WO2006029179A2 - Substituted piperazine compounds and their use as fatty acid oxidation inhibitors - Google Patents
Substituted piperazine compounds and their use as fatty acid oxidation inhibitors Download PDFInfo
- Publication number
- WO2006029179A2 WO2006029179A2 PCT/US2005/031786 US2005031786W WO2006029179A2 WO 2006029179 A2 WO2006029179 A2 WO 2006029179A2 US 2005031786 W US2005031786 W US 2005031786W WO 2006029179 A2 WO2006029179 A2 WO 2006029179A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compound
- formula
- methylbenzothiazol
- hydrogen
- alkyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 0 *C(CN(C(*)(*1)C1(*)*1)C(*)(*2)C12S)CO* Chemical compound *C(CN(C(*)(*1)C1(*)*1)C(*)(*2)C12S)CO* 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D277/00—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
- C07D277/60—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
- C07D277/62—Benzothiazoles
- C07D277/68—Benzothiazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 2
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/496—Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene or sparfloxacin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/04—Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/06—Antiarrhythmics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D277/00—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
- C07D277/60—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
- C07D277/62—Benzothiazoles
- C07D277/64—Benzothiazoles with only hydrocarbon or substituted hydrocarbon radicals attached in position 2
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
- C07D417/12—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
Definitions
- the present invention relates to novel heterocyclic compounds, in particular piperidine and piperazine derivatives, and to their use in the treatment of various disease states, including cardiovascular diseases such as atrial and ventricular arrhythmias, intermittent claudication, Prinzmetal's (variant) angina, stable and unstable angina, exercise induced angina, congestive heart disease, ischemia, reperfusion injury and myocardial infarction, and diabetes and disease states related to diabetes.
- cardiovascular diseases such as atrial and ventricular arrhythmias, intermittent claudication, Prinzmetal's (variant) angina, stable and unstable angina, exercise induced angina, congestive heart disease, ischemia, reperfusion injury and myocardial infarction, and diabetes and disease states related to diabetes.
- the invention also relates to methods for their preparation, and to pharmaceutical compositions containing such compounds.
- Certain classes of piperazine compounds are known to be useful for the treatment of cardiovascular diseases, including arrhythmias, angina, myocardial infarction, and related diseases such as intermittent claudication.
- U. S Patent No. 4,567,264 discloses a class of substituted piperazine compounds that includes a compound known as ranolazine, ( ⁇ )-N- (2,6-dimethylphenyl)-4-[2-hydroxy- 3- (2-methoxyphenoxy)-propyl]-l-piperazineacetamide, and its pharmaceutically acceptable salts.
- Other U.S. patents and U.S. patent applications also disclose piperazine derivatives similarly useful for the treatment of cardiovascular diseases, for example U.S Patent Nos.
- R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , and R 8 are hydrogen, lower alkyl, or -C(O)R; in which R is
- R 1 and R 2 , R 3 and R 4 , R 5 and R 6 , R 7 and R 8 when taken together with the carbon to which they are attached, represent carbonyl; or R 1 and R 5 , or R 1 and R 7 , or R 3 and R 5 , or R 3 and R 7 , when taken together form a bridging group ⁇ (CR 14 R 15 ) n -, in which n is 1, 2 or 3, and R 14 and R 15 are independently hydrogen or lower alkyl; with the proviso that
- R 9 is -NHSO 2 R 12 , -NHC(O)R 12 , or -OR 12 ; in which R 12 is optionally substituted lower alkyl; and
- R 10 is optionally substituted aryl or optionally substituted heteroaryl
- X is optionally substituted aryl, optionally substituted heteroaryl, or optionally substituted dihydroheteroaryl;
- Y is (CH 2 ) n , in which n is 0, 1, or 2;
- Z is -N ⁇ , -NH-CHS -NH-C(0)-N ⁇ , or -NH-C(0)-CH 2 -N ⁇ ; and the pharmaceutically acceptable salts, esters, polymorphs, and prodrugs thereof.
- a second aspect of this invention relates to pharmaceutical formulations, comprising a therapeutically effective amount of a compound of Formula I and at least one pharmaceutically acceptable excipient.
- a third aspect of this invention relates to a method of using the compounds of Formula I in the treatment of a disease or condition in a mammal that is amenable to treatment by a fatty acid oxidation inhibitor.
- diseases include, but are not limited to, protection of skeletal muscles against damage resulting from trauma, intermittent claudication, shock, and cardiovascular diseases including atrial and ventricular arrhythmias, Prinzmetal's (variant) angina, stable angina, exercise induced angina, congestive heart disease, diabetes, and myocardial infarction.
- the compounds of Formula I are also useful for lowering plasma level of HbAIc, lowering glucose plasma levels, lowering total cholesterol plasma levels, lowering triglyceride plasma levels, raising HDL cholesterol levels, and/or delaying onset of diabetic retinopathy. They can also be used to preserve donor tissue and organs used in transplants.
- a fourth aspect of this invention relates to methods of preparing the compounds of Formula I.
- the preferred compounds presently include, but are not limited to:
- alkyl refers to a monoradical branched or unbranched saturated hydrocarbon chain having from 1 to 20 carbon atoms. This term is exemplified by groups such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, t-butyl, n-hexyl,n- decyl, tetradecyl, and the like.
- substituted alkyl refers to:
- alkyl group as defined above, having 1, 2, 3, 4 or 5 substituents, preferably 1 to3 substituents, selected from the group consisting of alkenyl, alkynyl, alkoxy, cycloalkyl, cycloalkenyl, acyl, acylamino, acyloxy, amino, aminocarbonyl, alkoxycarbonylamino, azido, cyano, halogen, hydroxy, keto, thiocarbonyl, carboxy, carboxyalkyl, arylthio, heteroarylthio, heterocyclylthio, thiol, alkylthio, aryl, aryloxy, heteroaryl, aminosulfonyl, aminocarbonylammo, heteroaryloxy, heterocyclyl, heterocyclooxy, hydroxyamino, alkoxyamino, nitro, -SO-alkyl, -SO-aryl,-SO-heteroaryl, -SO 2 -alkyl, SO
- substituents may optionally be further substituted by 1, 2, or 3 substituents chosen from alkyl, carboxy, carboxyalkyl, aminocarbonyl, hydroxy, alkoxy, halogen, CF 3 , amino, substituted amino, cyano, and -S(O) n R, where R is alkyl, aryl, or heteroaryl and n is 0, 1 or 2; or
- alkyl group as defined above that is interrupted by 1-10 atoms independently chosen from oxygen, sulfur and NR 3 -, where R a is chosen from hydrogen, alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, aryl, heteroaryl and heterocyclyl. All substituents may be optionally further substituted by alkyl, alkoxy, halogen, CF 3 , amino, substituted amino, cyano, or -S(O) n R, in which R is alkyl, aryl, or heteroaryl and n is 0, 1 or 2; or
- lower alkyl refers to a monoradical branched or unbranched saturated hydrocarbon chain having 1, 2, 3, 4, 5, or ⁇ carbon atoms. This term is exemplified by groups such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, t- butyl, n-hexyl, and the like.
- substituted lower alkyl refers to lower alkyl as defined above having 1 to 5 substituents, preferably 1, 2, or 3 substituents, as defined for substituted alkyl, or a lower alkyl group as defined above that is interrupted by 1, 2, 3, 4, or 5 atoms as defined for substituted alkyl, or a lower alkyl group as defined above that has both 1, 2, 3, 4 or 5 substituents as defined above and is also interrupted by 1, 2, 3, 4, or 5 atoms as defined above.
- alkylene refers to a diradical of a branched or unbranched saturated hydrocarbon chain, preferably having from 1 to 20 carbon atoms, preferably 1-10 carbon atoms, more preferably 1, 2, 3, 4, 5 or 6 carbon atoms. This term is exemplified by groups such as methylene (-CH 2 -), ethylene (-CH 2 CH 2 -), the propylene isomers (e.g., -CH 2 CH 2 CH 2 - and-CH(CH 3 )CH 2 -) and the like.
- lower alkylene refers to a diradical of a branched or unbranched saturated hydrocarbon chain, preferably having from 1, 2, 3, 4, 5, or 6 carbon atoms.
