КАТАЛИЗАТОР КОНВЕРСИИ SO2 в SОзSO 2 CONVERSION CATALYST
Изобретение относится к производству ванадиевых катализаторов конверсии SO2 в SO3. Катализаторы для данного процесса обычно содержат активный компонент - оксиды ванадия, щелочных металлов, серы, распределенные на поверхности кремнеземистого носителя, и имеют определенную пористую структуру, являющуюся важнейшим свойством катализатора, определяющим его эксплуатационные характеристики.The invention relates to the production of vanadium catalysts for the conversion of SO 2 to SO 3 . The catalysts for this process usually contain the active component - oxides of vanadium, alkali metals, sulfur, distributed on the surface of the siliceous support, and have a certain porous structure, which is the most important property of the catalyst that determines its operational characteristics.
Известны технические решения создания катализаторов, высокоактивных в узких интервалах рабочего диапазона температур, получаемых путем использования носителей с узкими диапазонами пор, оптимальными для каждого конкретного интервала температур [Патент DE N° 1235274].Known technical solutions for the creation of catalysts that are highly active in narrow ranges of the operating temperature range obtained by using carriers with narrow pore ranges that are optimal for each particular temperature range [DE Patent N ° 1235274].
Однако известное решение имеет существенные недостатки. Поскольку процесс окисления SO2 является экзотермическим, то катализатор в пределах каждого отдельного слоя в реакторе работает в условиях изменяющихся температур, т. е. требуется использование набора катализаторов с различными диапазонами пор. В реальных условиях из-за невозможности точного расчета полей температур по высоте и объему слоя даже набор катализаторов с заданными узкими диапазонами пор не могут работать эффективно.However, the known solution has significant drawbacks. Since the oxidation process of SO 2 is exothermic, the catalyst within each separate layer in the reactor operates at varying temperatures, i.e., it requires the use of a set of catalysts with different pore ranges. In real conditions, due to the impossibility of accurately calculating temperature fields by height and volume of a layer, even a set of catalysts with given narrow pore ranges cannot work effectively.
Более рационально приготовление катализатора на носителе с широким набором пор различных размеров при определенном их соотношении, эффективно работающего в более широких температурных интервалах. Известен катализатор [Патент DE JY° 4000609, 1991 г], носитель которого имеет поры с диаметром от нескольких ангстрем до более 200 нм. При этом доля пор с диаметром до 15 нм составляет 10-30 %, с
диаметром 15-100 нм - 25-60%, с диаметром более 200 нм -10-60%. Известный катализатор получают пропиткой заранее сформованного и прокаленного носителя с заданной пористостью. Недостатком известного катализатора является низкая активность при температуре 380 0C.It is more rational to prepare a supported catalyst with a wide range of pores of various sizes with a certain ratio of them that works effectively in wider temperature ranges. A known catalyst [Patent DE JY ° 4000609, 1991], the carrier of which has pores with diameters from several angstroms to more than 200 nm. The proportion of pores with a diameter of up to 15 nm is 10-30%, s with a diameter of 15-100 nm - 25-60%, with a diameter of more than 200 nm -10-60%. The known catalyst is obtained by impregnation of a preformed and calcined support with a given porosity. A disadvantage of the known catalyst is low activity at a temperature of 380 0 C.
Необходимо отметить, что только в очень немногих источниках выбор эффективного катализатора ведется по пористой структуре именно носителя готового катализатора, названного каркасом. Преимущественно даются характеристики пористой структуры исходного носителя, используемого для синтеза, который может существенно отличаться от носителя готового катализатора, т.е. каркаса.It should be noted that only in very few sources, the choice of an effective catalyst is based on the porous structure of the carrier of the finished catalyst, called the framework. The characteristics of the porous structure of the starting support used for synthesis are predominantly given, which may differ significantly from the support of the finished catalyst, i.e. frame.
