WO2006028238A1 - Test carrier - Google Patents

Test carrier Download PDF

Info

Publication number
WO2006028238A1
WO2006028238A1 PCT/JP2005/016691 JP2005016691W WO2006028238A1 WO 2006028238 A1 WO2006028238 A1 WO 2006028238A1 JP 2005016691 W JP2005016691 W JP 2005016691W WO 2006028238 A1 WO2006028238 A1 WO 2006028238A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor device
wiring layer
test carrier
probe pin
metal
Prior art date
Application number
PCT/JP2005/016691
Other languages
French (fr)
Japanese (ja)
Inventor
Michinobu Tanioka
Yukiharu Akiyama
Original Assignee
Nec Corporation
Renesas Technology Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation, Renesas Technology Corp. filed Critical Nec Corporation
Priority to JP2006535858A priority Critical patent/JP4955395B2/en
Publication of WO2006028238A1 publication Critical patent/WO2006028238A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0433Sockets for IC's or transistors
    • G01R1/0441Details
    • G01R1/0466Details concerning contact pieces or mechanical details, e.g. hinges or cams; Shielding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0433Sockets for IC's or transistors
    • G01R1/0483Sockets for un-leaded IC's having matrix type contact fields, e.g. BGA or PGA devices; Sockets for unpackaged, naked chips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R3/00Apparatus or processes specially adapted for the manufacture or maintenance of measuring instruments, e.g. of probe tips

