WO2006030770A1 - Hla結合性ペプチド、それをコードするdna断片および組み換えベクター - Google Patents

Hla結合性ペプチド、それをコードするdna断片および組み換えベクター Download PDF

Info

Publication number
WO2006030770A1
WO2006030770A1 PCT/JP2005/016822 JP2005016822W WO2006030770A1 WO 2006030770 A1 WO2006030770 A1 WO 2006030770A1 JP 2005016822 W JP2005016822 W JP 2005016822W WO 2006030770 A1 WO2006030770 A1 WO 2006030770A1
Authority
WO
WIPO (PCT)
Prior art keywords
hla
binding
amino acid
binding peptide
peptide
Prior art date
Application number
PCT/JP2005/016822
Other languages
English (en)
French (fr)
Inventor
Tomoya Miyakawa
Keiko Udaka
Original Assignee
Nec Corporation
Kochi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation, Kochi University filed Critical Nec Corporation
Priority to EP05783164A priority Critical patent/EP1801211A4/en
Priority to US11/574,963 priority patent/US20080293916A1/en
Priority to JP2006535143A priority patent/JPWO2006030770A1/ja
Publication of WO2006030770A1 publication Critical patent/WO2006030770A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids

Definitions

  • HLA-binding peptides DNA fragments encoding them and recombinant vectors
  • the present invention relates to an HLA-binding peptide, a DNA fragment encoding the peptide, and a recombinant vector.
  • CTL cytotoxic T cells
  • Patent Document 1 There is a technique described in Patent Document 1 as this kind of technology.
  • Patent Document 1 describes that an oligopeptide having a specific amino acid sequence has HLA binding properties.
  • Patent Document 1 Disclosure of the Invention of JP-A-8-151396
  • HLA-binding peptide described in the above-mentioned document has a binding property to HLA-DQ4. It binds to HLA-A2 molecules (products such as HLA—A * 0201 gene) common in Western countries and HLA—A24 molecules (products such as HLA—A * 2402 gene) common to Japanese species. Whether it is power is unknown.
  • An object of the present invention is to provide an HLA-binding peptide that is excellent in binding to a type of HLA molecule.
  • an HLA-binding peptide that binds to an HLA-A type molecule comprising one or more amino acid sequences selected from the group consisting of SEQ ID NOs: 1 to 60, HLA-binding peptides are also provided that also have lower amino acid residue strength.
  • HLA-binding peptide SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, 10, 14, 29, 30, 31, 33, 38, 39, 40, 43, 44, 49 and 51 HLA-binding peptides comprising one or more amino acid sequences selected from the group consisting of forces are provided.
  • an HLA-binding peptide that binds to an HLA-A type molecule, wherein one or two amino acid residues are missing from the amino acid sequence contained in the HLA-binding peptide.
  • an HLA-binding peptide comprising an amino acid sequence which is deleted, substituted or added, and having an amino acid residue strength of 8 or more and 11 or less.
  • the structure includes an amino acid sequence in which one or several amino acid residues are deleted, substituted, or added from a specific amino acid sequence having binding properties with an HLA-A molecule. Even if it exists, there exists an effect
  • the present invention also provides a DNA fragment comprising a DNA sequence encoding the above-mentioned HLA-binding peptide.
  • a recombinant vector comprising a DNA sequence encoding the above HLA-binding peptide is provided.
  • an HLA-binding peptide precursor characterized by being converted into the above-mentioned HLA-binding peptide in a mammalian organism.
  • an HLA-binding peptide excellent in binding property to an HLA-A type molecule can be obtained.
  • FIG. 1 is a schematic diagram for explaining an active learning experiment plan used in an example.
  • the amino acid sequence predicted by the hypothesis obtained using the active learning experiment method has an affinity for HLA molecules of 3 or more in terms of log Kd value.
  • Peptides containing 8 to 11 amino acid residues were used as HLA-binding peptide candidates. As a result of binding experiments, these peptides were actually
  • the HLA-binding peptide according to the present embodiment is an HLA-binding peptide that binds to an HLA-A type molecule, and is one type selected from the group consisting of SEQ ID NOs: 1 to 60 described later. It is an HLA-binding peptide comprising the above amino acid sequence and having an amino acid residue strength of 8 or more and 11 or less.
  • HLA-A human immunoglobulin-A
  • Westerners such as Germans often have HLA-A2 type.
  • sequences are all sequences having 9 amino acid residues contained in a predetermined genomic protein of cancer antigen WT1.
  • sequences of SEQ ID NOs: 1 to 30 are sequences having a 9 amino acid residue power contained in a predetermined genomic protein of cancer antigen WT1.
  • sequences of SEQ ID NOs: 1 to 30 are sequences with the highest binding properties with the HLA-A24 molecule predicted by the above-described method.
  • Sequence numbers 1 to 30 are arranged in the order of excellent binding. That is, SEQ ID NO: 1 is the sequence predicted to have the best binding.
  • Each unit of the predicted score for binding to the HLA-A24 molecule of each sequence and the unit of the binding experiment data item is indicated by a log Kd value.
  • sequences of SEQ ID NOs: 31 to 60 are sequences having a force of 9 amino acid residues contained in a predetermined genomic protein of cancer antigen WT1.
  • sequences of SEQ ID NOs: 31 to 60 are sequences with the highest binding properties with the HLA-A2 molecule predicted by the method described above. Sequence numbers 31 to 60 are arranged in the order of excellent binding. That is, SEQ ID NO: 31 is the sequence predicted to have the best binding.
  • the unit of the predicted score for binding to the HLA-A2 molecule of each sequence and the item of the binding experiment data is V, and the difference is indicated by the log Kd value.
  • the binding of the HLA-binding peptide according to the present embodiment to the HLA molecule is -lo In terms of gKd value, it can be 3 or more, particularly preferably 5 or more, and further preferably 5.4 or more.
  • the binding property to the HLA molecule is 5 or more in terms of the log Kd value, a peptide having excellent binding property to the HLA molecule can be obtained. It can be suitably used for the development of drugs and the like.
  • the binding property to the HLA molecule is 5.4 or more in terms of the log Kd value, a peptide having particularly excellent binding property to the HLA molecule can be obtained. It can be suitably used for the development of effective therapeutic drugs and preventive drugs.
  • the HLA-binding peptide according to the present embodiment can be composed of 8 or more and 11 or less amino acid residues.
  • cytotoxic T cells are cancer cell-specific cancer antigens (CTL epitopes) that are displayed on HLA class I molecules on the surface of cancer cells and have an amino acid strength of 8 to L1. Recognize specifically, eliminate cancer cells by damaging only cancer cells. And, it is important to make a CTL epitope that also has the amino acid power of 8 ⁇ : L 1 specific to such cancer cells and the like in creating a vaccine for treatment or prevention of cancer and the like.
  • the above-mentioned HLA-binding peptide may be a peptide having only amino acid residues, but is not particularly limited.
  • it may be an HLA-binding peptide precursor that is modified by modifying a sugar chain or a fatty acid group within a range that does not inhibit the action and effect of the present invention as necessary.
  • Such precursors may also be converted into HLA-binding peptides by undergoing changes such as digestion by digestive enzymes in the mammalian body such as the human organs. The same effect as the binding peptide can be obtained with this HLA binding peptide.
  • the HLA-binding peptide may be a peptide that binds to human HLA-A24 molecule.
  • the HLA-binding peptide may be a peptide that binds to a human HLA-A2 molecule.
  • the amino acid sequence contained in the above HLA-binding peptide may be an amino acid sequence derived from a cancer antigen WT1 protein, but is not particularly limited. For example, it may be an amino acid sequence derived from HIV protein or an amino acid sequence derived from cedar pollen protein. It may also contain amino acid sequences derived from other pathogenic or allergenic proteins.
  • an HLA-binding peptide that binds to an HLA-A type molecule, wherein one or two amino acid residues of the amino acid sequence contained in the HLA-binding peptide are deleted, substituted, or Provided is an HLA-binding peptide comprising an added amino acid sequence and having an amino acid residue strength of 8 or more and 11 or less.
  • the structure includes an amino acid sequence in which one or several amino acid residues are deleted, substituted, or added in a specific amino acid sequence having binding properties with an HLA-A molecule.
  • the same effect as the HLA-binding peptide according to Embodiment 1 described above can be obtained.
  • amino acid residues in the amino acid sequence predicted by the above-described method and excellent in binding to the HLA-A24 molecule are substituted, deleted, or added. It can be predicted that the same amino acid sequence shows excellent HLA binding properties.
  • the amino acid residues to be substituted should be amino acid residues having similar properties to each other, such as hydrophobic amino acid residues.
