WO2006035488A1 - 定量搬送装置及びこれに用いられる往復動ポンプ - Google Patents

定量搬送装置及びこれに用いられる往復動ポンプ Download PDF

Info

Publication number
WO2006035488A1
WO2006035488A1 PCT/JP2004/014107 JP2004014107W WO2006035488A1 WO 2006035488 A1 WO2006035488 A1 WO 2006035488A1 JP 2004014107 W JP2004014107 W JP 2004014107W WO 2006035488 A1 WO2006035488 A1 WO 2006035488A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
motor
pump
strokes
metering pump
Prior art date
Application number
PCT/JP2004/014107
Other languages
English (en)
French (fr)
Inventor
Hirotsugu Date
Tadashi Kukitome
Original Assignee
Tacmina Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tacmina Corporation filed Critical Tacmina Corporation
Priority to PCT/JP2004/014107 priority Critical patent/WO2006035488A1/ja
Publication of WO2006035488A1 publication Critical patent/WO2006035488A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B13/00Pumps specially modified to deliver fixed or variable measured quantities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity

Definitions

  • Quantitative conveying device and reciprocating pump used therefor
  • the present invention relates to a quantitative conveyance device provided with a metering pump such as a reciprocating pump on a conveyance channel for conveying fluid, and a reciprocating pump used therefor.
  • a reciprocating pump is widely known as this type of metering pump.
  • the reciprocating pump drives a pump unit such as a diaphragm, a plunger, or a bellows, and more specifically, to realize a preset flow rate (volume of fluid passing through an arbitrary cross section in a unit time). Based on the number of strokes (number of strokes per unit time) and the discharge amount of one stroke, the pump unit is driven to enable quantitative conveyance as a whole.
  • the flow rate may fluctuate due to changes in the operating state.
  • the factors include fluctuations in operating conditions due to downstream pressure fluctuations and temperature differences.
  • the flow rate may also change due to voltage fluctuations in the metering pump.
  • the metering device comprises a metering pump 1 as shown in FIG. 4, a flow meter 2 electrically connected to the metering pump 1, and a constant pressure valve 3, and a storage tank 4 serving as a fluid supply source. It is provided on the transfer flow path 6 provided between the pipe portion 5 communicating with the place where the fluid is used.
  • the flow meter 2 measures the flow rate of the fluid conveyed by the metering pump 1, performs a comparison process between the actually measured flow rate and a preset flow rate (set flow rate), and based on the comparison result, The number of strokes of fixed-pump 1 is adjusted (corrected). That is, the applicant provided According to the metering device, since the metering pump 1 can be appropriately controlled by the flow meter 2, the set flow rate without adjusting the metering pump 1 can be maintained automatically and for a long time. It ’s like this.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-52748
  • a pulsating flow similar to a sine curve is generated except for a pulsating metering pump.
  • the flow velocity (instantaneous flow rate) changes periodically from zero flow velocity to the maximum flow velocity during one stroke (Fig. 5 (ii)). Therefore, for the flow rate measurement in a system using a metering pump, the instantaneous flow rate is integrated every sampling time (for example, 5 ms), and the value (average flow rate) divided by unit time is used as the measured flow rate.
  • a method of changing the flow rate that is, a method of changing the discharge flow rate of the metering pump
  • the discharge flow rate can be changed by changing the rotation speed of the motor.
  • the instantaneous flow rate decreases as the set flow rate decreases, that is, the discharge flow rate of the metering pump decreases.
  • the accuracy of the flow meter 2 cannot sufficiently follow, and there is a possibility that the flow rate cannot be measured accurately. Therefore, when operating the above-mentioned quantitative transfer device at a low flow rate, the set flow rate is actually realized even if the device is intended to deliver a fixed amount according to the set flow rate! This can cause problems.
  • the present invention has been made in view of these problems, and provides a quantitative conveyance device capable of quantitative conveyance at a set flow rate even at a low flow rate, and a reciprocating pump used therefor. This is the issue.
  • a metering device includes a motor-driven metering pump provided on a transporting channel for transporting a fluid, and a flow rate checker provided on a transporting channel on the downstream side of the motor-driven metering pump.
  • the motor-driven metering pump is equipped with a fixed-quantity conveying device, and the drive control of the motor is performed based on the number of strokes corresponding to the set flow rate.
  • the motor drive control is intermittently performed based on the number of strokes used when the value is less than or equal to the predetermined value.