Definitions

  • the present invention relates to a test carrier for inspecting a bare LSI (bare chip), which is a semiconductor device, using the same device as a conventional package product.
  • bare carrier has a narrow electrode pitch and requires high-speed transmission. It relates to a test carrier suitable for inspection. Background art
  • a method has been developed in which a bare chip is mounted on a test carrier and treated as if it were a packaged product.
  • a test carrier using a carrier substrate having a metal protrusion (bump) as a contact for obtaining contact with an electrode of a bare chip and having an external terminal for obtaining electrical connection with an inspection apparatus is mainly used. Has been applied.
  • a structure has been proposed in which bumps are formed on the electrodes of the bare chip, thereby eliminating the metal protrusions (bumps) on the carrier substrate of the test carrier and reducing the cost, or a structure using a mold PKG.
  • a probe card for wafer inspection it is not used as a test carrier, but it is a probe card structure for wafer inspection that uses a tape carrier package (TCP) lead or a stress metal spring as a contact. Is used.
  • TCP tape carrier package
  • Patent Document 1 a test carrier using a carrier substrate on which metal protrusions (bumps) are formed is described in Japanese Patent Application Laid-Open No. 2000-0196 035 (Patent Document 1). Also, metal bumps are formed on the bar chip electrode, and a bumpless test carrier is described in Japanese Patent Application Laid-Open No. 11-112. A test carrier using a mold PKG is described in Japanese Patent Application Laid-Open No. 7-29 7 3 26 (Patent Document 3). Further, a wafer inspection probe using a TGP lead as a contact is described in Japanese Patent Application Laid-Open No. 2 03-3-2480 019 (Patent Document 4). Also, a wafer inspection probe using a stress metal spring is described in Japanese Patent No. 2 0 4-5 0 1 5 1 7 (Patent Document 5). Hereinafter, these Patent Documents 1 to 5 will be described in detail.
  • this is a test carrier structure using a membrane type film 20 (membrane sheet) having a metal protrusion (bump) 36 at a position facing the external electrode of the semiconductor device.
  • a metal protrusion 36 is formed on one side of the flexible membrane type film 20 at a position corresponding to the external electrode of the semiconductor device. Pads are formed to obtain electrical contact with the inspection device 30 (socket) by extending the pitch from the metal protrusion with the wiring layer.
  • the semiconductor device is fixed by installing the semiconductor device on a test carrier in which the carrier substrate using the membrane type film 20 having the metal protrusions 36 is incorporated and closing the clamshell lid 16. In this state, an inspection is performed using a conventional device.
  • a spring 31 is incorporated in the carrier lid 16 to obtain a contact pressure. It has dimensions and spring constants so that the desired contact pressure can be obtained when the lid 16 is closed.
  • the material and thickness of the base 37 are optimized so that the carrier base 37 holding the membrane type film 20 is not bent by contact pressure.
  • an elastomer 17 is provided on the back surface of the membrane type film 20 having the metal projections 36 in order to absorb the height variation and parallelism of the contacts inside the carrier.
  • the test carrier has a structure in which the metal protrusions 36 formed on the carrier substrate described in Patent Document 1 are omitted by forming the metal protrusions 36 on the external electrodes of the semiconductor device 1. It has a carrier structure that uses TAB (Tape Automated Bonding) tape 38 as the carrier substrate.
  • TAB Tepe Automated Bonding
  • the alignment of the external electrode of the semiconductor device 1 and the electrode of the T A B tape 3 8 is performed by the guide ring 3 4.
  • the base 37 at the bottom of the carrier board uses rigid material.
  • the structure is aimed at low-cost and stable contact by using a T A B tape and a positioning method that uses the outer shape of the chip.
  • a similar structure is disclosed in Japanese Patent Laid-Open No. 10-2 1 3 6 2 6 (Patent Document 6).
  • Figures 9 (a) and 9 (b) show structural diagrams of test carriers using conventional semiconductor packages.
  • Semiconductor device 1 is mounted on lead frame 40, and semiconductor device 1 and lead frame 40 are connected by bonding wire 42. Then, mold type semiconductor (PKG) to range mold 43, part of lead frame 40 and semiconductor This is a test carrier formed by removing device 1. The ball portion 4 1 of the bonding wire 4 2 is used as a contact. It is also possible to use a metal mold having a metal film instead of the semiconductor device 1. This structure can realize mass production ease and low-cost sockets by using a conventional package.
  • FIG. 10 shows the contact probe structure
  • FIG. 11 shows the manufacturing method.
  • a plurality of wiring layers 46 are formed on the surface of the polyimide resin film layer 44, and the wiring layer 46 has a contact bin 4 at the front end portion, and a metal layer is provided only in a necessary portion on the back surface of the film. It is a contact probe structure of the structure.
  • the metal layer was provided on the entire back side of the film, each pin had a certain capacity and caused a signal delay.
  • a structure in which the metal film 45 is formed only in the necessary part is adopted, and the structure is made possible to improve the electrical characteristics and the assembly property by improving the flexibility.
  • Patent Document 5 a structure in which the metal film 45 is formed only in the necessary part is adopted, and the structure is made possible to improve the electrical characteristics and the assembly property by improving the flexibility.
  • FIGS. 12 (a) and (b) show the linear arrangement of the springs released from the substrate 5.
  • a single contact spring probe 54 is formed on the substrate 5 as a continuous layer by vapor deposition and photoengraving. Each continuous layer has a different inherent stress level. Release area 5 5 is undercut and etched, spring contacts are released and bent to form probe pin 4. By utilizing the semiconductor pre-process, a 0.001 inch (25.4 micrometers) spring pitch array 56 is possible.
  • Patent Document 7 is a structure in which a cantilever is formed by wet etching using a silicon substrate and used as a substrate for a test carrier. If the inspection target is a bare chip with solder bumps, a structure is adopted in which pads are formed at the electrical contacts on the leads and pulled out to the external terminals with lead wires. If there is no solder bump, a solder bump is provided at the tip of the lead and the lead wire is used to pull it out.
  • Patent Document 8 Japanese Patent Application Laid-Open No. 6-29 5 9 6 4 relates to an inspection socket having a structure in which an O-ring is made of silicon rubber to obtain elastic force for the purpose of inspecting a bare chip having double-sided electrodes.
  • JP-A-7-1 4 2 5 4 1 is a probe for inspecting a device having a fine electrode of 60 m or less, and is a cantilever having a curved shape using a silicon substrate.
  • the present invention relates to a probe having a structure in which a beam is formed, a conductive metal layer is formed on the surface layer, and an insulating layer is formed on the back surface.
  • Patent Document 1 a metal protrusion is used as a contact, and a process is performed in which a via fill is formed on a membrane film by laser and then via filling and metal protrusion are formed by isotropic contact. For this reason, it is difficult to form metal protrusions in a fine region of a pitch of 50 or less mouthpieces with a certain height secured. Because it uses a film-like flexible material as the base material, the positional accuracy in the pitch direction of the metal protrusions is limited to about ⁇ 5 micrometers due to the thermal history of the film substrate manufacturing process (for example, laser processing). It is. Therefore, 40 micrometer pitch or more It is difficult to control to the desired value ( ⁇ 1.0 micrometer or less) in the lower fine region.
  • Patent Document 2 since metal protrusions are formed on the bare chip electrode by pole bonding, it is difficult to form metal protrusions in a fine region of 40 micrometers or less.
  • the base of the test carrier is rigid, parallelism and variations in metal protrusion height must be absorbed by the amount of deformation of the metal protrusion. For this reason, the deformation of the metal protrusion is large, and wire bonding in the next process adversely affects the connection process such as flip chip. Even if the initial connection is obtained, the connection height is low, so it is difficult to ensure long-term reliability such as temperature cycle testing.
  • the carrier substrate that obtains contact with the metal protrusions on the bare chip electrode and connects to the inspection device uses a membrane type film using polyimide resin such as TAB tape. It has the same technical problem as the second problem of 1.
  • TAB tape polyimide resin
  • Patent Document 3 although it can be estimated that the cost is very low, the structure is such that the contact with the external electrode of the semiconductor device is performed at the pole portion of the wire bonding. This For this reason, it is difficult to form contacts in a fine pitch region below 40 micrometer pitch. Since the mold resin is a thermosetting resin and does not have elasticity, all the variation in the height direction is absorbed by the deformation amount of the metal protrusion formed on the semiconductor device electrode, which is the second problem of Patent Document 2. There is a need. As a result, the amount of deformation of the metal protrusion increases, which adversely affects the connection process of the next process.
  • Patent Document 4 since a polyimide resin film layer is used as a base material, it has the same technical problem as the second problem of Patent Document 1 and the second problem of Patent Document 2.
  • As a manufacturing method there is a process of bonding a film having a metal film layer.
  • precise control of the amount of adhesive is difficult, and the wiring layer peeling due to insufficient adhesive and bleeding due to excessive adhesive occur, making manufacturing difficult.
  • If a coating device that can be precisely controlled is used, the cost of the device increases. Since this process is followed by a process of separating from the supporting metal plate, it is difficult to ensure the contact bin position accuracy.
  • the contact bin is made of Ni alloy and has an oxide film on the surface.
  • the stress metal spring is formed by a plasma deposition method as a manufacturing method. For this reason, it is difficult to increase the thickness of the spring. As a result, in a fine pitch region of 30 micrometer or less, it is difficult to obtain good contact because the contact pressure is insufficient. Even if initial contact is obtained, the stress applied to the base of the metal spring due to repeated contact causes plastic deformation in the metal spring, making it difficult to ensure long-term reliability.
  • the present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to perform an inspection equivalent to that of a normal package product in a bare chip state semiconductor device, and to achieve an equivalent quality.
  • the semiconductor device is provided in a position corresponding to the external electrode of the semiconductor device in the test carrier for performing the inspection by holding the semiconductor device in a bare chip state and electrically connecting to the inspection device.
  • a probe pin having elasticity; a first wiring layer electrically connected to the probe pin; and formed on a substrate; a metal protrusion formed on a portion where the probe pin contacts an external electrode of the semiconductor device; A metal layer formed on the surface of the metal protrusion, and a second wiring layer formed on the first wiring layer, wherein the metal layer and the second wiring layer are separated from each other.
  • fixing means for fixing the semiconductor device to the base material is provided.
  • the metal layer has contact characteristics according to the material of the external electrode of the semiconductor device.
  • the substrate includes a through electrode penetrating between the front surface and the back surface of the base material and a third wiring layer formed on the back surface of the base material, and the first wiring layer and the third wiring layer are formed through the through electrode.
  • the wiring layer is electrically connected.
  • the volume resistivity of the second wiring layer is preferably smaller than the volume resistivity of the first wiring layer.
  • the metal protrusion formation region has a width direction equal to or less than the width of the probe pin, and the length direction indicates the amount of movement of the probe pin tip after the probe pin contacts the external electrode of the semiconductor device and the longitudinal direction of the probe pin.
  • the rectangular shape is equal to or greater than the dimension including the position tolerance and the external electrode tolerance of the semiconductor device. The height of the external electrode of the semiconductor device contacts the metal protrusion with respect to the surface of the first wiring layer. More than the dimension including the height considering the amount of indentation and the height tolerance of the metal protrusion and the height tolerance of the external electrode of the semiconductor device.
  • the probe pins corresponding to the external electrodes of the semiconductor device have the same length. Further, when the external electrode of the semiconductor device is arranged other than the single row peripheral arrangement, the base material of the base portion of the probe pin corresponding to the external electrode existing on the center side of the semiconductor device has a protruding shape. Is desirable.
  • the width of the first wiring layer on the substrate and the base portion of the probe pin corresponding to the external electrode existing on the center side of the semiconductor device is It is preferable that the probe pin corresponding to the external electrode existing outside the semiconductor device and the first wiring layer are both wider and projecting.
  • the metal layer on the surface of the metal protrusion is made of a gold alloy metal.
  • the metal layer on the surface of the metal protrusion has a fine uneven shape.
  • the fine uneven shape may be formed only in the same direction as the movement direction of the probe pin, or may be formed only in the direction perpendicular to the movement direction of the probe pin.
  • the fine concavo-convex shape is formed in, for example, a grid shape, a file shape, or a random shape.
  • the fine uneven shape is preferably an uneven shape having a surface roughness of 1 micrometer or less.
  • the test carrier according to the present invention is a test carrier that holds the semiconductor device in a bare chip state and is electrically connected to the inspection device.
  • a probe pin Has elasticity at a position corresponding to the electrode of A probe pin that is independent of each other, and a base material that is electrically connected to the probe pin and on which the first wiring layer of the probe pin is formed, and the probe pin is in contact with the electrode of the semiconductor device
  • Metal protrusions made of one or more metal layers are formed, and one or more metal layers made of a material having good contact characteristics according to the electrode material of the semiconductor device are formed on the surface of the metal protrusions.
  • a second wiring layer that is one or more metal layers formed on the first wiring layer of the material, and the one or more metal layers on the surface of the metal protrusion, the second wiring layer, It is constituted by a carrier substrate characterized by having a separated structure and means for fixing the bare chip to the carrier substrate.
  • a metal layer having good contact characteristics according to the electrode of the semiconductor device is provided at the tip of the contact surface between the independent lead-shaped probe pin and the semiconductor device electrode.
  • probe pins and wiring layers were formed by the additive method using micromachine technology. As a result, it has become possible to deal with semiconductor devices having electrodes in an ultrafine pitch region of 40 micrometer pitch or less.
  • the test carrier of the present invention has a structure that enables drastically reducing the cost by reducing the number of parts compared to the conventional carrier. Further, by using the test carrier of the present invention, it becomes possible to perform the same selection and burn-in inspection of a semiconductor device having a fine pitch electrode of 40 micrometer pitch or less as a package product in a bare chip state. . Therefore, using a bare chip The production efficiency of the Sip (System ina Package) structure can be improved and the cost of sacrifice can be greatly reduced. In addition, screening inspection can be performed in the high-frequency region above GHz, which was difficult in the past. Brief Description of Drawings
  • FIG. 1 is a cross-sectional view showing a test carrier structure according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing details of the carrier substrate and the probe portion according to the first embodiment of the present invention.
  • (C) is a detailed view of the probe portion within the dotted line of (a), and
  • (d) is a detailed view of the probe portion within the dotted line of (b).
  • FIG. 3 is a diagram showing another example of the structure of the probe section.
  • FIG. 4 is a sectional view showing a test carrier structure according to the second embodiment of the present invention.
  • FIG. 5 is a diagram showing a carrier substrate manufacturing method according to the present invention.
  • FIG. 6 is a diagram showing a method for manufacturing a carrier substrate according to the present invention.
  • FIG. 7 is a view showing a conventional structure described in Patent Document 1.
  • FIG. 7 is a view showing a conventional structure described in Patent Document 1.
  • FIG. 8 is a view showing a conventional structure described in Patent Document 2.
  • FIG. 9 is a view showing a conventional structure described in Patent Document 3.
  • FIG. 10 is a view showing a conventional structure described in Patent Document 4.
  • FIG. 10 is a view showing a conventional structure described in Patent Document 4.
  • FIG. 11 is a diagram showing a conventional structure manufacturing method described in Patent Document 4.
  • FIG. 12 is a diagram showing a conventional structure described in Patent Document 5. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a cross-sectional view showing a first embodiment of the test carrier structure of the present invention
  • FIGS. 2 (a) to (d) show details of the carrier substrate and probe portion of the present invention.
  • the test carrier structure As shown in FIG. 1, the test carrier structure according to the embodiment of the present invention
  • Each of the independent lead-shaped probe pins 4 having elasticity at positions corresponding to the external terminal electrodes 2 of the semiconductor device 1 is electrically connected to the probe pins 4 and the first wiring layer of the probe pins 4 6 and a base material 5 formed thereon.
  • a metal protrusion 36 is formed at a portion where the probe pin 4 contacts the electrode 2 of the semiconductor device 1.
  • It has a second wiring layer 18 that is one or more metal layers formed on the first wiring layer 6 of the substrate 5, and the second metal layer 18 on the surface of the metal protrusion 3 6 and the first metal layer 18. It features a structure in which the second wiring layer 18 is separated.
  • a carrier lid made up of a holding plate 16 that is a fixing means 14 and an elastic material 17 or a leaf spring 15 that fixes the semiconductor device 1 to the carrier substrate 10 and a carrier lid that is the fixing means 14 are used as the carrier substrate.
  • the first wiring layer 6 formed on the surface of the substrate 5 is extended in a planar manner from the electrode pitch of the semiconductor device 1 to a pitch that can be connected to the inspection device.
  • the base material 5 suppresses deterioration of pin position accuracy due to thermal history during the manufacture of the carrier substrate 10 and a positional shift between the electrode 2 of the semiconductor device 1 and the probe pin 4 due to a temperature difference during the burn-in test.
  • glass ceramics, glass, and silicon which are materials with a thermal expansion coefficient close to that of silicon that is widely used as a semiconductor material, are used. Among these materials, it is preferable to use glass ceramics from the viewpoints of processability and electrical characteristics.
  • the first wiring layer 6 is made of Ni or Ni-based alloy, which is the same material as the first metal layer 11 of the base material portion of the probe pin 4 in consideration of manufacturability.
  • the width of the first wiring layer 6 is set to 50% to 60% of the pitch of the electrodes 2 of the semiconductor device 1 at a level in which no short circuit occurs during manufacturing and no leakage occurs.
  • the thickness is set in consideration of manufacturability. 1
  • the second wiring layer 12 is formed on the first wiring layer 6 for the purpose of increasing the conductivity of the wiring portion and reducing the conductor loss.
  • the material is first in the N i Oh Rui a wiring layer 6 N ⁇ alloy with reduced volume resistivity in comparison, in the range of 1 ⁇ 4 x 10- 8 Q m metal (e.g., gold, gold Z Copper alloy, gold-palladium alloy, copper).
  • the formation area is the width obtained by subtracting the manufacturing tolerance from the width of the first wiring layer 6 from the position entering the base material 5 side from the boundary between the base of the probe pin 4 and the base material 5 at a manufacturing tolerance of about 2 micrometers. It is formed on the entire surface of the first wiring layer 6. When the width of the first wiring layer 6 is 10 micrometers, it is formed on the entire surface with a width of 8 micrometers.
  • the probe pin 4 can be manufactured by electroplating and uses a metal having a Young's modulus of 100 GPa or more (for example, nickel, nickel iron alloy, nickel Z cobalt alloy, nickel manganese alloy) as a material. .
  • the width is 50 to 60% of the electrode 2 pitch of the semiconductor device 1, and the thickness and the length can obtain a desired contact pressure within the elastic limit region, and a predetermined overdrive amount (of the semiconductor device).
  • the amount by which the semiconductor device is pushed in based on the point at which the electrode contacts the probe pin is referred to as the OD amount (hereinafter referred to as “OD amount”).
  • the material of the metal protrusion 3 6 that is a contact point with the electrode of the semiconductor device 1 is the base material of the probe pin 4 in consideration of the adhesion with the first metal layer 1 1 except for the second metal layer 1 8.
  • Ni or Ni alloy based on the same material as the first metal layer 11 is used. Of course, other materials having a hardness equal to or higher than Ni can be used.
  • the width (W) of the metal protrusions 3 6 should be less than the width of the probe pins 4.
  • the length (L 2) of the metal projection 3 6 is the amount of movement of the tip of the probe pin 4 after the probe pin 4 contacts the electrode 2 of the semiconductor device 1 and the positional tolerance in the moving direction of the probe pin 4.
  • the height (H 2) of the metal protrusion 3 6 is the amount of pressing after the electrode 2 of the semiconductor device 1 contacts the metal protrusion 3 6 with respect to the surface of the first wiring layer 6 and the height of the metal protrusion 3 6. It should be at least the dimension plus the height in consideration of the height tolerance and the height tolerance of the electrode 2 of the semiconductor device 1.
  • the surface shape of the metal protrusions 36 is processed into an appropriate structure according to the contact target.
  • the electrode 2 of the semiconductor device 1 is a gold bump, it has a flat shape with no irregularities. If the surface roughness after electric mating is 0.05 micrometer or less, special processing for forming a flat shape is unnecessary. If the surface roughness is 0.05 micrometer or more, perform surface polishing.
  • the electrode 2 of the semiconductor device 1 is copper, since a natural oxide film exists on the surface, fine irregularities are formed with a surface roughness of 1 micrometer or less in order to break through this. The shape of the fine irregularities is formed only in the same direction as the moving direction of the probe pin 4 as shown in FIG. 2 (c).
  • Various structures such as a grid shape, a file eye shape, and a random shape formed in a direction perpendicular to the moving direction can be adopted.
  • a second metal layer 18 is formed on the surface of the metal protrusion 36 to prevent oxidation of the metal protrusion.
  • a gold alloy AuZPd, Au / Co, AuZCu, etc.
  • AuZPd Au / Co, AuZCu, etc.
  • the through electrode 8 and the third wiring layer 7 are formed on the base material 5, and the third wiring layer 7 is connected by the first wiring layer 6 and the through electrode 8. As a result, contact from the back surface becomes possible, and it becomes possible to cope with sorting inspection that requires high-speed inspection.
  • the dimension of the through electrode 8 is determined by the external terminal pitch of the carrier substrate 10. For example, in the case of a 0.5 mm pitch, it is a ⁇ 20-300 micrometer and a length (depth) 200-300 micrometer.
  • the third wiring layer 7 is composed of an N film having a thickness of 20 micrometers or less and an Au plating having a thickness of 2 micrometers or less on the upper layer.
  • the wiring width is 20 to 300 micrometers, and the length is 0.5 to 1. O mm.
  • the counterbore 21 formed on the base material 5 is necessary to make the probe pin 4 independent, and considering the mechanical strength of the base material 5, the depth is 200 micrometers or more. It is formed in the area where the length of the probe pin 4 is added to the external size of 1.
  • Either one of the penetrator L 9 formed in the central portion of the base material 5 and the positioning frame 5 8 disposed on the upper surface of the base material 5 may be present. Both are used for alignment between the electrode 2 of the semiconductor device 1 and the metal protrusion 36 of the probe pin 4. When alignment is performed using the external shape of the semiconductor device 1, a positioning frame 58 is disposed. When position detection and correction are performed by image processing and the electrode 2 of the semiconductor device 1 is mounted on the metal protrusion 3 6, For temporary fixing until the fixing means 1 4 is attached, negative pressure is sucked from the through hole 9 in the center of the base material 5. Therefore, both are used properly depending on the electrode pitch of the semiconductor device 1. However, in the fine pitch region, it is preferable to apply the latter optical alignment.
  • the carrier lid serving as the fixing means 14 is composed of a pressing plate 16 and an elastomer 17 or a leaf spring 15 which is an elastic material. It is necessary to determine the material and thickness of the retainer plate 16 so that it will not bend when a load is applied.
  • stainless steel it should be 1. O mm or more.
  • resin materials such as polyether imide and polyether sulfone, it should be 2. O mm or more. The size is equal to or smaller than that of the carrier substrate 10.
  • the elastomer 17 that is in contact with the back surface of the semiconductor device 1 uses a silicone rubber having a thickness of 0.5 to 1. O mm or more, and applies a material having resilience even after a thermal history is applied. It is formed in a region where 1 O mm or more is added to the external size of 1.
  • the material of the leaf spring 15 is carbon steel or beryllium copper. The dimensions are determined by the required pressure. For example, when the probe of the present invention is applied to a gold electrode with a pitch of 20 micrometers and a pin of 1000, an OD amount of 50 micrometers and a contact pressure of 2 O mg are required. A contact pressure of 20 g is required. Therefore, when carbon steel is used as the leaf spring material, the spring constant is 0.3 7 8 K g Zm m, the plate thickness is 0.2 mm, the width is 9 mm, and the length is “!
  • the latch 13 has a function of fitting and fixing the edge of the holding plate 16 6 by dropping the carrier lid as the fixing means 14.
  • the material metals such as carbon steel and beryllium copper, polyethersulfane, polyetherimide, and the like can be used, but it is preferable to use the latter resin material in order to suppress generation of dust. Attach at least two places in the center of the two sides of the carrier substrate 10. Of course, it can be arranged on the diagonal part of two sides, and can be arranged on 3-4 sides.
  • the dimensions of the first embodiment of the present invention will be described by taking as an example the case where the electrode pitch of the semiconductor device 1 is 20 micrometers.
  • the width W of the probe pin 4 is the maximum 10 micrometer that does not cause a short circuit due to manufacturing.
  • the pin thickness H1 is 10 micrometers, which can be formed with one electrical contact.
  • the probe pin length L 1 is within the elastic limit when an OD amount of 70 ⁇ m is applied to the probe pin 4, and is 400 ⁇ m because it is as short as possible to minimize conductor loss and crosstalk noise. Use a meter.
  • the height H2 of the metal protrusion 36 is set to a minimum of 40 micrometers in consideration of the fact that the semiconductor device 1 and the probe pin 4 do not come into contact with each other and the manufacturing accuracy when the semiconductor device 1 is pushed in by 30 micrometers.
  • the second wiring layer 1 2 formed on the first wiring layer 6 has a manufacturing tolerance from the boundary between the base of the probe pin 4 and the base material 5 and a manufacturing tolerance of 2 micrometers. Formed on the entire surface of 1 wiring layer 6 with a width of 8 micrometers.
  • the length L2 of the second metal layer 18 formed on the surface of the protrusion is necessary for the second metal layer 18 to be in contact with the electrode 2 of the semiconductor device 1 when the indentation amount is 50 micrometers. Considering length 7 micrometer and manufacturing accuracy ⁇ 2 micrometer and position accuracy ⁇ 1 micrometer, 10 micrometer or more is required.
  • the thickness is 2 micrometers in consideration of manufacturability.
  • the test carrier of the present invention can handle electrode pitches of 40 micrometers or less.
  • the first point is that the substrate 5 is made of a material with a smaller thermal expansion coefficient than PI (polyimide film) such as glass ceramics, glass, and silicon, thereby preventing deterioration in accuracy in the thermal history of the manufacturing process. It can be done.
  • the second point is that a sufficient level of contact pressure can be secured because a certain level of thickness can be secured with a very fine pin width by applying electrical technology. For example, a pin thickness of 10 micrometers can be formed with a pin width of 10 micrometers.
  • the third point is that the reprobe pin and the wiring layer on the substrate can be formed by the additive method by applying micromachine technology.
  • each of the independent lead-shaped probe pins 4 includes a semi- Since a metal layer with good contact characteristics is formed according to the electrode 2 of the conductor device 1, stable contact characteristics can be secured at low contact pressure. Therefore, since the amount of OD for ensuring contact can be reduced, the carrier lid structure as the fixing means 14 can be greatly simplified. For example, if the probe pin 4 of the 20 micrometer pitch, width 10 micrometer, thickness 10 micrometer is used, and the electrode material of the semiconductor device 1 is gold / compress, the OD amount is 10 micrometer, 3 0 (micro); Good contact can be obtained under the contact condition of a pin.
  • the OD amount can be set to 30 micrometers in consideration of the parallelism between the semiconductor device 1 and the test carrier and the height variation of the metal protrusion 36 at the tip of the probe pin.
  • a structure has been adopted in which several springs are arranged on the carrier lid as a fixing means.
  • the lid structure which is the fixing means 14 of the present invention, can be composed of two parts: a pressing plate 16 that is a supporting member and an elastomer 17 or a leaf spring 16.
  • the probe pins 4 of this configuration can be independently deformed. Therefore, the probe pin 4 itself can absorb the height variation of the metal protrusion 36 at the tip of the probe pin 4 and the parallelism variation between the semiconductor device 1 and the test carrier. Therefore, there is no need to place an elastomer on the lower surface of the membrane sheet as in the case of a carrier using a conventional membrane sheet with bumps, and a three-point component consisting of a sheet, elastomer, and base is placed on one point on the carrier substrate 10. Can be configured. As a result, the cost can be reduced by reducing the number of parts.
  • the reason why the long-term reliability of the probe pin can be secured is that the second wiring layer 1 formed on the second metal layer 18 and the first wiring layer 6 formed on the surface in contact with the electrode 2 of the semiconductor device 1 This is because the probe pin 4 except for the second metal layer 18 is separated into a single elastic material.
  • metal protrusion 3 6 at the contact portion of the semiconductor device 1 with the electrode 2
  • the semiconductor device 1 is pressurized by the solid means 14
  • only the electrode 2 portion of the semiconductor device 1 is exposed to the metal protrusion 3 6.
  • the metal protrusion 3 6 is not provided or a metal layer with a small thickness is provided, the contact pressure is reduced because the probe pin 4 is in contact with the portion other than the electrode 2 portion of the semiconductor device 1. For this reason, the amount of OD increases, and even if initial contact can be secured, it will lead to deterioration of long-term reliability. Therefore, metal protrusion 3 6 This is a very effective means that can achieve stable contact with a small amount of OD and maintain long-term reliability.
  • a third metal layer 19 is provided between the first wiring layer 6 and the base material 5.
  • the third metal layer 1 9, first low volume resistivity compared to N i or N i based alloy which is a wiring layer 6, in the range of 1 ⁇ 4 x 10- 8 Q m metal (e.g., Gold, gold / copper alloy, gold / palladium alloy, copper) are used as materials.
  • Q m metal e.g., Gold, gold / copper alloy, gold / palladium alloy, copper
  • This structure is effective when signal transmission of 1 GHz or higher is required. In the case of 1 GHz or less, sufficient signal transmission characteristics can be obtained with the probe structure shown in Fig. 2.
  • FIGS. 4 (a) to (c) are diagrams showing a test carrier structure according to the second embodiment of the present invention.
  • This embodiment shows a carrier substrate structure when the electrodes of a semiconductor device are in a staggered arrangement.
  • the arrangement of the external electrodes of the semiconductor device is a staggered arrangement
  • L 4 is different, so the contact pressure of probe pin 4 is different. That is, the probe pin 4 corresponding to the inner peripheral electrode has a longer pin length than the probe pin 4 corresponding to the outer peripheral electrode, and the contact pressure of the probe pin 4 corresponding to the inner peripheral electrode is reduced. Therefore, even if good contact is obtained with respect to the outer peripheral electrode, high resistance due to insufficient contact pressure may occur with respect to the inner peripheral electrode.
  • the pin length L 3 of the probe pin 4 corresponding to both the inner peripheral electrode and the outer peripheral electrode is set to the same length, and the contact pressure can be kept uniform.
  • the contact reliability of the probe pins 4 corresponding to both the inner and outer peripheral electrodes can be maintained relatively easily and uniformly.
  • the arrangement of the electrodes of the semiconductor device is a staggered arrangement has been taken up, but the same technique can be adopted in the case of another arrangement of electrodes such as three rows or four rows.
  • the desired dimensions of the substrate 5 are equivalent to the device package size.
  • the outer size is 1 2 X 2 Omm and the outer peripheral terminal pitch is 0.5 mm.
  • YAG Yttrium Aluminum Garnet
  • LD Laser Diode
  • RIE Reactive Ion Etching
  • a copper seed layer 25 is formed on the entire surface with a thickness of 100 to 300 nm by plasma CVD (Chemical Vapor Deposition) or sputtering (see Fig. 5 (d)). After that, the copper layer as the sacrificial layer 26 is completely filled by electrical contact with the countersink part 21 and the through-hole 24 part (see Fig. 5 (e)).
  • a first metal layer 11 and a first wiring layer 6 having elasticity are grown in this recess by electroplating (see FIG. 5 ( ⁇ )).
  • the resist 28 and the metal surface are polished so that they are flush with each other, and a 20 micrometer-thick resist 28 is applied to the surface, exposed, and developed, so that the metal protrusion 36 is formed.
  • a recess is formed (see Fig. 5 (j) to (k)).
  • the first metal layer 11 is formed in this recess by staking (see FIG. 5 (I)). Furthermore, by repeating this process twice, a metal protrusion 36 having a height of 40 micrometers or more can be secured. In addition, when the height of the metal protrusion 36 or more of 40 micrometers or more is required, the height can be increased sequentially by repeating the process of embedding by forming the recess and fitting.
  • the process of polishing the surface of the protruding portion is started.
  • the contact method is used, and the processing method is selected according to the electrode material of the semiconductor device 1.
  • the contact target is a gold electrode or a gold bump
  • the surface is polished by CMP (Chemical Mechanical Polishing) to ensure that the surface roughness is 0.05 micrometer or less.
  • CMP Chemical Mechanical Polishing
  • a concavo-convex structure of 0.1 to 0.7 micrometers is provided on the metal protrusion surface layer after the CMP process.
  • the uneven shape is not only the direction of movement of the probe pin 4, but also the direction perpendicular to the movement direction.
  • Various formations such as a board shape, an oblique shape, a file eye shape, and a random shape can be adopted. This fine unevenness can break through the natural oxide film on the copper surface and achieve stable contact. ,
  • a resist 28 is applied, a recess is formed by exposure and development, and a second metal layer 18 is formed to a thickness of 0.01 micrometer or more by plating.
  • a resist 28 is applied, a recess is formed by exposure and development, and a second metal layer 18 is formed to a thickness of 0.01 micrometer or more by plating.
  • the back surface of the carrier substrate is processed.
  • a copper seed layer 25 of about 0.3 micrometers is formed on the entire back surface where the through electrode is exposed by sputtering.
  • a resist 28 having a thickness of 20 micrometers is applied to the surface, and a concave shape is formed by removing the resist 28 corresponding to the second wiring layer 7 by exposure and development.
  • a Ni or Ni alloy having a thickness of 5 to 15 micrometers is formed in the recess by electroplating (see Fig. 6 (c) to (d)).
  • an Au or Au alloy plating is formed on the surface layer by electroless plating with a thickness of not less than 0.01 micrometer.
  • the resist layer and seed layer on the front surface are removed by wet etching and milling, respectively, and the resist layer and seed layer on the back surface are also removed in the same manner.
  • the sacrificial layer is removed by wet etching, so that the second surface of the surface of the probe pin and the metal protrusion 36 having a metal protrusion shape having a material and a structure having good contact characteristics according to the contact target is provided.
  • a carrier substrate structure in which the metal layer 18 and the second wiring layer 12 formed on the surface layer of the first wiring layer 6 are separated can be obtained (see FIGS. 6 (e) to (m)). .
  • the test carrier of the present invention has a structure that enables a dramatic reduction in cost by reducing the number of parts compared to a conventional carrier.
  • a semiconductor device having a fine pitch electrode having a pitch of 40 micrometers or less is used.
  • Conductor devices can be sorted and burned-in in the bare chip state equivalent to package products. Therefore, it can be suitably used as a Sip (System ina Package) using a bare chip.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Measuring Leads Or Probes (AREA)

Abstract

A test carrier is provided for inspecting a semiconductor device by holding the semiconductor device in a bare chip status and by electrically connecting the semiconductor device to an inspecting apparatus. The test carrier is provided with a probe pin, which is arranged at a position corresponding to an external electrode of the semiconductor device and has elasticity; a first wiring layer which is electrically connected to the probe pin and is formed on a base material; a metal protruding part formed at a part where the probe pin has a contact with the external electrode of the semiconductor device; a metal layer formed on the surface of the metal protruding part; and a second wiring layer formed on the first wiring layer. The metal layer and the second wiring layer are separated.