Прототипом предложенного катализатора является катализатор конверсии SO2 в SO3, содержащий оксиды ванадия, щелочного металла (К, Na, Rb, Cs), серы, на кремнеземистом носителе [Патент РФ N° 2162367, 2000 г.]. Носитель товарного катализатора или каркас содержит поры с радиусами от 100 до ΙОООООА, при этом доля пор с радиусами 1000 - ΙООООА составляет от 5 до 70%. При этом каркас катализатора формируется из природного или синтетического кремнезема или их комбинации. Под каркасом катализатора авторы понимали реальную структуру носителя, прошедшего все стадии получения катализатора (включая формование и прокалку) - т.е. готового катализатора после удаления с него кислоторастворимых активных компонентов путем экстрагирования серной кислотой. Известный катализатор обладает высокой активностью в широком диапазоне температур, в том числе и при достаточно низких температурах ( 4050C).The prototype of the proposed catalyst is a catalyst for the conversion of SO 2 to SO 3 containing oxides of vanadium, alkali metal (K, Na, Rb, Cs), sulfur, on a siliceous carrier [RF Patent N ° 2162367, 2000]. A commercial catalyst carrier or framework contains pores with radii from 100 to ΙOOOOOA, while the proportion of pores with radii of 1000 - ΙOOOOA is from 5 to 70%. In this case, the catalyst frame is formed from natural or synthetic silica, or a combination thereof. Under the catalyst framework, the authors understood the real structure of the carrier, which went through all stages of the preparation of the catalyst (including molding and calcining), i.e. the finished catalyst after removal of acid-soluble active components from it by extraction with sulfuric acid. The known catalyst has high activity in a wide temperature range, including at sufficiently low temperatures (405 0 C).
Это достигается за счет целесообразного химического состава, наличия пор с широким диапазоном радиусов и рационального соотношения пор различных размеров в структуре каркаса.This is achieved due to the appropriate chemical composition, the presence of pores with a wide range of radii and a rational ratio of pores of various sizes in the structure of the frame.
Недостатком данного объекта является недостаточно высокая ак-
тивность при температурах ниже 4050C.The disadvantage of this facility is not high enough activity at temperatures below 405 0 C.
Техническая задача - улучшение эксплуатационных характеристик катализатора путем расширения температурного диапазона его работы в низкотемпературной области до 38O0C при одновременном повышении активности в среднем температурном интервале 420-4850C.The technical task is to improve the operational characteristics of the catalyst by expanding the temperature range of its operation in the low temperature region to 38O 0 C while increasing activity in the average temperature range 420-485 0 C.
Техническая задача решается тем, что катализатор конверсии SO2 в SОз содержит активные компоненты - оксиды ванадия, щелочного металла (К, Na, Rb, Cs), серы и кремнеземистый каркас, сформированный из природного и/или синтетического кремнезема, включающий поры с радиусами до 65000 А, при этом в каркасе доля пор с радиусами 1000- 10000 А составляет не менее 5%, доля пор с радиусами более ΙООООА составляет не более 35%, а содержание в каркасе нерастворимых в серной кислоте соединений ванадия (в пересчете на V2Os) составляет не более 4,0 % (мае). Доля пор с радиусами менее 1000A составляет не менее 40%, при этом доля пор с радиусом менее 75 А составляет не менее 31%. Предпочтительно содержание в каркасе нерастворимых в серной кислоте соединений ванадия (в пересчете на V2O5) составляет не более 2,0% (мае).The technical problem is solved in that the catalyst for the conversion of SO 2 to SO3 contains active components - oxides of vanadium, an alkali metal (K, Na, Rb, Cs), sulfur and a siliceous framework formed from natural and / or synthetic silica, including pores with radii up to 65,000 A, while in the framework the proportion of pores with radii of 1000–10,000 A is at least 5%, the proportion of pores with radii greater than ΙOOOOA is not more than 35%, and the content of vanadium compounds insoluble in sulfuric acid in the framework (in terms of V 2 Os ) is not more than 4.0% (May). The proportion of pores with radii less than 1000A is at least 40%, while the proportion of pores with a radius of less than 75 A is at least 31%. Preferably, the content of vanadium compounds insoluble in sulfuric acid in the framework (in terms of V 2 O 5 ) is not more than 2.0% (May).