  • the metering transport device includes a motor-driven metering pump provided on a transporting channel for transporting a fluid, and a flow rate check force provided on a transporting channel on the downstream side of the motor-driven metering pump.
  • the motor-driven metering pump has a predetermined flow rate set to a predetermined value in a metering device in which the driving state of the motor-driven metering pump is controlled based on the actually measured flow rate obtained based on the information from the flow rate checker. If the value is higher than the predetermined value, the motor is controlled based on the number of strokes corresponding to the set flow rate. Thus, drive control of the motor is performed intermittently.
  • the motor when the set flow rate is equal to or less than the predetermined value, the motor is repeatedly driven and stopped, that is, the pump unit is repeatedly driven and stopped. Drive control is performed intermittently.
  • the set flow rate is realized by appropriately setting the drive period, the drive stop period, or the number of strokes.
  • the quantitative pump is a reciprocating pump, and a stroke position for detecting a stroke position of a movable member such as a diaphragm, a plunger or a bellows in the pump unit. It is possible to employ a configuration that includes a detection means and that intermittently performs motor drive control in units of strokes. According to such a configuration, flow control is easy.
  • the quantitative conveyance device according to the present invention may employ a configuration further comprising display means for displaying the measured flow rate. According to the profitable configuration, the current driving situation can be confirmed.
  • This display means may be provided in the metering pump as a function of the metering pump, may be provided in the flow rate checker as a function of the flow rate checker, or may be configured independently of these. ! /
  • alarm means that operates when an actual deviation amount obtained from the actually measured flow rate and the set flow rate according to the present invention exceeds a predetermined value. According to such a configuration, it is possible to accurately grasp the abnormal situation.
  • This alarm means may be provided in the metering pump as a function of the metering pump, as in the display means, or may be provided in the flow rate checker as a function of the flow rate checker.
  • the instantaneous flow rate (flow velocity) cannot be reduced by using the number of strokes used when the flow rate is higher than the predetermined value.
  • the flow rate can be accurately measured without being affected by the inferior accuracy of the flow checker at low flow rates.
  • by setting the power intermittently it is possible to realize a small set flow rate although the number of strokes is used when the value is higher than a predetermined value. Therefore, it becomes possible to carry a fixed quantity according to the set flow rate in the range of all set flow rates.
  • the correction function works and fine adjustment of the flow rate is performed.
  • the set flow rate can be maintained automatically and for a long time.
  • FIG. 1 shows a sectional side view of a reciprocating pump according to the present embodiment.
  • FIG. 2 is a block diagram relating to a control unit of the reciprocating pump according to the embodiment.
  • FIG. 3 is a motor drive control of the reciprocating pump according to the embodiment, where (i) is a pulsation curve diagram at medium flow rate or high flow rate, and (mouth) is a pulsation curve diagram at low flow rate. .
  • FIG. 4 A conceptual diagram of the quantitative transfer device.
  • FIG. 5 (i) is a pulsation curve diagram for explaining the concept of average flow rate, and (mouth) is a conventional method. The pulsation curve figure by data drive control is shown.
  • a reciprocating pump is used as the quantitative pump 1 in FIG. 4, and a flow meter is used instead of the discharge amount checker 2.
  • a reciprocating pump 1 includes a pump unit 10, a drive unit 11, and a drive transmission unit 12.
  • the pump unit 10 is configured so that fluid can be sucked from a suction hole 16 communicating with the pump chamber 14 and discharged from the discharge hole 17 to the outside by a diaphragm 15 that reciprocates in a pump chamber 14 in the pump head 13.
  • Reference numeral 18 denotes a check valve incorporated in each of the suction hole 16 and the discharge hole 17.
  • Reference numerals 19 and 20 denote a motor and a speed reducer that constitute the drive unit 11, and each is housed in the pump case 21, and the rotating shaft 22 of the speed reducer 20 is a space formed in the upper part of the pump case 21. Projecting into part 23.
  • the motor 19 is a three-phase motor driven by inverter control. And an inverter 25 for controlling the entire pump including the inverter 25 are also provided in the pump case 21.
  • FIG. 27 denotes a pump shaft having the diaphragm 15 connected to one end, and 26 is configured to be able to engage with the other end of the pump shaft 27 that reciprocates the pump shaft 27.
  • the eccentric cam 26 and the pump shaft 27 constitute the drive transmission portion 12.
  • the pump shaft 27 is pressed and biased toward the eccentric cam 26 by the elastic force of the coil panel 28 passed through the pump shaft 27.