Description

明 細 書 テストキャリア 技術分野  Description Test carrier Technical field
本発明は、 半導体装置である裸の L S I (ベアチップ) を従来のパッケージ品 と同じ装置を用いて検査するためのテストキャリアに関し、 特に、 ベアチップの 電極ピッチが狭く、 かつ高速伝送が必要なベアチップの検査に適するテス卜キヤ リアに関する。 背景技術  The present invention relates to a test carrier for inspecting a bare LSI (bare chip), which is a semiconductor device, using the same device as a conventional package product. In particular, the bare carrier has a narrow electrode pitch and requires high-speed transmission. It relates to a test carrier suitable for inspection. Background art
近年、 半導体装置の高密度、 高速伝送の要求が急速に高まり、 ベアチップ実装 を使用して一定の機能をシステム化する S i p (System i n a Package) 技術の開発 が盛んに行われておリ、 ベアチップを基板上に直接実装する技術が一つのキーテ クノロジ一になつている。 しかしながら、 現状では実装前の段階では、 ウェハ検 査と呼ばれるオープン /ショートと簡易的なファンクションテストのみが実施さ れており、 従来のパッケージで実施されていた実動作レベルでの高速テストゃス クリーニングを目的としたバーンインテストは実施されていない。  In recent years, the demand for high-density and high-speed transmission of semiconductor devices has increased rapidly, and development of Sip (System ina Package) technology that systematizes certain functions using bare chip mounting has been actively conducted. The technology that directly mounts on the board is one key technology. However, at the present stage, only open / short and simple function tests called wafer inspection are performed at the pre-mounting stage, and high-speed testing at the actual operation level performed in the conventional package is performed. No burn-in test has been conducted.
これを解決するために、 従来からベアチップをテス卜キャリアに搭載してあた かもパッケージ品と同等に扱い、検査する方式が開発されている。この方式では、 ベアチップの電極と接触を得るための接触子として金属突起 (バンプ) を有し、 検査装置との電気的接続を得るための外部端子を有するキャリア基板を用いたテ ストキャリアが主に適用されている。  In order to solve this problem, a method has been developed in which a bare chip is mounted on a test carrier and treated as if it were a packaged product. In this method, a test carrier using a carrier substrate having a metal protrusion (bump) as a contact for obtaining contact with an electrode of a bare chip and having an external terminal for obtaining electrical connection with an inspection apparatus is mainly used. Has been applied.
この他に、 ベアチップの電極にバンプを形成することにより、 テストキャリア のキャリア基板の金属突起 (バンプ) を省略して低コスト化を図った構造やモー ルド PKGを応用した構造も提案されている。 また、 ウェハ検査用プローブカード として、 テストキャリア用途ではないが、 接触子として TCP (Tape Carr i er Package) のリードや応力金属ばねを活用したウェハ検査用プローブカード構造 が用いられている。 In addition to this, a structure has been proposed in which bumps are formed on the electrodes of the bare chip, thereby eliminating the metal protrusions (bumps) on the carrier substrate of the test carrier and reducing the cost, or a structure using a mold PKG. . Also, as a probe card for wafer inspection, it is not used as a test carrier, but it is a probe card structure for wafer inspection that uses a tape carrier package (TCP) lead or a stress metal spring as a contact. Is used.
ここで、 金属突起 (バンプ) を形成したキャリア基板を用いたテストキャリア が、 特開 2 0 0 2— 1 9 6 0 3 5号 (特許文献 1 ) に記載されている。 また、 ベ ァチップ電極に金属突起 (バンプ) を形成し、 バンプレスのテストキャリアが、 特開平 1 1一 2 3 7 4 3 5号 (特許文献 2 ) に記載されている。 また、 モールド PKGを応用したテストキャリアが、 特開平 7— 2 9 7 3 2 6号 (特許文献 3 ) に 記載されている。 また、 TGPリードを接触子に活用したウェハ検査用プローブが 特開 2 0 0 3— 2 4 8 0 1 9号 (特許文献 4 ) に記載されている。 また、 応力金 属ばねを活用したウェハ検査用プローブが特表 2 0 0 4— 5 0 1 5 1 7号 (特許 文献 5 ) に記載されている。 以下、 これらの特許文献 1〜5について、 詳細に説 明する。  Here, a test carrier using a carrier substrate on which metal protrusions (bumps) are formed is described in Japanese Patent Application Laid-Open No. 2000-0196 035 (Patent Document 1). Also, metal bumps are formed on the bar chip electrode, and a bumpless test carrier is described in Japanese Patent Application Laid-Open No. 11-112. A test carrier using a mold PKG is described in Japanese Patent Application Laid-Open No. 7-29 7 3 26 (Patent Document 3). Further, a wafer inspection probe using a TGP lead as a contact is described in Japanese Patent Application Laid-Open No. 2 03-3-2480 019 (Patent Document 4). Also, a wafer inspection probe using a stress metal spring is described in Japanese Patent No. 2 0 4-5 0 1 5 1 7 (Patent Document 5). Hereinafter, these Patent Documents 1 to 5 will be described in detail.
( 1 ) 特許文献 1  (1) Patent Document 1
第 7図に示すように、 半導体装置の外部電極に対向した位置に金属突起 (バン プ) 3 6を有するメンブレンタイプフィルム 2 0 (メンプレンシート) を用いた 方式のテス卜キヤリァ構造である。  As shown in FIG. 7, this is a test carrier structure using a membrane type film 20 (membrane sheet) having a metal protrusion (bump) 36 at a position facing the external electrode of the semiconductor device.
フレキシブルなメンブレンタイプフィルム 2 0の片面に半導体装置の外部電極 に対応した位置に金属突起 3 6が形成されている。 金属突起部から配線層でピッ チ拡張され検査装置 3 0 (ソケット) との電気接触を得るためのパッドが形成さ れている。 この金属突起 3 6を有するメンブレンタイプフィルム 2 0を用いたキ ャリア基板が組み込まれたテストキャリアに半導体装置を設置してクラムシェル 型の蓋 1 6を閉じることにより、 半導体装置を固定する。 この状態で従来の装置 を用いて検査を実施する。  A metal protrusion 36 is formed on one side of the flexible membrane type film 20 at a position corresponding to the external electrode of the semiconductor device. Pads are formed to obtain electrical contact with the inspection device 30 (socket) by extending the pitch from the metal protrusion with the wiring layer. The semiconductor device is fixed by installing the semiconductor device on a test carrier in which the carrier substrate using the membrane type film 20 having the metal protrusions 36 is incorporated and closing the clamshell lid 16. In this state, an inspection is performed using a conventional device.
本構造は、 接触圧力を得るためにキャリア蓋 1 6にばね 3 1が組み込まれてい る。 蓋 1 6を閉じたときに所望の接触圧が得られるような寸法とばね定数を備え ている。 また、 接圧によリメンブレンタイプフィルム 2 0を保持しているキヤリ アベ一ス 3 7に撓みが生じないようにベース 3 7の材質と厚さの適正化を図って いる。 さらに、 キャリア内部に接触子の高さばらつきや平行度を吸収するために 金属突起 3 6を有するメンブレンタイプフィルム 2 0の裏面にエラストマ 1 7を 備えている。 ( 2 ) 特許文献 2 In this structure, a spring 31 is incorporated in the carrier lid 16 to obtain a contact pressure. It has dimensions and spring constants so that the desired contact pressure can be obtained when the lid 16 is closed. In addition, the material and thickness of the base 37 are optimized so that the carrier base 37 holding the membrane type film 20 is not bent by contact pressure. Further, an elastomer 17 is provided on the back surface of the membrane type film 20 having the metal projections 36 in order to absorb the height variation and parallelism of the contacts inside the carrier. (2) Patent Document 2
第 8図に示すように、 半導体装置 1の外部電極に金属突起 3 6を形成すること により、 特許文献 1に記載のキャリア基板に形成する金属突起を省略した構造の テストキャリアである。 キャリア基板として TAB (Tape Automated Bond i ng) テ ープ 3 8を使用したキャリア構造を備えている。 半導体装置 1の外部電極と T A Bテープ 3 8の電極の位置合わせはガイドリング 3 4によって実施する。 キヤリ ァ基板下部のベース 3 7はリジット材料を使用している。 T A Bテープ使用とベ ァチップ外形を利用した位置決め方式の採用により、 低コストかつ安定接触を目 指した構造である。 また、 類似する構造が特開平 1 0— 2 1 3 6 2 6号 (特許文 献 6 ) に開示されている。  As shown in FIG. 8, the test carrier has a structure in which the metal protrusions 36 formed on the carrier substrate described in Patent Document 1 are omitted by forming the metal protrusions 36 on the external electrodes of the semiconductor device 1. It has a carrier structure that uses TAB (Tape Automated Bonding) tape 38 as the carrier substrate. The alignment of the external electrode of the semiconductor device 1 and the electrode of the T A B tape 3 8 is performed by the guide ring 3 4. The base 37 at the bottom of the carrier board uses rigid material. The structure is aimed at low-cost and stable contact by using a T A B tape and a positioning method that uses the outer shape of the chip. A similar structure is disclosed in Japanese Patent Laid-Open No. 10-2 1 3 6 2 6 (Patent Document 6).
( 3 ) 特許文献 3  (3) Patent Document 3
第 9図 (a )、 ( b ) に、 従来の半導体パッケージを応用したテスト用キャリア の構造図を示す。  Figures 9 (a) and 9 (b) show structural diagrams of test carriers using conventional semiconductor packages.
リードフレーム 4 0に半導体装置 1を搭載し、 半導体装置 1とリードフレーム 4 0をボンディングワイア 4 2で接続後、モールド型半導体 (PKG) からレンジモ ールド 4 3、 リードフレーム 4 0の一部と半導体装置 1を除去することによリ形 成したテストキャリアである。 ボンディングワイア 4 2のボール部分 4 1を接触 子として用いる。 また、 半導体装置 1の代わりに金属膜を有する金型を使用する ことも可能である。 本構造は、 従来のパッケージを流用することにより、 量産容 易性と安価なソケッ卜を実現できる。  Semiconductor device 1 is mounted on lead frame 40, and semiconductor device 1 and lead frame 40 are connected by bonding wire 42. Then, mold type semiconductor (PKG) to range mold 43, part of lead frame 40 and semiconductor This is a test carrier formed by removing device 1. The ball portion 4 1 of the bonding wire 4 2 is used as a contact. It is also possible to use a metal mold having a metal film instead of the semiconductor device 1. This structure can realize mass production ease and low-cost sockets by using a conventional package.
( 4 ) 特許文献 4  (4) Patent Document 4
第 1 0図にコンタクトプローブ構造を示し、 第 1 1図にその製造方法を示す。 複数の配線層 4 6がポリイミド樹脂フィルム層 4 4の表面に形成され、 この配 線層 4 6の先端部分にコンタクトビン 4を有し、 フィルム裏面の必要な部分にの み金属層を備えた構造のコンタクトプローブ構造である。 従来は、 フィルム裏面 の全面に金属層を有していたため、 各ピンが一定の容量を有し、 信号遅延を引き 起こしていた。 これを解決するために、 必要な部分にのみ金属フィルム 4 5を形 成した構造を採用し、 電気特性向上と柔軟性向上による組立性向上を可能にした 構造である。 ( 5 ) 特許文献 5 FIG. 10 shows the contact probe structure, and FIG. 11 shows the manufacturing method. A plurality of wiring layers 46 are formed on the surface of the polyimide resin film layer 44, and the wiring layer 46 has a contact bin 4 at the front end portion, and a metal layer is provided only in a necessary portion on the back surface of the film. It is a contact probe structure of the structure. Conventionally, since the metal layer was provided on the entire back side of the film, each pin had a certain capacity and caused a signal delay. In order to solve this problem, a structure in which the metal film 45 is formed only in the necessary part is adopted, and the structure is made possible to improve the electrical characteristics and the assembly property by improving the flexibility. (5) Patent Document 5
第 1 2図 (a )、 ( b ) に、 基材 5から解放後のばねの線形配列を示す。  FIGS. 12 (a) and (b) show the linear arrangement of the springs released from the substrate 5. FIG.
基材 5上に単接点ばねプローブ 5 4をブラズマ蒸着法および写真製版ノ ターン ニング法により、 蒸着金属を連続層として形成する。 連続層は、 各々異なる固有 応力レベルを有している。 リリース領域 5 5がアンダーカツ卜エッチングされて ばね接点が、 リリースされて曲がり、 プローブピン 4が形成される。 半導体前ェ 程プロセスを活用することにより、 0 . 0 0 1インチ (2 5 . 4マイクロメータ) のスプリンングピッチ配列 5 6が可能である。  A single contact spring probe 54 is formed on the substrate 5 as a continuous layer by vapor deposition and photoengraving. Each continuous layer has a different inherent stress level. Release area 5 5 is undercut and etched, spring contacts are released and bent to form probe pin 4. By utilizing the semiconductor pre-process, a 0.001 inch (25.4 micrometers) spring pitch array 56 is possible.
( 6 ) その他の従来例  (6) Other conventional examples
特開平 3— 2 7 5 4 6号 (特許文献 7 ) は、 シリコン基板を用いてウエットェ ツチングにより片持ちはりを形成し、 これをテストキャリアの基板として用いる 構造である。 検査対象が、 はんだバンプを有するベアチップの場合、 リード上の 電気接点部分にパッドを形成し、 リード線で外部端子へ引き出す構造を採る。 は んだバンプの無い場合は、 リード先端部にはんだバンプを設け、 リード線で外部 に引き出す構造を採る。  Japanese Patent Application Laid-Open No. 3-27454 (Patent Document 7) is a structure in which a cantilever is formed by wet etching using a silicon substrate and used as a substrate for a test carrier. If the inspection target is a bare chip with solder bumps, a structure is adopted in which pads are formed at the electrical contacts on the leads and pulled out to the external terminals with lead wires. If there is no solder bump, a solder bump is provided at the tip of the lead and the lead wire is used to pull it out.
特開平 6— 2 9 5 9 6 4号 (特許文献 8 ) は、 両面電極を有するベアチップの 検査を目的とし、 Oリングゃシリコンゴムによリ弾性力を得る構造の検査ソケッ 卜に関する。  Japanese Patent Application Laid-Open No. 6-29 5 9 6 4 (Patent Document 8) relates to an inspection socket having a structure in which an O-ring is made of silicon rubber to obtain elastic force for the purpose of inspecting a bare chip having double-sided electrodes.
特開平 7— 1 4 2 5 4 1号 (特許文献 9 ) は、 6 0 m以下の微細電極を有す るデバイスの検査を目的としたプローブであり、 シリコン基板を用いた湾曲形状 の片持ちはりを形成し、 この表層に導電金属層、 裏面に絶縁層を形成した構造の プローブに関する。  JP-A-7-1 4 2 5 4 1 (Patent Document 9) is a probe for inspecting a device having a fine electrode of 60 m or less, and is a cantilever having a curved shape using a silicon substrate. The present invention relates to a probe having a structure in which a beam is formed, a conductive metal layer is formed on the surface layer, and an insulating layer is formed on the back surface.
特許文献 1では、 接触子として金属突起を用いた構造であり、 メンブレンフィ ルムにレーザでビア加工した後、 等方性めつきによりビア充填と金属突起形成を 行うプロセスを採る。 このため、 一定の高さを確保した状態で金属突起を 5 0マ イク口メータピッチ以下の微細領域で形成することが困難である。 基材としてフ イルム状のフレキシブル材料を用いた構成であるため、 フィルム基板製造プロセ ス (例えば、 レーザ加工等) の熱履歴により、 金属突起のピッチ方向の位置精度 が ± 5マイクロメータ程度が限界である。 従って、 4 0マイクロメータピッチ以 下の微細領域で所望の値 (± 1 . 0マイクロメータ以下) に制御することが困難 である。 In Patent Document 1, a metal protrusion is used as a contact, and a process is performed in which a via fill is formed on a membrane film by laser and then via filling and metal protrusion are formed by isotropic contact. For this reason, it is difficult to form metal protrusions in a fine region of a pitch of 50 or less mouthpieces with a certain height secured. Because it uses a film-like flexible material as the base material, the positional accuracy in the pitch direction of the metal protrusions is limited to about ± 5 micrometers due to the thermal history of the film substrate manufacturing process (for example, laser processing). It is. Therefore, 40 micrometer pitch or more It is difficult to control to the desired value (± 1.0 micrometer or less) in the lower fine region.
バーンイン検査で 8 0〜 1 2 5 °Cの高温検査を行う場合、 半導体装置材料のシ リコンの熱膨張係数 (2〜3 P P m) に比較してフイルム材料の熱膨張係数 (数 十 p p m) が大きい。 このため、 金属突起と半導体装置の電極間で位置ずれが生 じる。 また、 モニタ一バーンイン試験のように温度の上昇下降を繰り返すことに より、 金属突起先端に半導体装置電極の屑が付着して接触特性が劣化する。 ねじ によリメンブレンフィルムとベースを固定するため、 バーンイン検査時の熱履歴 によってねじの緩みが生じる可能性を有している。 さらに、 テストキャリアを構 成する部品点数が多いため、 キヤリア本体の価格が高い。 When performing high-temperature inspection at 80 to 125 ° C during burn-in inspection, the thermal expansion coefficient of film material (several tens of ppm) compared to the thermal expansion coefficient of silicon (2 to 3 PP m) of semiconductor device materials Is big. For this reason, a positional shift occurs between the metal protrusion and the electrode of the semiconductor device. In addition, by repeatedly increasing and decreasing the temperature as in the monitor burn-in test, semiconductor device electrode debris adheres to the tip of the metal protrusion, and the contact characteristics deteriorate. Since the membrane film and the base are fixed by screws, there is a possibility that the screws will loosen due to the thermal history during the burn-in inspection. In addition, the cost of the carrier itself is high due to the large number of parts that make up the test carrier.
特許文献 2では、 ベアチップ電極に金属突起をポールボンディングにより形成 するため、 4 0マイクロメータ以下の微細領域での金属突起の形成が困難である。 また、 テストキャリアのベースはリジッ卜であるため、 平行度や金属突起高さば らつきは、 金属突起の変形量で吸収する必要がある。 このため、 金属突起の変形 が大きくなリ、 次工程のワイアボンディングゃフリップチップ等の接続プロセス に悪影響を及ぼす。 仮に初期接続が得られたとしても接続部高さが低くなるため 温度サイクル試験等の長期信頼性の確保が困難である。  In Patent Document 2, since metal protrusions are formed on the bare chip electrode by pole bonding, it is difficult to form metal protrusions in a fine region of 40 micrometers or less. In addition, since the base of the test carrier is rigid, parallelism and variations in metal protrusion height must be absorbed by the amount of deformation of the metal protrusion. For this reason, the deformation of the metal protrusion is large, and wire bonding in the next process adversely affects the connection process such as flip chip. Even if the initial connection is obtained, the connection height is low, so it is difficult to ensure long-term reliability such as temperature cycle testing.