- substituted alkylene refers to:
- an alkylene group as defined above having 1, 2, 3, 4, or 5 substituents selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, cycloalkyl, cycloalkenyl, acyl, acylamino, acyloxy, amino, aminocarbonyl, alkoxycarbonylamino, azido, cyano, halogen, hydroxy, keto, thiocarbonyl, carboxy, carboxyalkyl, arylthio, heteroarylthio, heterocyclylthio, thiol, alkylthio, aryl, aryloxy, heteroaryl, aminosulfonyl, aminocarbonylamino, heteroaryloxy, heterocyclyl, heterocyclooxy, hydroxyamino, alkoxyamino, nitro, -SO-alkyl, -SO- aryl,-SO-heteroaryl, -SO 2 -alkyl, S ⁇ 2 -aryl
- alkylene group as defined above that has both 1, 2, 3, 4 or 5 substituents as defined above and is also interrupted by 1-20 atoms as defined above.
- substituted alkylenes are chloromethylene (-CH(Cl)-), aminoethylene (-CH(NH 2 )CH 2 -), methylaminoethylene (- CH(NHMe)CH 2 -), 2-carboxypropylene isomers(-CH 2 CH(CO 2 H)CH 2 -), ethoxyethyl (-CH 2 CH 2 O-CH 2 CH 2 -), ethylmethylaminoethyl (- CH 2 CH 2 N(CH 3 )CH 2 CH 2 -),l-ethoxy-2-(2-ethoxy-ethoxy)ethane (- CH 2 CH 2 O-CH 2 CH 2 -OCH 2 CH 2 -OCH 2 CH 2 -), and the like.
- aralkyl refers to an aryl group covalently linked to an alkylene group, where aryl and alkylene are defined herein.
- Optionally substituted aralkyl refers to an optionally substituted aryl group covalently linked to an optionally substituted alkylene group.
- Such aralkyl groups are exemplified by benzyl, phenylethyl, 3-(4-methoxyphenyl)propyl, and the like.
- alkoxy refers to the group R-O-, where R is optionally substituted alkyl or optionally substituted cycloalkyl, or R is a group -Y-Z, in which Y is optionally substituted alkylene and Z is optionally substituted alkenyl, optionally substituted alkynyl; or optionally substituted cycloalkenyl, where alkyl, alkenyl, alkynyl, cycloalkyl and cycloalkenyl are as defined herein.
- Preferred alkoxy groups are alkyl-O- and include, by way of example, methoxy, ethoxy, n-propoxy, iso-propoxy, n- butoxy, tert-butoxy, sec-butoxy, n-pentoxy, n-hexoxy, 1,2-dimethylbutoxy, and the like.
- lower alkoxy refers to the group R-O- in which R is optionally substituted lower alkyl as defined above. This term is exemplified by groups such as methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, iso-butoxy, t-butoxy, n-hexyloxy, and the like.
- alkylthio refers to the group R-S-, where R is as defined for alkoxy.
- alkenyl refers to a monoradical of a branched or unbranched unsaturated hydrocarbon group preferably having from 2 to 20 carbon atoms, more preferably 2 to 10 carbon atoms and even more preferably 2 to 6 carbon atoms and having 1-6, preferably 1, double bond (vinyl).
- lower alkenyl refers to alkenyl as defined above having from 2 to 6 carbon atoms.
- substituted alkenyl refers to an alkenyl group as defined above having 1, 2, 3, 4 or 5 substituents, and preferably 1, 2, or 3 substituents, selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, cycloalkyl, cycloalkenyl, acyl, acylamino, acyloxy, amino, aminocarbonyl, alkoxycarbonylamino, azido, cyano, halogen, hydroxy, keto, thiocarbonyl, carboxy, carboxyalkyl, arylthio, heteroarylthio, heterocyclylthio, thiol, alkylthio, aryl, aryloxy, heteroaryl, aminosulfonyl, aminocarbonylamino, heteroaryloxy, heterocyclyl, heterocyclooxy, hydroxyamino, alkoxyamino, nitro, -SO-alkyl, -
- substituents may optionally be further substituted by 1, 2, or 3 substituents chosen from alkyl, carboxy, carboxyalkyl, aminocarbonyl, hydroxy, alkoxy, halogen, CF 3 , amino, substituted amino, cyano, and -S(O) n R, where R is alkyl, aryl, or heteroaryl and n is 0, 1 or 2.
- alkynyl refers to a monoradical of an unsaturated hydrocarbon, preferably having from 2 to 20 carbon atoms, more preferably 2 to 10 carbon atoms and even more preferably 2 to 6 carbon atoms and having at least 1 and preferably from 1-6 sites of acetylene (triple bond) unsaturation.
- Preferred alkynyl groups include ethynyl, ( ⁇ G ⁇ CH), propargyl (or propynyl, -C ⁇ CCH 3 ), and the like. In the event that alkynyl is attached to nitrogen, the triple bond cannot be alpha to the nitrogen.
- substituted alkynyl refers to an alkynyl group as defined above having 1, 2, 3, 4 or 5 substituents, and preferably 1, 2, or 3 substituents, selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, cycloalkyl, cycloalkenyl, acyl, acylamino, acyloxy, amino, aminocarbonyl, alkoxycarbonylamino, azido, cyano, halogen, hydroxy, keto, thiocarbonyl, carboxy, carboxyalkyl, arylthio, heteroarylthio, heterocyclylthio, thiol, alkylthio, aryl, aryloxy, heteroaryl, aminosulfonyl, aminocarbonylamino, heteroaryloxy, heterocyclyl, heterocyclooxy, hydroxyamino, alkoxyamino, nitro, -SO-alkyl,
- substituents may optionally be further substituted by 1, 2, or 3 substituents chosen from alkyl, carboxy, carboxyalkyl, aminocarbonyl, hydroxy, alkoxy, halogen, CF 3 , amino, substituted amino, cyano, and -S(O) n R, where R is alkyl, aryl, or heteroaryl and n is 0, 1 or 2.
- aminocarbonyl refers to the group -C(O)NRR where each R is independently hydrogen, alkyl, cycloaklyl, aryl, heteroaryl, heterocyclyl or where both R groups are joined to form a heterocyclic group (e.g., morpholino). Unless otherwise constrained by the definition, all substituents may optionally be further substituted by 1, 2, or 3 substituents chosen from alkyl, carboxy, carboxyalkyl, aminocarbonyl, hydroxy, alkoxy, halogen, CF 3 , amino, substituted amino, cyano, and -S(O) n R, where R is alkyl, aryl, or heteroaryl and n is 0, 1 or 2.
- esters or “carboxyester” refers to the group -C(O)OR, where R is alkyl, cycloalkyl, aryl, heteroaryl, or heterocyclyl, which may be optionally further substituted by alkyl, alkoxy, halogen, CF 3 , amino, substituted amino, cyano, or — S(O) n R a , in which R a is alkyl, aryl, or heteroaryl and n is 0, 1 or 2.
- acylamino refers to the group -NRC(O)R where each R is independently hydrogen, alkyl, aryl, heteroaryl, or heterocyclyl. All substituents may be optionally further substituted by alkyl, alkoxy, halogen, CF 3 , amino, substituted amino, cyano, or -S(O) n R, in which R is alkyl, aryl, or heteroaryl and n is 0, 1 or 2.
- acyloxy refers to the groups -O(O)C-alkyl, -O(O)C-cycloalkyl, - O(O)C-aryl, -O(O)C-heteroaryl, and -O(O)C-heterocyclyl. Unless otherwise constrained by the definition, all substituents may optionally be further substituted by 1, 2, or 3 substituents chosen from alkyl, carboxy, carboxyalkyl, aminocarbonyl, hydroxy, alkoxy, halogen, CF 3 , amino, substituted amino, cyano, and -S(O) n R, where R is alkyl, aryl, or heteroaryl and n is 0, 1 or 2.
- aryl refers to an aromatic carbocyclic group of 6 to 20 carbon atoms having a single ring (e.g., phenyl) or multiple rings (e.g., biphenyl), or multiple condensed (fused) rings (e.g., naphthyl, fluorenyl, and anthryl).
- Preferred aryls include phenyl, fluorenyl, naphthyl and the like.