  • Reference numeral 29 denotes a position sensor that detects the home position of the eccentric cam 26 (that is, the home position of the drive transmission unit 12).
  • the control unit 23 as shown in FIG. 2 includes an input unit 30, a calculation unit 31, and an output unit 32.
  • the input unit 30 is a part for inputting the measurement data obtained from the flow meter 2, the set flow rate value input using the operation unit 33 provided in the reciprocating pump 1, and the detection signal of the position sensor 29.
  • the calculation unit 31 obtains the average flow rate based on the measurement data obtained from the flow meter 2, performs a comparison process between the average flow rate and the set flow rate, determines the number of strokes in consideration of the correction, and determines the number of strokes.
  • the output unit 32 is a part that outputs a frequency command based on the determined operation frequency to the inverter 25.
  • the correction function works to finely adjust the flow rate.
  • the set flow rate is automatically maintained for a long time.
  • the drive control of the motor 19 is performed when operating at a low flow rate and when operating at other flow rates (medium flow rate, high flow rate). Is different.
  • the motor 19 when operating at a medium flow rate and a high flow rate (for example, the average flow rate is higher than the maximum flow rate of 1Z2) as shown in Fig. 3, the motor 19 is based on the number of strokes corresponding to the set flow rate, as in the past. (Fig. 3 (ii)), and when operating at a low flow rate (for example, the average flow rate is 1Z2 or less of the maximum flow rate), the number of strokes of the motor 19 Drive control is performed intermittently in units of one stroke (Fig. 3 (mouth)).
  • the motor 19 is stopped at the end of one stroke, a stop period is provided for the motor 19, and after starting to operate, the operation is started for one stroke.
  • a stop period is provided for the motor 19, and after starting to operate, the operation is started for one stroke.
  • the pitch between strokes should be set to 5 times the stroke cycle. Such a function is borne by the control unit 23.
  • the detection signal of the position sensor 29 is used as a trigger to stop energization at the end of one stroke. That is, when the eccentric cam 26 reaches the home position set at the end position of one stroke (end position of the pump suction stroke), a detection signal is output from the position sensor 29, and the control unit 23 receiving the signal outputs the detection signal. The brake is applied to the pump and the drive of the pump unit 10 is stopped.
  • the instantaneous flow rate (flow velocity) does not become small, so that it is not affected by the inferior accuracy of the flow meter 2 at a low flow rate.
  • the flow rate can be measured accurately.
  • the quantitative conveyance device in combination with its own correction function, it is possible to quantitatively convey according to the set flow rate in all ranges of low flow rate, medium flow rate, and high flow rate.
  • a drive motor stop period for the motor 19 (drive stop period of the pump unit 10) is provided at the end of one stroke.
  • it is not limited to the end point of one stroke, and may be provided, for example, at the end point of two strokes.
  • the force when operating at a low flow rate, the force is set to set the pitch between strokes based on the maximum number of strokes.
  • (1Z2) X maximum stroke number may be used as a reference.
  • the number of reference strokes is not limited and is not fixed.
  • the motor drive is stopped at the end of the stroke, that is, at the end of the pump suction stroke. May be stopped.
  • the former is preferable in terms of simple control.
  • the reciprocating pump 1 (the control unit 23) obtains an average flow rate based on information from the flow meter 2 and performs comparison processing.
  • the flow meter 2 itself The average flow rate is obtained and this information is sent to the reciprocating pump 1 so that the reciprocating pump 1 performs comparison processing.
  • the flow meter 2 itself obtains the average flow rate and performs comparison processing, and the metering pump 1
  • the motor drive control may be performed.
  • the flow rate checker according to the present invention includes any of these types of flow meters.
  • the reciprocating pump 1 includes the drive unit 11.
  • the drive unit 11 (or only the motor 19) may be separate from the pump body.
  • the control unit 23 may be separated from the pump main body without having the interior.
  • a force using a three-phase motor for inverter control (frequency control) as the motor 19 may be a motor by pulse control such as a servo motor. Can be applied.
  • the constant pressure valve 3 is provided and the upstream side of the constant pressure valve 3 is conveyed.
  • the flow meter 2 is made to function properly by suppressing the fluctuation of the fluid pressure in the flow path, the constant pressure valve is not essential in the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Reciprocating Pumps (AREA)

