WO2006037746A2 - Dispositif et procede pour demarrer et faire fonctionner une installation a piles a combustible - Google Patents

Dispositif et procede pour demarrer et faire fonctionner une installation a piles a combustible Download PDF

Info

Publication number
WO2006037746A2
WO2006037746A2 PCT/EP2005/054875 EP2005054875W WO2006037746A2 WO 2006037746 A2 WO2006037746 A2 WO 2006037746A2 EP 2005054875 W EP2005054875 W EP 2005054875W WO 2006037746 A2 WO2006037746 A2 WO 2006037746A2
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
network
cell system
alternating current
starting
Prior art date
Application number
PCT/EP2005/054875
Other languages
German (de)
English (en)
Other versions
WO2006037746A3 (fr
Inventor
Willi Bette
Eugen Holl
Walter STÜHLER
Alfred Weiss
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2006037746A2 publication Critical patent/WO2006037746A2/fr
Publication of WO2006037746A3 publication Critical patent/WO2006037746A3/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04955Shut-off or shut-down of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/10Fuel cells in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • H01M8/04888Voltage of auxiliary devices, e.g. batteries, capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to an apparatus and a method for starting and operating a connectable with an AC power fuel cell system that lenstapel a fuel cell for power generation, one located thereon subse- quent DC intermediate circuit with at least one consumer ⁇ cher and has a converter, via which the ⁇ fuel cell system with the AC network is to be connected.
  • anode gas for example oxygen or air
  • a cathode gas for example hydrogen or another fuel gas.
  • anode gas for example oxygen or air
  • a cathode gas for example hydrogen or another fuel gas.
  • PEM fuel cell which has a proton-exchange membrane (proton exchange membrane).
  • a compressor or a blower is arranged.
  • To operate the fuel cell system further controls and other auxiliary equipment such as actuators for valves are required. Normally, these consumers of the fuel cell system draw their energy The fuel cell system itself. So this is self-sufficient in operation.
  • the invention has for its object, in particular in a stationary, connected to an AC power fuel cell system to enable a suitable start and Trometer ⁇ drive for the fuel cell system.
  • the object is achieved according to the invention by a forward direction for starting and operating a power system with a
  • connectable fuel cell system including a fuel cell stack for power generation, a having in hier ⁇ to subsequent DC intermediate circuit with at least ei ⁇ nem consumers as well as a transducer via which the fuel cell system is to be connected to the AC mains.
  • the converter is bidirectional, in such a way that during normal operation generated by the fuel cell stack DC power is converted to feed into the AC mains in Mattstrom.
  • the converter is the same time ⁇ formed in such a way that during the startup a alternating current provided by the fuel cell system for feeding into the DC intermediate circuit is converted into direct current via the alternating current network.
  • the bidirectional converter in this case at least a ⁇ sper ⁇ emitting diode in the flow direction to the AC mains, and a valve disposed in parallel with diode elekt ⁇ ronisches switching element, particularly a controllable semiconductor device, such as a transistor.
  • This embodiment is here based on the idea, in Depending ⁇ ness of the flow direction, that is either the Kirstrom ⁇ network to the direct-current intermediate circuit, or vice versa, to provide separate current paths, wherein in the one direction from the alternating selstromnetz to DC power, a rectifying diode disposed in the reverse flow direction êt ⁇ the bare switching element via the AC clamping voltage is generated ⁇ is arranged.
  • two pairs are provided for each phase of the alternating current network, each of which is formed from a diode and a switching element.
  • the two pairs is a respective phase connection, that is, the respective phase of the AC network is be- see the two pairs and thus between the two diodes, which are therefore arranged in the manner of a bridge rectifier.
  • the converter has a DC link capacitor on the DC side in order to smooth the initially pulsating direct current.
  • a series resistor is provided in front of the DC link capacitor.
  • a switch is arranged parallel to the series resistor, which is ge ⁇ closed after charging the intermediate circuit capacitor for bridging the series resistor.
  • the converter is expediently designed such that the
  • a control unit is provided in particular.
  • a protective element in particular a blocking diode.
  • the fuel cell system is used in particular for feeding energy into an alternating current network in which, in addition to the fuel cell system, further energy producers feed energy. For the starting process, therefore, energy can easily be obtained from the AC network.
  • a remote AC mains in which in addition to the fuel cell only even a temporary power source is provided, in particular a battery for uninterruptible power supply, loading the fuel cell system draws its starting energy functional ⁇ conveniently be from this temporary power source.
  • FIG 2 shows an equivalent circuit diagram of a bidirectional wall ⁇ lers, as used in the fuel cell system according to FIG 1.
  • a PEM fuel cell system 2 comprises a fuel cell stack 4 for generating energy, which usually has a plurality of fuel cells connected to one another.
  • the fuel cell system 2 further comprises a plurality of consumers 6 and an electronic scarf ⁇ device 8 for coupling the fuel cell system 2 to an AC power system 10.
  • the alternating current network 10 is indicated here by a dashed line.
  • the AC mains 10 is ⁇ leads in the embodiment as a separate network being ⁇ which only a temporary power source 12, For example, a battery or an emergency power supply has.
