WO2006038266A1 - Microscope zoom objective lens - Google Patents

Microscope zoom objective lens Download PDF

Info

Publication number
WO2006038266A1
WO2006038266A1 PCT/JP2004/014397 JP2004014397W WO2006038266A1 WO 2006038266 A1 WO2006038266 A1 WO 2006038266A1 JP 2004014397 W JP2004014397 W JP 2004014397W WO 2006038266 A1 WO2006038266 A1 WO 2006038266A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
image
group
magnification
Prior art date
Application number
PCT/JP2004/014397
Other languages
French (fr)
Japanese (ja)
Inventor
Kunio Shimada
Original Assignee
Kunio Shimada
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunio Shimada filed Critical Kunio Shimada
Priority to PCT/JP2004/014397 priority Critical patent/WO2006038266A1/en
Priority to JP2006539094A priority patent/JPWO2006038266A1/en
Publication of WO2006038266A1 publication Critical patent/WO2006038266A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • G02B21/025Objectives with variable magnification

Definitions

  • the present invention is a microscope objective lens for imaging an object (specimen) positioned on an object point to an image point separated by a predetermined distance on the optical axis, which is a telecentric system and has a high zoom ratio.
  • the present invention relates to a technique of a microscopic zoom objective lens.
  • an optical system of a microscope is divided into an finite correction optical system and an infinite correction optical system from an imaging system.
  • the former finite correction optical system is an optical system in which an object lens that first passes light from an object forms an image of the object alone.
  • the latter infinite correction optical system has an imaging lens behind the objective lens. Light from the object passes through the objective lens and becomes afocal (parallel to the optical axis), and the afocal light is imaged. Image is formed behind the lens. Therefore, as a method of zooming the microscope, the concept of zooming the imaging lens and the concept of zooming the objective lens are known.
  • Patent Document 1 and Patent Document 2 are examples in which an imaging lens in an infinite correction optical system is zoomed.
  • a zoomed imaging lens usually has at least three or more lens groups, and there is also an objective lens, which tends to increase the optical tube length of the entire microscope.
  • Patent Document 1 Japanese Patent Publication No. 2-54925
  • Patent Document 2 JP-A-11-271644
  • Patent Document 3 is an example in which an objective lens in a finite correction optical system is zoomed, and a zoom ratio of 5 is obtained by four lens groups.
  • Patent Document 3 Japanese Patent Publication No. 4 65364
  • the objective lens in the finite correction optical system also functions as an imaging lens, so that a microscope with a shorter optical tube length can be obtained.
  • the zoom objective lens used so far has a zoom ratio It is not possible to find one satisfying both the requirements of a sufficiently large and a telecentric system required for a microscope.
  • a main object of the present invention is to provide a novel microscope zoom objective lens that can respond to having a high zoom ratio and enabling a telecentric system.
  • a telecentric system can be realized even when the zoom ratio is increased by using a lens unit having a positive refractive power as each lens group.
  • Telecentric systems are the most important requirement for microscopes that are optical instruments. In that regard, in conventional zoom microscopes, it has been very common to use a lens with negative refractive power as a variable power lens. For this reason, when the zoom ratio was increased, the negative refractive power of the variable power lens (lens group) became stronger, making it impossible to achieve a telecentric system essential for microscopes.
  • a variable configuration (magnification change) lens (lens group) is arranged at a position closest to the object to be observed.
  • the first lens group that faces the object and has a zooming function is closest to the tele end (that is, at the maximum magnification) and is farthest from the object at the wide end (that is, at the minimum magnification).
  • This is a characteristic required for a microscope objective lens, that is, a large aperture is required at the maximum magnification, and aberration correction is easier as the force is closer to the object.
  • a long working distance is required at the minimum magnification. It matches the characteristic that
  • the microscope zoom objective lens of the present invention based on the basic concept as described above has a two-group or three-group configuration, and includes a first lens group close to the object side and a rear side of the first lens group. And one or two other lens groups positioned in the. Each of these lens groups has the following features (A), (B), and (C).
  • the first lens group has positive refractive power
  • the first lens group moves in the direction of the optical axis and functions as a variable magnification lens, and the lens also forms a first image of the object in front of the other lens groups.
  • the other lens groups having the image plane correction function and the Z or imaging lens function generate the respective functions, and at the same time, the magnification by the first lens group is obtained in order to obtain the specified magnification.
  • the greatest feature of the present invention is the first feature having a positive refractive power.
  • the first image of the object is formed between one lens group force S and another lens group located behind it.
  • the first lens group is the lens group closest to the object, and the lens also functions as a variable power lens. Therefore, it is necessary to cope with aberrations at each position during zooming only with aberrations as an objective lens.
  • the first lens unit having a positive refractive power is composed of a large number of lenses. In this regard, by forming the first image before the final image is formed, the first lens group can be configured with a large number of lenses without difficulty.
  • the other lens group following the first lens group is one lens group having a positive refractive power, that is, the second lens group. Therefore, the entire objective lens is composed of two lens groups, a first lens group and a second lens group, both having positive refractive power. I will explain this form a little more using mathematical formulas.
  • the object side principal plane force of the first lens group at the minimum magnification is S1 w
  • the distance to the object surface is S1 w
  • the object side principal plane force of the first lens group at the maximum magnification is Sit .
  • Slw Fl (-1 + 1 / Blw)
  • the first lens group is closest to the object plane at the maximum magnification and is furthest away from the object plane at the minimum magnification.
  • Each magnification Blw and Bit by the first lens group satisfies the condition of 0 ⁇ —Blw ⁇ l ⁇ —B It.
  • the positional relationship between the first lens group and the second lens group is as follows.
  • S2Bw F2 (l ⁇ B2w) where S2Bw is the position of the final image by the second lens group, that is, the distance from the second lens group to the image side principal plane force final image.
  • the other lens group can be composed of two lens groups. That is, the entire lens has a positive refracting power and is located further behind the second lens group having the image surface correction function and the second and first lens groups, and has a positive refracting power as a whole.
  • This is a two-group configuration with a 2-2 lens group that functions as an imaging lens for finally forming the first image.
  • the objective lens is composed of three lens groups as a whole.
  • FIG. 1A is a configuration diagram of a lens that is a first embodiment of the present invention and shows a minimum magnification (wide).
  • FIG. 1B is a configuration diagram of a lens that represents the first embodiment of the present invention and shows an intermediate time.
  • FIG. 1C is a configuration diagram of a lens, showing a maximum magnification (tele), according to the first embodiment of the present invention.
  • FIG. 2 is an aberration characteristic diagram showing chromatic aberration and spherical aberration in the first example.
  • FIG. 3 is an aberration characteristic diagram showing astigmatism of the first example.