Abstract

 低流量であっても設定流量どおりに定量搬送することができる定量搬送装置及びこれに用いられる往復動ポンプを提供する。  本発明は、設定流量が所定値よりも上の場合、該設定流量に対応したストローク数に基づいてポンプの駆動制御が行われる一方、所定値以下の場合、所定値よりも上の場合に用いられるストローク数に基づいてポンプの駆動制御が断続的に行われるようになっている。これにより、低流量における流量チェッカの精度劣性の影響を回避して、低流量であっても流量を正確に測定できるようになるため、低流量、中流量、高流量の全ての範囲で設定流量どおりに定量搬送することができる。

Description

明 細 書
定量搬送装置及びこれに用いられる往復動ポンプ
技術分野
[0001] 本発明は、流体を搬送する搬送流路上に往復動ポンプ等の定量ポンプを備えた定 量搬送装置及びこれに用いられる往復動ポンプに関する。
背景技術
[0002] 例えば、化学薬品や薬剤等を搬送して種々の化学製品を製造する化学'薬品の分 野においては、強酸性あるいは強アルカリ性の流体を定量的に搬送させる必要性が 高く、力かる定量搬送を実現するために従来から種々の定量ポンプが用いられて!/ヽ る。
[0003] この種の定量ポンプとしては、往復動ポンプが広く知られている。該往復動ポンプ は、ダイヤフラム、プランジャあるいはべローズ等のポンプ部を駆動させ、より具体的 には、予め設定された流量 (単位時間にある任意の断面を通過する流体の容積)を 実現するためのストローク数(単位時間当たりのストローク回数)及び 1ストロークの吐 出量に基づ 、てポンプ部を駆動させて、全体として定量搬送を可能として 、る。
[0004] し力しながら、そのような定量ポンプであっても、運転状態の変化等によって流量が 変動することがある。その要因としては、下流側の圧力変動、気温差等による運転条 件の変動等が挙げられる。また、定量ポンプにおける電圧変動によっても流量が変 動することがある。
[0005] そこで、本願出願人は、本願に先立ち、上記問題を解決し得る定量搬送装置を提 供している (特許文献 1参照)。該定量搬送装置は、図 4に示す如ぐ定量ポンプ 1と、 該定量ポンプ 1に電気的に接続された流量計 2と、定圧弁 3とからなり、流体の供給 源である貯留タンク 4と流体の使用箇所に連通する配管部 5との間に設けられた搬送 流路 6上に設けられるものである。
[0006] 流量計 2は、定量ポンプ 1にて搬送される流体の流量の測定、該実測流量と予め設 定された流量 (設定流量)との比較処理を行い、この比較結果に基づいて、定量ボン プ 1のストローク数を調整 (補正)するようになつている。即ち、本願出願人が提供した 定量搬送装置によれば、流量計 2によって定量ポンプ 1を適切に制御可能であるた め、特に定量ポンプ 1の調整を行うことなぐ設定流量を自動的且つ長時間に亘つて 維持することができるよう〖こなる。
特許文献 1:特開 2004-52748号公報
[0007] 尚、定量ポンプにおいては、無脈動仕様の定量ポンプを除き、サインカーブに似た 脈動流が発生する。この場合、流速 (瞬時流量)は、 1ストロークの間にゼロ流速から 最大流速まで周期的に変化する(図 5 (ィ))。そこで、定量ポンプを用いた系における 流量計測には、サンプリング時間(例えば 5ms)毎の瞬時流量を積算し、これを単位 時間で割った値 (平均流量)を実測流量として用いる。
発明の開示
発明が解決しょうとする課題
[0008] ところで、流量を変更する方法、即ち、定量ポンプの吐出流量を変更する方法とし ては、定量ポンプのストローク数を変更するのが一般的である。例えば、図 5 (口)に示 す如ぐ最大ストローク数 (例えば 120)における吐出流量を半分にしたければ、(1Z 2) X最大ストローク数 (例えば 60)にすればよいし、最大ストローク数における吐出流 量を 5分の 1にしたければ、(1Z5) X最大ストローク数 (例えば 24)にすればよい。そ して、モータを駆動源に用いるモータ駆動定量ポンプであれば、モータの回転数を 変更することによって、吐出流量を変更することができる。