Известно, что процесс каталитического окисления SO2 в SO3 протекает при расплавленном состоянии активных компонентов. Предполагается, что нижний предел рабочего диапазона ограничен температурой кристаллизации активных компонентов. Экспериментами установлено, что содержание в каркасе достаточного объема пор с радиусами менее ЮООА позволяет увеличить активность при температуре 3800C. Еще больший эффект наблюдается при увеличении содержания объема пор с радиусами менее 75A. Вероятно, это связано как с увеличением величины внутренней поверхности катализатора, так и со стабилизацией расплавленного состояния активного компонента наиболее тонкими по-
рами каркаса, затрудняющими процесс кристаллизации в расплаве. С повышением количества пор с радиусом менее 75 А и уменьшением содержания блокированного ванадия активность катализатора при низких температурах возрастает. При этом наличие в каркасе пор с радиусом менее 75 А в количестве не менее 31% обуславливает решение технической задачи даже при содержании в каркасе катализатора блокированного ванадия равном предельному.It is known that the process of catalytic oxidation of SO 2 in SO 3 proceeds in the molten state of the active components. It is assumed that the lower limit of the operating range is limited by the crystallization temperature of the active components. The experiments established that the content in the skeleton of a sufficient pore volume with radii less than 10 ° C allows an increase in activity at a temperature of 380 ° C. An even greater effect is observed with an increase in the content of pore volume with radii less than 75 A. This is probably due to both an increase in the value of the inner surface of the catalyst and stabilization of the molten state of the active component by the finest frame frames that impede the process of crystallization in the melt. With an increase in the number of pores with a radius of less than 75 A and a decrease in the content of blocked vanadium, the activity of the catalyst at low temperatures increases. Moreover, the presence in the framework of pores with a radius of less than 75 A in an amount of at least 31% determines the solution of the technical problem even when the content of blocked vanadium in the catalyst framework is equal to the limit.
Достижением технической задачи относительно прототипа считаем возрастание относительной активности при 42O0C - не менее 115%, при 3800C - не менее 140%.The achievement of the technical task regarding the prototype is considered to be an increase in relative activity at 42O 0 C - at least 115%, at 380 0 C - at least 140%.
При нарушении вышеупомянутого оптимального соотношения доли пор в заданных интервалах снижается каталитическая активность во всем интервале температур.If the above optimal ratio of the proportion of pores in the specified intervals is violated, the catalytic activity decreases over the entire temperature range.
Достижение технической задачи наблюдается только при ограничении содержания в каркасе нерастворимых в серной кислоте соединений ванадия до 4,0 % (мае.) (в пересчете на V2O5).The achievement of the technical problem is observed only when the content in the framework of vanadium compounds insoluble in sulfuric acid is limited to 4.0% (May.) (In terms of V 2 O 5 ).
Ранее авторами было установлено, что каркас катализатора после смывания серной кислотой активных компонентов может удержать («блoкиpoвaть») различное количество соединений ванадия. Механизм этого явления изучен недостаточно, (предполагается механическое защемление при формировании каркаса на стадии прокалки под воздействием расплава активных компонентов), но авторами установлена четкая обратная зависимость между содержанием в каркасе нерастворимого в кислоте ванадия и активностью катализатора. Доля «блoкиpoвaннoгo» ванадия зависит как от свойств используемого носителя, так и от режима синтеза катализатора, однако, ранее было неясно, какое максимальное содержание ванадия допустимо в блокированном виде.Previously, the authors found that the catalyst frame after washing off the active components with sulfuric acid can retain (“block”) a different amount of vanadium compounds. The mechanism of this phenomenon has not been studied enough (mechanical jamming is assumed during the formation of the carcass at the calcination stage under the influence of a melt of active components), but the authors have established a clear inverse relationship between the content of vanadium insoluble in acid and the activity of the catalyst in the carcass. The proportion of “blocked” vanadium depends both on the properties of the carrier used and on the mode of catalyst synthesis, however, it was previously unclear what maximum vanadium content is allowed in a blocked form.
При повышении содержания в каркасе соединений ванадия, не рас-
творимых в серной кислоте до более 4,0 % (в пересчете на V2O5) снижается каталитическая активность во всем интервале температур. Наиболее высокая активность катализатора при 38O0C достигается при содержании в каркасе соединений ванадия не более 2,0 % (мае).With an increase in the content of vanadium compounds in the framework, soluble in sulfuric acid to more than 4.0% (in terms of V 2 O 5 ) decreases catalytic activity in the entire temperature range. The highest catalyst activity at 38O 0 C is achieved when the content of vanadium compounds in the framework is not more than 2.0% (May).