  • the HLA-binding peptides described in Embodiments 1 and 2 can be produced using techniques known to those skilled in the art for V and deviation. For example, it may be artificially synthesized by a solid phase method or a liquid phase method. Moreover, these HLA-binding peptides may be produced by expressing DNA fragments encoding these HLA-binding peptides or recombinant vector. Any of the HLA-binding peptides thus obtained can be identified using methods known to those skilled in the art. For example, the determination can be made using Edman decomposition or mass spectrometry.
  • a DNA fragment comprising a DNA sequence encoding the above HLA-binding peptide is provided. Since the DNA fragment according to this embodiment contains a specific DNA sequence, the above HLA-binding peptide can be expressed.
  • HLA-binding peptide When the above-mentioned HLA-binding peptide is expressed using the DNA fragment according to the present embodiment, a commercially available artificial fragment may be introduced and expressed in the cell. It can also be expressed using a protein expression kit.
  • the above DNA fragment can be continuously expressed, for example, by introducing it into a human cell. Therefore, the introduction of a DNA fragment that encodes an HLA-binding peptide into the cell will cause the HLA-binding peptide to be present in the cell continuously, rather than when the HLA-binding peptide itself is introduced into the cell. Can do. In the case where an HLA-binding peptide is used as a vaccine, such a continuous expression is advantageous for enhancing the effectiveness of the vaccine.
  • the DNA fragment according to the present embodiment can be produced using a technique known to those skilled in the art. For example, it may be synthesized artificially by a commercially available DNA synthesizer. Alternatively, it may be excised from the HCV genome using restriction enzymes. Alternatively, a primer may be used to amplify the HCV genome by PCR. In addition, any DNA fragment thus obtained can be identified using techniques known to those skilled in the art. For example, It can be identified by a commercially available DNA sequencer.
  • a recombinant vector containing a DNA sequence encoding the above HLA-binding peptide can be obtained. Since the recombinant vector according to this embodiment contains a specific DNA sequence, it can express the above HLA-binding peptide.
  • this recombinant vector may be introduced into cells and expressed. It can be expressed using a protein expression kit! /.
  • the above-described recombinant vector can be continuously expressed by, for example, introduction into human cells. Therefore, the introduction of a recombinant vector that encodes an HLA-binding peptide into the cell may cause the HLA-binding peptide to exist in the cell continuously, rather than the introduction of the HLA-binding peptide itself into the cell. it can . In the case where an HLA-binding peptide is used as a vaccine, such continuous expression is advantageous for enhancing the effectiveness of the vaccine.
  • the regulatory region for transcription 'expression such as a promoter region upstream of the DNA sequence encoding the above-mentioned HLA-binding peptide is used as an arbitrary sequence, so that the HLA-binding peptide Can be accurately controlled.
  • the above-described recombinant vector can contain any sequence other than the DNA sequence encoding the above-mentioned HLA-binding peptide.
  • it may contain the sequence of a marker gene such as a drug resistance gene.
  • the recombinant vector according to the present embodiment can be produced using techniques known to those skilled in the art. For example, it can be obtained by cleaving a multicloning site of a commercially available vector such as pBR322 or pUC19 at an arbitrary restriction enzyme site, inserting the DNA fragment into the site, and ligating. In addition, any of the recombinant vectors thus obtained can be identified using techniques known to those skilled in the art.
  • the length of the cleaved DNA fragment corresponds to the cleavage map of a commercially available vector such as pBR322 or pUC19, and is confirmed by agarose gel electrophoresis, and the DNA sequence is included in the DNA sequence excised from the cloning site. Can be identified by DNA sequencer etc.
  • a predetermined genomic protein of the cancer antigen WT1 (SEQ ID NO:
  • HLA-binding peptides containing amino acid sequences derived from HLA-binding peptides other than WT1 may be HLA-binding peptides against pathogens such as HIV viruses, and include amino acid sequences derived from allergen-derived proteins such as cedar pollen It may be a binding peptide.
  • HLA-binding peptides are mainly for infectious diseases (influenza, SARS, HIV, HCV, etc.), cancer immunotherapy, allergic diseases (hay fever, rheumatism, atopy, asthma, etc.), autoimmunity Can be suitably used for treatment or prevention of diseases
  • Figure 1 shows a schematic diagram of the active learning experiment plan used here.
  • the peptide at the selected question point is produced by the synthesis' purification method described later, and the actual binding ability is measured by an experiment described later and added to the accumulated data.
  • a supervised learning algorithm of a hidden Markov model was used as the lower learning algorithm, and the initial data power of 223 peptides was started, and 20 to 30 peptides were predicted per experiment. The above procedure was repeated 4 times, and a total of 341 data were obtained.
  • binding ability was measured. If the binding ability was high, it was selected as a candidate for an HLA-binding peptide that can be used as a vaccine material.
  • the obtained result was input to a learning system including a learning machine that uses a hidden Markov model as a mathematical algorithm, and a rule was created.
  • the learning machines sampled different results and created rules. It should be noted that the rules that are expressed differ depending on the learning machine.
  • the rules and experimental data obtained are stored as accumulated data as needed.
  • Peptides were synthesized manually using Merrifield's solid phase method using Fmoc amino acids. After deprotection, reverse phase HPLC purification using a C18 column was achieved to a purity of 95% or higher. Peptide identification and purity were confirmed by MALDI-TOF mass spectrometry (Voyager DE RP, PerSeptive). Peptide quantification was performed with Micro BC A Atsey (Pierce) using BSA as a standard protein.
  • C1R-A24 cells were exposed to acidic conditions at pH 3.3 for 30 seconds, and originally bound to HLA-A * 2402 molecules, and were associated with HLA class I molecules in common. Thus, the light chain j8 2m was dissociated and removed. After neutralization, purification
  • MHC-pep three-membered aggregate
  • JY cells were exposed to acidic conditions at pH 3.8 for 30 seconds to dissociate and remove the endogenous peptide and light chain i8 2m that had been noncovalently associated with the HLA-A * 0201 molecule. After neutralization, a reassociation experiment was conducted.
  • the dissociation constant Kd value was calculated by the method published in (Udaka et al., Immunogenetics, 51, 816-828, 2000).
  • sequences of SEQ ID NOS: 1 to 30 in Table 1 are sequences having 9 amino acid residue power included in the full-length sequence of a predetermined protein of WT1 registered in GENBANK.
  • sequences of SEQ ID NOs: 1 to 30 are sequences with the highest binding to the HLA-A24 molecule predicted by the hypothesis obtained by the experimental design method described in the first embodiment.
  • Sequence numbers 1 to 30 are arranged in the order of excellent binding. That is, SEQ ID NO: 1 is the sequence that is predicted to have the best binding.
  • the full-length amino acid sequence of a predetermined protein of WT1 is shown in SEQ ID NO: 61.
  • Table 1 lists amino acid sequences corresponding to the top 30 scores of prediction results using the above-described prediction program, prediction scores, and binding experiment data corresponding thereto. All the binding experiment data were obtained by artificially synthesizing the peptide sequence of WT1 by the synthesis method described above.
  • sequences of SEQ ID NOs: 31 to 60 in Table 2 are sequences having a 9 amino acid residue power included in the full-length sequence of a predetermined protein of WT1 registered in GENBANK.
  • sequences of SEQ ID NOs: 31 to 60 are sequences with the highest binding to the HLA-A2 molecule predicted by the hypothesis obtained by the experimental design described in Embodiment 1.
  • Sequence numbers 31 to 60 are arranged in the order of excellent binding. That is, SEQ ID NO: 31 is the sequence predicted to have the highest binding.
  • the full-length sequence of a given protein of WT1 is SEQ ID NO: 61 (MGSDVRDLNALLPA
  • Table 2 lists amino acid sequences corresponding to the top 30 scores of prediction results using the above-described prediction program, prediction scores, and binding experiment data corresponding thereto. All the binding experiment data were obtained by artificially synthesizing the peptide sequence of WT1 by the synthesis method described above.
  • amino acid residues of the amino acid sequence having excellent binding properties with the HLA-A molecule are predicted. Even if it is an amino acid sequence formed by substitution, deletion, or addition, it can be said that the same excellent HLA binding property is exhibited.
  • the amino acid residues to be substituted are preferably amino acid residues having similar properties to each other, such as hydrophobic amino acid residues.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)