[0009] し力しながら、この方法では、設定流量が小さくなるほど、即ち、定量ポンプの吐出 流量を少なくすればするほど、瞬時流量 (流速)が小さくなる。そのような場合、流量 計 2の精度が十分に追随できず、流量を正確に測定できないおそれがある。従って、 上記定量搬送装置を低流量で運転する場合は、装置的には設定流量どおりに定量 搬送して!/、るつもりであっても、実際には設定流量が実現されて 、な 、と 、う問題が 起こり得る。
[0010] そこで、上記問題を解消する方法として、低流量に対して精度が高 、流量計を新た に付加し、低流量で運転する場合と、それ以外の流量で運転する場合とで、使用す る流量計を切り替えるようにすることも考えられる力 これでは、ハード構成が増えて 製品のコストアップを招くことになる。 [0011] 本発明は、これらの問題に鑑みてなされたもので、低流量であっても設定流量どお りに定量搬送することができる定量搬送装置及びこれに用いられる往復動ポンプを 提供することを課題とする。
課題を解決するための手段
[0012] 本発明に係る定量搬送装置は、流体を搬送する搬送流路上に設けられたモータ駆 動定量ポンプと、該モータ駆動定量ポンプの下流側における搬送流路上に設けられ た流量チェッカとを備えた定量搬送装置にぉ 、て、前記モータ駆動定量ポンプは、 設定流量が所定値よりも上の場合、該設定流量に対応したストローク数に基づ ヽて モータの駆動制御が行われる一方、所定値以下の場合、所定値よりも上の場合に用 いられるストローク数に基づいてモータの駆動制御が断続的に行われることを特徴と する。
[0013] あるいは、本発明に係る定量搬送装置は、流体を搬送する搬送流路上に設けられ たモータ駆動定量ポンプと、該モータ駆動定量ポンプの下流側における搬送流路上 に設けられた流量チヱッ力とを備え、該流量チヱッカからの情報に基づいて求められ る実測流量に基づいてモータ駆動定量ポンプの駆動状態が制御される定量搬送装 置において、前記モータ駆動定量ポンプは、設定流量が所定値よりも上の場合、該 設定流量に対応したストローク数に基づ 、てモータの駆動制御が行われる一方、所 定値以下の場合、所定値よりも上の場合に用いられるストローク数に基づ ヽてモータ の駆動制御が断続的に行われることを特徴とする。
[0014] 上記構成からなる定量搬送装置によれば、設定流量が所定値以下の場合、モータ の駆動と駆動停止とを繰り返し、即ちポンプ部の駆動と駆動停止とを繰り返すようにし て、モータの駆動制御が断続的に行われる。また、設定流量は、駆動期間、駆動停 止期間あるいはストローク数を適宜設定することにより実現される。
[0015] また、本発明に係る定量搬送装置は、前記定量ポンプは往復動ポンプであり、且 つポンプ部におけるダイヤフラム、プランジャあるいはべローズ等の可動部材のスト口 ーク位置を検出するストローク位置検出手段を備え、モータの駆動制御がストローク 単位で断続的に行われる構成を採用することができる。カゝかる構成によれば、流量制 御が簡単である。 [0016] また、本発明に係る定量搬送装置は、前記実測流量を表示する表示手段をさらに 備える構成を採用することができる。カゝかる構成によれば、現在の運転状況を確認す ることができる。この表示手段は、定量ポンプの一機能として該定量ポンプに設けて もよいし、流量チェッカの一機能として該流量チェッカに設けてもよいし、あるいはこ れらと独立した構成であってもよ!/、。
[0017] また、本発明に係る前記実測流量と前記設定流量とから得られる実偏差量が所定 値を越えると作動する警報手段をさらに備える構成を採用することができる。かかる 構成によれば、異常事態を的確に把握することができる。この警報手段は、表示手段 と同様、定量ポンプの一機能として該定量ポンプに設けてもよいし、流量チェッカの 一機能として該流量チェッカに設けてもょ ヽ。
発明の効果
[0018] 以上の如ぐ本発明は、設定流量が所定値以下の場合であっても、所定値よりも上 の場合に用いられるストローク数を用いることにより、瞬時流量 (流速)は小さくならな いで済み、その結果、低流量における流量チェッカの精度劣性の影響を受けること がなぐ流量を正確に測定できる。しカゝも、断続的とすることにより、所定値よりも上の 場合に用いられるストローク数でありながらも少ない設定流量を実現することができる 。そのため、全ての設定流量の範囲で設定流量どおりに定量搬送することが可能と なる。