В настоящем изобретении конкретизируется оптимальное соотношение содержания пор различных размеров и предельно допустимое содержание нерастворимых в серной кислоте соединений ванадия в каркасе катализатора, что создает неожиданный эффект - расширение температурного диапазона работы катализатора в низкотемпературной области - при 380°C при одновременном аповышении активности в среднем температурном интервале - 420-485°C.The present invention specifies the optimal ratio of the pore content of various sizes and the maximum allowable content of vanadium compounds insoluble in sulfuric acid in the catalyst frame, which creates an unexpected effect - the expansion of the temperature range of the catalyst in the low temperature region at 380 ° C while simultaneously increasing the activity in the average temperature range - 420-485 ° C.
Процесс приготовления катализатора описан в примерах.The catalyst preparation process is described in the examples.
Методика отмывки катализатора от активных компонентов и получения каркаса была следующей.The method of washing the catalyst from the active components and obtain the framework was as follows.
Пробу прокаленного катализатора измельчали, отделяли фракцию (-3+2) мм, заливали 5% раствором серной кислоты при соотношении T:Ж - 1 :20. После выдержки в течение 24 часов раствор декантировали (сливали) и операцию повторяли еще два раза с серной кислотой и затем дважды с водой. Далее твердый остаток сушили при 1500C до постоянного веса. В полученном таким образом каркасе определяли пористую структуру и содержание нерастворимых в серной кислоте соединений ванадия.A sample of the calcined catalyst was crushed, the fraction (-3 + 2) mm was separated, poured with a 5% sulfuric acid solution at a ratio of T: W - 1: 20. After exposure for 24 hours, the solution was decanted (drained) and the operation was repeated two more times with sulfuric acid and then twice with water. Next, the solid residue was dried at 150 0 C to constant weight. In the framework thus obtained, the porous structure and content of vanadium compounds insoluble in sulfuric acid were determined.
Активность образцов катализатора в стандартных условиях определяли проточным методом в соответствии с ТУ 2175-001-12294550-2001 «Kaтaлизaтopы ванадиевые типа CBC для производства серной киcлoты» при CSo2 - Ю% и объемной скорости 4000 час"1 при температурах 380, 420, 485 0C. Концентрацию SO2 на входе в реактор и на выходе из реактора определяли методом Рейха (барботируя пробу газа через титрованный раствор I2). Активность образцов выражали относительной величи-
бThe activity of the catalyst samples under standard conditions was determined by the flow method in accordance with TU 2175-001-12294550-2001 "Vanadium catalysts of the CBC type for the production of sulfuric acid" at C S o2 - 10% and a space velocity of 4000 hours "1 at temperatures 380, 420, 485 0 C. The concentration of SO 2 at the inlet to the reactor and at the outlet of the reactor was determined by the Reich method (bubbling a gas sample through a titrated solution of I 2 ). b
ной - по отношению к активности прототипа при соответствующих температурах.Noah - in relation to the activity of the prototype at appropriate temperatures.
Характеристики пористой структуры анализировали методами ртутной порометрии и адсорбционными.The characteristics of the porous structure were analyzed by mercury porosimetry and adsorption methods.
Пример JVa Ia и 16. Катализатор готовили аналогично прототипу. Носитель - гидрокремнегель - получали осаждением из жидкого натриевого стекла серной кислотой при рН пульпы 5.8-7.5. Перед осаждением жидкое стекло разбавляли водой в заданном соотношении. Гидрокремнегель отфильтровывали, промывали водой и определяли величину его удельной поверхности методом щелочного титрования NaOH (SNa гeля). Пробу отмытого гидрокремнегеля высушивали и у полученной пробы сухого ксерогеля определяли пористую структуру.Example JVa Ia and 16. The catalyst was prepared similarly to the prototype. The carrier, hydrosilicon gel, was prepared by precipitation from liquid sodium glass with sulfuric acid at a pulp pH of 5.8–7.5. Before precipitation, the liquid glass was diluted with water in a predetermined ratio. Hydro silica gel was filtered off, washed with water, and its specific surface area was determined by alkaline titration with NaOH (S Na gel ). A sample of the washed hydrosilicon gel was dried and the porous structure was determined from the obtained dry xerogel sample.