さらに、 モニターバーンィン試験のような温度サイクルが加わることにより、 金属突起の変形が増すと考えられる。 特許文献 1と同様にベアチップの電極上の 金属突起と接触を得て検査装置との接続を行うキャリア基板は、 T A Bテープ等 のポリイミド樹脂を用いたメンブレンタイプのフィルムを使用するため、 特許文 献 1の第 2の問題点と同じ技術課題を有している。部品点数の観点から視た場合、 特許文献 1と比較すると、 蓋部分に加圧用のばねを備えない点で削減されている が、 劇的には削減していないためキャリア本体価格が高い。  Furthermore, it is thought that the deformation of metal protrusions will increase due to the addition of a temperature cycle such as the monitor burn-in test. As in Patent Document 1, the carrier substrate that obtains contact with the metal protrusions on the bare chip electrode and connects to the inspection device uses a membrane type film using polyimide resin such as TAB tape. It has the same technical problem as the second problem of 1. When viewed from the viewpoint of the number of parts, compared to Patent Document 1, it is reduced in that it does not have a spring for pressurization in the lid, but it is not drastically reduced, so the carrier body price is high.
また、特許文献 6に記載のキヤリァ構造の場合、フィルム部材とベース部材は、 固定手段によって挟持固定されているだけであり、 両部材ともに金属突起形状は 無い。 このため、 接触不良が発生する可能性が高い。  Further, in the case of the carrier structure described in Patent Document 6, the film member and the base member are only sandwiched and fixed by the fixing means, and neither member has a metal projection shape. For this reason, there is a high possibility of contact failure.
特許文献 3では、 コスト的には非常に安価になると推定できるが、 半導体装置 の外部電極との接触をワイアボンディングのポール部分で行う構造である。 この ため、 4 0マイクロメータピッチ以下に微細ピッチ領域での接触子形成が困難で ある。 モールド樹脂は、 熱硬化性樹脂であり弾性を有していないため、 特許文献 2の第 2の問題点である半導体装置電極に形成する金属突起の変形量で全ての高 さ方向のばらつき吸収する必要がある。 この結果、 金属突起の変形量が大きくな り、 次工程の接続プロセスに悪影響を及ぼす。 In Patent Document 3, although it can be estimated that the cost is very low, the structure is such that the contact with the external electrode of the semiconductor device is performed at the pole portion of the wire bonding. this For this reason, it is difficult to form contacts in a fine pitch region below 40 micrometer pitch. Since the mold resin is a thermosetting resin and does not have elasticity, all the variation in the height direction is absorbed by the deformation amount of the metal protrusion formed on the semiconductor device electrode, which is the second problem of Patent Document 2. There is a need. As a result, the amount of deformation of the metal protrusion increases, which adversely affects the connection process of the next process.
特許文献 4では、 基材としてポリイミド樹脂フィルム層を用いるため、 前記特 許文献 1の第 2の問題点、特許文献 2の第 2の問題点と同様の技術課題を有する。 製造方法として、 金属フィルム層を有するフィルムを接着するプロセスが存在 する。 しかし、 接着材量の精密制御が困難であり、 接着剤不足による配線層剥離 や接着剤過多による染み出しが発生し、 製造難易度が高い。 精密制御可能な塗布 装置を用いた場合は、 装置コストが高くなる。 このプロセスの後に支持金属板か ら分離するプロセスを経るため、 コンタク トビンの位置精度確保が困難である。 また、 コンタク トビン材質は N i合金であり、 表面上に酸化皮膜が存在する。 3 0マイクロメータ以下の微細ピッチ領域では、 コンタクトピンの幅、 厚さとも に制約があるため大きい接圧を得ることは困難である。 従って、 小さい接圧で接 触を得る必要があるが、 酸化皮膜を完全に突き破ることは困難であり、 酸化皮膜 が介在した接触状態となる。 このため、 安定した接触を得ることが困難である。 本構造をテス卜キャリアに応用した場合を想定すると、 1辺にコンタク トビン を有する構造である。 このため、 半導体装置の電極が周辺配置の場合、 本構造を 有するコンタク トプローブを 4枚製作してキャリアに組み付ける必要がある。 従 つて、 4辺相互のコンタクトピンの位置精度確保が困難であることや、 部品点数 増加によるキャリアコスト高といった問題点が存在する。  In Patent Document 4, since a polyimide resin film layer is used as a base material, it has the same technical problem as the second problem of Patent Document 1 and the second problem of Patent Document 2. As a manufacturing method, there is a process of bonding a film having a metal film layer. However, precise control of the amount of adhesive is difficult, and the wiring layer peeling due to insufficient adhesive and bleeding due to excessive adhesive occur, making manufacturing difficult. If a coating device that can be precisely controlled is used, the cost of the device increases. Since this process is followed by a process of separating from the supporting metal plate, it is difficult to ensure the contact bin position accuracy. The contact bin is made of Ni alloy and has an oxide film on the surface. In a fine pitch region of 30 micrometers or less, it is difficult to obtain a large contact pressure because there are restrictions on both the width and thickness of the contact pin. Therefore, it is necessary to obtain contact with a small contact pressure, but it is difficult to completely break through the oxide film, resulting in a contact state in which the oxide film is interposed. For this reason, it is difficult to obtain a stable contact. Assuming that this structure is applied to a test carrier, this structure has a contact bin on one side. For this reason, when the electrodes of the semiconductor device are arranged peripherally, it is necessary to manufacture four contact probes having this structure and assemble them to the carrier. Therefore, there are problems such as difficulty in securing the positional accuracy of the contact pins on the four sides and high carrier costs due to an increase in the number of parts.
特許文献 5では、 応力金属ばねの製造方法としてプラズマ蒸着法により形成す る。 このため、 ばねの厚さを大きくすることが困難である。 この結果、 3 0マイ クロメータ以下の微細ピッチ領域では、 接圧が不足するので良好な接触を得るこ とが困難である。 仮に初期接触が得られた場合も、 繰り返しコンタク トによる金 属ばね根元に負荷される応力により、 金属ばねに塑性変形が発生し、 長期信頼性 の確保が困難である。  In Patent Document 5, the stress metal spring is formed by a plasma deposition method as a manufacturing method. For this reason, it is difficult to increase the thickness of the spring. As a result, in a fine pitch region of 30 micrometer or less, it is difficult to obtain good contact because the contact pressure is insufficient. Even if initial contact is obtained, the stress applied to the base of the metal spring due to repeated contact causes plastic deformation in the metal spring, making it difficult to ensure long-term reliability.
第 1 2図からわかるように、 金属ばね先端が尖った形状として接圧が集中化す る構造を採っている。 しかし、 半導体装置の電極が銅のように強固な酸化皮膜を 有する場合、 半導体電極と接触するばね先端部の曲率半径を精密制御する必要が あり、 製造コストの大幅な上昇を招く。 基材に半導体であるシリコンを用いるた め、 貫通電極形成プロセスにおいて、 絶縁膜、 バリア層、 シード層の形成が各々 必要になる。 このため、 製造コストの大幅な上昇を招く。 発明の開示 As can be seen from Fig. 12, contact pressure is concentrated as the tip of the metal spring is pointed. The structure is adopted. However, when the electrode of the semiconductor device has a strong oxide film such as copper, it is necessary to precisely control the radius of curvature of the spring tip that contacts the semiconductor electrode, resulting in a significant increase in manufacturing cost. Since silicon, which is a semiconductor, is used as the base material, it is necessary to form an insulating film, a barrier layer, and a seed layer in the through electrode formation process. This leads to a significant increase in manufacturing costs. Disclosure of the invention
発明が解決しょうとする課題:  Problems to be solved by the invention:
そこで、 本発明は、 上記従来技術の問題点に鑑みてなされたものであり、 本発 明の目的は、 ベアチップ状態の半導体装置において、 通常のパッケージ品と同等 の検査を実施し、 同等の品質を確保するために、 4 0マイクロメータピッチ以下 の超微細ピッチに対応可能かつ低コス卜で実用性のあるベアチップ用のテストキ ャリアを提供することにある。  Therefore, the present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to perform an inspection equivalent to that of a normal package product in a bare chip state semiconductor device, and to achieve an equivalent quality. In order to ensure this, it is an object of the present invention to provide a bare-chip test carrier that can handle ultrafine pitches of 40 micrometer pitch or less, is low cost, and is practical.
課題を解決するための手段:  Means to solve the problem:
本発明では、 半導体装置をベアチップの状態で保持して検査装置に電気的に接 続することにより、 検査を実施するためのテストキャリアにおいて、 前記半導体 装置の外部電極に対応した位置に設けられた弾性を有するプローブピンと、 前記 プローブピンと電気的に接続され、 かつ基材に形成された第 1の配線層と、 前記 プローブピンが前記半導体装置の外部電極と接触する部分に形成された金属突起 と、 前記金属突起の表面に形成された金属層と、 前記第 1の配線層上に形成され た第 2の配線層とを有し、 前記金属層と前記第 2の配線層とが分離されている。 さらに、 前記半導体装置を前記基材に固定するための固定手段を設けた。 ここで、 前記金属層は、 前記半導体装置の外部電極の材料に応じた接触特性を 有する。 好ましくは、 前記基材の表面と裏面の間を貫通する貫通電極と前記基材 の裏面に形成された第 3の配線層とを有し、 貫通電極を介して第 1の配線層と第 3の配線層とが電気的に接続されている。  In the present invention, the semiconductor device is provided in a position corresponding to the external electrode of the semiconductor device in the test carrier for performing the inspection by holding the semiconductor device in a bare chip state and electrically connecting to the inspection device. A probe pin having elasticity; a first wiring layer electrically connected to the probe pin; and formed on a substrate; a metal protrusion formed on a portion where the probe pin contacts an external electrode of the semiconductor device; A metal layer formed on the surface of the metal protrusion, and a second wiring layer formed on the first wiring layer, wherein the metal layer and the second wiring layer are separated from each other. Yes. Furthermore, fixing means for fixing the semiconductor device to the base material is provided. Here, the metal layer has contact characteristics according to the material of the external electrode of the semiconductor device. Preferably, the substrate includes a through electrode penetrating between the front surface and the back surface of the base material and a third wiring layer formed on the back surface of the base material, and the first wiring layer and the third wiring layer are formed through the through electrode. The wiring layer is electrically connected.
前記第 2の配線層の体積抵抗率は、 前記第 1の配線層の体積抵抗率より小さい ことが好ましい。  The volume resistivity of the second wiring layer is preferably smaller than the volume resistivity of the first wiring layer.
また、 前記第 1の配線層と前記基材との間に他の金属層を形成した。 前記他の 金属層体積抵抗率は、前記第 1の配線層の体積抵抗率よリ小さいことが好ましし、。 また、 前記金属突起の形成領域が、 幅方向はプローブピンの幅以下とし、 長さ 方向はプローブピンが半導体装置の外部電極と接触してからのプローブピン先端 の移動量とプローブピンの長手方向の位置公差及び半導体装置の外部電極公差を 考慮した長さを加えた寸法以上の長方形形状であり、 高さは第 1の配線層の表面 を基準として半導体装置の外部電極が金属突起と接触してからの押込み量と金属 突起の高さ公差及び半導体装置の外部電極の高さ公差を考慮した高さを加えた寸 法以上とした。 Further, another metal layer was formed between the first wiring layer and the base material. The other The volume resistivity of the metal layer is preferably smaller than the volume resistivity of the first wiring layer. In addition, the metal protrusion formation region has a width direction equal to or less than the width of the probe pin, and the length direction indicates the amount of movement of the probe pin tip after the probe pin contacts the external electrode of the semiconductor device and the longitudinal direction of the probe pin. The rectangular shape is equal to or greater than the dimension including the position tolerance and the external electrode tolerance of the semiconductor device.The height of the external electrode of the semiconductor device contacts the metal protrusion with respect to the surface of the first wiring layer. More than the dimension including the height considering the amount of indentation and the height tolerance of the metal protrusion and the height tolerance of the external electrode of the semiconductor device.
前記半導体装置の外部電極が単列周辺配置以外の配置の場合、 前記半導体装置 の各々の外部電極に対応するプローブピンの長さが同じであることが好ましい。 また、 前記半導体装置の外部電極が単列周辺配置以外の配置の場合、 前記半導 体装置の中心側に存在する外部電極に対応するプローブピンの根元部分の基材が 突出した形状を有することが望ましい。  When the external electrodes of the semiconductor device are arranged other than the single-row peripheral arrangement, it is preferable that the probe pins corresponding to the external electrodes of the semiconductor device have the same length. Further, when the external electrode of the semiconductor device is arranged other than the single row peripheral arrangement, the base material of the base portion of the probe pin corresponding to the external electrode existing on the center side of the semiconductor device has a protruding shape. Is desirable.
前記半導体装置の外部電極が単列周辺配置以外の配置の場合、 前記半導体装置 の中心側に存在する外部電極に対応するプローブピンの根元部分と基材上の第 1 の配線層の幅が前記半導体装置の外側に存在する外部電極に対応するプローブピ ンと第 1の配線層の両者の幅よリ広く、かつ突出した形状であることが好ましし、。 好ましくは、 前記金属突起表面の金属層が、 金合金金属から成る。  When the external electrode of the semiconductor device is arranged other than the single-row peripheral arrangement, the width of the first wiring layer on the substrate and the base portion of the probe pin corresponding to the external electrode existing on the center side of the semiconductor device is It is preferable that the probe pin corresponding to the external electrode existing outside the semiconductor device and the first wiring layer are both wider and projecting. Preferably, the metal layer on the surface of the metal protrusion is made of a gold alloy metal.
また、 前記金属突起表面の金属層が、 微細凹凸形状を有することが好ましい。 この場合、 前記微細凹凸形状が、 前記プローブピンの移動方向と同一方向のみに 形成されていても良いし、 前記プローブピンの移動方向と垂直方向のみに形成さ れていても良い。 尚、 前記微細凹凸形状は、 例えば、 碁盤目形状、 やすりの目形 状またはランダムな形状に形成されている。 前記微細凹凸形状は、 表面粗さ 1マ イク口メータ以下の凹凸形状であることが好ましい。  Further, it is preferable that the metal layer on the surface of the metal protrusion has a fine uneven shape. In this case, the fine uneven shape may be formed only in the same direction as the movement direction of the probe pin, or may be formed only in the direction perpendicular to the movement direction of the probe pin. The fine concavo-convex shape is formed in, for example, a grid shape, a file shape, or a random shape. The fine uneven shape is preferably an uneven shape having a surface roughness of 1 micrometer or less.
また、 前記基材の中央部分に貫通孔を有することが望ましい。 ここで、 前記貫 通孔の形状は、 前記プローブピンの根元部分の開口径と同一あるいは小さい。 上述のように、 本発明のテストキャリアは、 半導体装置をベアチップの状態で 保持して検査装置に電気的接続をとリ、検査を実施するテストキャリアにおいて、 前記半導体装置の外部端子を構成する各々の電極に対応した位置に弾性を有する 各々独立したプローブピンと、 前記プローブピンと電気的に接続され、 前記プロ ーブピンの第 1の配線層が形成された基材とを有し、 前記プローブピンが前記半 導体装置の電極と接触する部分に 1層以上の金属層から成る金属突起が形成され ており、 前記金属突起表面に半導体装置の電極材料に応じて接触特性の良い材料 から成る 1層以上の金属層が形成されており、 前記基材の第 1の配線層の上に形 成された 1層以上の金属層である第 2の配線層を有し、 前記金属突起表面の 1層 以上の金属層と前記第 2の配線層とが分離された構造であることを特徴とするキ ャリア基板とベアチップをキャリア基板に固定する手段とで構成されている。 本構成において、 各々独立したリード形状のプローブピンと前記半導体装置電 極との接触面の先端部分に半導体装置の電極に応じて接触特性の良い金属層を有 している。 このため、 固定手段の簡易構造化とベース構造部品の一体化が可能に なり、 飛躍的な部品点数削減を図ることができ、 キャリアコスト低減を図ること ができる。 Moreover, it is desirable to have a through-hole in the center part of the said base material. Here, the shape of the through hole is the same as or smaller than the opening diameter of the base portion of the probe pin. As described above, the test carrier according to the present invention is a test carrier that holds the semiconductor device in a bare chip state and is electrically connected to the inspection device. Has elasticity at a position corresponding to the electrode of A probe pin that is independent of each other, and a base material that is electrically connected to the probe pin and on which the first wiring layer of the probe pin is formed, and the probe pin is in contact with the electrode of the semiconductor device Metal protrusions made of one or more metal layers are formed, and one or more metal layers made of a material having good contact characteristics according to the electrode material of the semiconductor device are formed on the surface of the metal protrusions. A second wiring layer that is one or more metal layers formed on the first wiring layer of the material, and the one or more metal layers on the surface of the metal protrusion, the second wiring layer, It is constituted by a carrier substrate characterized by having a separated structure and means for fixing the bare chip to the carrier substrate. In this configuration, a metal layer having good contact characteristics according to the electrode of the semiconductor device is provided at the tip of the contact surface between the independent lead-shaped probe pin and the semiconductor device electrode. This makes it possible to simplify the structure of the fixing means and integrate the base structure parts, dramatically reduce the number of parts, and reduce the carrier cost.