  • FIG. 4 is an aberration characteristic diagram showing distortion in the first example.
  • ⁇ 5B This is a second embodiment of the present invention, and is a configuration diagram of a lens showing an intermediate time.
  • FIG. 6 is an aberration characteristic diagram showing chromatic aberration and spherical aberration in the second example.
  • FIG. 7 is an aberration characteristic diagram showing astigmatism of the second example.
  • FIG. 9A is still another example of the present invention, and is a configuration diagram of a lens showing a minimum magnification (wide).
  • FIG. 9B is a structural diagram of a lens showing an intermediate time in still another example of the present invention.
  • FIG. 9C is a structural diagram of a lens showing the maximum magnification (tele) in still another example of the present invention.
  • the zoom objective lens 10 includes a first lens group 101 and a second lens group 102.
  • the two lens group forces are also constructed.
  • the entire lens group is two, which is very different from the conventional three or more groups.
  • the first lens group 101 includes eleven lenses L1 to Lll, and the second lens group 102 includes five lenses L12 to L16.
  • These two lens groups 101 and 102, and the individual lenses L1 and L16 constituting each lens group have the same optical axis, but a radius of curvature R (mm) for specifying them.
  • the lenses L1, L5, and L11 are a single lens, whereas the lenses L2, L3, and L4 and the lenses L6, L7, and L8 are each a combination of three lenses.
  • Lenses L9 and L10 are two lenses.
  • Each of the lens groups 101 and 102 described above has a positive refractive power.
  • the combined focal length of each of the first lens group 101 is 7.0273 mm, and that of the second lens group 102 is 10. It is 0000mm.
  • the theoretical distance between the first lens group 101 and the second lens group 102 is a multiplication factor X5 At the time of wide-angle [Koo! /, 19.8819mm, magnification X16.86, medium time [koo, 24.647 9mm, magnification X50, tele at 39.8819mm.
  • the distance between the first lens group 101 and the second lens group 102 (the distance between the rear surface of the lens 11 and the front surface of the lens 12) is 1.4257 mm for wide, 6.1917 mm for intermediate, and 21.4257 mm for tele. It is.
  • the object to be observed is at an object point O on the front side of the lens L1 of the first lens group 101, and the object point is fixed during zooming.
  • the first lens group 101 having a zooming function moves in a predetermined manner during zooming, for example, by a guide action of a pin fitted in a linear cam groove.
  • Such a first lens group 101 forms an image of an object on the object point O as a first image in front of the second lens group 102.
  • the second lens group 102 located behind the first lens 101 on the optical axis functions as an imaging lens that finally forms an image of the first image at a predetermined position behind the second lens group 102.
  • the distance between the object point O and the image point by the imaging lens (that is, the distance between the object images) is 294.0006 mm, and is constant during zooming.
  • the second lens group 102 which is an imaging lens, moves in accordance with a change in the position of the first image, and has an image plane correction function for correcting the image plane (that is, the plane including the image point).
  • the second lens group 102 moves according to the guide action of a pin that fits into a U-shaped curved groove, for example.
  • the object distance is 34.383 mm when the magnification is X5 wide. Has a sufficiently large working distance.
  • the object distance is 19.188mm in the middle and 14.383mm in tele at X50 magnification.
  • FIGS. 2 to 4 clearly show aberrations of the zoom objective lens 10 according to the first embodiment. To do. Those skilled in the art will understand from these aberration data that the zoom objective 10 is sufficiently practical.
  • Figure 2 shows the chromatic aberration and spherical aberration at wide, intermediate, and telephoto.
  • the vertical axis is the numerical aperture (NA), and the symbol attached to the aberration curve is the display based on the Flanhofer line.
  • F is the F-line with a wavelength of 486.lnm
  • e is the e-line with a wavelength of 546.lnm
  • d is the wavelength. 587. 5 nm d-line
  • C is 65.6 nm wavelength C-line.
  • Figure 3 shows astigmatism at wide, intermediate, and telephoto.
  • the vertical axis shows the height of the image
  • the display DS attached to the aberration curve is spherical aberration
  • DM is meridian aberration.
  • Fig. 4 shows distortion in wide, intermediate, and telephoto directions, with the vertical axis representing the image height.
  • the zoom objective lens 20 of the second example is an image that the second lens group 102 in the first example combines.
  • This lens configuration separates the two functions of the surface correction function and the imaging lens function. That is, the zoom objective lens 20 of the second example includes the first lens group 201 having the same function as the first lens group 101 of the first example, and the second lens behind the first lens group 201. Two lens groups of a group 202 and a third lens group 203 are provided.
  • the second lens group 202 can be referred to as a 2-1 lens group in which the second lens group is separated from the viewpoint that it performs the image plane correction function of the second lens 102 of the first embodiment.
  • the third lens group 203 may be referred to as a second or second lens group separated from the second lens group in that it performs the imaging lens function of the second lens 102 of the first embodiment. it can.
  • the second lens group 102 of the first example separated for each function, according to the zoom objective lens 20 of the second example, in addition to the advantages of the first example, Further advantages can be obtained.
  • One of the additional advantages is that the knock focus can be reduced.
  • the back focus (when wide) 155.3 mm in the first embodiment can be reduced to 80.1 mm.
  • the third lens group 203 can be fixed, and an advantage of facilitating correction of aberrations, such as correction of common aberrations in wide, intermediate, and telephoto modes, is obtained.
  • an intermediate or afocal part can be provided between the second lens group 202 and the third lens group 203 without causing a problem of aberration in the afocal part. If you can insert a lighting system! [0025] Specifications, curvature radius R (mm), thickness or distance between adjacent ones t (mm), refractive index N with respect to e-line (wavelength 546. Inm), and Abbe number v in the second embodiment are: It is as follows.
  • each of the lens groups 201, 202, and 203 has a positive refractive power, and the combined focal length of each of the first lens group 201 is 17.5682mm. In group 202, it is 12.0000 mm, and in third lens group 203 it is 189.7400 mm.
  • the theoretical distance between the first lens group 201 and the second lens group 202 is X5 When wide is 35.1238mm, magnification is XI5.8, and when it is XI5.8, it is 47.1364mm and when magnification is X50, it is 85.1238mm.
  • the distance between the first lens group 201 and the second lens group 202 is 6.3963 mm for wide, 18.4089 mm for intermediate, and 56.3963 mm for tele.
  • the distance between the second lens group 202 and the third lens group 203 is 20.0000 mm for wide, 45.9746 mm for intermediate, and 20.0000 mm for tele.
  • the object-image distance between the object point O and the image point formed by the imaging lens (third lens group 203) in the second column f is 281.4464 mm.
  • each object distance (working distance in other words) at wide, intermediate, and tele time is small (13. 978 mm) when tele (13.978 mm) and large (63. 978mm) o
  • FIGS. 6 to 8 Aberrations of the zoom objective lens 20 according to the second embodiment will be clarified in FIGS. 6 to 8.
  • FIG. Each figure is the same as FIG. 2 to FIG. 4 in the first embodiment. From these aberration data, it can be said that the zoom objective lens 210 in the second embodiment also has sufficient practicality.
  • the zoom objective lens 30 shown in FIGS. 9A to 9C is a modified example including the first lens group 301, the second lens group 302, and the third lens group 303.
  • the zoom lens 30 includes the first lens group 301, the third lens group 303, and the like. Each of the two groups has a scaling function.