Abstract

 HLA-A型分子に結合するHLA結合性ペプチドであって、配列番号1から60からなる群より選ばれる1種以上のアミノ酸配列を含み、8以上11以下のアミノ酸残基からなるHLA結合性ペプチドを提供する。なお、これらのアミノ酸配列は、いずれも図1に示した能動学習法を利用した予測プログラムを用いて、ヒトHLA-A24分子あるいはヒトHLA-A2分子との結合性が予測されたアミノ酸配列である。    

Description

HLA結合性ペプチド、それをコードする DNA断片および組み換えべクタ 技術分野
[0001] 本発明は、 HLA結合性ペプチド、それをコードする DNA断片および組み換えべク ターに関する。 背景技術
[0002] がん細胞表面に、がん細胞に固有ながん抗原が存在していた場合、がん細胞を自 己とは異なる異物として認識する自然免疫反応が起こり、次いで、特異的免疫応答 が誘導され、がん細胞の排除反応が起こることがある。
[0003] 特異的免疫応答では、体液中のがん細胞由来の断片などが中和抗体により排除さ れ、がん細胞自体は細胞傷害性 T細胞 (CTL)により排除される。すなわち、 CTLは 、がん細胞表面の HLAクラス I分子に提示された、 8〜: L 1のアミノ酸力 なるがん抗 原 (CTLェピトープ)を特異的に認識し、当該がん細胞を傷害することによりがんを排 除する。したがって、このようながんに特異的な CTLェピトープを同定することは、が んに対する治療ワクチンを作成する上で重要である。
[0004] この種の技術として、特許文献 1記載のものがある。特許文献 1には、特定のァミノ 酸配列からなるオリゴペプチドは、 HLA結合性を有する旨が記載されて 、る。
特許文献 1 :特開平 8— 151396号公報発明の開示
[0005] し力しながら、上記文献記載の従来技術は、以下の点で改善の余地を有していた。
[0006] 第一に、上記文献記載の HLA結合性ペプチドは、 HLA分子と有効に結合するか 否かは不明であり、 HLAとの結合性の面でさらなる改善の余地を有していた。
[0007] 第二に、上記文献記載の HLA結合性ペプチドは、 HLA— DQ4と結合性がある旨 記載されている。し力し、欧米人種に多い HLA—A2分子(HLA—A*0201遺伝子 などの産物)および日本人種に多い HLA— A24分子(HLA— A*2402遺伝子など の産物)に対して結合する力否かは不明である。
[0008] 本発明は上記事情に鑑みてなされたものであり、その目的とするところは、特定の 型の HLA分子との結合性に優れる HLA結合性ペプチドを提供することにある。
[0009] 本発明によれば、 HLA— A型分子に結合する HLA結合性ペプチドであって、配 列番号 1から 60からなる群より選ばれる 1種以上のアミノ酸配列を含み、 8以上 11以 下のアミノ酸残基力もなる HLA結合性ペプチドが提供される。
[0010] また、本発明によれば、上記の HLA結合性ペプチドにお 、て、配列番号 1、 2、 3、 4、 5、 6、 7、 10、 14、 29、 30、 31、 33、 38、 39、 40、 43、 44、 49および 51力もなる 群より選ばれる 1種以上のアミノ酸配列を含む HLA結合性ペプチドが提供される。
[0011] また、本発明によれば、 HLA— A型分子に結合する HLA結合性ペプチドであって 、上記の HLA結合性ペプチドに含まれるアミノ酸配列のうち 1若しくは 2個のアミノ酸 残基が欠失、置換若しくは付加されてなるアミノ酸配列を含み、 8以上 11以下のアミ ノ酸残基力もなる HLA結合性ペプチドが提供される。
[0012] このように、 HLA— A型分子との結合性を有する特定のアミノ酸配列のうち 1若しく は数個のアミノ酸残基が欠失、置換若しくは付加されてなるアミノ酸配列を含む構成 であっても、上述の HLA結合性ペプチドと同様の作用を奏する。
[0013] また、本発明によれば、上記の HLA結合性ペプチドをコードする DNA配列を含む DNA断片が提供される。
[0014] また、本発明によれば、上記の HLA結合性ペプチドをコードする DNA配列を含む 組み換えベクターが提供される。
[0015] また、本発明によれば、ほ乳類の生体内において、上記の HLA結合性ペプチドに 変化することを特徴とする HLA結合性ペプチド前駆体が提供される。
[0016] 以上、本発明の構成について説明したが、これらの構成を任意に組み合わせたも のも本発明の態様として有効である。また、本発明の表現を他のカテゴリーに変換し たものもまた本発明の態様として有効である。
[0017] 本発明によれば、特定のアミノ酸配列を含むため、 HLA— A型分子との結合性に 優れる HLA結合性ペプチドが得られる。
図面の簡単な説明
[0018] 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実 施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 [0019] [図 1]実施例で用いた能動学習実験計画を説明する模式図である。
発明を実施するための最良の形態
[0020] 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面 において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
[0021] く実施形態 1〉
本実施形態では、能動学習実験法 (特開平 11 316754号公報)を用いて得られ る仮説により予測された、 HLA分子との結合性が、 logKd値に換算して 3以上であ るアミノ酸配列を含み、 8以上 11以下のアミノ酸残基力 なるペプチドを、 HLA結合 性ペプチド候補とした。そして結合実験を行った結果、実際にこれらのペプチドが H
LA結合性ペプチドであることを確認した。
[0022] その結果、 HLA分子との結合性力 logKd値に換算して 3以上であるアミノ酸配 列を含むため、 HLA— A型分子との結合性に優れる、多数の HLA結合性ペプチド を効率よく得ることができた。
[0023] 具体的には、本実施形態に係る HLA結合性ペプチドは、 HLA—A型分子に結合 する HLA結合性ペプチドであって、後述する配列番号 1から 60からなる群より選ば れる 1種以上のアミノ酸配列を含み、 8以上 11以下のアミノ酸残基力もなる HLA結合 性ペプチドである。
[0024] ヒト HLA— A型のうち、日本人種の約 50%が HLA— A24型をもつ。また、ドイツ人 などの欧米人は、 HLA— A2型が多い。
[0025] なお、これらの配列は、いずれも、がん抗原 WT1の所定のゲノムタンパク質に含ま れる 9アミノ酸残基力 なる配列である。