- such aryl groups can optionally be substituted with 1, 2, 3, 4 or 5 substituents, preferably 1, 2, or 3 substituents, selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, cycloalkyl, cycloalkenyl, acyl, acylamino, acyloxy, amino, aminocarbonyl, alkoxycarbonylamino, azido, cyano, halogen, hydroxy, keto, thiocarbonyl, carboxy, carboxyalkyl, arylthio, heteroarylthio, heterocyclylthio, thiol, alkylthio, aryl, aryloxy, heteroaryl, aminosulfonyl, aminocarbonylamino, heteroaryloxy, heterocyclyl, heterocyclooxy, hydroxyamino, alkoxyamino, nitro, -SO-alkyl,
- substituents may optionally be further substituted by 1, 2, or 3 substituents chosen from alkyl, carboxy, carboxyalkyl, aminocarbonyl, hydroxy, alkoxy, halogen, CF 3 , amino, substituted amino, cyano, and -S(O) n R, where R is alkyl, aryl, or heteroaryl and n is 0, 1 or 2.
- aryloxy refers to the group aryl-O- wherein the aryl group is as defined above, and includes optionally substituted aryl groups as also defined above.
- arylthio refers to the group R-S-, where R is as defined for aryl.
- amino refers to the group -NH 2 .
- substituted amino refers to the group -NRR where each R is independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl provided that both R groups are not hydrogen, or a group - Y-Z, in which Y is optionally substituted alkylene and Z is alkenyl, cycloalkenyl, or alkynyl.
- substituents may optionally be further substituted by 1, 2, or 3 substituents chosen from alkyl, carboxy, carboxyalkyl, aminocarbonyl, hydroxy, alkoxy, halogen, CF 3 , amino, substituted amino, cyano, and -S(O) n R, where R is alkyl, aryl, or heteroaryl and n is 0, 1 or 2.
- Carboxyalkyl refers to the groups -C(O)O-alkyl, -C(O)O-cycloalkyl, where alkyl and cycloalkyl, are as defined herein, and may be optionally further substituted by alkyl, alkenyl, alkynyl, alkoxy, halogen, CF 3 , amino, substituted amino, cyano, or -S(O) n R, in which R is alkyl, aryl, or heteroaryl and n is 0, 1 or 2.
- cycloalkyl refers to cyclic alkyl groups of from 3 to 20 carbon atoms having a single cyclic ring or multiple condensed rings.
- Such cycloalkyl groups include, by way of example, single ring structures such as cyclopropyl, cyclobutyl, cyclopentyl, cyclooctyl, and the like, or multiple ring structures such as adamantanyl, and bicyclo[2.2.1]heptane, or cyclic alkyl groups to which is fused an aryl group, for example indan, and the like.
- substituted cycloalkyl refers to cycloalkyl groups having 1, 2, 3, 4 or 5 substituents, and preferably 1, 2, or 3 substituents, selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, cycloalkyl, cycloalkenyl 5 acyl, acylamino, acyloxy, amino, aminocarbonyl, alkoxycarbonylamino, azido, cyano, halogen, hydroxy, keto, thiocarbonyl, carboxy, carboxyalkyl, arylthio, heteroarylthio, heterocyclylthio, thiol, alkylthio, aryl, aryloxy, heteroaryl, aminosulfonyl, aminocarbonylamino, heteroaryloxy, heterocyclyl, heterocyclooxy, hydroxyamino, alkoxyamino, nitro, -SO- alkyl, -
- substituents may optionally be further substituted by 1, 2, or 3 substituents chosen from alkyl, carboxy, carboxyalkyl, aminocarbonyl, hydroxy, alkoxy, halogen, CF 3 , amino, substituted amino, cyano, and - S(O) n R, where R is alkyl, aryl, or heteroaryl and n is 0, 1 or 2.
- halogen refers to fluoro, bromo, chloro, and iodo.
- acyl denotes a group -C(O)R, in which R is hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, and optionally substituted heteroaryl.
- heteroaryl or refers to an aromatic group (i.e., unsaturated) comprising 1 to 15 carbon atoms and 1 to 4 heteroatoms selected from oxygen, nitrogen and sulfur within at least one ring.
- such heteroaryl groups can be optionally substituted with 1 to 5 substituents, preferably 1, 2, or 3 substituents selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, cycloalkyl, cycloalkenyl, acyl, acylamino, acyloxy, amino, aminocarbonyl, alkoxycarbonylamino, azido, cyano, halogen, hydroxy, keto, thiocarbonyl, carboxy, carboxyalkyl (an alkyl ester), arylthio, heteroaryl, heteroarylthio, heterocyclylthio, thiol, alkylthio,
- substituents may optionally be further substituted by 1, 2, or 3 substituents chosen from alkyl, carboxy, carboxyalkyl, aminocarbonyl, hydroxy, alkoxy, halogen, CF 3 , amino, substituted amino, cyano, and - S(O) n R, where R is alkyl, aryl, or heteroaryl and n is 0, 1 or 2.
- Such heteroaryl groups can have a single ring (e.g., pyridyl or furyl) or multiple condensed rings (e.g., indolizinyl, benzothiazole, or benzothienyl).
- nitrogen heterocycles and heteroaryls include, but are not limited to, pyrrole, imidazole, pyrazole, pyridine, pyrazine, pyrimidine, pyridazine, indolizine, isoindole, indole, indazole, purine, quinolizine, isoquinoline, quinoline, phthalazine, naphthylpyridine, quinoxaline, quinazoline, cinnoline, pteridine, carbazole, carboline, phenanthridine, acridine, phenanthroline, isothiazole, phenazine, isoxazole, phenoxazine, phenothiazine, imidazolidine, imidazoline, and the like as well as N-alkoxy-nitrogen containing heteroaryl compounds.
- dihydroheteroaryl refers to a heteroaryl group as defined above in which one double bond has been saturated, and one double bond remains unsaturated. That is, a partially saturated heteroaryl group. Examples of such groups are:
- A represents the points of attachment, which are derivatives of; 3,5-(4,5-dihydroisoxazole), 2,5-(l ,3-oxazoline), 3,5-(2,3-dihydro-l ,2,4-oxadiazole), 3,5-(4,5-dihydro-l,2,4-oxadiazole), 1,4-pyrazoline, 4,5-dihydropyridine, and the like.
- dihydroheteroaryl groups can be optionally substituted in the same manner as heteroaryl.
- heteroaryloxy refers to the group heteroaryl-O-.
- heterocyclyl refers to a monoradical saturated or partially unsaturated group having a single ring or multiple condensed rings, having from 1 to 40 carbon atoms and from 1 to 10 hetero atoms, preferably 1 to 4 heteroatoms, selected from nitrogen, sulfur, phosphorus, and/or oxygen within the ring.
- heterocyclic groups can be optionally substituted with 1 to 5, and preferably 1, 2, or 3 substituents, selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, cycl ⁇ alkyl, cycloalkenyl, acyl, acylamino, acyloxy, amino, aminocarbonyl, alkoxycarbonylamino, azido, cyano, halogen, hydroxy, keto, thiocarbonyl, carboxy, carboxyalkyl, arylthio, heteroarylthio, heterocyclylthio, thiol, alkylthio, aryl, aryloxy, heteroaryl, aminosulfonyl, aminocarbonylamino, heteroaryloxy, heterocyclyl, heterocyclooxy, hydroxyamino, alkoxyamino, nitro, -SO-alkyl, -SO-aryl,
- substituents may optionally be further substituted by 1, 2, or 3 substituents chosen from alkyl, carboxy, carboxyalkyl, aminocarbonyl, hydroxy, alkoxy, halogen, CF 3 , amino, substituted amino, cyano, and -S(O) n R, where R is alkyl, aryl, or heteroaryl and n is 0, 1 or 2.
- Heterocyclic groups can have a single ring or multiple condensed rings. Preferred heterocyclics include tetrahydrofuranyl, morpholino, piperidinyl, and the like.
- thiol refers to the group -SH.
- substituted alkylthio refers to the group -S-substituted alkyl.
- heteroarylthM refers to the group -S-heteroaryl wherein the heteroaryl group is as defined above including optionally substituted heteroaryl groups as also defined above.
- sulfoxide refers to a group -S(O)R, in which R is alkyl, aryl, or heteroaryl.
- substituted sulfoxide refers to a group -S(O)R, in which R is substituted alkyl, substituted aryl, or substituted heteroaryl, as defined herein.
- sulfone refers to a group -S(O) 2 R, in which R is alkyl, aryl, or heteroaryl.
- substituted sulfone refers to a group -S(O) 2 R, in which R is substituted alkyl, substituted aryl, or substituted heteroaryl, as defined herein.
- keto refers to a group -C(O)-.