Abstract

Microscope objective lenses (10, 20, 30) of a telecentric system and having a high zoom ratio. The objective lenses comprises two or three lens groups, and each of the lens groups (101, 102; 201, 202, 203; 301, 302, 303) has positive refraction power. In the arrangement of the lens groups, a variable magnification lens group is arranged at a position that is closest to an object to be observed. A first lens group (101, 201, 301) having a variable magnification function comes closest to the object at the maximum magnification and positioned farthest from the object at the minimum magnification.

Description

明 細 書  Specification
顕微鏡ズーム対物レンズ  Microscope zoom objective lens
発明の属する技術分野  TECHNICAL FIELD OF THE INVENTION
[0001] この発明は、物点上に位置する物体 (標本)を、光軸上所定距離離れた像点に結 像させる顕微鏡対物レンズであって、テレセントリック系であり、高ズーム比をもつ顕 微鏡ズーム対物レンズの技術に関する。  [0001] The present invention is a microscope objective lens for imaging an object (specimen) positioned on an object point to an image point separated by a predetermined distance on the optical axis, which is a telecentric system and has a high zoom ratio. The present invention relates to a technique of a microscopic zoom objective lens.
発明の背景  Background of the Invention
[0002] 一般に、顕微鏡の光学系は、結像システムから有限補正光学系と無限補正光学系 とに二分される。前者の有限補正光学系は、物体からの光を最初に通す対物レンズ が単独で物体の像を結像する光学系である。また、後者の無限補正光学系は、対物 レンズの後方に結像レンズがあり、物体からの光が対物レンズを通ってァフォーカル( 光軸に平行)になり、そのァフォーカルな光が結像レンズの後方に結像する。したが つて、顕微鏡をズーム化する手法として、結像レンズをズーム化する考え方と、対物 レンズをズーム化する考え方とが知られて 、る。  [0002] In general, an optical system of a microscope is divided into an finite correction optical system and an infinite correction optical system from an imaging system. The former finite correction optical system is an optical system in which an object lens that first passes light from an object forms an image of the object alone. The latter infinite correction optical system has an imaging lens behind the objective lens. Light from the object passes through the objective lens and becomes afocal (parallel to the optical axis), and the afocal light is imaged. Image is formed behind the lens. Therefore, as a method of zooming the microscope, the concept of zooming the imaging lens and the concept of zooming the objective lens are known.
[0003] 特許文献 1や特許文献 2は、無限補正光学系における結像レンズをズーム化した 例である。ズーム化した結像レンズは、少なくとも 3つ以上のレンズ群をもつのが通例 であり、対物レンズもあることから、顕微鏡全体の光学筒長が長くなる傾向がある。 特許文献 1:特公平 2 - 54925号  [0003] Patent Document 1 and Patent Document 2 are examples in which an imaging lens in an infinite correction optical system is zoomed. A zoomed imaging lens usually has at least three or more lens groups, and there is also an objective lens, which tends to increase the optical tube length of the entire microscope. Patent Document 1: Japanese Patent Publication No. 2-54925
特許文献 2:特開平 11—271644号  Patent Document 2: JP-A-11-271644
[0004] また、特許文献 3は、有限補正光学系における対物レンズをズーム化した例であり 、 4つのレンズ群によってズーム比 5を得ている。  [0004] Patent Document 3 is an example in which an objective lens in a finite correction optical system is zoomed, and a zoom ratio of 5 is obtained by four lens groups.
特許文献 3:特公平 4 65364号  Patent Document 3: Japanese Patent Publication No. 4 65364
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 前記した二つの光学系を比べると、有限補正光学系における対物レンズは結像レ ンズとしての機能をも果たすことから、光学筒長のより短い顕微鏡を得ることができる 。し力し、光学系のいかんにかかわらず、今までのズーム対物レンズには、ズーム比 が充分に大きいことと、顕微鏡に求められるテレセントリック系を可能にするということ との両条件を充足したものを見出すことができない。 [0005] When the two optical systems described above are compared, the objective lens in the finite correction optical system also functions as an imaging lens, so that a microscope with a shorter optical tube length can be obtained. However, regardless of the optical system, the zoom objective lens used so far has a zoom ratio It is not possible to find one satisfying both the requirements of a sufficiently large and a telecentric system required for a microscope.
[0006] そこで、この発明は、高ズーム比をもつこととテレセントリック系を可能にすることとに 応えることができる、斬新な顕微鏡ズーム対物レンズを提供することを主要な目的と する。  [0006] Therefore, a main object of the present invention is to provide a novel microscope zoom objective lens that can respond to having a high zoom ratio and enabling a telecentric system.
また、この発明のさらに他の目的は、以下の説明から明らかになるであろう。  Still another object of the present invention will become apparent from the following description.
課題を解決するための手段  Means for solving the problem
[0007] この発明では、構成する各レンズ群として、正の屈折力をもつものを用いることによ つて、ズーム比を高める場合でもテレセントリック系を可能にする。テレセントリック系 は、光学機器である顕微鏡に必須とされる最大の要件である。その点、今までのズー ム顕微鏡では、変倍レンズとして負の屈折力をもつレンズを起用するのがごく一般的 であった。そのため、ズーム比を高めると、変倍レンズ (レンズ群)の負の屈折力が強 くなり、顕微鏡に必須とされるテレセントリック系を取ることができな力つた。なお、テレ セントリック系には、ノマルスキープリズムを使って微分干渉法が可能であること、鏡 面観察を行うことができること、計測に有利であること、たとえばエッチングによる加工 溝の底面を観察することができること、照明光学系の設計が容易であること、などの 多くの利点がある。 [0007] In the present invention, a telecentric system can be realized even when the zoom ratio is increased by using a lens unit having a positive refractive power as each lens group. Telecentric systems are the most important requirement for microscopes that are optical instruments. In that regard, in conventional zoom microscopes, it has been very common to use a lens with negative refractive power as a variable power lens. For this reason, when the zoom ratio was increased, the negative refractive power of the variable power lens (lens group) became stronger, making it impossible to achieve a telecentric system essential for microscopes. For telecentric systems, it is possible to perform differential interference using a Nomarski prism, to perform specular observation, to be advantageous for measurement, for example, to observe the bottom surface of a processed groove by etching. There are many advantages such as being able to design and easy design of the illumination optical system.
[0008] また、この発明では、レンズあるいはレンズ群の配置上、観察すべき物体に最も近 接する位置に変倍 (倍率変更)レンズ (レンズ群)を配置する、と ヽぅ特異な構成を採 用する。物体に対面し、かつ変倍機能をもつ第 1レンズ群は、テレ端 (つまり、最大倍 率時)に最も近接し、ワイド端 (つまり、最小倍率時)に物体から最も離れる。このこと は、顕微鏡対物レンズに求められる特性、すなわち、最大倍率時には、大口径が必 要であり、し力も物体に近いほど収差補正が容易であり、逆に最小倍率時には、長い 作動距離が求められるという特性に合致する。  [0008] Further, according to the present invention, in terms of the arrangement of the lens or the lens group, a variable configuration (magnification change) lens (lens group) is arranged at a position closest to the object to be observed. Use. The first lens group that faces the object and has a zooming function is closest to the tele end (that is, at the maximum magnification) and is farthest from the object at the wide end (that is, at the minimum magnification). This is a characteristic required for a microscope objective lens, that is, a large aperture is required at the maximum magnification, and aberration correction is easier as the force is closer to the object. Conversely, a long working distance is required at the minimum magnification. It matches the characteristic that
[0009] 以上のような基本的な考え方に基づくこの発明の顕微鏡ズーム対物レンズは、 2群 または 3群の構成であり、物体側に近い第 1レンズ群と、その第 1レンズ群の後側に位 置する一つまたは二つの他のレンズ群とを備える。これらの各レンズ群は、次の (A) 、(B)および (C)の特徴をもつ。 (A)第 1レンズ群が正の屈折力をもつ [0009] The microscope zoom objective lens of the present invention based on the basic concept as described above has a two-group or three-group configuration, and includes a first lens group close to the object side and a rear side of the first lens group. And one or two other lens groups positioned in the. Each of these lens groups has the following features (A), (B), and (C). (A) The first lens group has positive refractive power