[0019] また、流量チヱッカからの情報に基づいて求められる実測流量に基づいてモータ駆 動定量ポンプの駆動状態が制御される場合、補正機能が働!、て流量の微調整が行 われるため、設定流量を自動的且つ長時間に亘つて維持することができる。
図面の簡単な説明
[0020] [図 1]本実施形態に係る往復動ポンプの断面側面図を示す。
[図 2]同実施形態に係る往復動ポンプの制御部に関するブロック図を示す。
[図 3]同実施形態に係る往復動ポンプのモータ駆動制御であって、(ィ)は、中流量あ るいは高流量における脈動曲線図、(口)は、低流量における脈動曲線図を示す。
[図 4]定量搬送装置の概念図を示す。
[図 5] (ィ)は、平均流量の概念を説明するための脈動曲線図、(口)は、従来方式のモ ータ駆動制御による脈動曲線図を示す。
符号の説明
[0021] 1 往復動ポンプ(定量ポンプ)
2 ϊ巟量計(流量チェッカ)
10 ポンプ部
11 駆動部
12 駆動伝達部
15 ダイヤフラム(可動部材)
19 モータ
24 制御部
25 インノ ータ
26 偏心カム
29 位置センサ (ストローク位置検出手段)
30 入力部
31 演算部
32 出力部
発明を実施するための最良の形態
[0022] 本実施形態に係る定量搬送装置は、図 4の定量ポンプ 1として往復動ポンプが用 V、られると共に、吐出量チェッカ 2の代わりに流量計が用いられる。
[0023] 図 1に示す如ぐ本実施形態に係る往復動ポンプ 1は、ポンプ部 10、駆動部 11及 び駆動伝達部 12を備える。ポンプ部 10は、ポンプヘッド 13内のポンプ室 14を往復 動するダイヤフラム 15により、ポンプ室 14に連通する吸入孔 16から流体が吸入され 、且つ吐出孔 17から外部に吐出し得るように構成されている。 18は、吸入孔 16及び 吐出孔 17にそれぞれ内装された逆止弁を示す。
[0024] 19, 20は、駆動部 11を構成するモータ及び減速機を示し、それぞれポンプケース 21に内装されており、減速機 20の回転軸 22は、ポンプケース 21の上部に形成され た空間部 23内に突出している。
[0025] モータ 19は、インバータ制御によって駆動される三相モータであり、該モータ 19の ためのインバータ 25と、該インバータ 25を含め、ポンプ全体を制御するための制御 部 23もポンプケース 21に内装されて!、る。
[0026] 27は、一端部に前記ダイヤフラム 15が接続されたポンプシャフトを示し、 26は、ポ ンプシャフト 27を往復動させるベぐ該ポンプシャフト 27の他端部に係合し得るように 構成された偏心カムを示し、偏心カム 26及びポンプシャフト 27によって駆動伝達部 1 2が構成される。ポンプシャフト 27は、該ポンプシャフト 27に揷通されたコイルパネ 28 の弾性力により偏心カム 26側に押圧付勢されるようになっている。 29は、偏心カム 2 6のホーム位置(即ち、駆動伝達部 12のホーム位置)を検出する位置センサを示す。
[0027] 図 2に示す如ぐ制御部 23は、入力部 30、演算部 31及び出力部 32を備える。入 力部 30は、流量計 2から得られる計測データや、往復動ポンプ 1に設けられた操作 部 33を用いて入力された設定流量値や、位置センサ 29の検出信号を入力する部分 であり、演算部 31は、流量計 2から得られた計測データに基づいて平均流量を求め 、該平均流量と設定流量との比較処理を行い、補正を考慮したストローク数を決定し 、該ストローク数に基づいて運転周波数を決定する部分であり、出力部 32は、決定さ れた運転周波数に基づく周波数指令をインバータ 25に出力する部分である。
[0028] この結果、本実施形態に係る定量搬送装置によれば、運転状態の変化等によって 流量が変動するようなことがあっても、補正機能が働いて流量の微調整が行われるこ とにより、設定流量が自動的且つ長時間に亘つて維持されるのである。