また、 キャリア基板の基材に熱膨張係数が小さい材料を適用し、 製造工程の熱 履歴における精度劣化防止を図った。 また、 プローブピンの製造に電錶技術を適 用して非常に微細なピン幅で一定レベルの厚さを確保し、十分な接圧を獲得した。 さらに、 マイクロマシン技術の適用により、 アディティブ工法によるプローブピ ンと配線層形成を実施した。 この結果、 4 0マイクロメータピッチ以下の超微細 ピッチ領域の電極を有する半導体装置に対応できるようになった。  In addition, a material with a small coefficient of thermal expansion was applied to the base material of the carrier substrate to prevent deterioration in accuracy in the thermal history of the manufacturing process. In addition, we applied electrical technology to the manufacture of probe pins to ensure a certain level of thickness with very fine pin widths and to obtain sufficient contact pressure. In addition, probe pins and wiring layers were formed by the additive method using micromachine technology. As a result, it has become possible to deal with semiconductor devices having electrodes in an ultrafine pitch region of 40 micrometer pitch or less.
また、 金属突起を半導体装置の電極との接触部分に設け、 金属突起表面の第 2 の金属層と第 1の配線層表面の第 2の配線層を分離したことにより、 優れた初期 特性とプローブピンの長期信頼性を確保することができる。 さらに、 基材と第 1 の配線層の間に体積抵抗率の小さい第 3の金属層を設けることにより、 G H zレ ベル以上の高速信号伝送特性を可能としている。  In addition, by providing a metal protrusion at the contact portion with the electrode of the semiconductor device and separating the second metal layer on the surface of the metal protrusion and the second wiring layer on the surface of the first wiring layer, excellent initial characteristics and probes can be obtained. Long-term reliability of the pin can be ensured. In addition, by providing a third metal layer with a low volume resistivity between the substrate and the first wiring layer, high-speed signal transmission characteristics above the GHz level are possible.
以上説明したように、 本発明のテストキャリアは、 従来のキャリアと比較する と部品点数削減による飛躍的な低コスト化を可能にした構造を有する。 また、 本 発明のテストキヤリアを用いることにより、 4 0マイクロメータピッチ以下の微 細ピッチ電極を有する半導体装置をベアチップの状態でパッケージ品と同等の選 別、 バーンイン検査を実施することが可能となる。 従って、 ベアチップを用いた S i p (System i n a Package) 構造の生産効率を高め、 大幅に生產コストを低減 できる。 また、 従来困難であった G H z以上の高周波領域での選別検査が実施で きる。 図面の簡単な説明 As described above, the test carrier of the present invention has a structure that enables drastically reducing the cost by reducing the number of parts compared to the conventional carrier. Further, by using the test carrier of the present invention, it becomes possible to perform the same selection and burn-in inspection of a semiconductor device having a fine pitch electrode of 40 micrometer pitch or less as a package product in a bare chip state. . Therefore, using a bare chip The production efficiency of the Sip (System ina Package) structure can be improved and the cost of sacrifice can be greatly reduced. In addition, screening inspection can be performed in the high-frequency region above GHz, which was difficult in the past. Brief Description of Drawings
第 1図は本発明の第 1の実施の形態によるテストキャリァ構造を示す断面図で ある。  FIG. 1 is a cross-sectional view showing a test carrier structure according to a first embodiment of the present invention.
第 2図は本発明の第 1の実施の形態によるキヤリァ基板とプローブ部分の詳細 を示す図である。 (c ) は (a ) の点線内のプローブ部分の詳細図であり、 (d ) は (b ) の点線内のプローブ部分の詳細図である。  FIG. 2 is a diagram showing details of the carrier substrate and the probe portion according to the first embodiment of the present invention. (C) is a detailed view of the probe portion within the dotted line of (a), and (d) is a detailed view of the probe portion within the dotted line of (b).
第 3図はプローブ部のその他の構造例を示す図である。  FIG. 3 is a diagram showing another example of the structure of the probe section.
第 4図は本発明の第 2の実施の形態によるテストキャリア構造を示す断面図で める。  FIG. 4 is a sectional view showing a test carrier structure according to the second embodiment of the present invention.
第 5図は本発明のキヤリァ基板の製造方法を示す図である。  FIG. 5 is a diagram showing a carrier substrate manufacturing method according to the present invention.
第 6図は本発明のキャリア基板の製造方法を示す図である。  FIG. 6 is a diagram showing a method for manufacturing a carrier substrate according to the present invention.
第 7図は特許文献 1に記載された従来の構造を示す図である。  FIG. 7 is a view showing a conventional structure described in Patent Document 1. In FIG.
第 8図は特許文献 2に記載された従来の構造を示す図である。  FIG. 8 is a view showing a conventional structure described in Patent Document 2.
第 9図は特許文献 3に記載された従来の構造を示す図である。  FIG. 9 is a view showing a conventional structure described in Patent Document 3.
第 1 0図は特許文献 4に記載された従来の構造を示す図である。  FIG. 10 is a view showing a conventional structure described in Patent Document 4. In FIG.
第 1 1図は特許文献 4に記載された従来の構造の製法を示す図である。  FIG. 11 is a diagram showing a conventional structure manufacturing method described in Patent Document 4.
第 1 2図は特許文献 5に記載された従来の構造を示す図である。 発明を実施するための最良の形態  FIG. 12 is a diagram showing a conventional structure described in Patent Document 5. BEST MODE FOR CARRYING OUT THE INVENTION
次に、 本発明の実施の形態について図面を参照して詳細に説明する。  Next, embodiments of the present invention will be described in detail with reference to the drawings.
(第 1の実施の形態)  (First embodiment)
第 1図に本発明のテストキャリア構造の第 1の実施形態を示す断面を、 第 2図 ( a ) 〜 (d ) に本発明のキャリア基板とプローブ部分の詳細をそれぞれ示す。 まず、 第 1図を用いて本発明のテス卜キヤリァの全体構成を示す。  FIG. 1 is a cross-sectional view showing a first embodiment of the test carrier structure of the present invention, and FIGS. 2 (a) to (d) show details of the carrier substrate and probe portion of the present invention. First, the overall structure of the test carrier according to the present invention will be described with reference to FIG.
第 1図に示すように本発明の実施形態であるテストキャリア構造は、 被検査物 である半導体装置 1の外部端子電極 2に対応する位置に弾性を有する各々独立し たリ一ド形状のプローブピン 4とプローブピン 4と電気的に接続され、 プローブ ピン 4の第 1の配線層 6が形成された基材 5とを有する。 プローブピン 4が半導 体装置 1の電極 2と接触する部分に金属突起 3 6が形成されている。 金属突起 3 6の表面に半導体装置 1の電極材料に応じて接触特性の良い材料から成る 1層以 上の金属層である第 2の金属層 1 8が形成されている。 As shown in FIG. 1, the test carrier structure according to the embodiment of the present invention Each of the independent lead-shaped probe pins 4 having elasticity at positions corresponding to the external terminal electrodes 2 of the semiconductor device 1 is electrically connected to the probe pins 4 and the first wiring layer of the probe pins 4 6 and a base material 5 formed thereon. A metal protrusion 36 is formed at a portion where the probe pin 4 contacts the electrode 2 of the semiconductor device 1. A second metal layer 18, which is one or more metal layers made of a material having good contact characteristics according to the electrode material of the semiconductor device 1, is formed on the surface of the metal protrusion 36.
基材 5の第 1の配線層 6の上に形成された 1層以上の金属層である第 2の配線 層 1 8を有し、 金属突起 3 6表面の第 2の金属層 1 8と第 2の配線層 1 8とが分 離された構造を特徴とする。  It has a second wiring layer 18 that is one or more metal layers formed on the first wiring layer 6 of the substrate 5, and the second metal layer 18 on the surface of the metal protrusion 3 6 and the first metal layer 18. It features a structure in which the second wiring layer 18 is separated.
さらに、 半導体装置 1をキャリア基板 1 0に固定する固定手段 1 4である押さ え板 1 6と弾性材料 1 7あるいは板ばね 1 5から成るキャリア蓋と固定手段 1 4 であるキャリア蓋をキャリア基板 1 0に固定するためのフック 1 3と半導体電極 1とプローブピン 4の金属突起 3 6との位置合わせを目的としたキャリア基板 1 0の中央部に形成した貫通孔 9あるいはキャリア基板 1 0の表面に形成した位置 決め用枠 5 8を有する。  Furthermore, a carrier lid made up of a holding plate 16 that is a fixing means 14 and an elastic material 17 or a leaf spring 15 that fixes the semiconductor device 1 to the carrier substrate 10 and a carrier lid that is the fixing means 14 are used as the carrier substrate. 10 for fixing to the hook 1 3, the semiconductor electrode 1, and the metal projection 3 of the probe pin 4 3 for the purpose of alignment with the carrier substrate 10 through hole 9 formed in the center of the 0 or the carrier substrate 10 It has a positioning frame 58 formed on the surface.
次に、 第 2図 (a ) 〜 (d ) を参照しつつ、 各部位の使用材料と詳細構造に関 して説明する。  Next, the materials used and the detailed structure of each part will be described with reference to FIGS. 2 (a) to (d).
基材 5表面に形成された第 1の配線層 6は、 半導体装置 1の電極ピッチから検 査装置に接続できるピッチまで平面的にピッチ拡張されている。 基材 5は、 キヤ リァ基板 1 0の製造時の熱履歴によるピン位置精度の劣化を抑制することとバー ンイン試験時の温度差による半導体装置 1の電極 2とプローブピン 4間の位置ず れを抑制することを目的として、 半導体材料として汎用的に使用されているシリ コンと熱膨張係数の近い材料であるガラスセラミックス、 ガラス、 シリコンを使 用する。 これらの材料の中でも加工容易性と電気特性の観点からガラスセラミツ クスを使用することが好ましい。  The first wiring layer 6 formed on the surface of the substrate 5 is extended in a planar manner from the electrode pitch of the semiconductor device 1 to a pitch that can be connected to the inspection device. The base material 5 suppresses deterioration of pin position accuracy due to thermal history during the manufacture of the carrier substrate 10 and a positional shift between the electrode 2 of the semiconductor device 1 and the probe pin 4 due to a temperature difference during the burn-in test. For the purpose of suppressing this, glass ceramics, glass, and silicon, which are materials with a thermal expansion coefficient close to that of silicon that is widely used as a semiconductor material, are used. Among these materials, it is preferable to use glass ceramics from the viewpoints of processability and electrical characteristics.
第 1の配線層 6は、 製造容易性を考慮してプローブピン 4の母材部の第 1の金 属層 1 1と同一材料である N iあるいは N i系合金を用いる。 第 1の配線層 6の 幅は、 製造時にショートが発生せず、 リークも発生しないレベルである半導体装 置 1の電極 2ピッチの 5 0 %〜6 0 %とする。 厚さは、 製造容易性を考慮してプ 1 The first wiring layer 6 is made of Ni or Ni-based alloy, which is the same material as the first metal layer 11 of the base material portion of the probe pin 4 in consideration of manufacturability. The width of the first wiring layer 6 is set to 50% to 60% of the pitch of the electrodes 2 of the semiconductor device 1 at a level in which no short circuit occurs during manufacturing and no leakage occurs. The thickness is set in consideration of manufacturability. 1
ローブピン 4の第 1の金属層 1 1の厚さと同等とする。 It is equivalent to the thickness of the first metal layer 1 1 of the lobe pin 4.
第 2の配線層 1 2は、 配線部分の導電率を高めて導体損失を低減することを目 的として第 1の配線層 6の上に形成する。 材質は、 第 1の配線層 6である N i あ るいは N ί系合金と比較して体積抵抗率が小さく、 1〜4 x 10— 8 Q mの範囲の金属 (例えば、 金、 金 Z銅合金、 金ノパラジウム合金、 銅) を用いる。 形成領域は、 プローブピン 4の根元と基材 5の境界から製造時の公差 2マイクロメータ程度基 材 5側に入つた位置から第 1の配線層 6の幅から製造公差分を差し引いた幅で第 1の配線層 6の全表面に形成する。 第 1の配線層 6の幅が 1 0マイクロメータの 場合は、 8マイクロメータ幅で全面に形成する。 The second wiring layer 12 is formed on the first wiring layer 6 for the purpose of increasing the conductivity of the wiring portion and reducing the conductor loss. The material is first in the N i Oh Rui a wiring layer 6 N ί alloy with reduced volume resistivity in comparison, in the range of 1~4 x 10- 8 Q m metal (e.g., gold, gold Z Copper alloy, gold-palladium alloy, copper). The formation area is the width obtained by subtracting the manufacturing tolerance from the width of the first wiring layer 6 from the position entering the base material 5 side from the boundary between the base of the probe pin 4 and the base material 5 at a manufacturing tolerance of about 2 micrometers. It is formed on the entire surface of the first wiring layer 6. When the width of the first wiring layer 6 is 10 micrometers, it is formed on the entire surface with a width of 8 micrometers.
プローブピン 4は、 電気めつきによる製造が可能であり、 1 0 0 G P a以上の ヤング率を有する金属 (例えば、 ニッケル、 ニッケル 鉄合金、 ニッケル Zコバ ルト合金、 ニッケル マンガン合金) を材料として用いる。 幅は、 半導体装置 1 の電極 2ピッチの 5 0〜6 0 %とし、 厚さと長さは、 弾性限界領域内で所望の接 触圧力を得ることができ、 所定のオーバードライブ量 (半導体装置の電極がプロ ーブピンと接触した点を基準として半導体装置を押込む量を示す。 以下、 O D量 と記す。)を負荷した時に半導体装置 1とプローブピン 4が干渉しないことを制約 条件として決定する。  The probe pin 4 can be manufactured by electroplating and uses a metal having a Young's modulus of 100 GPa or more (for example, nickel, nickel iron alloy, nickel Z cobalt alloy, nickel manganese alloy) as a material. . The width is 50 to 60% of the electrode 2 pitch of the semiconductor device 1, and the thickness and the length can obtain a desired contact pressure within the elastic limit region, and a predetermined overdrive amount (of the semiconductor device The amount by which the semiconductor device is pushed in based on the point at which the electrode contacts the probe pin is referred to as the OD amount (hereinafter referred to as “OD amount”).
半導体装置 1の電極との接点となる金属突起 3 6の材質は、 第 2の金属層 1 8 以外の部分を第 1の金属層 1 1との密着性を考慮してプローブピン 4の母材金属 である第 1の金属層 1 1と同じ材質である N i あるいは N i系合金とする。 もち ろん、 N i と同等以上の硬度を有するその他の材料を使用することも可能である。 金属突起 3 6の幅 (W) は、 プローブピン 4の幅以下とする。 金属突起 3 6の 長さ (L 2 ) はプローブピン 4が半導体装置 1の電極 2と接触してからのプロ一 ブピン 4の先端の移動量とプローブピン 4の移動方向の位置公差、 半導体装置の 電極公差を考慮した長さを加えた寸法以上の長方形形状で形成する。 金属突起 3 6の高さ (H 2 ) は、 第 1の配線層 6の表面を基準として半導体装置 1の電極 2 が金属突起 3 6と接触してからの押込み量と金属突起 3 6の高さ公差、 半導体装 置 1の電極 2の高さ公差を考慮した高さを加えた寸法以上とする。  The material of the metal protrusion 3 6 that is a contact point with the electrode of the semiconductor device 1 is the base material of the probe pin 4 in consideration of the adhesion with the first metal layer 1 1 except for the second metal layer 1 8. Ni or Ni alloy based on the same material as the first metal layer 11 is used. Of course, other materials having a hardness equal to or higher than Ni can be used. The width (W) of the metal protrusions 3 6 should be less than the width of the probe pins 4. The length (L 2) of the metal projection 3 6 is the amount of movement of the tip of the probe pin 4 after the probe pin 4 contacts the electrode 2 of the semiconductor device 1 and the positional tolerance in the moving direction of the probe pin 4. It is formed in a rectangular shape that is longer than the dimension plus the length considering the electrode tolerance. The height (H 2) of the metal protrusion 3 6 is the amount of pressing after the electrode 2 of the semiconductor device 1 contacts the metal protrusion 3 6 with respect to the surface of the first wiring layer 6 and the height of the metal protrusion 3 6. It should be at least the dimension plus the height in consideration of the height tolerance and the height tolerance of the electrode 2 of the semiconductor device 1.
金属突起 3 6の表面形状は、 コンタク ト対象に応じて適正な構造に加工する。 半導体装置 1の電極 2が金バンプの場合は、 凹凸の無いフラッ卜な形状とする。 電気めつき終了後の表面粗さが 0 . 0 5マイクロメータ以下であれば、 フラット 形状を形成するための特別な加工は不要である。 表面粗さが、 0 . 0 5マイクロ メータ以上の場合は、表面研磨を実施する。半導体装置 1の電極 2が銅の場合は、 自然酸化皮膜が表面に存在するため、 これを突き破るために表面粗さ 1マイクロ メータ以下のレベルで微細凹凸を形成する。前記微細凹凸の形状は、第 2図 (c ) に示すようにプローブピン 4の移動方向と同一方向のみに形成する。 移動方向と 垂直方向に形成する、 碁盤目形状、 やすりの目形状、 ランダム等の様々な構造を 採ることができる。 The surface shape of the metal protrusions 36 is processed into an appropriate structure according to the contact target. When the electrode 2 of the semiconductor device 1 is a gold bump, it has a flat shape with no irregularities. If the surface roughness after electric mating is 0.05 micrometer or less, special processing for forming a flat shape is unnecessary. If the surface roughness is 0.05 micrometer or more, perform surface polishing. When the electrode 2 of the semiconductor device 1 is copper, since a natural oxide film exists on the surface, fine irregularities are formed with a surface roughness of 1 micrometer or less in order to break through this. The shape of the fine irregularities is formed only in the same direction as the moving direction of the probe pin 4 as shown in FIG. 2 (c). Various structures such as a grid shape, a file eye shape, and a random shape formed in a direction perpendicular to the moving direction can be adopted.