  • the alternating current network 10 is a network with several independent permanent energy sources, for example, further fuel cell systems 2 or conventional systems for e- nergieermaschineung.
  • the consumers 6 are supplied with energy. For this purpose, these are each connected in the exemplary embodiment via a resistor 16, a switch 18 and a DC / AC converter 20.
  • the consumer 6 are in particular motors for driving a compressor or for the Stel ⁇ lantrieb a valve.
  • the majority of the DC current generated by the fuel cell stack ⁇ 4 is converted via the electromagnetic ⁇ African circuit 8 into alternating current, to the Span ⁇ voltage of the AC mains 10 transformed and then injected into the AC network 10th
  • Output side of the fuel cell stack 4 is connected in a Sperrdi ⁇ ode 24 in the DC intermediate circuit 14 which terbindet a current flow in the direction of the fuel cell stack 4 un-.
  • the electronic circuit 8 is performed in the exemplary embodiment re ⁇ redundantly, that is, there are two electronic scarf ⁇ obligations connected in parallel. 8 Due to the parallel circuit also very high power can be provided.
  • the electronic circuit 8 has in flow direction from the fuel cell stack 4 to the AC mains 10 is a bidi ⁇ -directional converter 26, a filter 28, a series resistor 30 for charging an intermediate circuit capacitor 39 (see FIG. 2), a series resistor 30 bridging bridging switch 32, and a Transformer 34 on.
  • the fuel Cell system 2 is connected via a main switch 36 with the Wech ⁇ selstromnetz 10.
  • the consumers 6 can not be supplied from the fuel cell stack 4 out. In the present case, it is now provided that consumers receive their energy directly from the alternating current network 10 for the starting process. In the flow direction from the alternating current network 10 to the DC intermediate circuit 14, therefore, the alternating current by means of the electric circuit 8 in
  • the bidirectional converter 26 which is designed such that it converts direct current into alternating current in the direction of flow to the alternating current network 10 and converts alternating current into direct current in the reverse flow direction to the intermediate DC circuit 14.
  • the same electrical scarf ⁇ tion 8 is used both for normal operation and for the starting operation.
  • the bidirectional converter 26 is shown in FIG 2 in a Reason ⁇ circuit diagram. It is on its DC side 38 with the DC intermediate circuit 14 and on its Wech ⁇ selstromseite 40 indirectly connected to the AC power network 10 ver ⁇ prevented. On the AC side 40 of the bidirectional converter 26 is connected in the embodiment of the three phases Pl, P2, P3 of a three-phase network.
  • the bidirectional converter 26 can be divided into two function blocks, namely on the one hand an intermediate circuit 42 and on the other hand an inverter part 44.
  • the arranged on the DC side 38 intermediate circuit 42 comprises a plurality of glosskonden ⁇ formed as intermediate circuit capacitors 39 and in the embodiment two parallel to the DC bus capacitor 39 arranged discharge resistors.
  • the intermediate circuit capacitors 39 serve for smoothing the pulsating direct current provided by the inverter section 44.
  • the inverter part 44 has in each case two component pairs for each of the three phases P 1, P 2, P 3, each consisting of an electronic switching element 48 and a blocking diode 46.
  • the connection of the jeweili ⁇ gen phase Pl, P2, P3 here is located between these two component pairs.
  • the blocking diodes 46 are arranged such that in the direction of flow toward the DC side 38, a positive half-wave of the alternating current is conducted through one blocking diode 46 and the negative half-wave through the other blocking diode 46.
  • the blocking diodes 46 are therefore arranged in the manner of a bridge rectifier.
  • the per ⁇ schen component pairs of the individual phases Pl, P2, P3 are on their faces away from the phase terminal side at the same DC potential.
  • the voltage on the alternating ⁇ current side 40 or exceeds that seen electronic switching elements are switched clocked 48 so that the He ⁇ generation of alternating current, a current flow in the direction of the alternating current network 10 via the three phases Pl, P2, P3 takes place.
  • a voltage regulator is provided for this purpose, which regulates the voltage on the DC side 38 during the starting phase to a predetermined value which lies below the loading ⁇ operating voltage of the fuel cell stack.
  • the fed via the voltage regulator from the AC power supply 10 is increasingly smaller and goes back to zero, as soon as the voltage of the fuel cell stack exceeds the voltage set via the voltage regulator in the DC intermediate circuit ⁇ .
  • the voltage regulator is then switched off. Therefore, when starting up the fuel cell system 2, the load 6, in particular a gas valve for supplying gas to the fuel cell stack 4, a control unit for Appendices ⁇ gene control as well as a compressor or compressor which pumps required for the fuel cell operation, air in the Ka ⁇ methods gas spaces of the fuel cell, supplied with energy from the AC mains 10.
  • the intermediate circuit capacitor 39 is first charged gradually via the series resistor 30. After a predefined charging time, the initially open bridging switch 32 is closed, so that the series resistor 30 is bridged.
  • the intermediate circuit capacitor 39 serves for smoothing the direct current provided by the bidirectional converter 26.
  • the fuel cell unit 2 can be raised, that is, the there are suitable pressor for conveying the air is enabled, the What ⁇ serstoff-valve is opened and the overall Steue is ⁇ tion activated so as to gradually 4 power is generated from the fuel cell stack.
  • the temporary energy source is switched on only for the startup phase of the fuel cell systems 2.
  • the temporary power source is in particular ⁇ sondere an uninterruptible power supply whose Bat ⁇ terie in fuel cell operation is charging.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