[0029] ここで、本実施形態に係る定量搬送装置の特徴としては、低流量で運転する場合と 、それ以外の流量(中流量、高流量)で運転する場合とで、モータ 19の駆動制御が 異なることである。即ち、図 3に示す如ぐ中流量、高流量 (例えば、平均流量が最大 流量の 1Z2よりも上)で運転する場合は、従来と同様、設定流量に対応したストロー ク数に基づいてモータ 19の駆動制御を行うこととし(図 3 (ィ))、低流量 (例えば、平 均流量が最大流量の 1Z2以下)で運転する場合は、ストローク数は、最大ストローク 数を用いつつ、モータ 19の駆動制御を 1ストローク単位で断続的に行うこととしている (図 3 (口))。
[0030] より具体的に説明すれば、 1ストロークの終了時点でモータ 19を停止して、モータ 1 9への停止期間を設け、し力る後、運転を開始して、 1ストローク分の運転を行うという 方法である。例えば、従来の(1Z5) X最大ストローク数と同じ平均流量を実現しょう とすれば、ストローク間ピッチは、ストローク周期の 5倍に設定すればよい。このような 機能は、制御部 23が担うことになる。
[0031] 尚、 1ストロークの終了時点で通電を停止することのトリガーとして、位置センサ 29の 検出信号が用いられる。即ち、偏心カム 26が 1ストロークの終了位置 (ポンプ吸入行 程の終了位置)に設定されたホーム位置になると、位置センサ 29から検出信号が出 力され、これを受けた制御部 23がモータ 19にブレーキをかけ、ポンプ部 10の駆動を 停止するのである。
[0032] このような方法にすれば、低流量で運転する場合であっても、瞬時流量 (流速)は 小さくならな 、ので、低流量における流量計 2の精度劣性の影響を受けることがなく なり、流量を正確に測定できるようになる。即ち、本実施形態に係る定量搬送装置に よれば、自身の補正機能と相俟って、低流量、中流量、高流量の全ての範囲で設定 流量どおりに定量搬送することができるのである。
[0033] 尚、本発明は、上記実施形態に限定されるものではなぐ本発明の要旨を逸脱しな V、範囲で種々の変更が可能である。
[0034] 例えば、上記実施形態においては、低流量で運転する場合、 1ストロークの終了時 点でモータ 19への駆動用モータ停止期間(ポンプ部 10の駆動停止期間)を設けるよ うにしているが、 1ストロークの終了時点であることに限定されず、例えば 2ストロークの 終了時点に設けてもよい。
[0035] また、上記実施形態においては、低流量で運転する場合、最大ストローク数を基準 として、ストローク間ピッチを設定するようにしている力 最大ストローク数を基準とする ことに限定されず、例えば(1Z2) X最大ストローク数を基準とするようにしてもよい。 要は、ストロークの最大瞬時流量が所定値よりも下回らないようにすれば、基準となる ストローク数は限定されないし、また、固定でもないのである。
[0036] また、上記実施形態にお!、ては、ストロークの終了時点で、即ちポンプ吸入行程の 終了時点でモータ駆動が停止されるようになっている力 ストロークの途中時点でモ ータ駆動を停止するようにしてもよい。但し、制御が簡単になる点では、前者の方が 好ましい。 [0037] また、上記実施形態においては、往復動ポンプ 1 (の制御部 23)が流量計 2からの 情報に基づき平均流量を求め、比較処理を行うようにしているが、流量計 2自体が平 均流量を求め、この情報を往復動ポンプ 1に送り、往復動ポンプ 1が比較処理を行う ようにしてもよいし、流量計 2自体が平均流量を求め、比較処理を行い、定量ポンプ 1 のモータ駆動制御を行うようにしてもよい。本発明に係る流量チェッカは、この何れの タイプの流量計をも含むものである。
[0038] また、上記実施形態においては、往復動ポンプ 1に駆動部 11が内装されているが 、駆動部 11 (あるいはモータ 19のみ)をポンプ本体とは別にしてもよい。同様にして、 制御部 23を内装することなくポンプ本体とは別にしてもよい。
[0039] また、上記実施形態においては、モータ 19として、インバータ制御 (周波数制御)と なる三相モータを使用している力 本発明は、サーボモータ等、パルス制御によるモ ータであっても適用することができる。
[0040] また、上記実施形態にお!、ては、流量計 2の下流側にて流量変動等の条件変化が 生じたとしても、定圧弁 3を設け、該定圧弁 3の上流側における搬送流路中の流体圧 力の変動を抑えることにより、流量計 2を適切に機能させるようにしているが、本発明 において、定圧弁は必須ではない。