Для приготовления катализатора к гидрокремнегелю добавляли растворы активных компонентов - серной кислоты и ванадата калия из расчета содержания в готовом катализаторе в % (мае): V2O5 -9.0, K2O - 14.5, SO3 -24.3, SiO2 - остаток. Полученную пульпу после перемешивания в течение 2 часов упаривали, порошок подсушивали до влажности 38% и экструдировали. Гранулы высушивали и прокаливали, у прокаленного катализатора анализировали каталитическую активность при температурах 380, 420 и 485°C. Пробу прокаленного катализатора подвергали отмывке от активных компонентов по выше приведенной методике, полученный каркас анализировали на пористую структуру и содержание ванадия. Примеры Ia и 16 отличаются разбавлением жидкого стекла и температурой прокалки (см. таблицу 1).To prepare the catalyst, solutions of the active components — sulfuric acid and potassium vanadate — were added to hydrosilicon gel based on the content in the finished catalyst in% (May): V 2 O 5 -9.0, K 2 O - 14.5, SO 3 -24.3, SiO 2 — residue. After stirring for 2 hours, the resulting pulp was evaporated, the powder was dried to a moisture content of 38% and extruded. The granules were dried and calcined, and the catalytic activity of the calcined catalyst was analyzed at temperatures of 380, 420, and 485 ° C. A sample of the calcined catalyst was washed from the active components according to the above procedure, the resulting framework was analyzed for the porous structure and content of vanadium. Examples Ia and 16 are distinguished by dilution of water glass and calcination temperature (see table 1).
Примеры N° 2-8. Катализатор готовили в основном по прототипу за исключением ряда отличий.Examples N ° 2-8. The catalyst was prepared mainly according to the prototype, with the exception of a number of differences.
Для синтеза катализатора использовали гидрокремнегель, полученный из жидкого стекла с разной степенью разбавления водой и прошед-
ший старение прогревом разной длительности, вследствие чего он имел различную удельную поверхность (S a гeля)> а проба полученного ксероге- ля содержала различную долю пор с радиусами < 75 А. При синтезе варьировали также рН синтеза пульпы катализатора и режим прокалки катализатора. Режим приготовления и характеристики полученных катализаторов приведены в таблицах 1, 2.For the synthesis of the catalyst used hydrosilicon gel obtained from water glass with varying degrees of dilution with water and passed aging by heating of different durations, as a result of which it had a different specific surface (S a gel ) > and the xerogel sample contained a different fraction of pores with radii <75 A. During the synthesis, the pH of the synthesis of catalyst pulp and the mode of catalyst calcination were also varied. The preparation mode and characteristics of the obtained catalysts are shown in tables 1, 2.
В примере 2 катализатор синтезировали на смешанном носителе - к гидрокремнегелю перед введением растворов активных компонентов добавляли измельченный диатомит (фракция -0,5 мм) при массовом соотношении синтетического кремнезема (SiO2) и диатомита (Д) равном (0,8:0,2) (в расчете на сухое).In Example 2, the catalyst was synthesized on a mixed support — before the introduction of solutions of the active components, crushed diatomite (-0.5 mm fraction) was added to the hydrosilica gel at a mass ratio of synthetic silica (SiO 2 ) and diatomite (D) equal to (0.8: 0.2 ) (based on dry).
Из данных таблицы видно, что активность катализатора с заявленными характеристиками при температуре 380 0C существенно выше, чем таковая для прототипа.
The table shows that the activity of the catalyst with the stated characteristics at a temperature of 380 0 C is significantly higher than that for the prototype.
Таблица 1Table 1
Режим приготовления образцов, полученных в соответствии с примерамиThe mode of preparation of samples obtained in accordance with examples
w нw n
О соOh with
HH
Массовое соотношение в составе носителя синтетического кремнезема (SiO2) и диатомита (Д) (в расчете на сух.). Гидрокремнегель по прототипу старению не подвергался
The mass ratio in the composition of the carrier of synthetic silica (SiO 2 ) and diatomite (D) (calculated on dry.). Hydro silica gel prototype was not subjected to aging
Таблица 2table 2
Характеристика образцов, полученных в соответствии с примерамиCharacterization of samples obtained in accordance with examples
О VOAbout VO
Активность прототипа по примеру 16 принята за 100%.
The activity of the prototype of example 16 is taken as 100%.