(B)その第 1レンズ群は、光軸の方向に移動し変倍レンズとして機能し、しカゝも、他の レンズ群の前方に物体の第一像を結像させる  (B) The first lens group moves in the direction of the optical axis and functions as a variable magnification lens, and the lens also forms a first image of the object in front of the other lens groups.
(C)他のレンズ群は、第一像の位置の変動に応じて移動し、その像面を補正する像 面補正機能と、第一像を最終的に結像させる結像レンズとしての機能とをもつ  (C) The other lens groups move according to the change in the position of the first image, and the image plane correction function that corrects the image plane and the function as the imaging lens that finally forms the first image With
[0010] ここで、像面補正機能および Zまたは結像レンズ機能をもつ他のレンズ群は、それ らの各機能を生じると同時に、指定の倍率を得るために、第 1レンズ群による倍率を 補い (第 1レンズ群だけでは不足の倍率を得るよう)、倍率増幅作用を行うことは勿論 である。  [0010] Here, the other lens groups having the image plane correction function and the Z or imaging lens function generate the respective functions, and at the same time, the magnification by the first lens group is obtained in order to obtain the specified magnification. Of course, it is necessary to compensate (so that only the first lens group can obtain an insufficient magnification) and to carry out magnification amplification.
[0011] 特徴 (A)および (B)が示すように、この発明の最大の特徴は、正の屈折力をもつ第  [0011] As shown in the features (A) and (B), the greatest feature of the present invention is the first feature having a positive refractive power.
1レンズ群力 S、その後方に位置する他のレンズ群との間に物体の第一像を結像するこ とにある。第 1レンズ群は、物体に最も近接するレンズ群であり、しカゝも、変倍レンズと しての機能をももつ。そのため、対物レンズとしての収差だけでなぐズーミング中に おける各位置での収差にも対応しなければならな 、。そのような収差に対応するため 、正の屈折力をもつ第 1レンズ群を多くの枚数のレンズで構成することになる。その点 、最終像が結像する前に、第一像を結像させていることによって、第 1レンズ群を無理 なくレンズ枚数の多い構成にすることができる。  The first image of the object is formed between one lens group force S and another lens group located behind it. The first lens group is the lens group closest to the object, and the lens also functions as a variable power lens. Therefore, it is necessary to cope with aberrations at each position during zooming only with aberrations as an objective lens. In order to cope with such aberrations, the first lens unit having a positive refractive power is composed of a large number of lenses. In this regard, by forming the first image before the final image is formed, the first lens group can be configured with a large number of lenses without difficulty.
[0012] 好ましい形態では、第 1レンズ群の後方に続く他のレンズ群は、正の屈折力をもつ 一つのレンズ群、つまり第 2レンズ群である。したがって、対物レンズの全体が、ともに 正の屈折力をもつ第 1レンズ群と第 2レンズ群との二つのレンズ群から構成される。こ の形態について、数式を用いてもう少し説明しょう。第 1レンズ群の変倍機能の中で、 最小倍率時 (ワイド時)における物体と第一像との倍率を Blw、最大倍率時 (テレ時) における倍率を Bitとすると、第 1レンズ群による変倍比 Mについて、 M = Blt/Bl wで得る。また、第 1レンズ群について、最小倍率時から最大倍率時までの移動量を Vtとすると、第 1レンズ群の焦点距離 F1は、 Fl =VtxBlwxMZ (M—l)で得る。さ らに、最小倍率時における第 1レンズ群の物体側主平面力も物体面までの距離を S1 w、最大倍率時における第 1レンズ群の物体側主平面力も物体面までの距離を Sit とすると、それらは、 Slw=Fl (-1 + 1/Blw)および Slt=Fl (—1 + 1/Blt) =S lw— Vtとなる。これらの二式は、第 1レンズ群と物体面あるいは物点との位置関係を 示す。第 1レンズ群は、最大倍率時に最も物体面に接近し、最小倍率時に最も物体 面から遠ざかる。なお、第 1レンズ群による各倍率 Blwと Bitは、 0く— Blw< l <— B Itの条件を充足する。 In a preferred embodiment, the other lens group following the first lens group is one lens group having a positive refractive power, that is, the second lens group. Therefore, the entire objective lens is composed of two lens groups, a first lens group and a second lens group, both having positive refractive power. I will explain this form a little more using mathematical formulas. Among the zooming functions of the first lens group, if the magnification between the object and the first image at the minimum magnification (wide) is Blw, and the magnification at the maximum magnification (tele) is Bit, it depends on the first lens group. For the scaling ratio M, we obtain M = Blt / Bl w. For the first lens group, if the movement amount from the minimum magnification to the maximum magnification is Vt, the focal length F1 of the first lens group is obtained by Fl = VtxBlwxMZ (M−l). Furthermore, if the object side principal plane force of the first lens group at the minimum magnification is S1 w, the distance to the object surface is S1 w, and the object side principal plane force of the first lens group at the maximum magnification is Sit , They are Slw = Fl (-1 + 1 / Blw) and Slt = Fl (—1 + 1 / Blt) = S lw — Vt. These two expressions show the positional relationship between the first lens group and the object plane or object point. The first lens group is closest to the object plane at the maximum magnification and is furthest away from the object plane at the minimum magnification. Each magnification Blw and Bit by the first lens group satisfies the condition of 0−—Blw <l <—B It.
[0013] さらにまた、第 1レンズ群と第 2レンズ群との位置関係は、次に示すとおりである。最 小倍率時の第一像と第 2レンズ群による最終像との倍率を B2w、最小倍率時におけ るシステム全体の最終像倍率を Bwとすると、 Bw = BlwxB2wである。したがって、 簡単な式の変形により、 B2w=BwZBlwを得る。この B2wが第 2レンズ群による倍 率増幅機能の増幅値である。そこで、最小倍率時における第 1レンズ群の像側主平 面力も第 2レンズ群の物体側主平面までの距離 Dwを次式によって得ることができる。  Furthermore, the positional relationship between the first lens group and the second lens group is as follows. Bw = BlwxB2w, where B2w is the magnification between the first image at the minimum magnification and the final image from the second lens group, and Bw is the final image magnification of the entire system at the minimum magnification. Therefore, B2w = BwZBlw is obtained by a simple equation transformation. This B2w is the amplification value of the multiplication function by the second lens group. Therefore, the image side main plane force of the first lens group at the minimum magnification can also be obtained by the following equation as the distance Dw to the object side main plane of the second lens group.
Dw=Fl (l-Blw) +F2 (l-l/B2w)  Dw = Fl (l-Blw) + F2 (l-l / B2w)
この Dwが小さすぎて第 1レンズ群と第 2レンズ群とが接触することに対しては、 F2を 大きくして避けることができる。また、第 2レンズ群による最終像の位置、すなわち、第 2レンズ群の像側主平面力 最終像までの距離を S2Bwとすると、 S2Bw=F2 (l-B 2w)である。  This Dw is too small to avoid contact between the first lens group and the second lens group by increasing F2. S2Bw = F2 (l−B2w) where S2Bw is the position of the final image by the second lens group, that is, the distance from the second lens group to the image side principal plane force final image.
[0014] また、他のレンズ群を二つのレンズ群で構成することができる。すなわち、全体が正 の屈折力をもち、像面補正機能をもつ第 2— 1レンズ群と、その第 2— 1群レンズ群のさ らに後方に位置し、全体が正の屈折力をもち、第一像を最終的に結像させる結像レ ンズとして機能する第 2— 2レンズ群との二群構成である。その場合、対物レンズは、 全体として三つのレンズ群から構成されることになる。他のレンズ群を二群構成にし た場合、第 2— 1レンズ群力 第 2— 2レンズ群に向力 光をァフォーカルにするなど、 光学系の変形を容易に行うことができる。  [0014] Further, the other lens group can be composed of two lens groups. That is, the entire lens has a positive refracting power and is located further behind the second lens group having the image surface correction function and the second and first lens groups, and has a positive refracting power as a whole. This is a two-group configuration with a 2-2 lens group that functions as an imaging lens for finally forming the first image. In that case, the objective lens is composed of three lens groups as a whole. When the other lens groups have a two-group configuration, it is possible to easily modify the optical system, such as making the 2-1 lens group force diffractive to the 2-2 lens group.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1A]この発明の第 1実施例であり、最小倍率 (ワイド)時を示すレンズの構成図であ る。  FIG. 1A is a configuration diagram of a lens that is a first embodiment of the present invention and shows a minimum magnification (wide).