La présente invention concerne un dispositif et un procédé pour démarrer et faire fonctionner une installation à piles à combustible (2) qui peut être reliée à un réseau à courant alternatif (10). Selon cette invention, on met en oeuvre un transformateur bidirectionnel (20) conçu de manière à transformer en courant alternatif, en fonctionnement normal, un courant continu produit par l'empilement de piles à combustible (4) de ladite installation à piles à combustible (2) pour alimenter le réseau à courant alternatif (10). Inversement, lors d'un processus de démarrage, un courant alternatif de l'installation à piles à combustible (2) fourni par le réseau à courant alternatif (10) est transformé pour l'alimentation dans un circuit intermédiaire à courant alternatif (14). Grâce à ces mesures, il n'est pas nécessaire de mettre en oeuvre des sources d'énergie supplémentaires et des appareillages complexes supplémentaires pour alimenter en énergie des consommateurs (6) de l'installation à piles à combustible (2), même lors d'un processus de démarrage.
PCT/EP2005/054875 2004-10-06 2005-09-28 Dispositif et procede pour demarrer et faire fonctionner une installation a piles a combustible WO2006037746A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004048703.0 2004-10-06
DE102004048703A DE102004048703A1 (de) 2004-10-06 2004-10-06 Vorrichtung und Verfahren zum Starten und Betreiben einer Brennstoffzellenanlage

Publications (2)

Publication Number Publication Date
WO2006037746A2 true WO2006037746A2 (fr) 2006-04-13
WO2006037746A3 WO2006037746A3 (fr) 2006-07-20

Family

ID=35985338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/054875 WO2006037746A2 (fr) 2004-10-06 2005-09-28 Dispositif et procede pour demarrer et faire fonctionner une installation a piles a combustible

Country Status (2)

Country Link
DE (1) DE102004048703A1 (fr)
WO (1) WO2006037746A2 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021167873A1 (fr) * 2020-02-19 2021-08-26 Bloom Energy Corporation Architecture électrique à tolérance de panne pour systèmes de piles à combustible
EP4113809A1 (fr) 2021-07-01 2023-01-04 SMA Solar Technology AG Procédé de démarrage d'une installation d'électrolyse et installation d'électrolyse destiné à la mise en uvre du procédé