[0026] 配列番号 1から 30の配列を、下記の表 1に示す。
[0027] (表 1)
Figure imgf000005_0001
0Zdf/X3d V 0LL0£0/900l ΟΛ\ [0028] 配列番号 1から 30の配列は、がん抗原 WT1の所定のゲノムタンパク質に含まれる 9 アミノ酸残基力もなる配列である。また、配列番号 1から 30の配列は、上述の方法に より予測された、 HLA— A24分子との結合性が上位の配列である。なお、配列番号 1から 30まで結合性の優れる順に並んでいる。すなわち、配列番号 1が、最も結合性 が優れると予測される配列である。なお、各配列の HLA—A24分子との結合性の予 測スコアおよび結合実験データの項目の単位は、いずれも logKd値にて示されて いる。
[0029] 配列番号 31から 60の配列を、下記の表 2に示す。
[0030] (表 2)
60S 丄ョ SVStJA,丄 09
09 dddVdOOIS 63
ZZ^ iBasa dH>i 89
LQ
ίει 99
εείεサ 丄 〇3,i S gg
86 L t
NOOdAVO id es
OSL 98 L
993 't 八。 οισ出八。
I l3Q'i Λ丄 S人 SONdl OQ
Ll7l7 L LSサ ,vno,》丄刚 6サ
(DWDSAdnV
6909' ΛΟΗ丄 Hid人 0
98 9サ εοε 699 ΛΊ丄 dVASdA
9S8'Q i?l IL "10S丄 人 ΊΝ
L ZOO'S 033 ε ASSSSOVVA εサ
SI L S68 ViDSddddOd
QIS ssAdiannn ί
082 68S8 ΙΗΛθνθΟΊΙ 。サ 68 S L6L 5998i7 AdddAS人 0。 6ε
88
AdVMOVVDS ί£
じ ύ VOddVdaiA 98
L I S990'Q 98
9GL IVdfDSョ,〇S ε SL 01 ISdAVdin εε
L S.S AVdllVNia
80S レ 90 S ιε
皿 H± 「l S調,≥
0ldf/13d 9 0..0£0/900Ζ ΟΛ\ [0031] 配列番号 31から 60の配列は、がん抗原 WT1の所定のゲノムタンパク質に含まれる 9アミノ酸残基力もなる配列である。また、配列番号 31から 60の配列は、上述の方法 により予測された、 HLA— A2分子との結合性が上位の配列である。なお、配列番号 31から 60まで結合性の優れる順に並んでいる。すなわち、配列番号 31が、最も結 合性が優れると予測される配列である。なお、各配列の HLA— A2分子との結合性 の予測スコアおよび結合実験データの項目の単位は、 V、ずれも logKd値にて示さ れている。
[0032] なお、詳しくは、後述するが、予測スコアと結合実験データとの間に関連性が存在 していることが明らかである。すなわち、多少の誤差はある力 上述の方法により予測 された、 HLA— A分子との結合性が高いペプチドは、実験的に確認しても HLA— A 分子との結合性が高 、と 、える。
[0033] 従来は、このように実験計画法を活用して HLA結合性ペプチドを見出す手法は採 られて ヽなかったために、実験的に HLA結合性が確認された極少数の HLA結合性 ペプチドが知られていたに過ぎな力つた。そのため、従来の手法で全くランダムに 9 アミノ酸残基カゝらなるペプチドを合成し、 HLA分子との結合実験を行っても、結合性 が— logKd値に換算して 6を超えるものは、確率的には約 100個に 1個しかなカゝつた
[0034] 本実施形態においては、このように実験計画法を活用して HLA結合性ペプチドを 見出す手法を採用したため、上記のような、 60配列にも及ぶ多数の HLA結合性ぺ プチドを見出すことができた。また、得られた HLA結合性ペプチドの一部について H LA結合性を実験的に確認したところ、実験を行った配列のいずれにおいても予測と 同等かそれ以上の HLAとの優れた結合性が確認された。
[0035] なお、これらの配列の中でも、配列番号 1、 2、 3、 4、 5、 6、 7、 10、 14、 29、 30、 31 、 33、 38、 39、 40、 43、 44、 49および 51力もなる群より選ばれる 1種以上のアミノ酸 配列を含む HLA結合性ペプチドは、実験によりヒト HLA— A型分子との結合性が確 認されている。このため、確実にヒト HLA— A型分子との結合性に優れる HLA結合 性ペプチドであると言える。
[0036] ここで、本実施形態に係る HLA結合性ペプチドの、 HLA分子との結合性は、—lo gKd値に換算して 3以上とすることができ、特に好ましくは 5以上であり、さらに好まし くは 5. 4以上である。
[0037] 生化学の分野では、 logKd値に換算しておおよそ結合能の 3前後が、実際にべ プチドが MHCに結合するかしないかのしきい値として知られている。よって、 HLA分 子との結合性が—logKd値に換算して 3以上であれば、 HLA結合性ペプチドである と言える。
[0038] また、 HLA分子との結合性が—logKd値に換算して 5以上であれば、 HLA分子に 対する結合性が優れるペプチドが得られるため、免疫疾患などに対する効果的な治 療薬、予防薬などの開発に好適に利用できる。
[0039] また、 HLA分子との結合性が—logKd値に換算して 5. 4以上であれば、 HLA分 子に対する結合性が特に優れるペプチドが得られるため、免疫疾患などに対してさら に効果的な治療薬、予防薬などの開発に好適に利用できる。
[0040] また、本実施形態に係る HLA結合性ペプチドは、 8以上 11以下のアミノ酸残基か らなる構成とすることができる。
[0041] このように、 8以上 11以下のアミノ酸残基からなるペプチドであれば、 HLA分子との 結合性に優れる。また、細胞傷害性 T細胞 (CTL)は、がん細胞表面の HLAクラス I 分子に提示された、 8〜: L 1のアミノ酸力もなるがん細胞固有のがん抗原(CTLェピト ープ)を特異的に認識し、がん細胞のみを傷害することによりがん細胞を排除する。 そして、このようながん細胞などに特異的な 8〜: L 1のアミノ酸力もなる CTLェピトープ を作ることは、がんなどに対する治療または予防のためのワクチンを作成する上で重 要である。
[0042] 例えば、上記の HLA結合性ペプチドは、アミノ酸残基のみ力 なるペプチドであつ てもよいが、特に限定するものではない。例えば、必要に応じて本発明の作用効果を 阻害しな!ヽ範囲で糖鎖または脂肪酸基などの修飾を受けて ヽる HLA結合性べプチ ド前駆体であってもよい。このような前駆体が、人体の消ィ匕器官などのほ乳類の生体 内において、消化酵素などにより消化されるなどの変化を受けて、 HLA結合性ぺプ チドとなることによつても、上記の HLA結合性ペプチドにお ヽて結合性ペプチドと同 様の作用効果が得られる。 [0043] また、上記の HLA結合性ペプチドは、ヒト HLA— A24分子に結合するペプチドで あってもよい。