[図 1B]この発明の第 1実施例であり、中間時を示すレンズの構成図である。  FIG. 1B is a configuration diagram of a lens that represents the first embodiment of the present invention and shows an intermediate time.
[図 1C]この発明の第 1実施例であり、最大倍率 (テレ)時を示すレンズの構成図であ る。 [図 2]第 1実施例の色収差および球面収差を示す収差特性図である。 FIG. 1C is a configuration diagram of a lens, showing a maximum magnification (tele), according to the first embodiment of the present invention. FIG. 2 is an aberration characteristic diagram showing chromatic aberration and spherical aberration in the first example.
圆 3]第 1実施例の非点収差を示す収差特性図である。 [3] FIG. 3 is an aberration characteristic diagram showing astigmatism of the first example.
圆 4]第 1実施例のディストーションを示す収差特性図である。 FIG. 4 is an aberration characteristic diagram showing distortion in the first example.
圆 5A]この発明の第 2実施例であり、最小倍率 (ワイド)時を示すレンズの構成図であ る。 [5A] This is a second embodiment of the present invention, and is a lens configuration diagram showing the minimum magnification (wide).
圆 5B]この発明の第 2実施例であり、中間時を示すレンズの構成図である。 圆 5B] This is a second embodiment of the present invention, and is a configuration diagram of a lens showing an intermediate time.
圆 5C]この発明の第 2実施例であり、最大倍率 (テレ)時を示すレンズの構成図であ る。 [5C] This is a second embodiment of the present invention, and is a lens configuration diagram showing the maximum magnification (tele).
[図 6]第 2実施例の色収差および球面収差を示す収差特性図である。  FIG. 6 is an aberration characteristic diagram showing chromatic aberration and spherical aberration in the second example.
圆 7]第 2実施例の非点収差を示す収差特性図である。 FIG. 7 is an aberration characteristic diagram showing astigmatism of the second example.
圆 8]第 2実施例のディストーションを示す収差特性図である。 8] Aberration characteristic diagram showing distortion in the second example.
[図 9A]この発明のさらに他の例であり、最小倍率 (ワイド)時を示すレンズの構成図で ある。  FIG. 9A is still another example of the present invention, and is a configuration diagram of a lens showing a minimum magnification (wide).
[図 9B]この発明のさらに他の例について、中間時を示すレンズの構成図である。  FIG. 9B is a structural diagram of a lens showing an intermediate time in still another example of the present invention.
[図 9C]この発明のさらに他の例について、最大倍率 (テレ)時を示すレンズの構成図 である。 FIG. 9C is a structural diagram of a lens showing the maximum magnification (tele) in still another example of the present invention.
符号の説明 Explanation of symbols
10 ズーム対物レンズ (第 1実施例)  10 Zoom objective (first example)
101 第 1レンズ群  101 1st lens group
102 第 2レンズ群  102 Second lens group
LI— L16 レンズ  LI—L16 lens
20 ズーム対物レンズ (第 2実施例)  20 Zoom objective lens (second embodiment)
201 第 1レンズ群  201 1st lens group
202 第 2レンズ群(第 2—1レンズ群)  202 2nd lens group (2nd-1 lens group)
203 第 3レンズ群(第 2— 2レンズ群)  203 3rd lens group (2nd and 2nd lens groups)
L21— L40  L21— L40
30 ズーム対物レンズ(さらに他の例)  30 Zoom objective (further examples)
301 第 1レンズ群 302 第 2レンズ群(第 2—1レンズ群) 301 1st lens group 302 Second lens group (2-1st lens group)
303 第 3レンズ群(第 2— 2レンズ群)  303 3rd lens group (2nd and 2nd lens groups)
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 第 1実施例: 2つのレンズ群力 構成されるズーム対物レンズ(図 1A—図 1C参照) 第 1実施例であるズーム対物レンズ 10は、第 1レンズ群 101と第 2レンズ群 102との 二つのレンズ群力も構成される。全体のレンズ群が二つであり、今までの 3群以上の ものとは大きく異なる。第 1レンズ群 101は 11枚のレンズ L1一 Ll l、また、第 2レンズ 群 102は 5枚のレンズ L12— L16をそれぞれ備える。それら二つのレンズ群 101, 10 2、および各レンズ群を構成する個々のレンズ L1一 L16は、光軸を同一にしているこ とは勿論であるが、これらを特定する曲率半径 R (mm)、厚みまたは隣り合うものとの 間隔 t (mm)、 e線 (波長 546. lnm)に対する屈折率 N、およびアッベ数 vの諸元は 次のとおりである。第 1レンズ群 101の中では、レンズ Ll、 L5、 L11は単一のレンズ であるのに対し、レンズ L2、 L3、 L4およびレンズ L6、 L7、 L8はそれぞれ 3枚のレン ズの張り合せ、また、レンズ L9、 L10が 2枚のレンズの張り合せである。  First Example: Zoom Objective Lens Composed of Two Lens Group Forces (see FIGS. 1A to 1C) The zoom objective lens 10 according to the first example includes a first lens group 101 and a second lens group 102. The two lens group forces are also constructed. The entire lens group is two, which is very different from the conventional three or more groups. The first lens group 101 includes eleven lenses L1 to Lll, and the second lens group 102 includes five lenses L12 to L16. These two lens groups 101 and 102, and the individual lenses L1 and L16 constituting each lens group, of course, have the same optical axis, but a radius of curvature R (mm) for specifying them. , Thickness or spacing t (mm) between adjacent ones, refractive index N with respect to e-line (wavelength 546. lnm), and specifications of Abbe number v are as follows. In the first lens group 101, the lenses L1, L5, and L11 are a single lens, whereas the lenses L2, L3, and L4 and the lenses L6, L7, and L8 are each a combination of three lenses. Lenses L9 and L10 are two lenses.
[0018] 〔第 1レンズ群 101〕  [First lens group 101]
R t N  R t N
レンス: L1 -40. 9961 5. 3000 1. 80642 34. 7  REN: L1 -40. 9961 5. 3000 1. 80642 34.7
-17. 6574  -17. 6574
0. 3000 (レンズ: L1と L2との間隔)  0. 3000 (Lens: Distance between L1 and L2)
レンズ L2 66. 6800 11. 0000 1. 43985 94. 6  Lens L2 66. 6800 11. 0000 1. 43985 94. 6
-12. 9288  -12. 9288
レンズ L3 -12. 9288 . 4000 ―. 61669 44. 0  Lens L3 -12. 9288. 4000 ―. 61669 44. 0
-45. 1204  -45. 1204
レンズ L4 -45. 1204 7. 3000 ―. 43985 94. 6  Lens L4 -45. 1204 7. 3000 ―. 43985 94. 6
-27. 9493  -27. 9493
0. 3000 (レンズ 4と L5との間隔)  0. 3000 (Distance between lens 4 and L5)
レンズ L5 30. 9633 8. 8000 1. 43985 94. 6  Lens L5 30. 9633 8. 8000 1. 43985 94. 6
-41. 1725 0. 3000 (レンズ L5と L6との間隔) レンズ L6 22. 2584 3. 3000 1. 72538 34. 5 -41. 1725 0. 3000 (Distance between lens L5 and L6) Lens L6 22. 2584 3. 3000 1. 72538 34.5
11. 3525  11. 3525
レンズ L7 11. 3525 14. 0000 1. 43985 94. 6 Lens L7 11. 3525 14. 0000 1. 43985 94. 6
-17. 3439  -17. 3439
レンズ L8 -17. 3439 2. 0000 1. 72538 34. 5 Lens L8 -17. 3439 2. 0000 1. 72538 34.5
199. 8884  199. 8884
18. 0000 (レンズ L8と L9との間隔) レンズ L9 27. 9557 3. 5000 1. 76859 26. 3  18. 0000 (Distance between lens L8 and L9) Lens L9 27. 9557 3. 5000 1. 76859 26.3
-6. 9830  -6. 9830
レンズ L10 -6. 9830 1. 0000 1. 59143 61. 0 Lens L10 -6. 9830 1. 0000 1. 59 143 61. 0
24. 1608  24. 1608
3. 5000 (レンズ: L10と L11との間隔) レンズ L 11 -6. 8090 1. 0000 1. 72794 37. 7  3. 5000 (Lens: Distance between L10 and L11) Lens L 11 -6. 8090 1. 0000 1. 72794 37. 7
-25. 9548  -25. 9548
〔第 2レンズ群 102〕 (Second lens group 102)
R t N  R t N
レンズ L12 -96. 4469 3. 2000 1. 62032 63. 1 Lens L12 -96. 4469 3. 2000 1. 62032 63. 1
-8. 3475  -8. 3475
0. 5000 (レンズ: L12と 13との間隔) レンズ L13 16. 5838 4. 0000 1. 62032 63. 1  0. 5000 (Lens: Distance between L12 and 13) Lens L13 16. 5838 4. 0000 1. 62032 63. 1
-11. 0015  -11.0015
1. 0000 (レンズ: L13と 14との間隔) レンズ L14 -7. 5596 1. 2000 1. 72538 34. 5  1. 0000 (Lens: Distance between L13 and 14) Lens L14 -7. 5596 1. 2000 1. 72538 34. 5
25. 5602  25. 5602
6. 5000 (レンズ: L14と L15との間隔) レンズ L15 7. 6413 3. 5000 1. 59143 61. 0  6. 5000 (Lens: Distance between L14 and L15) Lens L15 7. 6413 3. 5000 1. 59143 61. 0
-12. 7882 1. 0000 (レンズ: L15と 16との間隔) -12. 7882 1. 0000 (Lens: Distance between L15 and 16)
レンズ L16 -8. 1431 1. 0000 1. 59911 39. 0  Lens L16 -8. 1431 1. 0000 1. 59911 39. 0
12. 9992  12. 9992