Claims

請求の範囲
[1] 流体を搬送する搬送流路上に設けられたモータ駆動定量ポンプと、該モータ駆動 定量ポンプの下流側における搬送流路上に設けられた流量チェッカとを備えた定量 搬送装置において、
前記モータ駆動定量ポンプは、設定流量が所定値よりも上の場合、該設定流量に 対応したストローク数に基づ!/、てモータの駆動制御が行われる一方、所定値以下の 場合、所定値よりも上の場合に用いられるストローク数に基づいてモータの駆動制御 が断続的に行われることを特徴とする定量搬送装置。
[2] 流体を搬送する搬送流路上に設けられたモータ駆動定量ポンプと、該モータ駆動 定量ポンプの下流側における搬送流路上に設けられた流量チェッカとを備え、該流 量チヱッ力からの情報に基づいて求められる実測流量に基づいてモータ駆動定量ポ ンプの駆動状態が制御される定量搬送装置において、
前記モータ駆動定量ポンプは、設定流量が所定値よりも上の場合、該設定流量に 対応したストローク数に基づ!/、てモータの駆動制御が行われる一方、所定値以下の 場合、所定値よりも上の場合に用いられるストローク数に基づいてモータの駆動制御 が断続的に行われることを特徴とする定量搬送装置。
[3] 前記定量ポンプは往復動ポンプであり、且つポンプ部における可動部材のストロー ク位置を検出するストローク位置検出手段を備え、モータの駆動制御がストローク単 位で断続的に行われる請求項 1又は 2に記載の定量搬送装置。
[4] 前記ポンプ部は、ダイヤフラム、プランジャあるいはべローズ等の可動部材の少なく とも一つを用いて構成される請求項 3に記載の定量搬送装置。
[5] 前記実測流量を表示する表示手段をさらに備える請求項 2乃至 4の何れか 1項に 記載の定量搬送装置。
[6] 前記実測流量と前記設定流量とから得られる実偏差量が所定値を越えると作動す る警報手段をさらに備える請求項 2乃至 5の何れか 1項に記載の定量搬送装置。
[7] ダイヤフラム、プランジャあるいはべローズ等の可動部材の少なくとも一つを用いて 構成されるポンプ部、モータ駆動部、駆動伝達部及び設定流量値を入力する入力部 を備えた往復動ポンプにぉ 、て、 設定流量が所定値よりも上の場合、該設定流量に対応したストローク数に基づ ヽて モータの駆動制御が行われる一方、所定値以下の場合、所定値よりも上の場合に用 いられるストローク数に基づいてモータの駆動制御が断続的に行われるよう構成され てなることを特徴とする往復動ポンプ。
PCT/JP2004/014107 2004-09-27 2004-09-27 定量搬送装置及びこれに用いられる往復動ポンプ WO2006035488A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/014107 WO2006035488A1 (ja) 2004-09-27 2004-09-27 定量搬送装置及びこれに用いられる往復動ポンプ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/014107 WO2006035488A1 (ja) 2004-09-27 2004-09-27 定量搬送装置及びこれに用いられる往復動ポンプ

Publications (1)

Publication Number Publication Date
WO2006035488A1 true WO2006035488A1 (ja) 2006-04-06

Family

ID=36118640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014107 WO2006035488A1 (ja) 2004-09-27 2004-09-27 定量搬送装置及びこれに用いられる往復動ポンプ

Country Status (1)

Country Link
WO (1) WO2006035488A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6226625Y2 (ja) * 1979-10-08 1987-07-08
JP2004052748A (ja) * 2002-05-31 2004-02-19 Tacmina Corp 定量搬送装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6226625Y2 (ja) * 1979-10-08 1987-07-08
JP2004052748A (ja) * 2002-05-31 2004-02-19 Tacmina Corp 定量搬送装置

Similar Documents

Publication Publication Date Title
US9309872B2 (en) System and method for position control of a mechanical piston in a pump
JP6018159B2 (ja) ポンプ、その動作のための方法およびコンピュータプログラム
EP2092196B1 (en) System and method for operation of a pump
JP7123968B2 (ja) 医療流体のための容積式ポンプおよび医療流体のための容積式ポンプを備える血液処理装置ならびに医療流体のための容積式ポンプを制御するための方法
US7967168B2 (en) Process for controlling a dosing device for liquid or pasty media; dosing device; and industrial robot
US20060159565A1 (en) Method and system for pumping powder, and powder coating apparatus
JP5049808B2 (ja) 送液装置及びそれを有する分析装置
WO2007067358A2 (en) System and method for pressure compensation in a pump
US9010367B2 (en) Electronic proportioner using continuous metering and correction
JP5674853B2 (ja) ポンプの機械式ピストンのピストン制御システムおよび方法
JP4965796B2 (ja) 往復ポンプにおける複数の成分材料を分配するための方法及び該ポンプの切替えを補償するための方法
JP4531328B2 (ja) 定量搬送装置
WO2006035488A1 (ja) 定量搬送装置及びこれに用いられる往復動ポンプ
CN111287925B (zh) 一种计量泵及计量系统
JP2002147364A (ja) 定量吐出システム
US20190154019A1 (en) Coating agent pump
CN210239959U (zh) 一种流量可控的隔膜水泵
WO2004048780A1 (ja) 定量搬送装置
JP7469752B2 (ja) 計量ポンプ
KR20130141653A (ko) 공압식으로 기동된 교호의 선형 용적형 펌프를 모니터링 하는 장치 및 그 시스템
JPH07116251A (ja) 輸液装置
ITMI20001088A1 (it) Apparecchiatura per misurare la quantita' di liquido erogato da pompepneumatiche a moto alternato.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 04788203

Country of ref document: EP

Kind code of ref document: A1