[0044] この構成によれば、 日本人種を含むアジア人種に多い HLA— A24分子に対して 結合するペプチドが得られるため、 日本人種を含むアジア人種に特に効果的な治療 薬、予防薬などの開発に利用できる。
[0045] また、上記の HLA結合性ペプチドは、ヒト HLA— A2分子に結合するペプチドであ つてもよい。
[0046] この構成によれば、欧米人種に多い HLA— A2分子に対して結合するペプチドが 得られるため、欧米人種に特に効果的な治療薬、予防薬などの開発に利用できる。
[0047] また、上記の HLA結合性ペプチドに含まれるアミノ酸配列は、がん抗原 WT1タン ノ ク質由来のアミノ酸配列としてもよいが、特に限定するわけではない。例えば、 HIV のタンパク質由来のアミノ酸配列や、杉花粉のタンパク質由来のアミノ酸配列などで あってもよい。また、その他の病原性またはアレルゲン性を有するタンパク質由来の アミノ酸配列を含んで 、てもよ 、。
[0048] く実施形態 2〉
本実施形態によれば、 HLA— A型分子に結合する HLA結合性ペプチドであって 、上記の HLA結合性ペプチドに含まれるアミノ酸配列のうち 1若しくは 2個のアミノ酸 残基が欠失、置換若しくは付加されてなるアミノ酸配列を含み、 8以上 11以下のアミ ノ酸残基力もなる HLA結合性ペプチドが提供される。
[0049] 後述するように、 HLA— A型分子との結合性を有する特定のアミノ酸配列のうち 1 若しくは数個のアミノ酸残基が欠失、置換若しくは付加されてなるアミノ酸配列を含む 構成であっても、上述の実施形態 1に係る HLA結合性ペプチドと同様の作用を奏す る。
[0050] すなわち、配列番号 1から 50に示した HLA—A24分子との結合性が優れるァミノ 酸配列のうち 1若しくは 2個のアミノ酸残基が置換、欠失、付加されてなるアミノ酸配 列であっても、同様に優れた HLA結合性を示すものと予測することができる。
[0051] 別の観点力 言えば、上述の方法により予測された、 HLA— A24分子との結合性 が優れるアミノ酸配列のうち 1若しくは数個のアミノ酸残基が置換、欠失、付加されて なるアミノ酸配列であっても、同様に優れた HLA結合性を示すものと予測することが できる。なお、置換されるアミノ酸残基同士は、ともに疎水性アミノ酸残基などの互い に特性の類似するアミノ酸残基同士とする方がょ 、。
[0052] また、実施形態 1および実施形態 2に記載の HLA結合性ペプチドは、 V、ずれも当 業者に公知の手法を用いて製造可能である。例えば、固相法または液相法により人 工合成してもよい。また、これらの HLA結合性ペプチドをコードする DNA断片または 組み換えベクター力 発現することにより、これらの HLA結合性ペプチドを製造して もよい。また、こうして得られた HLA結合性ペプチドは、いずれも当業者に公知の手 法を用いて同定可能である。例えば、エドマン分解法や質量分析法などを用いて同 定可能である。
[0053] く実施形態 3〉
本実施形態によれば、上記の HLA結合性ペプチドをコードする DNA配列を含む DNA断片が提供される。本実施形態に係る DNA断片は、特定の DNA配列を含む ため、上記の HLA結合性ペプチドを発現可能である。
[0054] また、本実施形態に係る DNA断片を用いて上記の HLA結合性ペプチドを発現す る場合には、この DNA断片を細胞内に導入して発現させてもよぐ市販の人工的な タンパク質発現キットを用いて発現してもよ ヽ。
[0055] さらに、上記の DNA断片は、例えばヒトの細胞内に導入することにより、持続的な 発現を行うことができる。そのため、細胞内に HLA結合性ペプチドそのものを導入す る場合よりも、細胞内に HLA結合性ペプチドをコードする DNA断片を導入する方が 、持続的に細胞内に HLA結合性ペプチドを存在させることができる。 HLA結合性ぺ プチドをワクチンとして用いる場合には、このように持続的に発現可能であることは、 ワクチンの有効性を高める上で有利である。
[0056] また、本実施形態に係る DNA断片は、当業者に公知の手法を用いて製造可能で ある。例えば、市販の DNAシンセサイザーなどにより、人工的に合成してもよい。ある いは、 HCVのゲノムより制限酵素などを用いて切り出してきても良い。あるいは、ブラ イマ一を用いて HCVのゲノムより PCR法で増幅して得てもよい。また、こうして得られ た DNA断片は、いずれも当業者に公知の手法を用いて同定可能である。例えば、 市販の DNAシークェンサ一などにより同定可能である。
[0057] く実施形態 4〉
本実施形態によれば、上記の HLA結合性ペプチドをコードする DNA配列を含む 組み換えベクターが得られる。本実施形態に係る組み換えベクターは、特定の DNA 配列を含むため、上記の HLA結合性ペプチドを発現可能である。
[0058] また、本実施形態に係る組み換えベクターを用いて上記の HLA結合性ペプチドを 発現する場合には、この組み換えベクターを細胞内に導入して発現させてもよぐ巿 販の人工的なタンパク質発現キットを用いて発現してもよ!/、。
[0059] さらに、上記の組み換えベクターは、例えばヒトの細胞内に導入することにより、持 続的な発現を行うことができる。そのため、細胞内に HLA結合性ペプチドそのものを 導入する場合よりも、細胞内に HLA結合性ペプチドをコードする組み換えベクター を導入する方が、持続的に細胞内に HLA結合性ペプチドを存在させることができる 。 HLA結合性ペプチドをワクチンとして用いる場合には、このように持続的に発現可 能であることは、ワクチンの有効性を高める上で有利である。
[0060] また、上記の組み換えベクターにおいては、上記の HLA結合性ペプチドをコード する DNA配列の上流のプロモーター領域などの転写'発現に関する調節領域を任 意の配列とすることにより、 HLA結合性ペプチドの発現量を精度よく制御可能である 。また、組み換えベクターのオリジン領域などの複製に関する調節領域を任意の配 列とすることにより、組み換えベクターの細胞内でのコピー数を精度よく制御可能で ある。
[0061] また、上記の組み換えベクターは、上記の HLA結合性ペプチドをコードする DNA 配列以外にも任意の配列を含むことができる。例えば、薬剤耐性遺伝子などのマー カー遺伝子の配列を含んで 、てもよ 、。