- thiocarbonyl refers to a group -C(S)-.
- carboxy refers to a group -C(O)-OH.
- compound of Formula I is intended to encompass the compounds of the invention as disclosed, and the pharmaceutically acceptable salts, pharmaceutically acceptable esters, hydrates, polymorphs, and prodrugs of such compounds. Additionally, the compounds of the invention may possess one or more asymmetric centers, and can be produced as a racemic mixture or as individual enantiomers or diastereoisomers. The number of stereoisomers present in any given compound of Formula I depends upon the number of asymmetric centers present (there are 2 n stereoisomers possible where n is the number of asymmetric centers).
- the individual stereoisomers may be obtained by resolving a racemic or non-racemic mixture of an intermediate at some appropriate stage of the synthesis, or by resolution of the compound of Formula I by conventional means.
- the individual stereoisomers (including individual enantiomers and diastereoisomers) as well as racemic and non- racemic mixtures of stereoisomers are encompassed within the scope of the present invention, all of which are intended to be depicted by the structures of this specification unless otherwise specifically indicated.
- Stepoisomers are isomers that differ only in the way the atoms are arranged in space.
- Enantiomers are a pair of stereoisomers that are non-superimposable mirror images of each other.
- a 1 : 1 mixture of a pair of enantiomers is a “racemic” mixture.
- the term “( ⁇ )” is used to designate a racemic mixture where appropriate.
- Diastereoisomers are stereoisomers that have at least two asymmetric atoms, but which are not mirror-images of each other.
- the absolute stereochemistry is specified according to the Cahn-Ingold-Prelog R-S system.
- the stereochemistry at each chiral carbon may be specified by either R or S.
- Resolved compounds whose absolute configuration is unknown are designated (+) or (-) depending on the direction (dextro- or laevorotary) which they rotate the plane of polarized light at the wavelength of the sodium D line.
- compound of Formula I is intended to encompass the compounds of the invention as disclosed, and the pharmaceutically acceptable salts, pharmaceutically acceptable esters, polymorphs, and prodrugs of such compounds.
- therapeutically effective amount refers to that amount of a compound of Formula I that is sufficient to effect treatment, as defined below, when administered to a mammal in need of such treatment.
- the therapeutically effective amount will vary depending upon the subject and disease condition being treated, the weight and age of the subject, the severity of the disease condition, the manner of administration and the like, which can readily be determined by one of ordinary skill in the art.
- treatment means any treatment of a disease in a mammal, including:
- the compounds of this invention are capable of forming acid and/or base salts by virtue of the presence of amino and/or carboxyl groups or groups similar thereto.
- pharmaceutically acceptable salt refers to salts that retain the biological effectiveness and properties of the compounds of Formula I, and which are not biologically or otherwise undesirable.
- Pharmaceutically acceptable base addition salts can be prepared from inorganic and organic bases. Salts derived from inorganic bases, include by way of example only, sodium, potassium, lithium, ammonium, calcium and magnesium salts.
- Salts derived from organic bases include, but are not limited to, salts of primary, secondary and tertiary amines, such as alkyl amines, dialkyl amines, trialkyl amines, substituted alkyl amines, di(substituted alkyl) amines, tri(substituted alkyl) amines, alkenyl amines, dialkenyl amines, trialkenyl amines, substituted alkenyl amines, di(substituted alkenyl) amines, tri(substituted alkenyl) amines, cycloalkyl amines, di(cycloalkyl) amines, tri(cycloalkyl) amines, substituted cycloalkyl amines, disubstituted cycloalkyl amine, trisubstituted cycloalkyl amines, cycloalkenyl amines, di(cycloalkeny
- Suitable amines include, byway of example only, isopropylamine, trimethyl amine, diethyl amine, tri(iso-propyl) amine, tri(n-propyl) amine, ethanolamine, 2-dimethylaminoethanol, tromethamine, lysine, arginine, histidine, caffeine, procaine, hydrabamine, choline, betaine, ethylenediamine, glucosamine, N-alkylglucamines, theobromine, purines, piperazine, piperidine, morpholine, N-ethylpiperidine, and the like.
- Salts derived from inorganic acids include hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like.
- Salts derived from organic acids include acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, malic acid, malonic acid, succinic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluene-sulfonic acid, salicylic acid, and the like.
- pharmaceutically acceptable carrier includes any and all
- compositions are solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like.
- the use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, its use in the therapeutic compositions is contemplated. Supplementary active ingredients can also be incorporated into the compositions.
- Fatty acid oxidation inhibitors refers to compounds that suppress ATP production from the oxidation of fatty acids and consequently stimulate ATP production from the oxidation of glucose and lactate. IQ the heart, most of the ATP production is acquired through the metabolism of fatty acids. The metabolism of glucose and lactate provides a lesser proportion of ATP. However, the generation of ATP from fatty acids is less efficient with respect to oxygen consumption than the generation of ATP from the oxidation of glucose and lactate. Thus, the use of fatty acid oxidation inhibitors results in more energy production per molecule of oxygen consumed, allowing the heart to be energized more efficiently. Fatty acid oxidation inhibitors are especially useful, therefore, for treating an ischemic environment in which oxygen levels are reduced.
- R 10 is 2-methylbenzothiazol-5-yl:
- R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 10 are as defined in the Summary of the Invention.
- the compounds of formula (1), (2), and (4) are either commercially available or can be made by conventional methods well known to those of ordinary skill in the art.
- the precursor to a compound of formula (4) where R 1 and R 5 when taken together represent a bridging methylene group, i.e.;
- the precursor to a compound of formula (4) in which R 1 , R 2 , R 3 , R 4 , R 5 , R , and R 7 are hydrogen and R 8 is -C(O)NH 2 is prepared from piperazine-2-carboxamide, a commercially available compound.
- the compound of formula (3) is prepared conventionally by reaction of a compound of formula (1), for example 5-hydroxy-2-methylbenzothiazole, with an epoxide of formula (2), which may be racemic or chiral.
- the two compounds are mixed in an inert solvent, preferably a ketone, for example acetone, and a tertiary organic base or an inorganic base, preferably potassium carbonate, at a temperature of about reflux, for about 8-48 hours, preferably overnight.
- the product of formula (3) is isolated by conventional means, for example by filtration, removal of the solvent under reduced pressure, followed by chromatography of the residue on silica gel. Alternatively, after filtration the product can be crystallized from the filtrate.
- the epoxide of formula (3) is then reacted with a protected piperazine of formula (4), which is commercially available or prepared by means well known in the art.
- the two compounds are mixed in an inert solvent, preferably a halogenated solvent, for example methylene chloride, optionally in the presence of a catalyst, for example ytterbium (III) trifluoromethanesulfonate.
- a catalyst for example ytterbium (III) trifluoromethanesulfonate.
- the reaction is carried out in the presence of a catalyst, the reaction is conducted at about 0-30°C, preferably at about room temperature, for about 8-48 hours, preferably overnight. In the absence of a catalyst, the mixture is refluxed for about 1-24 hours in ethanol.
- the product of formula (5) is isolated by conventional means, for example by removal of the solvent under reduced pressure, followed by chromatography of the residue on silica gel.
- the compound of formula (5) is then oxidized to a ketone utilizing the well- known Swern oxidation.
- dimethylsulfoxide is added to an inert solvent, preferably a halogenated solvent, for example methylene chloride, and cooled to about - 80 0 C.
- an inert solvent preferably a halogenated solvent, for example methylene chloride
- a solution of oxalyl chloride in an inert solvent for example methylene chloride
- a solution of the compound of formula (5) in an inert solvent for example methylene chloride.
- a tertiary base for example triethylamine
- the product of formula (6) is isolated by conventional means, for example by extraction with a solvent, for example ethyl acetate, and removal of the dried solvent layer under reduced pressure.
- the residue can be purified, for example by chromatography on silica gel, or can be used in the next reaction with no further purification.
- the compound of formula (6) is then converted to a hydroxylamine derivative of formula (7).
- the ketone of formula (6) is added to an inert solvent, for example tetrahydrofuran, at about room temperature.
- a tertiary base for example triethylamine
- the mixture is then allowed to warm to about room temperature.
- the product of formula (7) is isolated by conventional means, for example by extraction with a solvent, for example methylene chloride, and removal of the dried solvent layer under reduced pressure. The residue can be purified, for
- the compound of formula (7) is then reduced to an amine of formula (8).