前記金属突起 3 6の表面には、 金属突起の酸化防止を目的として第 2の金属層 1 8が形成されている。例えば、 0 . 0 5〜 3マイクロメータの厚さで金合金( A u Z P d、 A u / C o、 A u Z C u等) を配置する。  A second metal layer 18 is formed on the surface of the metal protrusion 36 to prevent oxidation of the metal protrusion. For example, a gold alloy (AuZPd, Au / Co, AuZCu, etc.) is arranged at a thickness of 0.05 to 3 micrometers.
貫通電極 8と第 3の配線層 7を基材 5に形成し、 第 3の配線層 7を第 1の配線 層 6と貫通電極 8で接続する。これにより、裏面からのコンタクトが可能になリ、 高速検査を必要とする選別検査に対応することが可能になる。 貫通電極 8の寸法 は、 キャリア基板 1 0の外部端子ピッチにより決まる。 例えば、 0 . 5 mmピッ チの場合は、 ø 2 0 0〜3 0 0マイクロメータ、 長さ (深さ) 2 0 0〜3 0 0マ イク口メータである。 第 3の配線層 7は、 2 0マイクロメータ以下の厚さの N ί 膜とその上層に厚さ 2マイクロメータ以下の A uめっきで構成されている。 配線 幅は、 2 0 0〜3 0 0マイクロメータであり、 長さは、 0 . 5〜1 . O mmであ る。  The through electrode 8 and the third wiring layer 7 are formed on the base material 5, and the third wiring layer 7 is connected by the first wiring layer 6 and the through electrode 8. As a result, contact from the back surface becomes possible, and it becomes possible to cope with sorting inspection that requires high-speed inspection. The dimension of the through electrode 8 is determined by the external terminal pitch of the carrier substrate 10. For example, in the case of a 0.5 mm pitch, it is a ø20-300 micrometer and a length (depth) 200-300 micrometer. The third wiring layer 7 is composed of an N film having a thickness of 20 micrometers or less and an Au plating having a thickness of 2 micrometers or less on the upper layer. The wiring width is 20 to 300 micrometers, and the length is 0.5 to 1. O mm.
基材 5に形成する座ぐリ 2 1は、 プローブピン 4を独立化するために必要であ り、 基材 5の機械的強度を考慮して深さ 2 0 0マイクロメータ以上とし、 半導体 装置 1の外形サイズにプローブピン 4の長さを加えた領域に形成する。  The counterbore 21 formed on the base material 5 is necessary to make the probe pin 4 independent, and considering the mechanical strength of the base material 5, the depth is 200 micrometers or more. It is formed in the area where the length of the probe pin 4 is added to the external size of 1.
基材 5の中央部分に形成する貫通子 L 9と基材 5上面に配置する位置決め用枠 5 8は、 どちらか一方が存在すれば良い。 両者は、 半導体装置 1の電極 2とプロ一 ブピン 4の金属突起 3 6の間の位置合わせに用いる。 半導体装置 1の外形を用い て位置合わせを行う場合は、 位置決め用枠 5 8を配置する。 画像処理による位置 検出、 補正を行い、 半導体装置 1の電極 2を金属突起 3 6に搭載する場合は、 固 定手段 1 4を取り付けるまでの間の仮固定のため、 基材 5の中央部の貫通孔 9か ら負圧吸引する。 従って、 半導体装置 1の電極ピッチにより両者を使い分けるこ とになる。 しかし、 微細ピッチ領域では、 後者の光学的位置合わせを適用するこ とが好ましい。 Either one of the penetrator L 9 formed in the central portion of the base material 5 and the positioning frame 5 8 disposed on the upper surface of the base material 5 may be present. Both are used for alignment between the electrode 2 of the semiconductor device 1 and the metal protrusion 36 of the probe pin 4. When alignment is performed using the external shape of the semiconductor device 1, a positioning frame 58 is disposed. When position detection and correction are performed by image processing and the electrode 2 of the semiconductor device 1 is mounted on the metal protrusion 3 6, For temporary fixing until the fixing means 1 4 is attached, negative pressure is sucked from the through hole 9 in the center of the base material 5. Therefore, both are used properly depending on the electrode pitch of the semiconductor device 1. However, in the fine pitch region, it is preferable to apply the latter optical alignment.
固定手段 1 4となるキャリア蓋は、 第 1図に示すように、 押さえ板 1 6と弾性 材料であるエラストマ 1 7あるいは板ばね 1 5で構成されている。 押さえ板 1 6 は、 荷重が負荷された時に撓みが発生しないよう材質と厚さを決定する必要があ る。 ステンレスを使用する場合は、 1 . O mm以上とし、 ポリエーテルイミ ド、 ポリエーテルサルフォン等の樹脂材料を使用する場合は、 2 . O mm以上とする。 サイズは、 キャリア基板 1 0と同等以下である。  As shown in FIG. 1, the carrier lid serving as the fixing means 14 is composed of a pressing plate 16 and an elastomer 17 or a leaf spring 15 which is an elastic material. It is necessary to determine the material and thickness of the retainer plate 16 so that it will not bend when a load is applied. When using stainless steel, it should be 1. O mm or more. When using resin materials such as polyether imide and polyether sulfone, it should be 2. O mm or more. The size is equal to or smaller than that of the carrier substrate 10.
半導体装置 1の裏面と接触するエラストマ 1 7は、 厚さ 0 . 5〜 1 . O mm以 上のシリコーンゴムを用い、 熱履歴が負荷された後も復元性を有する材料を適用 し、 半導体装置 1の外形サイズに 1 . O mm以上加えた領域に形成する。 板ばね 1 5の材質は、 炭素鋼、 ベリリウム銅を用いる。 寸法は、 必要な加圧力により決 定する。 例えば、 2 0マイクロメータピッチ、 1 0 0 0ピンの金電極に対して本 発明のプローブを適用する場合、 O D量 5 0マイクロメータで 2 O m gの接圧が 必要であるため、 全ピンで 2 0 gの接圧が必要になる。 従って、 板ばね材質とし て炭素鋼を用いた場合、 ばね定数 0 . 3 7 8 K g Zm m、 板厚 0 . 2 mm、 幅 9 m m、 長 "! 0 mmの寸法に 7よる。  The elastomer 17 that is in contact with the back surface of the semiconductor device 1 uses a silicone rubber having a thickness of 0.5 to 1. O mm or more, and applies a material having resilience even after a thermal history is applied. It is formed in a region where 1 O mm or more is added to the external size of 1. The material of the leaf spring 15 is carbon steel or beryllium copper. The dimensions are determined by the required pressure. For example, when the probe of the present invention is applied to a gold electrode with a pitch of 20 micrometers and a pin of 1000, an OD amount of 50 micrometers and a contact pressure of 2 O mg are required. A contact pressure of 20 g is required. Therefore, when carbon steel is used as the leaf spring material, the spring constant is 0.3 7 8 K g Zm m, the plate thickness is 0.2 mm, the width is 9 mm, and the length is “!
ラッチ 1 3は、 固定手段 1 4であるキャリア蓋を落とし込むことにより、 押さ え板 1 6のエッジが勘合して固定される機能を有している。 材質は、 炭素鋼やべ リリウム銅等の金属やポリエーテルサルファン、 ポリエーテルイミド等を用いる ことができるが、 塵埃の発生を抑制するという意味で後者の樹脂材料を用いる方 が好ましい。 取り付けは、 少なくともキャリア基板 1 0の 2辺の中央部の 2箇所 に設置する。 もちろん、 2辺の対角部分に配置することも可能であるし、 3〜4 辺への配置も可能である。  The latch 13 has a function of fitting and fixing the edge of the holding plate 16 6 by dropping the carrier lid as the fixing means 14. As the material, metals such as carbon steel and beryllium copper, polyethersulfane, polyetherimide, and the like can be used, but it is preferable to use the latter resin material in order to suppress generation of dust. Attach at least two places in the center of the two sides of the carrier substrate 10. Of course, it can be arranged on the diagonal part of two sides, and can be arranged on 3-4 sides.
次に、 本発明の第 1に実施の形態の寸法について、 半導体装置 1の電極ピッチ が 2 0マイクロメータの場合を一例として説明する。  Next, the dimensions of the first embodiment of the present invention will be described by taking as an example the case where the electrode pitch of the semiconductor device 1 is 20 micrometers.
プローブピン 4の幅 Wは製造上ショートが発生しない最大の 1 0マイクロメ一 タであり、 ピン厚さ H 1は、 1回の電気めつきで形成可能である 1 0マイクロメ ータとする。 プローブピン長さ L 1は、 7 0マイクロメータの O D量をプローブ ピン 4に負荷した時に弾性限界内であり、 導体損失とクロストークノイズ最小化 のために極力短くするという条件から 4 0 0マイクロメータとする。 The width W of the probe pin 4 is the maximum 10 micrometer that does not cause a short circuit due to manufacturing. The pin thickness H1 is 10 micrometers, which can be formed with one electrical contact. The probe pin length L 1 is within the elastic limit when an OD amount of 70 μm is applied to the probe pin 4, and is 400 μm because it is as short as possible to minimize conductor loss and crosstalk noise. Use a meter.
金属突起 3 6の高さ H 2は、 半導体装置 1を 3 0マイクロメータ押込んだ時に 半導体装置 1とプローブピン 4が接触しないことと製造精度とを考慮して最小 4 0マイクロメータとする。 第 1の配線層 6の上に形成する第 2の配線層 1 2は、 プローブピン 4の根元と基材 5の境界から製造時の公差 2マイクロメータの基材 5側に入つた位置から第 1の配線層 6の全面に幅 8マイクロメータで形成する。 突起部表面に形成する第 2の金属層 1 8の長さ L 2は、 押込み量 5 0マイクロメ ータの時に第 2の金属層 1 8が半導体装置 1の電極 2に必ず接するために必要な 長さ 7マイクロメータと製造精度 ± 2マイクロメータと位置精度 ± 1マイクロメ ータを考慮して 1 0マイクロメータ以上必要である。 厚さは、 製造性を考慮して 2マイクロメータとする。  The height H2 of the metal protrusion 36 is set to a minimum of 40 micrometers in consideration of the fact that the semiconductor device 1 and the probe pin 4 do not come into contact with each other and the manufacturing accuracy when the semiconductor device 1 is pushed in by 30 micrometers. The second wiring layer 1 2 formed on the first wiring layer 6 has a manufacturing tolerance from the boundary between the base of the probe pin 4 and the base material 5 and a manufacturing tolerance of 2 micrometers. Formed on the entire surface of 1 wiring layer 6 with a width of 8 micrometers. The length L2 of the second metal layer 18 formed on the surface of the protrusion is necessary for the second metal layer 18 to be in contact with the electrode 2 of the semiconductor device 1 when the indentation amount is 50 micrometers. Considering length 7 micrometer and manufacturing accuracy ± 2 micrometer and position accuracy ± 1 micrometer, 10 micrometer or more is required. The thickness is 2 micrometers in consideration of manufacturability.
本発明では、 4 0マイクロメータピッチ以下の超微細ピッチ対応が可能である こと、 テストキャリアの部品点数が大幅に削減できること、 プローブピンの長期 信頼性を確保でき十分な実用性を有することの 3点の大きなメリッ卜を有してい る。 これらのメリットを有する理由を以下に順次説明する。  In the present invention, it is possible to cope with an ultra fine pitch of 40 micrometer pitch or less, to greatly reduce the number of parts of the test carrier, and to ensure long-term reliability of the probe pin and to have sufficient practicality. It has a big advantage. The reason for having these merits will be described sequentially below.
本発明のテス卜キャリアにおいて、 4 0マイクロメータ以下の電極ピッチに対 応可能である理由は、 主に 3点ある。 1点目は、 基材 5にガラスセラミックス、 ガラス、 シリコン等の P I (ポリイミ ドフィルム) と比較して熱膨張係数が小さ い材料を使用したことにより、 製造工程の熱履歴における精度劣化を防止できる ことである。 2点目は、 電錶技術の適用により非常に微細なピン幅で一定レベル の厚さを確保できるため十分な接圧を確保できることである。 例えば、 1 0マイ クロメータのピン幅で 1 0マイクロメータのピン厚さが形成できる。 3点目は、 マイクロマシン技術の適用によリ、 アディティブ工法によリプローブピンと基材 上の配線層を形成できることである。  There are mainly three reasons why the test carrier of the present invention can handle electrode pitches of 40 micrometers or less. The first point is that the substrate 5 is made of a material with a smaller thermal expansion coefficient than PI (polyimide film) such as glass ceramics, glass, and silicon, thereby preventing deterioration in accuracy in the thermal history of the manufacturing process. It can be done. The second point is that a sufficient level of contact pressure can be secured because a certain level of thickness can be secured with a very fine pin width by applying electrical technology. For example, a pin thickness of 10 micrometers can be formed with a pin width of 10 micrometers. The third point is that the reprobe pin and the wiring layer on the substrate can be formed by the additive method by applying micromachine technology.
部品点数が削減できる理由は 2点ある。 1点目は、 本発明は、 各々独立したリ 一ド形状のプローブピン 4の半導体装置 1の電極 2との接触面の先端部分に、 半 導体装置 1の電極 2に応じて接触特性の良い金属層を形成しているため、 低接触 圧力で安定した接触特性を確保できる。 従って、 接触を確保するための O D量を 小さくできるため、 固定手段 1 4であるキャリア蓋構造を大幅に簡略化できる。 例えば、 2 0マイクロメータピッチで幅 1 0マイクロメータ、 厚さ 1 0マイク 口メータのプローブピン 4を用い、 半導体装置 1の電極材料が金/くンプの場合、 O D量 1 0マイクロメータ、 3 0 (マイクロ); ピンという接触条件で良好 な接触を得ることができる。 このため、 半導体装置 1とテストキャリア間の平行 度とプローブピン先端の金属突起 3 6の高さばらつきを考慮して、 O D量を 3 0 マイクロメータに設定できる。 従来では、 高い接圧が必要であるため固定手段と なるキャリア蓋にばねを数本配置した構造を採っていた。 しかし、 本発明の固定 手段 1 4である蓋構造は、 支持部材である押さえ板 1 6とエラストマ 1 7あるい は板ばね 1 6の 2つの部品で構成することが可能である。 There are two reasons why the number of parts can be reduced. The first point of the present invention is that each of the independent lead-shaped probe pins 4 includes a semi- Since a metal layer with good contact characteristics is formed according to the electrode 2 of the conductor device 1, stable contact characteristics can be secured at low contact pressure. Therefore, since the amount of OD for ensuring contact can be reduced, the carrier lid structure as the fixing means 14 can be greatly simplified. For example, if the probe pin 4 of the 20 micrometer pitch, width 10 micrometer, thickness 10 micrometer is used, and the electrode material of the semiconductor device 1 is gold / compress, the OD amount is 10 micrometer, 3 0 (micro); Good contact can be obtained under the contact condition of a pin. Therefore, the OD amount can be set to 30 micrometers in consideration of the parallelism between the semiconductor device 1 and the test carrier and the height variation of the metal protrusion 36 at the tip of the probe pin. Conventionally, since a high contact pressure is required, a structure has been adopted in which several springs are arranged on the carrier lid as a fixing means. However, the lid structure, which is the fixing means 14 of the present invention, can be composed of two parts: a pressing plate 16 that is a supporting member and an elastomer 17 or a leaf spring 16.
2点目は、 本構成のプローブピン 4は、 各々独立して変形可能である。 このた め、 プローブピン 4の先端部分の金属突起 3 6の高さばらつきや半導体装置 1 と テストキャリア間の平行度ばらつきをプローブピン 4自身で吸収することができ る。 従って、 従来のバンプ付メンブレンシートを使用したキャリアのように、 メ ンブレンシート下面へのエラストマの配置が不要になり、 シート、 エラストマ、 ベースの 3点構成の部品をキャリア基板 1 0の 1点で構成することができる。 こ の結果、 部品点数減によるコスト削減を図ることができる。  Second, the probe pins 4 of this configuration can be independently deformed. Therefore, the probe pin 4 itself can absorb the height variation of the metal protrusion 36 at the tip of the probe pin 4 and the parallelism variation between the semiconductor device 1 and the test carrier. Therefore, there is no need to place an elastomer on the lower surface of the membrane sheet as in the case of a carrier using a conventional membrane sheet with bumps, and a three-point component consisting of a sheet, elastomer, and base is placed on one point on the carrier substrate 10. Can be configured. As a result, the cost can be reduced by reducing the number of parts.
プローブピンの長期信頼性が確保できる理由は、 半導体装置 1の電極 2に接触 する面に形成する第 2の金属層 1 8と第 1の配線層 6の上に形成する第 2の配線 層 1 2とを分離し、 第 2の金属層 1 8を除くプローブピン 4を単一の弾性材料と する構造を採ったためである。  The reason why the long-term reliability of the probe pin can be secured is that the second wiring layer 1 formed on the second metal layer 18 and the first wiring layer 6 formed on the surface in contact with the electrode 2 of the semiconductor device 1 This is because the probe pin 4 except for the second metal layer 18 is separated into a single elastic material.
また、金属突起 3 6を半導体装置 1の電極 2との接触部分に設けることにより、 半導体装置 1を固体手段 1 4により加圧したときに、 半導体装置 1の電極 2部分 のみを金属突起 3 6と接触させることができる。 金属突起 3 6を設けないあるい は厚さの小さい金属層を設ける場合、 半導体装置 1の電極 2部分以外にプローブ ピン 4が接触するため接圧が減少する。 このため、 O D量の増加を招き、 仮に初 期接触を確保できたとしても長期信頼性の劣化に繋がる。 従って、 金属突起 3 6 を設けることは、 小さい O D量で安定接触を実現でき、 長期信頼性を維持できる 非常に有効な手段である。 Also, by providing the metal protrusion 3 6 at the contact portion of the semiconductor device 1 with the electrode 2, when the semiconductor device 1 is pressurized by the solid means 14, only the electrode 2 portion of the semiconductor device 1 is exposed to the metal protrusion 3 6. Can be contacted with. When the metal protrusion 3 6 is not provided or a metal layer with a small thickness is provided, the contact pressure is reduced because the probe pin 4 is in contact with the portion other than the electrode 2 portion of the semiconductor device 1. For this reason, the amount of OD increases, and even if initial contact can be secured, it will lead to deterioration of long-term reliability. Therefore, metal protrusion 3 6 This is a very effective means that can achieve stable contact with a small amount of OD and maintain long-term reliability.
次に、 プローブ部のその他の構造例について第 3図を用いて説明する。  Next, other structural examples of the probe section will be described with reference to FIG.