[0062] また、本実施形態に係る組み換えベクターは、当業者に公知の手法を用いて製造 可能である。例えば、 pBR322や pUC19などの市販のベクターのマルチクローニン グサイトを任意の制限酵素サイトにて開裂し、そのサイトに上記 DNA断片を挿入して ライゲーシヨンすることにより得られる。また、こうして得られた組み換えベクターは、い ずれも当業者に公知の手法を用いて同定可能である。例えば、任意の制限酵素によ り切断した DNA断片の長さが pBR322や pUC19などの市販のベクターの開裂地図 と対応するか、ァガロースゲル電気泳動により確認し、さらにマルチクロー-ングサイ トから切り出した DNA配列中に上記 DNA配列が含まれて!/、る力 DNAシークェンサ 一などにより同定可能である。
[0063] 以上、本発明の構成について説明したが、これらの構成を任意に組み合わせたも のも本発明の態様として有効である。また、本発明の表現を他のカテゴリーに変換し たものもまた本発明の態様として有効である。
[0064] 例えば、上記実施の形態ではがん抗原 WT1の所定のゲノムタンパク質 (配列番号
: 61)由来のアミノ酸配列を含む HLA結合性ペプチドとした力 WT1以外の HIVゥ ィルスなどの病原体に対する HLA結合性ペプチドとしてもよく、杉花粉などのアレル ゲン由来のタンパク質由来のアミノ酸配列を含む HLA結合性ペプチドとしてもよい。
[0065] なお、このようにしても、上述の方法を用いて HLA結合性に優れると予測されたアミ ノ配列を含むのであれば、実験的に確認しても同様に優れた HLA結合性を示すと 考えられる。このため、これらの HLA結合性ペプチドは、感染症 (インフルエンザ、 S ARS、 HIV, HCVなど)を中心にして、ガン免疫療法、アレルギー疾患 (花粉症、リウ マチ、アトピー、喘息など)、自己免疫疾患などの治療または予防に好適に用い得る
(実施例 1)
[0066] 以下、本発明を実施例によりさらに説明する力 本発明はこれらに限定されるもの ではない。
[0067] 具体的に、本実施例における予測 ·実験'評価の手順は、能動学習実験計画に基 づいて行い、全体として次のステップを繰り返した。ここで用いた能動学習実験計画 の模式図を図 1に示す。
[0068] (1)後述する下位学習アルゴリズムの試行 1回分を行う。すなわち、蓄積データのラ ンダムリサンプリング力 複数の仮説を発現し、ランダムに発現された質問候補点 (ぺ プチド)に対する予測値の分散が最も大きい点を、実験すべき質問点として選ぶ。
[0069] (2)選ばれた質問点のペプチドを、後述する合成'精製法により製造し、実際の結 合能を後述する実験により測定して蓄積データに加える。 [0070] 本実施例では、下位学習アルゴリズムとして、隠れマルコフモデルの教師付き学習 アルゴリズムを用い、 223種のペプチドの初期データ力もスタートし、 1回の実験あた り 20〜30種のペプチドを予測、選択し、上記手順を 4回繰り返し、合計 341件のデ ータを得た。
より具体的には、本実施例の能動学習法では、 20種類あるアミノ酸を 9個ならベた アミノ酸配列からなるペプチドの設計 ·合成を、 1回の実験あたり 20〜30種類分行つ た。そして、それらの HLA分子との結合の強さ(結合能)の計測を行った。そして、実 験結果として、結合能 (Kd値)を得た。結合能が高ければ、ワクチンの材料として利 用可能な HLA結合性ペプチドの候補とした。
[0071] そして、得られた結果を、数学的アルゴリズムとして隠れマルコフモデルを利用する 学習機械を備える学習システムに入力し、ルールを作成した。ここで、学習機械は、 それぞれ異なる結果をサンプリングし、ルールを作った。なお、学習機械により、発現 されるルールも異なる構成とした。なお、得られたルールや、実験データは、蓄積デ ータとして随時格納される。
[0072] そして、そのルールにより、 209 = 5000億以上のペプチド配列の中から、次回の実 験候補を選び出し、上記のプロセスを繰り返した。この際、異なるルールを実験候補 に適用し、実験結果の予測が割れる候補を実験にかけた。このように、実験結果の 予測が割れる候補を次回の実験にかけるため、最終的な予測精度が向上した。
[0073] このように、複数の学習機械が、異なる予測をするサンプルを実験候補に選ぶ選択 的サンプリングを行うことで、効率的に情報を獲得し、精度の高い仮説 (ルール)を得 た。上記のプロセスを、 4回繰り返せば、後述する実施例のように優れた結果を得ら れた。また、 7回以上繰り返せば、さらに優れた結果が得られる。
[0074] このような能動学習法を行うことにより、本来ならば、 9アミノ酸残基力 なるペプチド について、 HLA結合性ペプチドの全候補物質 5000億通り以上について行う必要の ある結合実験の数を削減できた。能動学習法においては、実験からルールを作成し 、ルールを適用して予測した数十の候補配列にっ 、て実験を行うことを繰り返した。 このため、実験の回数を削減して初期スクリーニングの時間 Zコストを大きく低減でき [0075] また、このようにして能動学習法により得られるルールによる、ペプチドの HLAとの 結合性の予測の的中率は、 70〜80%にも達した。一方、アンカー法などの他の公 知の技術による的中率は 30%程度に過ぎない。
[0076] くペプチド合成と精製〉
ペプチドは、 Fmocアミノ酸を用い、 Merrifieldの固相法にて、マニュアル合成をし た。脱保護の後、 C 18カラムを用いて逆相 HPLC精製をし、 95%以上の純度にした 。ペプチドの同定と純度の確認は、 MALDI— TOF質量分析にて行った (Voyager DE RP、 PerSeptive)。ペプチドの定量は、 BSAを標準蛋白質として Micro BC Aアツセィ(Pierce社)にて行った。
[0077] 〈ペプチドの HLA— A24分子への結合実験〉
HLA— A*2402遺伝子の産物である HLA— A24分子へのペプチドの結合能の 測定は、 HLA— A24分子を発現する C1R— A24細胞 (熊本大学、滝口雅文教授 作成のものを、許可を得て愛媛大学、安川正貴助教授力も供与いただいた。)を用い て行った。
[0078] まず、 C1R—A24細胞を pH3. 3の酸性条件に 30秒曝し、 HLA—A*2402分子 に元来結合して 、る内因性ペプチドと、 HLAクラス I分子に共通して会合して 、る軽 鎖 j8 2mを解離、除去した。中和後、 C1R— A24細胞に精製 |8 2mを添加し、ぺプチ ドの希釈列に加えて、氷上 4時間インキュベートした。この間に再会合した HLA—A* 2402分子、ペプチド、 β 2mの 3者の会合体 (MHC— pep)を認識する蛍光標識モ ノクローナル抗体 17A12を用 、て染色した。