- the hydroxylamine of formula (7) is suspended in a mixture of a protic solvent, for example methanol, a hydrogenation catalyst, for example Raney nickel, and a catalytic amount of a strong acid, for example aqueous hydrobromic acid.
- the mixture is hydrogenated under pressure for 6-24 hours, preferably overnight, at about room temperature.
- the product of formula (8) is isolated by conventional means, for example by filtration, adjusting the pH of the filtrate with a strong base, extracting with a solvent, for example methylene chloride, and removal of the dried solvent layer under reduced pressure.
- the residue can be purified, for example by chromatography on silica gel, or can be used in the next reaction with no further purification.
- the compound of formula (8) is then reacted with the appropriate functionalizing agent (for example an anhydride, an acyl halide, or a sulfonyl halide) to provide a compound of formula (9), which is deprotected and then reacted with a compound of formula X-Y-HaI to provide a compound of Formula I in which R 9 is - NHSO 2 R 12 or -NHC(O)R 12 , as shown in Reaction Scheme II.
- the appropriate functionalizing agent for example an anhydride, an acyl halide, or a sulfonyl halide
- the compound of formula (9) is prepared conventionally by reaction of a compound of formula (8) with an acyl anhydride of formula (R CO) 2 O, or an acyl halide of formula R 12 C(O)HaI, where Hal is chloro, bromo or iodo and R 12 is as defined in the Summary of the Invention, hi general, the two compounds are mixed in an inert solvent, for example methylene chloride, in the presence of a tertiary organic base, for example triethylamine, at about 0°C. The temperature is allowed to warm to about room temperature, and left for about 8-48 hours, preferably overnight.
- the product of formula (9) is isolated by conventional means, for example by partitioning the residue between a solvent and water, removal of the organic solvent under reduced pressure, followed by chromatography of the residue on silica gel.
- the amine of formula (8) is dissolved in an inert solvent, for example methylene chloride at about 0°.
- an inert solvent for example methylene chloride
- a compound of the formula R 12 SO 2 HaI is added to this solution.
- an excess of a tertiary base for example triethylarnine.
- Reaction is continued for about 6-24 hours, preferably overnight, allowing the temperature to rise to room temperature.
- the product of Formula I is isolated by conventional means, for example by extraction with a solvent, for example methylene chloride, and removal of the dried solvent layer under reduced pressure.
- the residue is purified, for example by chromatography on silica gel, to provide a compound of formula (9) in which R is -SO 2 R 12 .
- Step 2 Preparation of Formula (10) where R is -C(O)R 12 or -SO 2 R 12
- the compound of formula (9) in which R is -C(O)R 12 or -SO 2 R 12 is deprotected by hydrolysis of the t-butyl ester.
- the compound of formula (9) is dissolved in a mixture of an inert solvent, for example methylene chloride or dioxane, and a strong acid, for example hydrochloric acid or trifluoroacetic acid.
- the reaction is conducted at about 0-30°C, preferably at about room temperature, for about 8-48 hours, preferably overnight.
- the product of formula (10) is isolated by conventional means, for example by adding a base to remove excess acid, and removal of the solvent under reduced pressure.
- the compound of formula (10) is then reacted with a compound of formula X- Y-HaI, in which X and Y are as defined in the Summary of the Invention, and Hal is chloro, bromo or iodo.
- a compound of formula X- Y-HaI in which X and Y are as defined in the Summary of the Invention, and Hal is chloro, bromo or iodo.
- a compound of formula X- Y-HaI in which X and Y are as defined in the Summary of the Invention, and Hal is chloro, bromo or iodo.
- Such compounds are either commercially available, or prepared by means well known in the art.
- the two compounds are mixed in an inert solvent, preferably a polar solvent, for example N,N-dimethylformamide, in the presence of a tertiary organic base, for example triethylamine.
- the reaction is conducted at about 30-100 0 C 5 preferably
- the compound of formula (11) in an inert solvent for example toluene
- a suspension of a strong base for example sodium hydride
- an inert solvent for example toluene
- the mixture is then warmed to about 100 0 C for about 1-5 hours, and then cooled to about 0 0 C.
- a compound of formula R Hal is then added, and the mixture stirred for about 6-24 hours, preferably overnight, allowing the temperature to rise to room temperature.
- the product of Formula I is isolated by conventional means, for example by quenching of the reaction with water, extracting with a solvent, for example ethyl acetate, and removal of the dried solvent layer under reduced pressure.
- the residue is purified, for example by chromatography on silica gel, to provide a compound of Formula I in which R 9 is -OR 12 .
- R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 10 X and Y are as defined in the Summary of the Invention, Hal is halogen, and t-but is tertiary butyl.
- the compound of formula (5) can be made by conventional methods well known to those of ordinary skill in the art - for example, as described in U.S. Patent Application Serial No. 10/198,237, the complete disclosure of which is hereby incorporated by reference.
- the compound of formula (5A) is prepared conventionally by deprotection of a compound of formula (5) by hydrolysis of the t-butyl ester.
- the compound of formula (5) is dissolved in a mixture of an inert solvent, preferably a halogenated solvent, for example methylene chloride, and a strong acid, for example trifluoroacetic acid.
- the reaction is conducted at about 0-30°C, preferably at about room temperature, for about 8-48 hours, preferably overnight.
- the product of formula (5A) is isolated by conventional means, for example by adding a base to remove excess acid, and removal of the solvent under reduced pressure.
- the compound of formula (5A) is then reacted with a compound of formula X- Y-HaI, in which X and Y are as defined in the Summary of the Invention, and Hal is chloro, bromo or iodo.
- a compound of formula X- Y-HaI in which X and Y are as defined in the Summary of the Invention, and Hal is chloro, bromo or iodo.
- X and Y are as defined in the Summary of the Invention, and Hal is chloro, bromo or iodo.
- Such compounds are either commercially available, prepared by means well known in the art.
- the two compounds are mixed in an inert solvent, preferably a protic solvent, for example ethanol, in the presence of an inorganic or tertiary organic base, preferably triethylamine.
- the reaction is conducted at about 30-100°C, preferably at about reflux, for about 8-48 hours, preferably overnight.
- the compounds of Formula I are effective in the treatment of conditions known to respond to administration of fatty acid oxidation inhibitors, including protection of skeletal muscles against damage resulting from trauma, intermittent claudication, shock, and cardiovascular diseases including atrial and ventricular arrhythmias, intermittent claudication, Prinzmetal's (variant) angina, stable angina, unstable angina, ischemia and reperfusion injury in cardiac, kidney, liver and the brain, exercise induced angina, congestive heart disease, myocardial infarction, and diabetes and disease states related to diabetes.
- the compounds of Formula I can also be used to preserve donor tissue and organs used in transplants, and may be co-administered with thrombolytics, anticoagulants, and other agents.
- the compounds of Formula I are usually administered in the form of pharmaceutical compositions.
- This invention therefore provides pharmaceutical compositions that contain, as the active ingredient, one or more of the compounds of Formula I, or a pharmaceutically acceptable salt or ester thereof, and one or more pharmaceutically acceptable excipients, carriers, including inert solid diluents and fillers, diluents, including sterile aqueous solution and various organic solvents, permeation enhancers, solubilizers and adjuvants.
- the compounds of Formula I may be administered alone or in combination with other therapeutic agents.
- Such compositions are prepared in a manner well known in the pharmaceutical art (see, e.g., Remington's Pharmaceutical Sciences, Mace Publishing Co., Philadelphia, PA 17 th Ed. (1985) and "Modern Pharmaceutics", Marcel Dekker, Inc. 3 rd Ed. (G.S. Banker & CT. Rhodes, Eds.).
- the compounds of Formula I may be administered in either single or multiple doses by any of the accepted modes of administration of agents having similar utilities, for example as described in those patents and patent applications incorporated by reference, including rectal, buccal, intranasal and transdermal routes, by intra-arterial injection, intravenously, intraperitoneally, parenterally, intramuscularly, subcutaneously, orally, topically, as an inhalant, or via an impregnated or coated device such as a stent, for example, or an artery-inserted cylindrical polymer.
- One mode for administration is parental, particularly by injection.
- the forms in which the novel compositions of the present invention may be incorporated for administration by injection include aqueous or oil suspensions, or emulsions, with sesame oil, corn oil, cottonseed oil, or peanut oil, as well as elixirs, mannitol, dextrose, or a sterile aqueous solution, and similar pharmaceutical vehicles.