[0020] 以上に述べた各レンズ群 101, 102は、それぞれ正の屈折力をもち、それぞれの合 成焦点距離は、第 1レンズ群 101のそれが 7. 0273mm,第 2レンズ群 102のそれは 10. 0000mmである。また、第 1レンズ群 101と第 2レンズ群 102との理論的な間隔( 第 1レンズ群 101の像側主平面と第 2レンズ群 102の物体側主平面との距離)は、倍 率 X5のワイド時【こお!/、て 19. 8819mm、倍率 X16. 86の中 時【こお 、て 24. 647 9mm、倍率 X50のテレ時において 39. 8819mmである。さらに、第 1レンズ群 101と 第 2レンズ群 102との距離(レンズ 11の後面とレンズ 12との前面との距離)は、ワイド 時 1. 4257mm,中間時 6. 1917mm、テレ時 21. 4257mmである。  Each of the lens groups 101 and 102 described above has a positive refractive power. The combined focal length of each of the first lens group 101 is 7.0273 mm, and that of the second lens group 102 is 10. It is 0000mm. The theoretical distance between the first lens group 101 and the second lens group 102 (the distance between the image side main plane of the first lens group 101 and the object side main plane of the second lens group 102) is a multiplication factor X5 At the time of wide-angle [Koo! /, 19.8819mm, magnification X16.86, medium time [koo, 24.647 9mm, magnification X50, tele at 39.8819mm. Furthermore, the distance between the first lens group 101 and the second lens group 102 (the distance between the rear surface of the lens 11 and the front surface of the lens 12) is 1.4257 mm for wide, 6.1917 mm for intermediate, and 21.4257 mm for tele. It is.
[0021] 顕微鏡の光学系では、観察すべき物体は、第 1レンズ群 101のレンズ L1の前側の 物点 Oにあり、その物点はズーミング中固定である。変倍機能をもつ第 1レンズ群 10 1は、ズーミング中、たとえば直線状のカム溝にはまり合うピンのガイド作用によって所 定の動きをすることになる。そして、そのような第 1レンズ群 101は、物点 O上の物体 の像を第 2レンズ群 102の前方に第一像として結像する。光軸上第 1レンズ 101の後 方に位置する第 2レンズ群 102は、その第一像を第 2レンズ群 102の後方の所定位 置に最終的に結像させる結像レンズとして機能する。物点 Oと結像レンズによる像点 との間の距離(つまり、物像間距離)は、 294. 0006mmであり、ズーミング中、一定 である。この場合、結像レンズである第 2レンズ群 102は、第一像の位置の変動に応 じて移動し、その像面 (つまり、像点を含む面)を補正する像面補正機能を併せもつ。 そこで、第 2レンズ群 102については、たとえば U型の曲線状の溝にはまり合うピンの ガイド作用にしたがう動きをする。  In the optical system of the microscope, the object to be observed is at an object point O on the front side of the lens L1 of the first lens group 101, and the object point is fixed during zooming. The first lens group 101 having a zooming function moves in a predetermined manner during zooming, for example, by a guide action of a pin fitted in a linear cam groove. Such a first lens group 101 forms an image of an object on the object point O as a first image in front of the second lens group 102. The second lens group 102 located behind the first lens 101 on the optical axis functions as an imaging lens that finally forms an image of the first image at a predetermined position behind the second lens group 102. The distance between the object point O and the image point by the imaging lens (that is, the distance between the object images) is 294.0006 mm, and is constant during zooming. In this case, the second lens group 102, which is an imaging lens, moves in accordance with a change in the position of the first image, and has an image plane correction function for correcting the image plane (that is, the plane including the image point). Have. Therefore, the second lens group 102 moves according to the guide action of a pin that fits into a U-shaped curved groove, for example.
[0022] ここで、物点 Oから第 1レンズ群 101のレンズ L1の前面までの距離(つまり、物体距 離)に着目すると、その物体距離は、倍率 X5のワイド時に 34. 383mmであり、充分 な大きさの作動距離をもつ。ちなみに、物体距離は、中間時に 19. 188mm,倍率 X 50のテレ時に 14. 383mmである。  [0022] Here, focusing on the distance from the object point O to the front surface of the lens L1 of the first lens group 101 (that is, the object distance), the object distance is 34.383 mm when the magnification is X5 wide. Has a sufficiently large working distance. By the way, the object distance is 19.188mm in the middle and 14.383mm in tele at X50 magnification.
[0023] 次に、図 2—図 4に第 1実施例であるズーム対物レンズ 10の収差について明らかに する。当業者は、これらの収差データから、ズーム対物レンズ 10が充分な実用性をも つことを理解するであろう。図 2は、ワイド時、中間時、テレ時における色収差と球面 収差を示している。縦軸は開口数 (N. A. )であり、収差曲線に付けた記号はフラン ンホーファ線に基づく表示であり、 Fは波長 486. lnmの F線、 eは波長 546. lnmの e線、 dは波長 587. 5nmの d線、 Cは波長 656. 2nmの C線である。色収差について は、 e線に対する収差をプロットしてある。また、図 3は、ワイド時、中間時、テレ時にお ける非点収差を示している。縦軸は像の高さを示し、収差曲線に付けた表示 DSは球 欠的収差、 DMは子午的収差である。さらに、図 4は、ワイド時、中間時、テレ時にお けるディストーションを示し、縦軸は像の高さである。 Next, FIGS. 2 to 4 clearly show aberrations of the zoom objective lens 10 according to the first embodiment. To do. Those skilled in the art will understand from these aberration data that the zoom objective 10 is sufficiently practical. Figure 2 shows the chromatic aberration and spherical aberration at wide, intermediate, and telephoto. The vertical axis is the numerical aperture (NA), and the symbol attached to the aberration curve is the display based on the Flanhofer line. F is the F-line with a wavelength of 486.lnm, e is the e-line with a wavelength of 546.lnm, and d is the wavelength. 587. 5 nm d-line, C is 65.6 nm wavelength C-line. For chromatic aberration, the aberration with respect to e-line is plotted. Figure 3 shows astigmatism at wide, intermediate, and telephoto. The vertical axis shows the height of the image, the display DS attached to the aberration curve is spherical aberration, and DM is meridian aberration. In addition, Fig. 4 shows distortion in wide, intermediate, and telephoto directions, with the vertical axis representing the image height.
第 2実施例: 3つのレンズ群から構成されるズーム対物レンズ(図 5A—図 5C参照) 第 2実施例であるズーム対物レンズ 20は、第 1実施例における第 2レンズ群 102が 併せもつ像面補正機能と結像レンズ機能との二つの機能を分離したレンズ構成であ る。すなわち、第 2実施例のズーム対物レンズ 20は、第 1実施例の第 1レンズ群 101 と同様の機能をもつ第 1レンズ群 201のほか、その第 1レンズ群 201の後方に第 2レ ンズ群 202と第 3レンズ群 203との二つのレンズ群を備える。第 2レンズ群 202は、第 1実施例の第 2レンズ 102がもつ像面補正機能を果たすという点から、第 2レンズ群が 分離した第 2— 1レンズ群と称することができる。同様に、第 3レンズ群 203は、第 1実 施例の第 2レンズ 102がもつ結像レンズ機能を果たすという点から、第 2レンズ群が分 離した第 2— 2レンズ群と称することができる。このように、第 1実施例の第 2レンズ群 1 02を機能ごとに分離した構成にすることにより、第 2実施例のズーム対物レンズ 20に よれば、第 1実施例における利点に加えて、さらなる利点を得ることができる。さらなる 利点の一つは、ノックフォーカスを小さくすることができることであり、たとえば、第 1実 施例におけるバックフォーカス(ワイド時) 155. 3mmを 80. 1mmにすることができた 。また、第 3レンズ群 203を固定にすることができ、ワイド時、中間時、テレ時の共通の 収差を補正するなど、収差の補正が容易になるという利点を得る。さらに、第 2実施例 では、第 2レンズ群 202と第 3レンズ群 203との間〖こ、ァフォーカルな部分を設けるこ とができ、そのァフォーカルな部分に、収差の問題を生じることなく照明系を挿入する ことができると!/、う利点をも得る。 [0025] 第 2実施例における諸元、曲率半径 R (mm)、厚みまたは隣り合うものとの間隔 t (m m)、 e線(波長 546. Inm)に対する屈折率 N、およびアッベ数 vは、次のとおりであ る。 Second Example: Zoom Objective Lens Consisting of Three Lens Groups (see Figs. 5A-5C) The zoom objective lens 20 of the second example is an image that the second lens group 102 in the first example combines. This lens configuration separates the two functions of the surface correction function and the imaging lens function. That is, the zoom objective lens 20 of the second example includes the first lens group 201 having the same function as the first lens group 101 of the first example, and the second lens behind the first lens group 201. Two lens groups of a group 202 and a third lens group 203 are provided. The second lens group 202 can be referred to as a 2-1 lens group in which the second lens group is separated from the viewpoint that it performs the image plane correction function of the second lens 102 of the first embodiment. Similarly, the third lens group 203 may be referred to as a second or second lens group separated from the second lens group in that it performs the imaging lens function of the second lens 102 of the first embodiment. it can. In this way, by making the second lens group 102 of the first example separated for each function, according to the zoom objective lens 20 of the second example, in addition to the advantages of the first example, Further advantages can be obtained. One of the additional advantages is that the knock focus can be reduced. For example, the back focus (when wide) 155.3 mm in the first embodiment can be reduced to 80.1 mm. In addition, the third lens group 203 can be fixed, and an advantage of facilitating correction of aberrations, such as correction of common aberrations in wide, intermediate, and telephoto modes, is obtained. Further, in the second embodiment, an intermediate or afocal part can be provided between the second lens group 202 and the third lens group 203 without causing a problem of aberration in the afocal part. If you can insert a lighting system! [0025] Specifications, curvature radius R (mm), thickness or distance between adjacent ones t (mm), refractive index N with respect to e-line (wavelength 546. Inm), and Abbe number v in the second embodiment are: It is as follows.
[0026] 〔第 1レンズ群 201〕  [First lens group 201]
R t N  R t N
レンス: L21 41. 2442 3. 9000 1. 74706 27. 6  Lenth: L21 41. 2442 3. 9000 1. 74706 27. 6
-26. 5441  -26. 5441
0. 5000 (レンズ 21と L22との間隔)  0. 5000 (Distance between lens 21 and L22)
レンズ L22 644. 3724 5. 0000 1. 49845 81. 2  Lens L22 644. 3724 5. 0000 1. 49845 81.2
-12. 6583  -12. 6583
レンズ L23 -12. 6583 1. 5000 1. 72538 34. 5  Lens L23 -12. 6583 1. 5000 1. 72538 34.5
25. 9185  25. 9185
レンズ L24 25. 9185 5. 0000 1. 43985 94. 6  Lens L24 25. 9185 5. 0000 1. 43985 94. 6
-20. 7559  -20. 7559
0. 4000 (レンズ 24と L25との間隔)  0. 4000 (Distance between lens 24 and L25)
レンズ L25 64. 7337 7. 0000 1. 43985 94. 6  Lens L25 64. 7337 7. 0000 1. 43985 94. 6
-15. 5339  -15. 5339
レンズ L26 -15. 5339 1. 8000 1. 72538 34. 5  Lens L26 -15. 5339 1. 8000 1. 72538 34.5
-83. 7746  -83. 7746
レンズ L27 -83. 7746 4. 5000 1. 48915 70. 0  Lens L27 -83. 7746 4. 5000 1. 48915 70. 0
-36. 2468  -36. 2468
0. 4000 (レンズ 27と 28との間隔)  0. 4000 (distance between lenses 27 and 28)
レンズ L28 26. 2297 5. 5000 1. 49845 81. 2  Lens L28 26. 2297 5. 5000 1. 49845 81. 2
-114. 0953  -114. 0953
12. 0000 (レンズし28とし29との間隔)  12. 0000 (Lens 28 and 29)
レンズ L29 25. 4514 3. 8000 1. 81264 25. 2  Lens L29 25. 4514 3. 8000 1. 81 264 25. 2
57. 4200  57. 4200
2. 0000 (レンズ 29と 30との間隔) レンズ L30 13.4657 1.5000 1.48915 70.0 2. 0000 (distance between lenses 29 and 30) Lens L30 13.4657 1.5000 1.48915 70.0
7. 1153  7. 1153
4.0000(レンズ 30と L31との間隔) レンズ L31 16.6901 1.5000 1.48915 70.0  4.0000 (Distance between lens 30 and L31) Lens L31 16.6901 1.5000 1.48915 70.0
18.7119  18.7119
[0027] 〔第 2レンズ群 202〕 [Second lens group 202]
R t N  R t N
レンズ L32 23.8097 3.0000 1.62032 63.1  Lens L32 23.8097 3.0000 1.62032 63.1
-13.2876  -13.2876
0.5000(レンズ 32と 33との間隔) レンズ L33 28.7044 4.0000 1.62032 63.1  0.5000 (Distance between lenses 32 and 33) Lens L33 28.7044 4.0000 1.62032 63.1
-16.0739  -16.0739
1.0000(レンズ 33と 34との間隔) レンズ L34 -10.3611 1.2000 1.72538 34.5  1.0000 (Distance between lenses 33 and 34) Lens L34 -10.3611 1.2000 1.72538 34.5
162.8997  162.8997
7.0000(レンズ 34と 35との間隔) レンズ L35 14.9463 2.0000 1.59143 61.0 平面  7.0000 (Distance between lenses 34 and 35) Lens L35 14.9463 2.0000 1.59143 61.0 Plane
1.0000(レンズ 35と 36との間隔) レンズ L36 -12.8543 1.0000 1.59911 39.0  1.0000 (Distance between lenses 35 and 36) Lens L36 -12.8543 1.0000 1.59911 39.0
112.554  112.554
[0028] 〔第 3レンズ群 203〕 [Third lens group 203]
R t N  R t N
レンズ L37 14.7579 3.5000 1.62032 63.1  Lens L37 14.7579 3.5000 1.62032 63.1
-13.8696  -13.8696
1.5000(レンズ 37と 38との間隔) レンズ L38 -9.7790 1.5000 1.59911 39.0  1.5000 (Distance between lenses 37 and 38) Lens L38 -9.7790 1.5000 1.59911 39.0
22.6743 22. 0000 (レンズし38とし39との間隔) 22.6743 22. 0000 (Lens 38 and 39)
レンズ L39 -27. 0717 1. 5000 1. 48915 70. 0  Lens L39 -27. 0717 1. 5000 1. 48915 70. 0
122. 819  122. 819
[0029] この第 2実施例でも、各レンズ群 201, 202, 203は、それぞれ正の屈折力をもち、 それぞれの合成焦点距離は、第 1レンズ群 201のそれが 17. 5682mm,第 2レンズ 群 202のそれは 12. 0000mm,第 3レンズ群 203のそれは 189. 7400mmである。 また、第 1レンズ群 201と第 2レンズ群 202との理論的な間隔(第 1レンズ群 201の像 側主平面と第 2レンズ群 202の物体側主平面との距離)は、倍率 X5のワイド時にお ヽて 35. 1238mm、倍率 XI 5. 8の中 時【こお!ヽて 47. 1364mm、倍率 X50のテ レ時にお 、て 85. 1238mmである。さらに、第 1レンズ群 201と第 2レンズ群 202との 距離は、ワイド時 6. 3963mm,中間時 18. 4089mm,テレ時 56. 3963mmである 。そしてまた、第 2レンズ群 202と第 3レンズ群 203との距離は、ワイド時 20. 0000m m、中間時 45. 9746mm,テレ時 20. 0000mmである。なお、第 2実施 f列における 物点 Oと結像レンズ (第 3レンズ群 203)による像点との間の物像間距離は、 281. 46 44mmである。また、ワイド時、中間時、テレ時における各物体距離 (別にいうと、作 動距離)は、図 5A— 5Cに示すように、テレ時に小さく(13. 978mm)、ワイド時に大 きい(63. 978mm) o  [0029] Also in the second embodiment, each of the lens groups 201, 202, and 203 has a positive refractive power, and the combined focal length of each of the first lens group 201 is 17.5682mm. In group 202, it is 12.0000 mm, and in third lens group 203 it is 189.7400 mm. The theoretical distance between the first lens group 201 and the second lens group 202 (the distance between the image side main plane of the first lens group 201 and the object side main plane of the second lens group 202) is X5 When wide is 35.1238mm, magnification is XI5.8, and when it is XI5.8, it is 47.1364mm and when magnification is X50, it is 85.1238mm. Further, the distance between the first lens group 201 and the second lens group 202 is 6.3963 mm for wide, 18.4089 mm for intermediate, and 56.3963 mm for tele. In addition, the distance between the second lens group 202 and the third lens group 203 is 20.0000 mm for wide, 45.9746 mm for intermediate, and 20.0000 mm for tele. Note that the object-image distance between the object point O and the image point formed by the imaging lens (third lens group 203) in the second column f is 281.4464 mm. In addition, each object distance (working distance in other words) at wide, intermediate, and tele time (in other words, the working distance) is small (13. 978 mm) when tele (13.978 mm) and large (63. 978mm) o
[0030] 次に、図 6—図 8に第 2実施例であるズーム対物レンズ 20の収差について明らかに する。各図は、第 1実施例における図 2—図 4と同様に示している。これらの収差デー タから、この第 2実施例におけるズーム対物レンズ 210もまた充分な実用性をもつ、と いうことができる。  Next, aberrations of the zoom objective lens 20 according to the second embodiment will be clarified in FIGS. 6 to 8. FIG. Each figure is the same as FIG. 2 to FIG. 4 in the first embodiment. From these aberration data, it can be said that the zoom objective lens 210 in the second embodiment also has sufficient practicality.
[0031] なお、当業者であれば、第 2実施例を変形することによって、変倍機能を第 1レンズ 群だけでなぐ第 3レンズ群にももたせるようにし、いわゆるダブルズーム形態にするこ とも容易に行うことができる。図 9A— 9Cに示すズーム対物レンズ 30は、第 1レンズ群 301、第 2レンズ群 302、第 3レンズ群 303から構成される変形例であり、第 1レンズ群 301と第 3レンズ群 303との二群がそれぞれ変倍機能をもつ。  [0031] It should be noted that those skilled in the art can modify the second embodiment so that the zooming function is provided not only in the first lens group but also in the third lens group, so as to form a so-called double zoom form. It can be done easily. The zoom objective lens 30 shown in FIGS. 9A to 9C is a modified example including the first lens group 301, the second lens group 302, and the third lens group 303. The zoom lens 30 includes the first lens group 301, the third lens group 303, and the like. Each of the two groups has a scaling function.