[0079] その後、個々の C1R—A24細胞当たりの MHC—pep数(上記蛍光抗体の蛍光強 度に比例する)を、蛍光細胞解析装置 FACScan(Becton— Dickinson社)を用い て定量測定した。 1細胞当たりの平均蛍光強度から、論文 (Udaka et al. , Imm unogenetics, 51、 816— 828、 2000)【こ発表した方法【こて、 HLA— A24分 子とペプチド間の結合解離定数 Kd値を算出した。
[0080] 〈ペプチドの HLA— A2分子への結合実験〉
HLA— A*0201遺伝子の産物である HLA— A2分子へのペプチドの結合能の測 定は、 HLA— A*0201を発現する細胞 Yを用いて行った。 [0081] まず JY細胞を pH3. 8の酸性条件に 30秒曝し、 HLA— A*0201分子にそれまで非 共有結合的に会合していた内因性ペプチドと軽鎖 i8 2mを解離、除去した。中和後、 再会合実験を行った。
結合能を測定したいペプチドの段階希釈列に上言 6JY細胞と精製 β 2mを加えたのち 、氷上で 4時間インキュベートした。この時点までに再会合した HLA—A*0201分子 を、会合型特異的な蛍光標識モノクローナル抗体 BB7. 2を用いて染色した。
[0082] その後、 1細胞あたりの蛍光量をフローサイトメーターにて測定し、論文
(Udaka et al. , Immunogenetics, 51、 816— 828、 2000)に発表した方 法にて、解離定数 Kd値を算出した。
[0083] く評価結果〉
その結果、上記表 1および表 2に示した予測結果および実験結果が得られた。
[0084] 表 1の配列番号 1から 30の配列は、 GENBANKに登録されている WT1の所定の タンパク質の全長配列に含まれる 9アミノ酸残基力もなる配列である。また、配列番号 1から 30の配列は、実施形態 1で説明した実験計画法により得られる仮説により予測 された、 HLA—A24分子との結合性が上位の配列である。なお、配列番号 1から 30 まで結合性の優れる順に並んでいる。すなわち、配列番号 1が、最も結合性が優れる と予測される配列である。なお、 WT1の所定のタンパク質の全長アミノ酸配列を、配 列番号 61に示す。
[0085] 表 1には、上述の予測プログラムを用いた予測結果のスコア上位 30個に相当する アミノ酸配列、予測スコア、それに対応する結合実験データが記載されている。なお 、結合実験データはすべて、 WT1のペプチド配列を上述の合成方法により人工合 成して行った。
[0086] また、表 2の配列番号 31から 60の配列は、 GENBANKに登録されている WT1の 所定のタンパク質の全長配列に含まれる 9アミノ酸残基力もなる配列である。また、配 列番号 31から 60の配列は、実施形態 1で説明した実験計画法により得られる仮説に より予測された、 HLA— A2分子との結合性が上位の配列である。なお、配列番号 3 1から 60まで結合性の優れる順に並んでいる。すなわち、配列番号 31が、最も結合 性が優れると予測される配列である。 なお、 WT1の所定のタンパク質の全長配列を配列番号 61 (MGSDVRDLNALLPA
Figure imgf000017_0001
に示す。
[0087] 表 2には、上述の予測プログラムを用いた予測結果のスコア上位 30個に相当する アミノ酸配列、予測スコア、それに対応する結合実験データが記載されている。なお 、結合実験データはすべて、 WT1のペプチド配列を上述の合成方法により人工合 成して行った。
[0088] 上記の互いに 1または 2アミノ酸残基が置換されてなるペプチド配列は、いずれも同 様に優れた HLA— A分子との結合性を示すことが予測される。よって、配列番号 1か ら 60に示した HLA— A分子との結合性が優れるアミノ酸配列のうち 1若しくは数個の アミノ酸残基が置換、欠失、付加されてなるアミノ酸配列であっても、同様に優れた H LA結合性を示すものと予測することができる。
[0089] 別の観点力 言えば、実施形態 1で説明した実験計画法により得られる仮説により 予測された、 HLA— A分子との結合性が優れるアミノ酸配列のうち 1若しくは数個の アミノ酸残基が置換、欠失、付加されてなるアミノ酸配列であっても、同様に優れた H LA結合性を示すものと言える。なお、置換されるアミノ酸残基同士は、ともに疎水性 アミノ酸残基などの互いに特性の類似するアミノ酸残基同士とする方がよい。
[0090] 発明者の一人宇高らは、互いに 1または 2アミノ酸残基が置換されてなるペプチド配 列であっても、同様に優れた抗原提示分子との結合性を示すことを既に報告して!/ヽ る。
1. Decrypting the structure of MHC— I restricted CTL epitopes with complex peptide libraries. " Keiko Udaka, Karl— Heinz Wiesm uller, Stefan Kienle, Gunter Jung and Peter Walden. J. Exp. Med . 181, 2097- 2108. (1995)
2. "Tolerance to amino acid varidations in peptides binding to th e MHC class I protein H— 2Kb. " Keiko Udaka, Karl— Heinz Wies muller, Stefan Kienle, Gunter Jung and Peter Walden. J. Biol. Ch em. 270, 24130— 24134. (1995)
3. "Self MHC— restricted peptides recognized by all alloreactive T lymphocyte clone. " Keiko Udaka, Karl— Heinz Wiesmuller, Stefa n Kienle, Gunter Jung and Peter Walden. J. Immunol. 157, 670 -678. (1996)
[0091] したがって、本発明に記載されたがん抗原 WT1由来のペプチドであっても、また上 記の互いに 1または 2アミノ酸残基が置換されてなるペプチド配列であっても、いずれ も同様に優れた HLA— A分子との結合性を示すことが予測される。
[0092] 以上、本発明を実施例に基づ 、て説明した。この実施例はあくまで例示であり、種 々の変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に 理解されるところである。