- Aqueous solutions in saline are also conventionally used for injection, but less preferred in the context of the present invention.
- Ethanol, glycerol, propylene glycol, liquid polyethylene glycol, and the like (and suitable mixtures thereof), cyclodextrin derivatives, and vegetable oils may also be employed.
- the proper fluidity can be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
- Sterile injectable solutions are prepared by incorporating the compound of Formula I in the required amount in the appropriate solvent with various other ingredients as enumerated above, as required, followed by filtered sterilization.
- dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above.
- the preferred methods of preparation are vacuum-drying and freeze-drying techniques which yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
- Compounds of Formula I may be impregnated into a stent by diffusion, for example, or coated onto the stent such as in a gel form, for example, using procedures known to one of skill in the art in light of the present disclosure.
- Oral administration is another route for administration of the compounds of Formula I.
- Administration may be via capsule or enteric coated tablets, or the like, hi making the pharmaceutical compositions that include at least one compound of Formula I, the active ingredient is usually diluted by an excipient and/or enclosed within such a carrier that can be in the form of a capsule, sachet, paper or other container.
- the excipient serves as a diluent, it can be in the form of a solid, semi ⁇ solid, or liquid material (as above), which acts as a vehicle, carrier or medium for the active ingredient.
- compositions can be in the form of tablets, pills, powders, lozenges, sachets, cachets, elixirs, suspensions, emulsions, solutions, syrups, aerosols (as a solid or in a liquid medium), ointments containing, for example, up to 10% by weight of the active compound, soft and hard gelatin capsules, sterile injectable solutions, and sterile packaged powders.
- excipients include lactose, dextrose, sucrose, sorbitol, mannitol, starches, gum acacia, calcium phosphate, alginates, tragacanth, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, sterile water, syrup, and methyl cellulose.
- the formulations can additionally include: lubricating agents such as talc, magnesium stearate, and mineral oil; wetting agents; emulsifying and suspending agents; preserving agents such as methyl- and propylhydroxy-benzoates; sweetening agents; and flavoring agents.
- compositions of the invention can be formulated so as to provide quick, sustained or delayed release of the active ingredient after administration to the patient by employing procedures known in the art.
- Controlled release drug delivery systems for oral administration include osmotic pump systems and dissolutional systems containing polymer-coated reservoirs or drug-polymer matrix formulations. Examples of controlled release systems are given in U.S. Patent Nos. 3,845,770; 4,326,525; 4,902514; and 5,616,345.
- Another formulation for use in the methods of the present invention employs transdermal delivery devices ("patches"). Such transdermal patches may be used to provide continuous or discontinuous infusion of the compounds of the present invention in controlled amounts.
- transdermal patches for the delivery of pharmaceutical agents is well known in the art. See, e.g., U.S. Patent Nos. 5,023,252, 4,992,445 and 5,001,139. Such patches maybe constructed for continuous, pulsatile, or on demand delivery of pharmaceutical agents.
- compositions are preferably formulated in a unit dosage form.
- unit dosage forms refers to physically discrete units suitable as unitary dosages for human subjects and other mammals, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect, in association with a suitable pharmaceutical excipient (e.g., a tablet, capsule, ampoule).
- the compounds of Formula I are effective over a wide dosage range and are generally administered in a pharmaceutically effective amount.
- each dosage unit contains from 1 mg to 2 g of a compound of Formula I, and for parenteral administration, preferably from 0.1 to 700 mg of a compound of Formula I.
- the amount of the compound of Formula I actually administered will be determined by a physician, in the light of the relevant circumstances, including the condition to be treated, the chosen route of administration, the actual compound administered and its relative activity, the age, weight, and response of the individual patient, the severity of the patient's symptoms, and the like.
- the principal active ingredient is mixed with a pharmaceutical excipient to form a solid preformulation composition containing a homogeneous mixture of a compound of the present invention.
- a pharmaceutical excipient to form a solid preformulation composition containing a homogeneous mixture of a compound of the present invention.
- these preformulation compositions as homogeneous, it is meant that the active ingredient is dispersed evenly throughout the composition so that the composition may be readily subdivided into equally effective unit dosage forms such as tablets, pills and capsules.
- the tablets or pills of the present invention may be coated or otherwise compounded to provide a dosage form affording the advantage of prolonged action, or to protect from the acid conditions of the stomach.
- the tablet or pill can comprise an inner dosage and an outer dosage component, the latter being in the form of an envelope over the former.
- the two components can be separated by an enteric layer that serves to resist disintegration in the stomach and permit the inner component to pass intact into the duodenum or to be delayed in release.
- enteric layers or coatings such materials including a number of polymeric acids and mixtures of polymeric acids with such materials as shellac, cetyl alcohol, and cellulose acetate.
- compositions for inhalation or insufflation include solutions and suspensions in pharmaceutically acceptable, aqueous or organic solvents, or mixtures thereof, and powders.
- the liquid or solid compositions may contain suitable pharmaceutically acceptable excipients as described supra.
- the compositions are administered by the oral or nasal respiratory route for local or systemic effect.
- Compositions in preferably pharmaceutically acceptable solvents may be nebulized by use of inert gases. Nebulized solutions may be inhaled directly from the nebulizing device or the nebulizing device may be attached to a face mask tent, or intermittent positive pressure breathing machine. Solution, suspension, or powder compositions may be administered, preferably orally or nasally, from devices that deliver the formulation in an appropriate manner.
- the plate was eluted with 4% methanol/methylene chloride and the appropriate fraction collected, providing 2- ⁇ 4-[2-(acetylamino)-3-(2- methylbenzothiazol-5-yloxy)propyl]piperazinyl ⁇ -N-(3-phenylphenyl)acetamide (10 mg).
- Quantity Ingredient (mg/capsule)
- the above ingredients are mixed and filled into hard gelatin capsules.
- a tablet formula is prepared using the ingredients below:
- the components are blended and compressed to form tablets.
- a dry powder inhaler formulation is prepared containing the following components:
- EXAMPLE 14 [0134] Tablets, each containing 30 mg of active ingredient, are prepared as follows:
- the active ingredient, starch and cellulose are passed through a No. 20 mesh U.S. sieve and mixed thoroughly.
- the solution of polyvinylpyrrolidone is mixed with the resultant powders, which are then passed through a 16 mesh U.S. sieve.
- the granules so produced are dried at 50 0 C to 60 0 C and passed through a 16 mesh U.S. sieve.
- the sodium carboxymethyl starch, magnesium stearate, and talc previously passed through a No. 30 mesh U.S. sieve, are then added to the granules which, after mixing, are compressed on a tablet machine to yield tablets each weighing 120 mg.
- Suspensions each containing 50 mg of active ingredient per 5.0 rnL dose are made as follows:
- the active ingredient, sucrose and xanthan gum are blended, passed through a No. 10 mesh U.S. sieve, and then mixed with a previously made solution of the microcrystalline cellulose and sodium carboxymethyl cellulose in water.
- the sodium benzoate, flavor, and color are diluted with some of the water and added with stirring. Sufficient water is then added to produce the required volume.
- a subcutaneous formulation may be prepared as follows:
- EXAMPLE 18 [0141] An injectable preparation is prepared having the following composition:
- a topical preparation is prepared having the following composition:
- the sustained release formulations of this invention are prepared as follows: compound and pH-dependent binder and any optional excipients are intimately mixed(dry-blended). The dry-blended mixture is then granulated in the presence of an aqueous solution of a strong base which is sprayed into the blended powder. The granulate is dried, screened, mixed with optional lubricants (such as talc or magnesium stearate), and compressed into tablets.
- Preferred aqueous solutions of strong bases are solutions of alkali metal hydroxides, such as sodium or potassium hydroxide, preferably sodium hydroxide, in water (optionally containing up to 25% of water-miscible solvents such as lower alcohols).
- the resulting tablets may be coated with an optional film-forming agent, for identification, taste-masking purposes and to improve ease of swallowing.
- the film forming agent will typically be present in an amount ranging from between 2% and 4% of the tablet weight.
- Suitable film-forming agents are well known to the art and include hydroxypropyl methylcellulose, cationic methacrylate copolymers (dimethylaminoethyl methacrylate/ methyl-butyl methacrylate copolymers - Eudragit® E - R ⁇ lim. Pharma), and the like. These film-forming agents may optionally contain colorants, plasticizers, and other supplemental ingredients.