Claims

請求の範囲 The scope of the claims
[1] 物点上に位置する物体を、光軸上所定距離離れた像点に結像させる顕微鏡対物 レンズであって、  [1] A microscope objective lens that forms an object located on an object point at an image point separated by a predetermined distance on the optical axis,
その対物レンズは、前記物体側に近い第 1レンズ群と、その第 1レンズ群の後側に 位置する一つまたは二つの他のレンズ群とを備え、それらの各レンズ群が次の特徴 をもつ顕微鏡ズーム対物レンズ。  The objective lens includes a first lens group close to the object side and one or two other lens groups located on the rear side of the first lens group, and each of these lens groups has the following characteristics. Microscope zoom objective lens.
(A)前記第 1レンズ群が正の屈折力をもつ  (A) The first lens group has positive refractive power
(B)前記第 1レンズ群は、前記光軸の方向に移動し変倍レンズとして機能し、しかも、 前記他のレンズ群の前方に前記物体の第一像を結像させる  (B) The first lens group moves in the direction of the optical axis and functions as a variable power lens, and forms a first image of the object in front of the other lens group.
(C)前記他のレンズ群は、前記第一像の位置の変動に応じて移動し、その像面を補 正する像面補正機能と、前記第一像を前記像点に最終的に結像させる結像レンズと しての機能とをもつ  (C) The other lens group moves in accordance with a change in the position of the first image, and an image plane correction function for correcting the image plane, and finally the first image is connected to the image point. Functions as an imaging lens for imaging
[2] 前記第 1レンズ群は、最大倍率時に前記物体に近接し、最小倍率時に前記物体か ら離れるように移動する、請求項 1の顕微鏡ズーム対物レンズ。  [2] The microscope zoom objective lens according to claim 1, wherein the first lens group moves closer to the object at a maximum magnification and away from the object at a minimum magnification.
[3] 前記第 1レンズ群は、前記物体に最も近接したレンズ群である、請求項 1の顕微鏡 ズーム対物レンズ。  3. The microscope zoom objective lens according to claim 1, wherein the first lens group is a lens group closest to the object.
[4] 前記他のレンズ群は、一つのレンズ群であり正の屈折力をもつ第 2レンズ群からなり 、したがって、対物レンズの全体力 その第 2レンズ群および前記第 1レンズ群の二つ のレンズ群力 構成される、請求項 1の顕微鏡ズーム対物レンズ。  [4] The other lens group is a second lens group that is a single lens group and has a positive refractive power. Therefore, the total power of the objective lens is two of the second lens group and the first lens group. The microscope zoom objective according to claim 1, comprising:
[5] 前記他のレンズ群は、前記第 1レンズ群の後方に位置し、全体が正の屈折力をもち 、前記像面補正機能をもつ第 2— 1レンズ群と、その第 2— 1レンズ群のさらに後方に位 置し、全体が正の屈折力をもち、前記第一像を前記像点に結像させる結像レンズとし て機能する第 2— 2レンズ群とである、請求項 1の顕微鏡ズーム対物レンズ。  [5] The other lens group is located behind the first lens group, has a positive refractive power as a whole, and has the image plane correcting function, and the second lens group. 2. A second and second lens group that is positioned further rearward of the lens group and has a positive refractive power as a whole and functions as an imaging lens that forms the first image on the image point. 1 microscope zoom objective lens.
[6] 前記 2—1レンズ群から前記第 2— 2レンズ群に向力 光がァフォーカルである、請求 項 5の顕微鏡ズーム対物レンズ。  6. The microscope zoom objective lens according to claim 5, wherein the directional light is afocal from the 2-1 lens group to the 2-2 lens group.
[7] 前記第 2— 2レンズ群が変倍レンズとしての機能を併せもち、前記第 1レンズ群の変 倍レンズ機能と相俟って、ダブルズーム機能をもつ、請求項 5の顕微鏡ズーム対物レ ンズ。  7. The microscope zoom objective according to claim 5, wherein the second and second lens groups have a function as a variable power lens, and have a double zoom function in combination with the variable power lens function of the first lens group. Lens.
PCT/JP2004/014397 2004-09-30 2004-09-30 Microscope zoom objective lens WO2006038266A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2004/014397 WO2006038266A1 (en) 2004-09-30 2004-09-30 Microscope zoom objective lens
JP2006539094A JPWO2006038266A1 (en) 2004-09-30 2004-09-30 Microscope zoom objective lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/014397 WO2006038266A1 (en) 2004-09-30 2004-09-30 Microscope zoom objective lens

Publications (1)

Publication Number Publication Date
WO2006038266A1 true WO2006038266A1 (en) 2006-04-13

Family

ID=36142357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014397 WO2006038266A1 (en) 2004-09-30 2004-09-30 Microscope zoom objective lens

Country Status (2)

Country Link
JP (1) JPWO2006038266A1 (en)
WO (1) WO2006038266A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0296108A (en) * 1988-08-26 1990-04-06 Canon Inc Real image type variable power finder
JPH04247417A (en) * 1991-02-01 1992-09-03 Canon Inc Real image system variable power finder optical system
JP2000056232A (en) * 1998-08-12 2000-02-25 Nikon Corp Microscope
JP2002267936A (en) * 2001-03-14 2002-09-18 Olympus Optical Co Ltd Photographic optical system and lens barrel
JP2004021240A (en) * 2002-06-20 2004-01-22 Jai Corporation Optical system with image magnification compensation function, and imaging apparatus equipped with the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0296108A (en) * 1988-08-26 1990-04-06 Canon Inc Real image type variable power finder
JPH04247417A (en) * 1991-02-01 1992-09-03 Canon Inc Real image system variable power finder optical system
JP2000056232A (en) * 1998-08-12 2000-02-25 Nikon Corp Microscope
JP2002267936A (en) * 2001-03-14 2002-09-18 Olympus Optical Co Ltd Photographic optical system and lens barrel
JP2004021240A (en) * 2002-06-20 2004-01-22 Jai Corporation Optical system with image magnification compensation function, and imaging apparatus equipped with the same

Also Published As

Publication number Publication date
JPWO2006038266A1 (en) 2008-05-15

Similar Documents

Publication Publication Date Title
JP3845331B2 (en) Endoscope objective optical system
JP4432153B2 (en) Zoom lens
JP3167069B2 (en) Zoom lens
JP2000284177A (en) Three-group zoom lens
JP3301579B2 (en) Inner focusing type zoom lens
JPH06337354A (en) Zoom lens
JPH07281097A (en) Liquid immersion system microscope objective lens
JP4061152B2 (en) Zoom photography optics
JPH07120677A (en) Compact three-group zoom lens
JPH10325923A (en) Superwide-angle zoom lens
JP4379780B2 (en) Zoom lens barrel for microscope and microscope using the same
JP3454935B2 (en) Microscope objective lens
JP6548782B1 (en) Zoom lens
JP4488283B2 (en) Afocal zoom lens for microscope
US6094313A (en) Zoom lens system
JP5277178B2 (en) Telescope optics
JP2001228396A (en) Achromatic lens and zoom lens using the same
JP4380158B2 (en) Zoom lens
JP4426236B2 (en) Endoscope objective optical system
JPH0933809A (en) Zoom lens
JP4517422B2 (en) Afocal zoom lens and microscope equipped with the lens
JPH07234357A (en) Loupe
JP5380444B2 (en) Relay zoom system
JP2017111423A (en) Zoom objective lens
WO2006038266A1 (en) Microscope zoom objective lens

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006539094

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 04788425

Country of ref document: EP

Kind code of ref document: A1