Claims

請求の範囲
[1] HLA— A型分子に結合する HLA結合性ペプチドであって、
配列番号 1から 60からなる群より選ばれる 1種以上のアミノ酸配列を含み、 8以上 11以下のアミノ酸残基力 なることを特徴とする HLA結合性ペプチド。
[2] 請求項 1に記載の HLA結合性ペプチドにお 、て、
配列番号 1、 2、 3、 4、 5、 6、 Ί、 10、 14、 29, 30、 31、 33、 38、 39, 40、 43, 44, 49および 51からなる群より選ばれる 1種以上のアミノ酸配列を含むことを特徴とする HLA結合性ペプチド。
[3] HLA— Α型分子に結合する HLA結合性ペプチドであって、
請求項 1または 2に記載の HLA結合性ペプチドに含まれる前記アミノ酸配列のうち 1若しくは 2個のアミノ酸残基が欠失、置換若しくは付加されてなるアミノ酸配列を含 み、
8以上 11以下のアミノ酸残基力 なることを特徴とする HLA結合性ペプチド。
[4] 請求項 1乃至 3 、ずれかに記載の HLA結合性ペプチドにお ヽて、
前記 HLA結合性ペプチドは、
ヒト HLA— A24分子に結合することを特徴とする HLA結合性ペプチド。
[5] 請求項 1乃至 3いずれかに記載の HLA結合性ペプチドにおいて、
前記 HLA結合性ペプチドは、
ヒト HLA—A2分子に結合することを特徴とする HLA結合性ペプチド。
[6] 請求項 1乃至 5 、ずれかに記載の HLA結合性ペプチドをコードする DNA配列を 含むことを特徴とする DNA断片。
[7] 請求項 1乃至 5 、ずれかに記載の HLA結合性ペプチドをコードする DNA配列を 含むことを特徴とする組み換えベクター。
[8] ほ乳類の生体内において、請求項 1乃至 5いずれかに記載の HLA結合性ペプチド に変化することを特徴とする HLA結合性ペプチド前駆体。
PCT/JP2005/016822 2004-09-17 2005-09-13 Hla結合性ペプチド、それをコードするdna断片および組み換えベクター WO2006030770A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05783164A EP1801211A4 (en) 2004-09-17 2005-09-13 BINDING PEPTIDE HLA MOLECULE, DNA FRAGMENT ENCODING SAME, AND RECOMBINANT VECTOR
US11/574,963 US20080293916A1 (en) 2004-09-17 2005-09-13 Hla-Binding Peptide, and Dna Fragment and Recombinant Vector Coding for Said Hla-Binding Peptide
JP2006535143A JPWO2006030770A1 (ja) 2004-09-17 2005-09-13 Hla結合性ペプチド、それをコードするdna断片および組み換えベクター

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-272385 2004-09-17
JP2004272385 2004-09-17
JP2005-046459 2005-02-23
JP2005046459 2005-02-23

Publications (1)

Publication Number Publication Date
WO2006030770A1 true WO2006030770A1 (ja) 2006-03-23

Family

ID=36060021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016822 WO2006030770A1 (ja) 2004-09-17 2005-09-13 Hla結合性ペプチド、それをコードするdna断片および組み換えベクター

Country Status (4)

Country Link
US (1) US20080293916A1 (ja)
EP (2) EP2636679B1 (ja)
JP (1) JPWO2006030770A1 (ja)
WO (1) WO2006030770A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096831A1 (ja) 2007-02-07 2008-08-14 The Research Foundation For Microbial Diseases Of Osaka University 癌の治療剤
WO2013089252A1 (ja) 2011-12-14 2013-06-20 国立大学法人 高知大学 ヘルパーt細胞誘導性ポリペプチドの改変

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100255020A1 (en) * 2007-11-20 2010-10-07 Nec Corporation Method for inducing cytotoxic t-cells, cytotoxic t-cell inducers, and pharmaceutical compositions and vaccines employing them
WO2013128281A1 (en) 2012-02-28 2013-09-06 Population Genetics Technologies Ltd Method for attaching a counter sequence to a nucleic acid sample

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11316754A (ja) * 1998-05-06 1999-11-16 Nec Corp 実験計画法及び実験計画プログラムを記録した記録媒体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08151396A (ja) 1994-11-28 1996-06-11 Teijin Ltd Hla結合性オリゴペプチド及びそれを含有する免疫調節剤
US20030072767A1 (en) * 1998-09-30 2003-04-17 Alexander Gaiger Compositions and methods for WT1 specific immunotherapy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11316754A (ja) * 1998-05-06 1999-11-16 Nec Corp 実験計画法及び実験計画プログラムを記録した記録媒体

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GAO L ET AL: "Selective elimination of leukemic CD34(+) progenitor cells by cytotoxic T lymphocytes specific for WT1.", BLOOD., vol. 95, no. 7, 2000, pages 2198 - 2203, XP002337253 *
MAKITA M ET AL: "Antilung Cancer Effect of WT1-Specific Cytotoxic T Lymphocytes.", CLINICAL CANCER RESEARCH., vol. 8, 2002, pages 2626 - 2631, XP002993869 *
OHMINAMI H ET AL: "HLA class I-restricted lysis of leukemia cells by a CD8(+) cytotoxic T-lymphocyte clone specific for WT1 peptide.", BLOOD., vol. 95, no. 1, 2000, pages 286 - 293, XP002190642 *
TSUBOI A. ET AL: "WT1 Peptide-Based Immunotherapy for patients with Lung Cancer: Report of Two Cases.", MICROBIOL. IMMUNOL., vol. 48, no. 3, 2004, pages 175 - 184, XP002391404 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096831A1 (ja) 2007-02-07 2008-08-14 The Research Foundation For Microbial Diseases Of Osaka University 癌の治療剤
CN105664147A (zh) * 2007-02-07 2016-06-15 日本电气株式会社 用于癌症的治疗剂
WO2013089252A1 (ja) 2011-12-14 2013-06-20 国立大学法人 高知大学 ヘルパーt細胞誘導性ポリペプチドの改変

Also Published As

Publication number Publication date
EP2636679B1 (en) 2015-05-20
EP1801211A1 (en) 2007-06-27
EP1801211A4 (en) 2008-06-11
US20080293916A1 (en) 2008-11-27
JPWO2006030770A1 (ja) 2008-05-15
EP2636679A1 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
JP5614659B2 (ja) Hla結合性ペプチド、それをコードするdna断片および組み換えベクター
US9353151B2 (en) HLA-binding peptide, and DNA fragment and recombinant vector coding for said HLA-binding peptide
US20150087809A1 (en) Hla-binding peptides, precursors thereof, dna fragments and recombinant vectors that code for those peptide sequences
WO2006030770A1 (ja) Hla結合性ペプチド、それをコードするdna断片および組み換えベクター
JP2013078325A (ja) Hla結合性ペプチド、その前駆体、それをコードするdna断片および組み換えベクター
JP5648927B2 (ja) Hla結合性ペプチド、それをコードするdna断片および組み換えベクター
JP2006230269A (ja) Hla結合性ペプチド、それをコードするdna断片および組み換えベクター

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2006535143

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11574963

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580031564.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005783164

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005783164

Country of ref document: EP