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5858568A (en) * 1996-09-19 1999-01-12 Ztek Corporation Fuel cell power supply system
EP0950559A2 (fr) * 1998-04-16 1999-10-20 Siemens Aktiengesellschaft Système électrique
DE10304792A1 (de) * 2002-02-12 2003-10-16 Vaillant Gmbh Eigenspannungsversorgung für eine Brennstoffzellenvorrichtung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5858568A (en) * 1996-09-19 1999-01-12 Ztek Corporation Fuel cell power supply system
EP0950559A2 (fr) * 1998-04-16 1999-10-20 Siemens Aktiengesellschaft Système électrique
DE10304792A1 (de) * 2002-02-12 2003-10-16 Vaillant Gmbh Eigenspannungsversorgung für eine Brennstoffzellenvorrichtung

Also Published As

Publication number Publication date
DE102004048703A1 (de) 2006-04-13
WO2006037746A3 (fr) 2006-07-20

Similar Documents

Publication Publication Date Title
EP2619842B1 (fr) Réseau d'alimentation électrique et procédé pour charger au moins un élément accumulateur servant d'accumulateur d'énergie pour un circuit cc intermédiaire dans un réseau d'alimentation électrique
DE102016122008A1 (de) Allstrom-Ladegerät
EP3207585B1 (fr) Procédé de fonctionnement d'un réseau électrique, notamment d'un réseau électrique d'engin nautique
DE102018109395A1 (de) Brennstoffzellensystem
EP0992075A1 (fr) Reformeur de methanol a pile a combustible avec reservoir d'energie et procede de commande du flux d'energie du systeme
DE112007002396T5 (de) Wandlersteuerungsvorrichtung
DE10119985A1 (de) Vorrichtung zur Energieeinspeisung in ein Mehrspannungsbordnetz eines Kraftfahrzeugs
DE102017130474A1 (de) Transformatorvorrichtung für eine Ladestation für das elektrische Laden von Fahrzeugen mit wenigstens zwei Ladepunkten
DE102011089297A1 (de) Energiespeichereinrichtung, System mit Energiespeichereinrichtung und Verfahren zum Ansteuern einer Energiespeichereinrichtung
DE19829777A1 (de) DC/DC-Konverter
DE102010064325A1 (de) System mit einer elektrischen Maschine
WO2013143805A2 (fr) Système de batterie, véhicule automobile comprenant un système de batterie et procédé pour mettre en service un système de batterie
DE102014213980A1 (de) Startvorrichtung und -Verfahren eines Brennstoffzellenfahrzeugs
DE102012203612A1 (de) Batterieladegerät mit Spannungswandler und Verfahren zum Laden von Batterien
WO2019144166A1 (fr) Système d'alimentation en courant
WO1999054159A1 (fr) Procede permettant de faire demarrer un dispositif a cellules electrochimiques et dispositif a cellules electrochimiques
DE102017217729A1 (de) Energiebereitstellungseinrichtung zum Bereitstellen elektrischer Energie für wenigstens ein Endgerät sowie Verfahren zum Betreiben einer Energiebereitstellungseinrichtung
DE102017206497B4 (de) Ladevorrichtung und Verfahren zum Laden eines elektrischen Energiespeichers eines Fahrzeugs, sowie Kraftfahrzeug
DE102014201365A1 (de) Verfahren und Schaltungsanordnung zur Bestimmung des Coulomb-Wirkungsgrades von Batteriemodulen
DE112013001280T5 (de) Leistungsversorgungssystem
DE102018111154A1 (de) Ladesystem
DE112010001448T5 (de) Brennstoffzellensystem, Regelverfahren für das Brennstoffzellensystem und mit dem Brennstoffzellensystem ausgestattetes Elektrofahrzeug
DE102016122668A1 (de) Ladesteuersystem für ein Elektrofahrzeug
WO2006037746A2 (fr) Dispositif et procede pour demarrer et faire fonctionner une installation a piles a combustible
DE102008016739A1 (de) Energiespeichersystem für ein spurgeführtes Fahrzeug

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05797155

Country of ref document: EP

Kind code of ref document: A2