- the compressed tablets preferably have a hardness sufficient to withstand 8 Kp compression.
- the tablet size will depend primarily upon the amount of compound in the tablet.
- the tablets will include from 300 to 1100 mg of compound free base.
- the tablets will include amounts of compound free base ranging from 400-600 mg, 650-850 mg, and 900-1100 mg.
- the time during which the compound containing powder is wet mixed is controlled.
- the total powder mix time i.e. the time during which the powder is exposed to sodium hydroxide solution, will range from 1 to 10 minutes and preferably from 2 to 5 minutes.
- the particles are removed from the granulator and placed in a fluid bed dryer for drying at about 6O 0 C.
- Rat heart mitochondria are isolated by the method of Nedergard and Cannon (Methods in Enzymol. 55, 3, 1979).
- Palmitoyl CoA oxidation is carried out in a total volume of 100 micro liters containing the following agents: 110 mM KCl, 33 mM Tris buffer at pH 8, 2 mM KPi, 2 mM MgCl 2 , 0.1 mM EDTA, 14.7 microM defatted BSA, 0.5 mM malic acid, 13 mM carnitine, 1 mM ADP, 52 micrograms of mitochondrial protein, and 16 microM 1-C14 palmitoyl CoA (Sp. Activity 60 mCi/mmole; 20 microCi/ml, using 5 microliters per assay).
- the compounds of this invention are added
- the compounds of the invention show activity as fatty acid oxidation inhibitors in this assay.
- Palmitate is initially dissolved in an ethanohwater mixture (40%:60%) containing 0.5-0.6 g Na 2 CO 3 per g of palmitate. Following heating to evaporate the ethanol, this mixture is then added to the 3% BSA-Krebs-Henseleit mixture (without glucose) and allowed to dialyze (8000 MW cut-off) overnight in 10 volumes of glucose-free Krebs-Henseleit solution. The next day, glucose is added to the solution and the mixture is filtered through glass microfiber filters (GF/C, Whatman, Maidstone, England) and kept on ice, or refrigerated, prior to use. The perfusate is continuously oxygenated with a 95% CO 2 , 5% O 2 gas mixture while in the perfusion apparatus to main aerobic conditions.
- GF/C glass microfiber filters
- Rats are anesthetized with pentobarbital (60 mg/kg, intraperitoneally) and hearts are rapidly removed and placed in ice-cold Krebs-Henseleit solution. The hearts are then rapidly cannulated via the aortic stump and Langendorff perfusion at constant pressure (60 mm Hg) is initiated and continued for a 10-min equilibration period. During this equilibration period, the pulmonary artery is cut, and excess fat and lung tissue removed to reveal the pulmonary vein. The left atrium is cannulated and connected to the preload line originating from the oxygenation chamber.
- hearts are switched to working mode (by clamping off the Langendorff line and opening the preload and afterload lines) and perfused at 37°C under aerobic conditions at a constant left atrial preload (11.5 mm Hg) and aortic afterload (80 mm Hg).
- the compliance chamber is filled with air adequate to maintain developed pressure at 50-60 mm. Hg.
- Perfusate is delivered to the oxygenation chamber via a peristaltic pump from the reservoir chamber that collected aortic and coronary flows as well as overflow from the oxygenator.
- Hearts are perfused under aerobic conditions for 60 minutes. Hearts are paced at 300 beats/min throughout each phase of the perfusion protocol (voltage adjusted as necessary) with the exception of the initial 5 min of reperfusion when hearts are allowed to beat spontaneously.
- Aortic systolic and diastolic pressures are measured using a Sensonor (Horten Norway) pressure transducer attached to the aortic outflow line and connected to an AD Instruments data acquisition system. Cardiac output, aortic flow and coronary flow (cardiac output minus aortic flow) are measured (ml/min) using in-line ultrasonic flow probes connected to a Transonic T206 ultrasonic flow meter. Left ventricular minute work (LV work), calculated as cardiac output x left ventricular developed pressure (aortic systolic pressure - preload pressure), is used as a continuous index of mechanical function. Hearts are excluded if LV work decreased more than 20% during the 60-min period of aerobic perfusion.
- Atrial oxygen content (mmHg) is measured in perfusate in the preload line or just prior to entering the left atria.
- Venous oxygen content is measured from perfusate exiting the pulmonary artery and passing through in-line O 2 probes and meters Microelectrodes Inc., Bedford, NH. Cardiac efficiency is calculated as the cardiac work per oxygen consumption.
- Perfusate is supplemented with [ 3 H/ 14 C] glucose or [5- 3 H]palmitate to approximate a specific activity of 20 dpm/mmol.
- Average rates of glycolysis and glucose oxidation are calculated from linear cumulative time-courses of product accumulation between 15 and 60 minutes for aerobic perfusion. Rates of glycolysis and glucose oxidation are expressed as ⁇ mol glucose metabolized/min/g dry wt. Measurement of Myocardial Glycolysis
- Rates of glycolysis are measured directly as previously described (Saddik & Lopaschuk, 1991) from the quantitative determination Of 3 H 2 O liberated from radiolabeled [5- 3 H]glucose at the enolase step of glycolysis.
- Perfusate samples are collected at various time-points throughout the perfusion protocol.
- 3 H 2 O is separated from the perfusate by passing perfusate samples through columns containing Dowex 1- X 4 anion exchange resin (200-400 mesh).
- a 90 g/L Dowex in 0.4 M potassium tetraborate mixture is stirred overnight, after which 2 ml of the suspension is loaded into separation columns and washed extensively with dH 2 O to remove the tetraborate.
- Glucose oxidation is also determined directly as previously described (Saddik & Lopaschuk, 1991) by measuring 14 CO 2 from [ 14 C]glucose liberated at the level of pyruvate dehydrogenase and in the Krebs cycle. Both 14 CO 2 gas exiting the oxygenation chamber and [ 14 C]bicarbonate retained in solution are measured. Perfusate samples are collected at various time-points throughout the perfusion protocol. 14 CO 2 gas is collected by passing the gas exiting the oxygenator through a hyamine hydroxide trap (20-50 ml depending on perfusion duration).
- Rates of palmitate oxidation are measured directly as previously described (Saddik & Lopaschuk, 1991) from the quantitative determination Of 3 H 2 O liberated
- H 2 O is separated from [5- H]palmitate following a chloroform methanol (1.88 ml of 1 :2 v/v) extraction of a 0.5 ml sample of buffer then adding 0.625 ml of chloroform and 0.625 ml of a 2M KCL:HC1 solution.
- the aqueous phase is removed and treated with a mixture of chloroform, methanol and KC1:HC1 (1 : 1 :0.9 v/v).
- Duplicate samples are taken from the aqueous phase for liquid scintillation counting and rates of oxidation are determined taking into account a dilution factor. This results in >99% extraction and separation Of 3 H 2 O from [5- 3 H]palmitate. Average rates of glucose oxidation for each phase of perfusion are expressed as ⁇ mol glucose metabolized/min/g dry wt as described above.