第 2図のプロ一ブ構造と異なる点は、 第 1の配線層 6と基材 5の間に第 3の金 属層 1 9を備えている点である。 第 3の金属層 1 9は、 第 1の配線層 6である N i あるいは N i系合金と比較して体積抵抗率が小さく、 1〜4 x 10— 8 Q mの範囲の 金属 (例えば、 金、 金/銅合金、 金/パラジウム合金、 銅) を材料として用いる。 本構造により、 第 2図のプローブ構造と比較して更に高い導電性を獲得できる。 このため、 高速信号伝送時の導体損失を小さくすることができ、 飛躍的な信号透 過特性向上を図ることができる。 なお、 本構造は、 1 G H z以上の信号伝送が必 要な場合に有効である。 1 G H z以下の場合は、 第 2図のプローブ部構造で十分 な信号伝送特性を得ることができる。 The difference from the probe structure of FIG. 2 is that a third metal layer 19 is provided between the first wiring layer 6 and the base material 5. The third metal layer 1 9, first low volume resistivity compared to N i or N i based alloy which is a wiring layer 6, in the range of 1~4 x 10- 8 Q m metal (e.g., Gold, gold / copper alloy, gold / palladium alloy, copper) are used as materials. With this structure, higher conductivity can be obtained compared to the probe structure of FIG. For this reason, the conductor loss during high-speed signal transmission can be reduced, and the signal transmission characteristics can be dramatically improved. This structure is effective when signal transmission of 1 GHz or higher is required. In the case of 1 GHz or less, sufficient signal transmission characteristics can be obtained with the probe structure shown in Fig. 2.
(第 2の実施の形態)  (Second embodiment)
第 4図 (a ) 〜 (c ) は、 本発明の第 2の実施の形態のテストキャリア構造を 示す図である。  FIGS. 4 (a) to (c) are diagrams showing a test carrier structure according to the second embodiment of the present invention.
本実施の形態は、 半導体装置の電極が、 千鳥配置の場合のキャリア基板構造を 示している。 半導体装置の外部電極の配置が千鳥配置の場合、 第 2図のキャリア 基板構造を適用すると、 内周電極に対応するプローブピン 4の長さ L 3と外周電 極に対応するプローブピン 4の長さ L 4が異なるため、 プローブピン 4の接圧が 異なる。 すなわち、 内周電極に対応するプローブピン 4の方が外周電極に対応す るプローブピン 4よりもピン長さが長くなリ、 内周電極に対応するプローブピン 4の接圧が小さくなる。 従って、 外周電極に対して良好な接触が得られたとして も、 内周電極に対しては接圧不足による高抵抗が発生する可能性がある。  This embodiment shows a carrier substrate structure when the electrodes of a semiconductor device are in a staggered arrangement. When the arrangement of the external electrodes of the semiconductor device is a staggered arrangement, the length of the probe pin 4 corresponding to the inner peripheral electrode L3 and the length of the probe pin 4 corresponding to the outer peripheral electrode when the carrier substrate structure shown in Fig. 2 is applied. L 4 is different, so the contact pressure of probe pin 4 is different. That is, the probe pin 4 corresponding to the inner peripheral electrode has a longer pin length than the probe pin 4 corresponding to the outer peripheral electrode, and the contact pressure of the probe pin 4 corresponding to the inner peripheral electrode is reduced. Therefore, even if good contact is obtained with respect to the outer peripheral electrode, high resistance due to insufficient contact pressure may occur with respect to the inner peripheral electrode.
逆に、 内周電極に対して良好な接触が得られる押込み量に設定した場合、 外周 電極に対する接圧が高くなる。 この結果、 繰り返しプロ一ビングによるプローブ ピン 4の根元に作用する応力により、 外周電極に対応するプローブピン 4の寿命 が短くなるという可能性が考えられる。 そこで、 第 4図 (b ) に示すように、 内 周電極に対応するプローブピン根元部分 2 2の金属層の幅を大きくし、 突出した 形状とする。 あるいは、 第 4図 (c ) に示すように、 内周電極に対応するプロ一 ブピン 4の基材部分を座ぐリ方向に突出した構造 23を採る。 これにより、 内周 電極と外周電極両者に対応するプローブピン 4のピン長さ L 3とし 4を同一の長 さにし、 接圧を均一に保つことを可能にする。 本実施の形態により、 内外周電極 両者に対応するプローブピン 4の接触信頼性を比較的容易に均一に維持すること ができる。 On the other hand, when the pressing amount is set so as to obtain good contact with the inner peripheral electrode, the contact pressure with respect to the outer peripheral electrode becomes high. As a result, there is a possibility that the life of the probe pin 4 corresponding to the outer peripheral electrode is shortened by the stress acting on the base of the probe pin 4 due to repeated probing. Therefore, as shown in FIG. 4 (b), the width of the metal layer of the probe pin base portion 22 corresponding to the inner peripheral electrode is increased to have a protruding shape. Alternatively, as shown in FIG. 4 (c), a pro A structure 23 projecting in the direction of sitting on the base material part of the buppin 4 is adopted. As a result, the pin length L 3 of the probe pin 4 corresponding to both the inner peripheral electrode and the outer peripheral electrode is set to the same length, and the contact pressure can be kept uniform. According to the present embodiment, the contact reliability of the probe pins 4 corresponding to both the inner and outer peripheral electrodes can be maintained relatively easily and uniformly.
本実施の形態では、半導体装置の電極の配置が千鳥配置の場合を取り上げたが、 3列、 4列といつた別の電極配置の場合においても同様の手法をとることができ る。  In the present embodiment, the case where the arrangement of the electrodes of the semiconductor device is a staggered arrangement has been taken up, but the same technique can be adopted in the case of another arrangement of electrodes such as three rows or four rows.
(キャリア基板の製造方法)  (Carrier substrate manufacturing method)
次に、 第 1図及び 2に示す本発明のテストキャリアに使用するキャリア基板構 造の製造方法について、 第 5図及び 6を参照して詳細に説明する。  Next, a manufacturing method of the carrier substrate structure used in the test carrier of the present invention shown in FIGS. 1 and 2 will be described in detail with reference to FIGS.
基材 5として所望寸法を有するガラスセラミックス、 ガラス等の絶縁性材料を 準備し、 チップサイズにプローブピン長さを加えた領域に深さ 200マイクロメ ータ以上で座ぐリ部分 2 1を形成する (第 5図 (a) (b) 参照)。  Prepare an insulating material such as glass ceramics or glass with the desired dimensions as the base material 5, and form a seating part 21 that sits at a depth of 200 micrometers or more in the area of the chip size plus the probe pin length (See Fig. 5 (a) and (b)).
基材 5の所望寸法とは、 デバイスのパッケージサイズと同等である。 例えば、 64Mフラッシュメモリ (P D 29 F064 1 1 5) の場合は、 外形サイズ 1 2 X 2 Omm, 外周部の端子ピッチ 0. 5mmに形成する。 既存デバイスのパッケ —ジサイズと同等の外形サイズにすることにより、 従来の検査装置をそのまま流 用することができる。 このため、 コスト低減を図ることができる。  The desired dimensions of the substrate 5 are equivalent to the device package size. For example, in the case of a 64M flash memory (P D 29 F064 1 1 5), the outer size is 1 2 X 2 Omm and the outer peripheral terminal pitch is 0.5 mm. By using an external size equivalent to the package size of existing devices, conventional inspection equipment can be used as is. For this reason, cost reduction can be achieved.
この後、 355 nm波長のハイパワー L D (Laser Diode) 励起タイプの Y AG (Yttrium Aluminium Garnet)レーザあるし、は R I E (Reactive Ion Etching) に より、貫通孔 24を φ 200マイクロメータ、深さ 270マイクロメータ以上の領 域に形成する (第 5図 (c) 参照)。  After this, there is a YAG (Yttrium Aluminum Garnet) laser of 355 nm wavelength high-power LD (Laser Diode) excitation type, or RIE (Reactive Ion Etching). It is formed in an area larger than a micrometer (see Fig. 5 (c)).
次に、 プラズマ CVD (Chemical Vapor Deposition) 法あるいはスパッタ法を 用いて銅のシード層 25を 1 00〜 300 nmの厚さで全面に膜付けを実施する (第 5図 (d) 参照)。 この後、 座ぐリ部分 2 1 と貫通孔 24部分に電気めつきに より、 犠牲層 26としての銅層を完全に充填する (第 5図 (e) 参照)。  Next, a copper seed layer 25 is formed on the entire surface with a thickness of 100 to 300 nm by plasma CVD (Chemical Vapor Deposition) or sputtering (see Fig. 5 (d)). After that, the copper layer as the sacrificial layer 26 is completely filled by electrical contact with the countersink part 21 and the through-hole 24 part (see Fig. 5 (e)).
孔内を完全充填する場合、 当然ながら表面上に数マイク口メータ〜数十マイク 口メータの銅層が堆積するため、 銅めつき完了後に CMP (Chemical Mechanical Polishing)法により、表面に堆積する銅層を除去してフラッ卜な状態を形成する。 引続いて、 犠牲層 26および貫通電極 8の露出している表面に 0. 3マイクロ メータ程度の厚さの銅シード層 25を成膜し、 この面にレジス卜 28を 20マイ クロメータの厚さで接着あるいは塗布する。 その後、 露光、 現像のフォトリソグ ラフィーを用いてプローブピン 4および第 1の配線層 6にあたる部分のレジスト 28が除去された形状を形成する (第 5図 (f ) 〜 (h) 参照)。 When the hole is completely filled, naturally, a copper layer of several to several tens of meters is deposited on the surface, so CMP (Chemical Mechanical The copper layer deposited on the surface is removed by a polishing method to form a flat state. Subsequently, a copper seed layer 25 having a thickness of about 0.3 μm was formed on the exposed surface of the sacrificial layer 26 and the through electrode 8, and a resistor 28 was added to the thickness of the 20 micrometer on this surface. Glue or apply with. Thereafter, a shape in which the resist 28 in the portion corresponding to the probe pin 4 and the first wiring layer 6 is removed is formed using photolithography of exposure and development (see FIGS. 5 (f) to (h)).
そして、 この凹部に電解めつきにより弾性を有する第 1の金属層 1 1と第 1の 配線層 6を成長させる (第 5図 ( ί ) 参照)。  Then, a first metal layer 11 and a first wiring layer 6 having elasticity are grown in this recess by electroplating (see FIG. 5 (ί)).
引続いて、 レジスト 28と金属面が同一平面になるように研磨を行い、 その表 面に 20マイクロメータ厚さのレジスト 28を塗布、 露光、 現像を行い、 金属突 起 36を形成する領域に凹部を形成する (第 5図 (j ) 〜 (k) 参照)。  Subsequently, the resist 28 and the metal surface are polished so that they are flush with each other, and a 20 micrometer-thick resist 28 is applied to the surface, exposed, and developed, so that the metal protrusion 36 is formed. A recess is formed (see Fig. 5 (j) to (k)).
次に、 この凹部に第 1の金属層 1 1をめつきにより形成する (第 5図 ( I ) 参 照)。 さらに、 このプロセスを 2回繰り返すことにより、 高さ 40マイクロメータ 以上の金属突起 36を確保できる。 なお、 40マイクロメータ以上の金属突起 3 6の高さが必要な場合は、 凹部形成とめつきによる埋め込みのプロセスを繰り返 すことにより、 順次高さを積み上げることができる。  Next, the first metal layer 11 is formed in this recess by staking (see FIG. 5 (I)). Furthermore, by repeating this process twice, a metal protrusion 36 having a height of 40 micrometers or more can be secured. In addition, when the height of the metal protrusion 36 or more of 40 micrometers or more is required, the height can be increased sequentially by repeating the process of embedding by forming the recess and fitting.
次に、 突起部表面を研磨する工程に入るが、 この段階でコンタクト対象すなわ ち半導体装置 1の電極材料に応じて加工方法を使い分ける。 コンタク卜対象が金 電極あるいは金パ、ンプの場合、 CMP (Chemical Mechanical Polishing) 加工に よる研磨を実施し、 表面粗さが 0. 05マイクロメータ以下のレベルを確保する ように処理を行う。 銅電極あるいは銅バンプの場合は、 CM P加工を実施した後 に金属突起表面層に 0. 1〜0. 7マイクロメータの凹凸構造を設ける。  Next, the process of polishing the surface of the protruding portion is started. At this stage, the contact method is used, and the processing method is selected according to the electrode material of the semiconductor device 1. When the contact target is a gold electrode or a gold bump, the surface is polished by CMP (Chemical Mechanical Polishing) to ensure that the surface roughness is 0.05 micrometer or less. In the case of copper electrodes or copper bumps, a concavo-convex structure of 0.1 to 0.7 micrometers is provided on the metal protrusion surface layer after the CMP process.
凹凸形成方法の一例を説明する。 微細金属粒子を有する #2000のラッピン グシート (研磨紙) を準備し、 これをプローブピンの移動方向にプローブピン 4 の先端から 300マイクロメータの間の領域で 50回程度移動させる。 このよう にして、 0. 1〜0. 7マイクロメータの凹凸構造を設けることができる。 他の 凹凸形成方法として、 適正な空孔率を有するセラミック材料や適正な凹凸を事前 に形成したシリコン基板を用いることも可能である。  An example of the unevenness forming method will be described. Prepare a # 2000 wrapping sheet (abrasive paper) with fine metal particles, and move it about 50 times in the region between the tip of probe pin 4 and 300 micrometers in the direction of probe pin movement. In this way, an uneven structure of 0.1 to 0.7 micrometers can be provided. As another method for forming irregularities, it is also possible to use a ceramic material having an appropriate porosity or a silicon substrate on which appropriate irregularities are formed in advance.
凹凸形状は、 プロ一ブピン 4の移動方向のみで無く、 移動方向と垂直方向、 碁 盤目形状、 斜め形状、 やすりの目形状やランダム形状等の様々な形成を採ること ができる。 この微細凹凸により、 銅表面の自然酸化膜を突き破り安定した接触を 実現できる。 、 The uneven shape is not only the direction of movement of the probe pin 4, but also the direction perpendicular to the movement direction. Various formations such as a board shape, an oblique shape, a file eye shape, and a random shape can be adopted. This fine unevenness can break through the natural oxide film on the copper surface and achieve stable contact. ,
引続いて、 レジスト 2 8を塗布し、 露光、 現像により凹部を形成し、 第 2の金 属層 1 8をめつきにより 0 . 0 1マイクロメータ以上の厚さで成膜する。 これに より、 第 1の金属層 1 1である N i あるいは N ί合金上の酸化膜の影響を排除す ることができる。 このため、 より安定した接触を実現できる。  Subsequently, a resist 28 is applied, a recess is formed by exposure and development, and a second metal layer 18 is formed to a thickness of 0.01 micrometer or more by plating. As a result, the influence of the oxide film on the Ni or N alloy, which is the first metal layer 11, can be eliminated. For this reason, more stable contact can be realized.
この工程が終了した段階でキャリア基板裏面の加工を行う。 まず、 グラインダ —を用いて基材 5の厚さが 2 5 0マイクロメータ程度になるまで薄型化する。 必 要に応じてダメージ層を除去するためにドライエッチングを実施する (第 5図 (m) 〜 (n )、 第 6図 (a ) 〜 (b ) 参照)。  When this step is completed, the back surface of the carrier substrate is processed. First, using a grinder, thin the substrate 5 until the thickness of the substrate 5 reaches about 2500 micrometers. If necessary, dry etching is performed to remove the damaged layer (see FIGS. 5 (m) to (n) and FIGS. 6 (a) to (b)).
次に、 貫通電極が露出した裏面全面にスパッタにより 0 . 3マイクロメータ程 度の銅シ一ド層 2 5を形成する。 この表面に 2 0マイクロメータの厚さのレジス ト 2 8を塗布し、 露光、 現像により第 2の配線層 7にあたる部分のレジスト 2 8 が除去された凹部形状を形成する。 凹部に 5〜 1 5マイクロメータ厚の N i ある いは N i合金を電気めつきにより形成する (第 6図 (c ) 〜 (d ) 参照)。  Next, a copper seed layer 25 of about 0.3 micrometers is formed on the entire back surface where the through electrode is exposed by sputtering. A resist 28 having a thickness of 20 micrometers is applied to the surface, and a concave shape is formed by removing the resist 28 corresponding to the second wiring layer 7 by exposure and development. A Ni or Ni alloy having a thickness of 5 to 15 micrometers is formed in the recess by electroplating (see Fig. 6 (c) to (d)).
引続いて、 表層に無電解めつきにより A uあるいは A u合金めつきを 0 . 0 1 マイクロメータ以上の厚さで形成する。次に、表面のレジス卜層、シ一ド層を各々 ウエットエッチング、 ミリングにより除去し、 裏面のレジスト層、 シード層も同 様の手法で除去する。 最後に、 犠牲層をウエットエッチングで除去することによ リ、 コンタクト対象に応じて接触特性の良い材料と構造を有する金属突起部形状 を先端に備えたプローブピンと金属突起 3 6の表面の第 2の金属層 1 8と第 1の 配線層 6の表層に形成する第 2の配線層 1 2が分離されたキヤリァ基板構造を得 ることができる (第 6図 (e ) 〜 (m) 参照)。 産業上の利用可能性  Subsequently, an Au or Au alloy plating is formed on the surface layer by electroless plating with a thickness of not less than 0.01 micrometer. Next, the resist layer and seed layer on the front surface are removed by wet etching and milling, respectively, and the resist layer and seed layer on the back surface are also removed in the same manner. Finally, the sacrificial layer is removed by wet etching, so that the second surface of the surface of the probe pin and the metal protrusion 36 having a metal protrusion shape having a material and a structure having good contact characteristics according to the contact target is provided. A carrier substrate structure in which the metal layer 18 and the second wiring layer 12 formed on the surface layer of the first wiring layer 6 are separated can be obtained (see FIGS. 6 (e) to (m)). . Industrial applicability
本発明のテストキャリアは、 従来のキャリアと比較すると部品点数削減による 飛躍的な低コスト化を可能にした構造である。 また、 本発明のテストキャリアを 用いることにより、 4 0マイクロメータピッチ以下の微細ピッチ電極を有する半 導体装置をベアチップの状態でパッケージ品と同等の選別、 バーンイン検査を実 施することが可能となる。 従って、 ベアチップを用いた S i p (System i n a Package) として好適に利用することができる。 The test carrier of the present invention has a structure that enables a dramatic reduction in cost by reducing the number of parts compared to a conventional carrier. In addition, by using the test carrier of the present invention, a semiconductor device having a fine pitch electrode having a pitch of 40 micrometers or less is used. Conductor devices can be sorted and burned-in in the bare chip state equivalent to package products. Therefore, it can be suitably used as a Sip (System ina Package) using a bare chip.

