作製することができるので、例えば、医療処置や食品加 ェ等の分野における装置、器具等の殺菌洗浄の用途に適用できる。 [0036] The gas-liquid dissolving part connected to the aspirator has recesses and protrusions alternately formed on the inner surface. By configuring the tube force, it becomes possible to generate ozone water containing high-concentration ozone gas, and the device can be manufactured at a low cost. For example, devices and instruments in fields such as medical treatment and food processing It can be applied to sterilization and cleaning applications.
図面の簡単な説明  Brief Description of Drawings
[0037] [図 1]本実施例に係るオゾン水製造装置の概略ブロック図である。  FIG. 1 is a schematic block diagram of an ozone water production apparatus according to the present embodiment.
[図 2]本実施例に係るオゾン水製造装置を構成する気液溶解部としてのスパイラルチ ユーブの一部切欠平面図である。  FIG. 2 is a partially cutaway plan view of a spiral tube as a gas-liquid dissolving part constituting the ozone water production apparatus according to the present embodiment.
符号の説明  Explanation of symbols
[0038] 100 オゾン水製造装置 [0038] 100 ozone water production equipment
120 ァスピレータ  120 Aspirator
130 スパイラルチューブ (気液溶解部)  130 Spiral tube (gas-liquid dissolution part)

Claims

請求の範囲 The scope of the claims
[1] オゾンガスを原料水に溶解させてオゾン水を生成するオゾン水製造装置であって、 オゾンガス発生部にて生成されたオゾンガスと原料水とを接触させるァスピレータと 該ァスビレータに接続されて内部表面に凹部と凸部とが交互に形成されたチュー ブ力 なり、該チューブ内をオゾンガスと原料水とが流動することによりオゾンガスを 原料水中に溶解させる気液溶解部とを備えることを特徴とするオゾン水製造装置。  [1] An ozone water production apparatus for generating ozone water by dissolving ozone gas in raw material water, an aspirator for contacting ozone gas generated in an ozone gas generating section and raw water, and an internal surface connected to the aspirator And a gas-liquid dissolution part that dissolves ozone gas in the raw material water by flowing ozone gas and raw material water in the tube. Ozone water production equipment.
[2] チューブは、内部表面に交互に形成される複数の凹部及び凸部が、それぞれ軸長 方向に連続してらせん形状に形成されて 、ることを特徴とする請求項 1に記載のォゾ ン水製造装置。  [2] The tube according to claim 1, wherein the tube has a plurality of recesses and projections alternately formed on the inner surface, each formed in a spiral shape continuously in the axial length direction. Zone water production equipment.
[3] チューブは、少なくともその内部表面がオゾン耐性を有する材質より形成されている ことを特徴とする請求項 1または 2に記載のオゾン水製造装置。  [3] The ozone water production apparatus according to [1] or [2], wherein at least an inner surface of the tube is formed of a material having ozone resistance.
PCT/JP2004/014821 2004-10-07 2004-10-07 Apparatus for producing ozone water WO2006038298A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CNA2004800441780A CN101052460A (en) 2004-10-07 2004-10-07 Ozonidate prepn. plant
JP2006539118A JPWO2006038298A1 (en) 2004-10-07 2004-10-07 Ozone water production equipment
PCT/JP2004/014821 WO2006038298A1 (en) 2004-10-07 2004-10-07 Apparatus for producing ozone water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/014821 WO2006038298A1 (en) 2004-10-07 2004-10-07 Apparatus for producing ozone water

Publications (1)

Publication Number Publication Date
WO2006038298A1 true WO2006038298A1 (en) 2006-04-13

Family

ID=36142388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014821 WO2006038298A1 (en) 2004-10-07 2004-10-07 Apparatus for producing ozone water

Country Status (3)

Country Link
JP (1) JPWO2006038298A1 (en)
CN (1) CN101052460A (en)
WO (1) WO2006038298A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013523448A (en) * 2010-07-15 2013-06-17 コリア・インスティテュート・オブ・マシナリー・アンド・マテリアルズ Swivel unit-based microbubble generator
US8800969B2 (en) 2009-02-10 2014-08-12 Diffusaire Ltd Device and method for dissolving gas into a liquid
EP3093066A1 (en) * 2015-05-05 2016-11-16 Nordson Corporation Static mixers and methods for using and making the same
IT202200007652A1 (en) * 2022-04-19 2023-10-19 Micheletti Eng & Consulting Sagl SYSTEM AND SYSTEM FOR SPRAYING OZONED WATER AT HIGH PRESSURE

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI635856B (en) * 2017-04-06 2018-09-21 嘉麗通健康科技有限公司 Negative oxygen-therapy machine
CN107285417A (en) * 2017-08-10 2017-10-24 深圳市橘井舒泉技术有限公司 A kind of ozone water apparatus removes ozone mechanism and ozone water apparatus
JP6591093B1 (en) * 2018-06-13 2019-10-16 三菱電機株式会社 Ozone water generation apparatus, water treatment apparatus, ozone water generation method, and cleaning method
CN110338732A (en) * 2019-05-21 2019-10-18 珠海格力电器股份有限公司 A kind of dish-washing machine and bowl washing method
CN113576881A (en) * 2021-07-27 2021-11-02 广州生基科技有限公司 Negative oxygen ion water bath device
TWI802019B (en) * 2021-09-22 2023-05-11 品源鑫科技有限公司 High-pressure water ozone generator for multi layer electrode casing and ozone bathing system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4884954A (en) * 1972-02-17 1973-11-10
JP2002095942A (en) * 2000-09-22 2002-04-02 Yoshiyuki Sawada Gas dissolving device
JP2002210340A (en) * 2001-01-22 2002-07-30 Core Medical Kk Ozone water producer
JP2004223441A (en) * 2003-01-24 2004-08-12 Toyota Auto Body Co Ltd Ozone water manufacturing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4884954A (en) * 1972-02-17 1973-11-10
JP2002095942A (en) * 2000-09-22 2002-04-02 Yoshiyuki Sawada Gas dissolving device
JP2002210340A (en) * 2001-01-22 2002-07-30 Core Medical Kk Ozone water producer
JP2004223441A (en) * 2003-01-24 2004-08-12 Toyota Auto Body Co Ltd Ozone water manufacturing apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8800969B2 (en) 2009-02-10 2014-08-12 Diffusaire Ltd Device and method for dissolving gas into a liquid
JP2013523448A (en) * 2010-07-15 2013-06-17 コリア・インスティテュート・オブ・マシナリー・アンド・マテリアルズ Swivel unit-based microbubble generator
US9061255B2 (en) 2010-07-15 2015-06-23 Korea Institute Of Machinery & Materials Rotating unit-based micro-sized bubble generator
EP3093066A1 (en) * 2015-05-05 2016-11-16 Nordson Corporation Static mixers and methods for using and making the same
US10092887B2 (en) 2015-05-05 2018-10-09 Nordson Corporation Static mixers and methods for using and making the same
EP3388144A1 (en) * 2015-05-05 2018-10-17 Nordson Corporation Static mixers and methods for using and making the same
IT202200007652A1 (en) * 2022-04-19 2023-10-19 Micheletti Eng & Consulting Sagl SYSTEM AND SYSTEM FOR SPRAYING OZONED WATER AT HIGH PRESSURE
EP4272858A3 (en) * 2022-04-19 2024-04-17 Micheletti Engineering & Consulting Sagl Machine and system for spraying ozonated water under high pressure

Also Published As

Publication number Publication date
JPWO2006038298A1 (en) 2008-05-15
CN101052460A (en) 2007-10-10

Similar Documents

Publication Publication Date Title
TWI447990B (en) Method and apparatus for producing ozone water, method for disinfection and method for wastewater or waste fluid treatment
JP5544181B2 (en) Electrochemical synthesis of ozone fine bubbles
JP5913693B1 (en) Electrolytic device and electrolytic ozone water production device
JP5764474B2 (en) Electrolytic synthesis apparatus, electrolytic treatment apparatus, electrolytic synthesis method, and electrolytic treatment method
KR20130014688A (en) Membrane-electrode assembly, electrolytic cell using the same, method and apparatus for producing ozone water, method for disinfection and method for wastewater or waste fluid treatment
JP2005511280A (en) Method and apparatus for producing negative and positive redox potential (ORP) water
CN101823781A (en) Unit for producing sterilized water, cartridge comprising the unit and washing machine comprising the cartridge
WO2006038298A1 (en) Apparatus for producing ozone water
JP5897496B2 (en) Ozone water production apparatus, ozone water production method, sterilization method, and wastewater / waste liquid treatment method
JP2009125628A (en) Membrane-electrode assembly, electrolytic cell using the same, ozone water generator, and sterilization method
JP2002532236A (en) Microbial control of point-of-use drinking water sources
JPWO2012121270A1 (en) Sulfuric acid electrolysis apparatus and sulfuric acid electrolysis method
US6843895B2 (en) Portable device for electrochemical processing of liquids
JP4394942B2 (en) Electrolytic ozonizer
JP7010529B2 (en) Sterilization and cleaning method using water electrolyzer and water electrolyzer and method for decomposing and removing harmful substances
JP2002210340A (en) Ozone water producer
KR100958677B1 (en) High efficient un-divided electrochemical cell and apparatus for manufacturing of chlorine dioxide using it
WO2013065355A1 (en) Ozone liquid generator and ozone liquid generation method
JP3682275B2 (en) Ozone water production equipment
JP5975397B2 (en) Ozone water generator
JP3770533B2 (en) Hypochlorite production equipment
JP2004313780A (en) Electrolytic synthesis method of peracetic acid, and method and apparatus for sterilization wash
KR20070083895A (en) Apparatus for producing ozone water
JP6650586B2 (en) Electrolyzed water generator
JP2006124750A (en) Ozone water producer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006539118

Country of ref document: JP

Ref document number: 200480044178.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077009955

Country of ref document: KR

122 Ep: pct application non-entry in european phase