- Frozen ventricles are pulverized at the temperature of liquid nitrogen with a mortar and pestle. Dry to wet determinations are made by weighing a small amount of frozen heart tissue and re-weighing that same tissue after 24-48 hr of air drying and taking the ratio of the two weights. From this ratio, total dry tissue can be calculated. This ratio is used to normalize, on a per g dry weight basis, rates of glycolysis, glucose oxidation and glycogen turnover as well as metabolite contents. i
- the compounds of the invention showed activity as fatty acid oxidation inhibitors in the above assays.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Diabetes (AREA)
- Vascular Medicine (AREA)
- Urology & Nephrology (AREA)
- Emergency Medicine (AREA)
- Endocrinology (AREA)
- Hematology (AREA)
- Obesity (AREA)
- Hospice & Palliative Care (AREA)
- Neurology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Physical Education & Sports Medicine (AREA)
- Epidemiology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Plural Heterocyclic Compounds (AREA)
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AU2005282492A AU2005282492A1 (en) | 2004-09-08 | 2005-09-07 | Substituted piperazine compounds and their use as fatty acid oxidation inhibitors |
| JP2007531283A JP2008512465A (ja) | 2004-09-08 | 2005-09-07 | 脂肪酸酸化阻害剤としての置換ピペラジン化合物およびその使用 |
| CA002579621A CA2579621A1 (en) | 2004-09-08 | 2005-09-07 | Substituted piperazine compounds and their use as fatty acid oxidation inhibitors |
| EP05795369A EP1789407A2 (en) | 2004-09-08 | 2005-09-07 | Substituted piperazine compounds and their use as fatty acid oxidation inhibitors |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US60838404P | 2004-09-08 | 2004-09-08 | |
| US60/608,384 | 2004-09-08 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2006029179A2 true WO2006029179A2 (en) | 2006-03-16 |
| WO2006029179A3 WO2006029179A3 (en) | 2006-05-26 |
Family
ID=35884036
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2005/031786 Ceased WO2006029179A2 (en) | 2004-09-08 | 2005-09-07 | Substituted piperazine compounds and their use as fatty acid oxidation inhibitors |
Country Status (7)
| Country | Link |
|---|---|
| US (2) | US7271169B2 (enExample) |
| EP (1) | EP1789407A2 (enExample) |
| JP (1) | JP2008512465A (enExample) |
| KR (1) | KR20070051305A (enExample) |
| AU (1) | AU2005282492A1 (enExample) |
| CA (1) | CA2579621A1 (enExample) |
| WO (1) | WO2006029179A2 (enExample) |
Family Cites Families (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE2824764A1 (de) * | 1978-06-06 | 1979-12-20 | Hoechst Ag | Neue pyridylpiperazinderivate und verfahren zu ihrer herstellung |
| US4766125A (en) * | 1981-06-23 | 1988-08-23 | Janssen Pharmaceutica N.V. | N-aryl-piperazinealkanamides useful for protecting hearts from myocardial injury caused by ischaemia, anoxia or hypoxia |
| US4567264A (en) * | 1983-05-18 | 1986-01-28 | Syntex (U.S.A.) Inc. | Cardioselective aryloxy- and arylthio- hydroxypropylene-piperazinyl acetanilides which affect calcium entry |
| US4558129A (en) | 1983-05-18 | 1985-12-10 | Syntex (U.S.A.) Inc. | Benzodioxanyl-hydroxyethylene-piperazinyl acetanilides which effect calcium entry and β-blockade |
| US4588129A (en) * | 1983-09-06 | 1986-05-13 | Hudson Oxygen Therapy Sales Company | Nebulizer |
| DE3614355A1 (de) * | 1986-04-28 | 1987-10-29 | Hoechst Ag | Neue benzothiazinon-derivate, verfahren zu ihrer herstellung , sie enthaltende arzneimittel und deren verwendung |
| DK0407780T3 (da) * | 1989-06-23 | 1996-09-30 | Syntex Inc | Ranolazin og beslægtede piperaziner til anvendelse i behandling af væv, der har været udsat for fysisk eller kemisk skade |
| FR2691149B1 (fr) * | 1992-05-18 | 1994-07-08 | Adir | Nouveaux composes thiochromaniques, leurs procedes de preparation et les compositions pharmaceutiques qui les contiennent. |
| US5455045A (en) * | 1993-05-13 | 1995-10-03 | Syntex (U.S.A.) Inc. | High dose formulations |
| BR0108592A (pt) * | 2000-02-22 | 2004-06-29 | Cv Therapeutics Inc | Compostos de piperazina substituìda |
| US6451798B2 (en) * | 2000-02-22 | 2002-09-17 | Cv Therapeutics, Inc. | Substituted alkyl piperazine derivatives |
| US6552023B2 (en) * | 2000-02-22 | 2003-04-22 | Cv Therapeutics, Inc. | Aralkyl substituted piperazine compounds |
| WO2001062749A1 (en) * | 2000-02-22 | 2001-08-30 | Cv Therapeutics, Inc. | Substituted piperazine compounds |
| US6677336B2 (en) * | 2000-02-22 | 2004-01-13 | Cv Therapeutics, Inc. | Substituted piperazine compounds |
| US6638970B2 (en) * | 2000-02-22 | 2003-10-28 | Cv Therapeutics, Inc. | Substituted alkylene diamine compounds |
| US6573264B1 (en) * | 2000-10-23 | 2003-06-03 | Cv Therapeutics, Inc. | Heteroaryl alkyl piperazine derivatives |
| US7001909B2 (en) * | 2001-07-19 | 2006-02-21 | Cv Therapeutics, Inc. | Substituted heterocyclic compounds |
| ATE292633T1 (de) * | 2001-07-19 | 2005-04-15 | Cv Therapeutics Inc | Substituierte piperazinderivate und ihre verwendung als fettsaüreoxidationsinhibitoren |
| US6638870B2 (en) * | 2002-01-10 | 2003-10-28 | Infineon Technologies Ag | Forming a structure on a wafer |
| CN1181065C (zh) * | 2002-05-08 | 2004-12-22 | 上海医药工业研究院 | 芳烷甲酰烷基哌嗪衍生物及其作为脑神经保护剂的应用 |
| US7125876B2 (en) * | 2002-12-05 | 2006-10-24 | Cv Therapeutics, Inc. | Substituted heterocyclic compounds |
| AU2004209522A1 (en) * | 2003-01-17 | 2004-08-19 | Gilead Palo Alto, Inc. | Substituted heterocyclic compounds useful in the treatment of cardiovascular diseases |
-
2005
- 2005-09-07 WO PCT/US2005/031786 patent/WO2006029179A2/en not_active Ceased
- 2005-09-07 CA CA002579621A patent/CA2579621A1/en not_active Abandoned
- 2005-09-07 EP EP05795369A patent/EP1789407A2/en not_active Withdrawn
- 2005-09-07 AU AU2005282492A patent/AU2005282492A1/en not_active Abandoned
- 2005-09-07 JP JP2007531283A patent/JP2008512465A/ja active Pending
- 2005-09-07 US US11/222,452 patent/US7271169B2/en not_active Expired - Lifetime
- 2005-09-07 KR KR1020077005379A patent/KR20070051305A/ko not_active Withdrawn
-
2007
- 2007-09-17 US US11/856,712 patent/US7601721B2/en not_active Expired - Lifetime
Also Published As
| Publication number | Publication date |
|---|---|
| US20060052605A1 (en) | 2006-03-09 |
| WO2006029179A3 (en) | 2006-05-26 |
| CA2579621A1 (en) | 2006-03-16 |
| KR20070051305A (ko) | 2007-05-17 |
| AU2005282492A1 (en) | 2006-03-16 |
| EP1789407A2 (en) | 2007-05-30 |
| US7601721B2 (en) | 2009-10-13 |
| US20080070927A1 (en) | 2008-03-20 |
| JP2008512465A (ja) | 2008-04-24 |
| US7271169B2 (en) | 2007-09-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1406898A1 (en) | Substituted piperazine compounds and their use as fatty acid oxidation inhibitors | |
| EP1567525B1 (en) | Substituted piperazine compounds and their use as fatty acid oxidation inhibitors | |
| EP1578737B1 (en) | Substituted heterocyclic compounds | |
| US7026321B2 (en) | Substituted heterocyclic compounds | |
| US7271169B2 (en) | Substituted heterocyclic compounds | |
| EP1806346B1 (en) | Substituted piperazine compounds and their use as fatty acid oxidation inhibitors | |
| US7208496B2 (en) | Substituted heterocyclic compounds | |
| AU2002322527C1 (en) | Substituted piperazine compounds and their use as fatty acid oxidation inhibitors | |
| HK1083492B (en) | Substituted piperazine compounds and their use as fatty acid oxidation inhibitors | |
| HK1111683B (en) | Substituted piperazine compounds and their use as fatty acid oxidation inhibitors | |
| HK1085467B (en) | Substituted heterocyclic compounds | |
| AU2002322527A1 (en) | Substituted piperazine compounds and their use as fatty acid oxidation inhibitors |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
| DPEN | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101) | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 2005282492 Country of ref document: AU |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 553659 Country of ref document: NZ Ref document number: 2005795369 Country of ref document: EP Ref document number: 1020077005379 Country of ref document: KR Ref document number: 2007531283 Country of ref document: JP Ref document number: 2579621 Country of ref document: CA |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| ENP | Entry into the national phase |
Ref document number: 2005282492 Country of ref document: AU Date of ref document: 20050907 Kind code of ref document: A |
|
| WWP | Wipo information: published in national office |
Ref document number: 2005282492 Country of ref document: AU |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| WWP | Wipo information: published in national office |
Ref document number: 2005795369 Country of ref document: EP |