Claims

1 . 半導体装置をベアチップの状態で保持して検査装置に電気的に接続する ことにより、 検査を実施するためのテス卜キャリアにおいて、 1. In a test carrier for carrying out an inspection by holding the semiconductor device in a bare chip state and electrically connecting it to the inspection device,
前記半導体装置の外部電極に対応した位置に設けられた弾性を有するプローブ ピンと、 fa.  An elastic probe pin provided at a position corresponding to the external electrode of the semiconductor device; and fa.
前記プローブピンと電気的に接続され、かつ基材に形成された第 1の配線層と、 前記プローブピンが前記半導体装置のの外部電極と接触する部分に形成された金 属突起と、 一  A first wiring layer electrically connected to the probe pin and formed on a substrate; a metal protrusion formed on a portion where the probe pin contacts an external electrode of the semiconductor device;
前記金属突起の表面に形成された金属層と、 囲  A metal layer formed on a surface of the metal protrusion;
前記第 1の配線層上に形成された第 2の配線層とを有し、  A second wiring layer formed on the first wiring layer,
前記金属層と前記第 2の配線層とが分離されていることを特徴とするテストキ ャリア。  A test carrier characterized in that the metal layer and the second wiring layer are separated.
2 . 前記半導体装置を前記基材に固定するための固定手段を設けたことを特 徴とする請求項 1に記載のテス卜キャリア。 2. The test bag carrier according to claim 1, further comprising a fixing means for fixing the semiconductor device to the base material.
3 . 前記金属層は、 前記半導体装置の外部電極の材料に応じた接触特性を有 することを特徴とする請求項 1に記載のテストキャリア。 3. The test carrier according to claim 1, wherein the metal layer has contact characteristics according to a material of an external electrode of the semiconductor device.
4 . 前記基材の表面と裏面の間を貫通する貫通電極と前記基材の裏面に形成 された第 3の配線層とを有し、 貫通電極を介して第 1の配線層と第 3の配線層と が電気的に接続されていることを特徴とする請求項 1に記載のテス卜キャリア。 4. A through electrode penetrating between the front surface and the back surface of the base material and a third wiring layer formed on the back surface of the base material, and the first wiring layer and the third wiring layer are formed through the through electrode. 2. The test carrier according to claim 1, wherein the wiring layer and the wiring layer are electrically connected.
5 . 前記第 2の配線層の体積抵抗率は、 前記第 1の配線層の体積抵抗率よリ 小さいことを特徴とする請求項 1に記載のテス卜キャリア。 5. The test carrier according to claim 1, wherein a volume resistivity of the second wiring layer is smaller than a volume resistivity of the first wiring layer.
6 . 前記第 1の配線層と前記基材との間に他の金属層を形成したことを特徴 とする請求項 1に記載のテストキャリア。 6. Another metal layer is formed between the first wiring layer and the substrate. The test carrier according to claim 1.
7 . 前記他の金属層体積抵抗率は、 前記第 1の配線層の体積抵抗率よリ小さ いことを特徴とする請求項 6に記載のテストキャリア。 7. The test carrier according to claim 6, wherein the volume resistivity of the other metal layer is smaller than the volume resistivity of the first wiring layer.
8 . 前記金属突起の形成領域が、 幅方向はプローブピンの幅以下とし、 長さ方向はプローブピンが半導体装置の外部電極と接触してからのプローブピ ン先端の移動量とプローブピンの長手方向の位置公差及び半導体装置の外部電極 公差を考慮した長さを加えた寸法以上の長方形形状であり、 8. The metal protrusion formation area has a width direction that is less than or equal to the probe pin width, and the length direction is the amount of movement of the probe pin tip and the probe pin longitudinal direction after the probe pin contacts the external electrode of the semiconductor device. It is a rectangular shape that is more than the dimension plus the length considering the position tolerance and external electrode tolerance of the semiconductor device,
高さは第 1の配線層の表面を基準として半導体装置の外部電極が金属突起と接 触してからの押込み量と金属突起の高さ公差及び半導体装置の外部電極の高さ公 差を考慮した高さを加えた寸法以上としたことを特徴とする請求項 1に記載のテ ストキヤリア。  The height is based on the surface of the first wiring layer, and the amount of indentation after the external electrode of the semiconductor device contacts the metal protrusion, the height tolerance of the metal protrusion, and the height tolerance of the external electrode of the semiconductor device are taken into account 2. The test carrier according to claim 1, wherein the test carrier has a dimension equal to or greater than a height obtained by adding the measured height.
9 . 前記半導体装置の外部電極が単列周辺配置以外の配置の場合、 前記半導 体装置の各々の外部電極に対応するプローブピンの長さが同じであることを特徴 とする請求項 1に記載のテス卜キヤリァ。 9. The length of the probe pin corresponding to each external electrode of the semiconductor device is the same when the external electrode of the semiconductor device is arranged other than the single row peripheral arrangement. The test carrier described.
1 0 . 前記半導体装置の外部電極が単列周辺配置以外の配置の場合、 前記半 導体装置の中心側に存在する外部電極に対応するプローブピンの根元部分の基材 が突出した形状を有することを特徴とする請求項 9に記載のテストキャリァ。 10. When the external electrode of the semiconductor device is arranged other than the single row peripheral arrangement, the base of the base portion of the probe pin corresponding to the external electrode existing on the center side of the semiconductor device has a protruding shape. The test carrier according to claim 9, wherein:
1 1 . 前記半導体装置の外部電極が単列周辺配置以外の配置の場合、 前記半 導体装置の中心側に存在する外部電極に対応するプローブピンの根元部分と基材 上の第 1の配線層の幅が前記半導体装置の外側に存在する外部電極に対応するプ ローブピンと第 1の配線層の両者の幅より広く、 かつ突出した形状であることを 特徴とする請求項 9記載のテス卜キャリア。 1 1. When the external electrode of the semiconductor device is arranged other than the single-row peripheral arrangement, the probe pin root portion corresponding to the external electrode existing on the center side of the semiconductor device and the first wiring layer on the substrate 10. The test carrier according to claim 9, wherein the width of the test piece is wider than both the probe pin corresponding to the external electrode existing outside the semiconductor device and the first wiring layer, and has a protruding shape. .
1 2 . 前記金属突起表面の金属層が、 金合金金属から成ることを特徴とする 請求項 1に記載のテス卜キャリア。 1 2. The metal layer on the surface of the metal protrusion is made of a gold alloy metal. The test carrier according to claim 1.
1 3 . 前記金属突起表面の金属層が、 微細凹凸形状を有することを特徴とす る請求項 1に記載のテス卜キャリア。 13. The test carrier according to claim 1, wherein the metal layer on the surface of the metal protrusion has a fine uneven shape.
1 4 . 前記微細凹凸形状が、 前記プローブピンの移動方向と同一方向のみに 形成されていることを特徴とする請求項 1 3に記載のテストキャリア。 14. The test carrier according to claim 13, wherein the fine uneven shape is formed only in the same direction as the moving direction of the probe pin.
1 5 . 前記微細凹凸形状が、 前記プローブピンの移動方向と垂直方向のみに 形成されていることを特徴とする請求項 1 3に記載のテストキャリア。 15. The test carrier according to claim 13, wherein the fine uneven shape is formed only in a direction perpendicular to a moving direction of the probe pin.
1 6 . 前記微細凹凸形状が、 碁盤目形状、 やすりの目形状またはランダムな 形状に形成されていることを特徴とする請求項 1 3に記載のテストキヤリァ。 16. The test carrier according to claim 13, wherein the fine uneven shape is formed in a grid shape, a file shape, or a random shape.
1 7 . 前記微細 ω凸形状が、 表面粗さ 1マイクロメータ以下の凹凸形状であ ることを特徴とする請求項 1 3から 1 6のいずれか一つに記載のテストキャリア。 17. The test carrier according to any one of claims 13 to 16, wherein the fine ω-convex shape is an uneven shape having a surface roughness of 1 micrometer or less.
1 8 . 前記基材の中央部分に貫通孔を有することを特徴とする請求項 1に記 載のテストキャリア。 18. The test carrier according to claim 1, wherein a through hole is provided in a central portion of the base material.
1 9 . 前記貫通孔の形状が、 前記プローブピンの根元部分の開口径と同一あ るいは小さいことを特徴とする請求項 1 8に記載のテス卜キヤリァ。 19. The test carrier according to claim 18, wherein a shape of the through hole is the same as or smaller than an opening diameter of a base portion of the probe pin.
PCT/JP2005/016691 2004-09-06 2005-09-06 Test carrier WO2006028238A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006535858A JP4955395B2 (en) 2004-09-06 2005-09-06 Test carrier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004258510 2004-09-06
JP2004-258510 2004-09-06

Publications (1)

Publication Number Publication Date
WO2006028238A1 true WO2006028238A1 (en) 2006-03-16

Family

ID=36036517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016691 WO2006028238A1 (en) 2004-09-06 2005-09-06 Test carrier

Country Status (2)

Country Link
JP (1) JP4955395B2 (en)
WO (1) WO2006028238A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010537187A (en) * 2007-08-17 2010-12-02 アドバンスト マイクロ デバイシズ,インコーポレイテッド Multi-site probe
WO2013183479A1 (en) * 2012-06-05 2013-12-12 株式会社アドバンテスト Test carrier
JP5844972B2 (en) * 2008-05-16 2016-01-20 日本特殊陶業株式会社 Ceramic substrate, probe card, and method for manufacturing ceramic substrate
US10912825B2 (en) 2012-05-16 2021-02-09 Kj Biosciences Llc Influenza vaccines

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59141239A (en) * 1983-01-31 1984-08-13 Fujitsu Ltd Prober for measuring integrated circuit
JPH0927524A (en) * 1995-07-03 1997-01-28 Motorola Inc Contact structure for electrically connecting inspection board to die and connection method
JP2001313316A (en) * 2000-04-28 2001-11-09 Fujikura Ltd Bump electrode, its manufacturing method, and electronic component inspection apparatus
JP2001326259A (en) * 2000-05-18 2001-11-22 Advantest Corp Probe card and method of production
JP2002509604A (en) * 1996-05-17 2002-03-26 フォームファクター,インコーポレイテッド Contact tip structure for microelectronic interconnect elements and method of making same
JP2002243795A (en) * 2001-02-15 2002-08-28 Mitsubishi Electric Corp Bare chip carrier and manufacturing method for semiconductor device
JP2003185676A (en) * 2001-12-17 2003-07-03 Yamaha Corp Probe unit
JP2003185674A (en) * 2001-10-11 2003-07-03 Yamaha Corp Probe unit and manufacturing method thereof
JP2003338669A (en) * 2002-03-11 2003-11-28 North:Kk Wiring board, manufacturing method therefor and measuring device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59141239A (en) * 1983-01-31 1984-08-13 Fujitsu Ltd Prober for measuring integrated circuit
JPH0927524A (en) * 1995-07-03 1997-01-28 Motorola Inc Contact structure for electrically connecting inspection board to die and connection method
JP2002509604A (en) * 1996-05-17 2002-03-26 フォームファクター,インコーポレイテッド Contact tip structure for microelectronic interconnect elements and method of making same
JP2001313316A (en) * 2000-04-28 2001-11-09 Fujikura Ltd Bump electrode, its manufacturing method, and electronic component inspection apparatus
JP2001326259A (en) * 2000-05-18 2001-11-22 Advantest Corp Probe card and method of production
JP2002243795A (en) * 2001-02-15 2002-08-28 Mitsubishi Electric Corp Bare chip carrier and manufacturing method for semiconductor device
JP2003185674A (en) * 2001-10-11 2003-07-03 Yamaha Corp Probe unit and manufacturing method thereof
JP2003185676A (en) * 2001-12-17 2003-07-03 Yamaha Corp Probe unit
JP2003338669A (en) * 2002-03-11 2003-11-28 North:Kk Wiring board, manufacturing method therefor and measuring device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010537187A (en) * 2007-08-17 2010-12-02 アドバンスト マイクロ デバイシズ,インコーポレイテッド Multi-site probe
JP5844972B2 (en) * 2008-05-16 2016-01-20 日本特殊陶業株式会社 Ceramic substrate, probe card, and method for manufacturing ceramic substrate
US10912825B2 (en) 2012-05-16 2021-02-09 Kj Biosciences Llc Influenza vaccines
WO2013183479A1 (en) * 2012-06-05 2013-12-12 株式会社アドバンテスト Test carrier
TWI479164B (en) * 2012-06-05 2015-04-01 Advantest Corp Test vehicle
KR101561451B1 (en) * 2012-06-05 2015-10-19 가부시키가이샤 아드반테스트 Test carrier
JPWO2013183479A1 (en) * 2012-06-05 2016-01-28 株式会社アドバンテスト Test carrier
US9702901B2 (en) 2012-06-05 2017-07-11 Advantest Corporation Test carrier

Also Published As

Publication number Publication date
JPWO2006028238A1 (en) 2008-05-08
JP4955395B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
US7852101B2 (en) Semiconductor device testing apparatus and power supply unit for semiconductor device testing apparatus
EP1136827B1 (en) Contactor having LSI-circuit-side contact piece and test-board-side contact piece for testing semiconductor device and manufacturing method thereof
US11204369B2 (en) Semiconductor device test socket
JP4863585B2 (en) Contact structure, manufacturing method thereof, and probe contact assembly using the same
US7285967B2 (en) Probe card having deeply recessed trench and method for manufacturing the same
US7548082B2 (en) Inspection probe
US20100176831A1 (en) Probe Test Card with Flexible Interconnect Structure
JP4560221B2 (en) Contact structure and manufacturing method thereof
JP2001091539A (en) Contact structure formed by microfabrication
EP2319129A1 (en) Test contact system for testing integrated circuits with packages having an array of signal and power contacts
KR100980369B1 (en) Probe Needle Structure and Manufacturing Method of The Same
KR20020037276A (en) Contactor, method for manufacturing the same, and probe card using the same
US20010040464A1 (en) Electric contact device for testing semiconductor device
US20080197866A1 (en) Method of Manufacturing Needle for Probe Card Using Fine Processing Technology, Needle Manufactured by the Method, and Probe Card Comprising the Needle
KR101638228B1 (en) Fabrication method of probe pin capable of being used for fine pitch
JP4955395B2 (en) Test carrier
KR101064852B1 (en) Needle for probe card
JP5859834B2 (en) Membrane sheet with bump for probe card, probe card, and method for manufacturing membrane sheet with bump for probe card
JP2811295B2 (en) Vertical probe card
KR20020033526A (en) Probe structure and method for manufacturing the same
JP6333225B2 (en) Membrane sheet with bump for probe card, probe card, and method for manufacturing membrane sheet with bump for probe card
KR100823311B1 (en) Method for manufacturing probe card and probe card thereby
US11231443B2 (en) Semiconductor device test socket
JP3730418B2 (en) Semiconductor test equipment
JP3822722B2 (en) Contact probe, method of manufacturing the same, and probe device including the contact probe

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006535858

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase