WO2006028141A1 - Ball spline device - Google Patents

Ball spline device Download PDF

Info

Publication number
WO2006028141A1
WO2006028141A1 PCT/JP2005/016435 JP2005016435W WO2006028141A1 WO 2006028141 A1 WO2006028141 A1 WO 2006028141A1 JP 2005016435 W JP2005016435 W JP 2005016435W WO 2006028141 A1 WO2006028141 A1 WO 2006028141A1
Authority
WO
WIPO (PCT)
Prior art keywords
ball
spline
spline shaft
nut
load
Prior art date
Application number
PCT/JP2005/016435
Other languages
French (fr)
Japanese (ja)
Inventor
Hidekazu Michioka
Hiroaki Mochizuki
Tomozumi Murata
Shigeo Tomita
Yuki Fujii
Original Assignee
Thk Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thk Co., Ltd. filed Critical Thk Co., Ltd.
Priority to JP2006535793A priority Critical patent/JP4675326B2/en
Publication of WO2006028141A1 publication Critical patent/WO2006028141A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/04Ball or roller bearings
    • F16C29/06Ball or roller bearings in which the rolling bodies circulate partly without carrying load
    • F16C29/068Ball or roller bearings in which the rolling bodies circulate partly without carrying load with the bearing body fully encircling the guide rail or track
    • F16C29/0692Ball or roller bearings in which the rolling bodies circulate partly without carrying load with the bearing body fully encircling the guide rail or track the bearing body encircles a guide rail or track of non-circular cross-section, e.g. with grooves or protrusions, i.e. the linear bearing is suited to transmit torque
    • F16C29/0695Ball or roller bearings in which the rolling bodies circulate partly without carrying load with the bearing body fully encircling the guide rail or track the bearing body encircles a guide rail or track of non-circular cross-section, e.g. with grooves or protrusions, i.e. the linear bearing is suited to transmit torque with balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/04Ball or roller bearings
    • F16C29/06Ball or roller bearings in which the rolling bodies circulate partly without carrying load
    • F16C29/0602Details of the bearing body or carriage or parts thereof, e.g. methods for manufacturing or assembly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/04Ball or roller bearings
    • F16C29/06Ball or roller bearings in which the rolling bodies circulate partly without carrying load
    • F16C29/0602Details of the bearing body or carriage or parts thereof, e.g. methods for manufacturing or assembly
    • F16C29/0609Details of the bearing body or carriage or parts thereof, e.g. methods for manufacturing or assembly of the ends of the bearing body or carriage where the rolling elements change direction, e.g. end caps

Definitions

  • a spline shaft and a spline nut are relatively linearly combined through a large number of balls, and are used as a linear guide part in a machine tool or various industrial machines, a torque transmission part in an industrial robot, or the like.
  • the present invention relates to a ball spline device used.
  • ball spline device those disclosed in Japanese Utility Model Laid-Open No. 61-179414 and Japanese Patent Application Laid-Open No. 58-137616 are known.
  • These ball spline devices are provided with a spline shaft having a plurality of ball rolling grooves extending along the longitudinal direction, and assembled to the spline shaft via a large number of balls, and an infinite circulation path for the balls.
  • the spline nut is configured such that the spline nut can freely move along the longitudinal direction of the spline shaft as the ball is infinitely circulated.
  • the infinite circulation path of the ball provided in the spline nut is parallel to the load path in which the ball rolls while applying a load acting between the spline nut and the spline shaft.
  • a U-shaped direction change path connecting the load path and the ball return path.
  • An infinite circulation path for the ball is configured by arranging the direction change paths at both ends of the load path and the ball return path.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 59-155617
  • the axial force of the spline shaft is the distance force to the load passage of the ball.
  • the axial force is substantially the same as the distance to the ball return passage.
  • the cross-sectional shape perpendicular to the axial direction of the spline shaft has become complicated. That is, when the ball spline device is observed from the axial direction, the load passage and the ball return passage are aligned in the circumferential direction with respect to the axis of the spline shaft, so that the cage is connected to the spline shaft and the spline nut.
  • the conventional spline shaft has ridges along the longitudinal direction at three locations in the circumferential direction. Ball rolling grooves were formed on both sides of this ridge.
  • the spline shaft having such a shape has a smaller cross-sectional area than a round shaft having the same maximum outer diameter, the rigidity to the radial load has to be small.
  • the shape of the spline shaft is conventionally adjusted by drawing, followed by heat treatment such as carburizing and quenching.
  • the contact direction of the ball and the spline shaft in the load passage stands up greatly with respect to the circumferential direction of the spline shaft, and the ball rolling in the ball rolling groove of the spline shaft enters the direction change path. If the ball is smoothly raised and guided to the ball return hole, the positional relationship between the ball return hole and the load passage is preferably approximated to the contact direction.
  • the direction change path guides the ball along the circumferential direction of the spline shaft.
  • the ball in the unloaded state is directional.
  • the metal ball and the spline nut come into contact with each other to generate noise, especially under operating conditions where the spline nut moves back and forth at high speed. There was a sound. For this reason, there was a problem when it was not suitable for use in a sealed space such as a talin room or for use in medical equipment.
  • the present invention has been made in view of such problems, and an object of the present invention is to increase the rigidity of the spline shaft without increasing the diameter of the spline nut, It is possible to produce such spline shafts at low cost and with high accuracy, and to minimize the fluctuation of the movement resistance of the spline nut by smoothing the circulation of the ball in the infinite circuit. It is an object of the present invention to provide a ball spline device capable of achieving the above.
  • Another object of the present invention is to suppress the generation of noise when the ball rolls in an infinite circulation path at high speed, to be used in a sealed space such as a clean room, or to a medical device.
  • the object is to provide a ball spline device suitable for use.
  • a ball spline device includes a spline shaft in which a plurality of ball rolling grooves are formed along an axial direction, and the spline via a plurality of balls that circulate infinitely.
  • the spline nut is assembled to a shaft and is reciprocally movable along the spline shaft.
  • the spline nut is assembled to a metal cylindrical nut body and an inner peripheral surface of the nut body.
  • the inner peripheral surface of the nut body is evenly divided in the circumferential direction.
  • a load base portion is formed so as to be cut off, and a plate housing portion for housing the inner plate is formed between the load base portions.
  • a ball rolling of a spline shaft is formed on the load base portion.
  • a ball rolling groove constituting a ball load passage is formed facing the groove, a ball return hole is formed through the inner plate in parallel with the ball rolling groove, and the end cap is connected with the load passage.
  • a u-shaped direction change path is formed to connect the ball return hole of the inner plate to complete the infinite circulation path of the ball.
  • the load base portion protrudes from the inner peripheral surface of the nut body, while the inner-blade accommodating portion is formed between the load base portions adjacent to each other.
  • a ball rolling groove in which the ball rolls is formed in the load base portion, while a ball return hole is formed through the inner plate.
  • the ball return hole is located outside the ball load passage in the radial direction of the spline shaft, and the formation position of the forceful ball return hole does not interfere with the outer diameter of the spline shaft.
  • the spline shaft can be formed so that its cross section is close to a circular shape, and the cross sectional area of the shaft can be made larger than before, so that the rigidity of the spline shaft can be increased.
  • the cross-sectional shape of the spline shaft can be made closer to a circular shape, it is sufficient to grind only the ball rolling groove and its periphery with respect to the round shaft when manufacturing such a spline shaft. It is possible to manufacture spline shafts that are machined with high precision while using inexpensive round shafts that have been heat-treated and produced by centerless grinding.
  • the ball return hole is located radially outside of the ball load passage, the positional relationship between the ball return passage and the load passage approximates the contact direction of the ball with respect to the spline shaft. Thus, it is possible to smoothly circulate the ball between the load passage and the ball return hole.
  • the ball return hole is formed through the inner blade, and the direction changing path is also formed by the end cap. If these inner plates and end caps are made of synthetic resin, the endless circulation path of the ball is formed of synthetic resin except for the load passage. For this reason, coupled with the smooth circulation of the ball, Noise generated with the circulation of the ball can be reduced. If a synthetic resin spacer is interposed between the balls that run ahead and behind, further noise reduction can be achieved.
  • FIG. 1 is a perspective view showing an embodiment of a ball spline device to which the present invention is applied.
  • FIG. 2 is a front sectional view of the ball spline device shown in FIG.
  • FIG. 3 is an exploded perspective view of a spline nut.
  • FIG. 4 is a front sectional view of a spline shaft.
  • FIG. 5 is a front view showing a nut body constituting a spline nut.
  • FIG. 6 Diagram showing the inner plate that constitutes the spline nut, with a partial view (a) showing a plan view, a partial view (b) showing a partial view (a) as viewed from the arrow b, and a partial view (c) showing a partial view.
  • a cross-sectional view taken along the line cc of FIG. (A) is an enlarged view showing details of the positioning flange, and a cut-away view (e) is a cross-sectional view taken along the line ee of the divided view (d).
  • FIG. 7 is a view showing an end cap that constitutes a spline nut, wherein a partial view (a) is a rear view showing an inner surface, and a partial view (b) is a side view.
  • FIG. 8 An exploded view showing a fitting state of the direction change path of the end cap and the return piece of the inner blade.
  • FIG. 1 and FIG. 2 show an embodiment of a ball spline device to which the present invention is applied.
  • the ball spline is formed in a substantially cylindrical shape having a spline shaft 1 in which a plurality of ball rolling surfaces 10 are formed along a longitudinal direction and a hollow hole through which the spline shaft 1 passes.
  • the spline nut 2 is assembled to the spline shaft 1 through a large number of balls 3.
  • the spline nut 2 is connected to the endless circulation path 30 of the ball 3.
  • a plurality of balls 3 rolling on the ball rolling surface 10 of the spline shaft 1 circulate in an infinite circulation path 30 provided in the spline nut 2, so that the spline nut 2 is applied along the spline shaft 1. It is possible to freely reciprocate linearly.
  • the spline shaft 1 has a substantially circular cross section perpendicular to the axial direction, and six ball rolling grooves 10 along the longitudinal direction are formed on the outer peripheral surface thereof. Is formed. These ball rolling grooves 10 are formed as two sets of two ball rolling grooves 10a and 10b, and three sets are formed, and the three sets of ball rolling grooves divide the peripheral surface of the spline shaft 1 into three equal parts. It is provided as follows.
  • the ball rolling groove 1 Oa and the ball rolling groove 1 Ob have different formation directions with respect to the circumferential surface of the spline shaft 1, and the ball rolling groove 10a is formed by tilting clockwise with respect to the circumferential surface of the shaft.
  • the ball rolling groove 10b is formed to be inclined in the counterclockwise direction. Further, on the outside of the two ball rolling grooves 10a and 10b that form one set, flat ball relief surfaces 11a and ib are formed adjacent to these ball rolling grooves. The ball flank surfaces 11a and 1 lb are formed to prevent the spline shaft 1 from interfering with the ball infinite circulation path 30 provided in the spline nut 2.
  • the spline shaft 1 has a force applied to its outer peripheral surface as if three protrusions 12 were formed.
  • the force having a cross-sectional shape
  • the outer diameter of the reference outer diameter portion 13 and the protrusion 12 sandwiched between the ball flank surfaces 11a and l ib adjacent to each other is the same, and the protrusion 12 is greater than the reference outer diameter portion 13. Is not projected outwards. Therefore, this spline shaft 1 has an extremely circular cross section, and the machining allowance for forming the ball rolling grooves 10a, 10b and the ball flank 11a, 1 lb is small.
  • the ball rolling grooves 10a and 10b and the ball flank 11a and l ib can be formed by direct grinding.
  • a grinding wheel is used for grinding the ball rolling grooves 10a and 10b and the ball flank 11a and l ib.
  • As the round shaft of the material heat treated and centerless ground can be used, and the ball rolling grooves 10a, 10b are formed directly on the round shaft by grinding, so it is extremely straight. It is possible to manufacture a spline shaft 1 with excellent accuracy.
  • the spline nut 2 includes a metal nut body 4 having a hollow hole 40 and formed into a cylindrical shape, and a hollow hole 40 in the nut body 4. Mounted on the circumference And three synthetic resin inner blades 5 and a pair of synthetic resin end caps 6 fitted to both ends of the hollow hole 40 of the nut body 4. To assemble the spline nut 2, first, three inner plates 5 are fitted into predetermined positions of the hollow holes 40 of the nut body 4, and then the end cap 6 is fitted into the hollow holes 40 from both sides of the nut body 4. However, when the end cap 6 is fitted, the nut body 4, inner blade 5 and end cap 6 are positioned among the three members, and the inner plate 5 is fixed to the nut body 4. Assembling of the spline nut 2 is now complete.
  • FIG. 5 is a front view of the nut body 4 observed from the axial direction.
  • Three load base portions 41 project from the inner peripheral surface of the inner cavity 40 of the nut body 4, and these load base portions 41 are provided at positions that divide the inner peripheral surface of the nut body 4 into three equal parts. It has been.
  • the tip surface 42 of each load base portion 41 protruding toward the center of the hollow hole 40 has a gentle arc shape, and the tip surface 42 has a set of ball rolling grooves 10a formed on the spline shaft 1. , 10b, ball rolling grooves 42a, 42b are formed.
  • a plate accommodating portion 44 for accommodating the inner blade 5 is formed between the load base portions 41 adjacent to each other.
  • the depth d of the plate accommodating portion 44 formed so as to be sandwiched between the pair of load base portions 41 is set to be deeper than the diameter of the ball 3, and the inner plate 5 formed thicker than the ball diameter d. Can be prevented from interfering with the inner blade 5 and the spline shaft 1 even if they are fitted in the plate receiving groove 44.
  • Each plate accommodating portion 44 is provided with a lubricating oil supply hole 45 so as to penetrate the nut body 4.
  • plate reference holes 46 for positioning the end cap 6 and the inner plate 5 are formed on each end face of the load base portion 41 in the axial direction. These plate reference holes 46 are formed in the vicinity of the respective ball rolling grooves 42a and 42b of the load base 41, and the inner plate 5 and the end cap 6 are connected to the respective ball rolling grooves 42a and 42b. Consideration is given to positioning with high accuracy.
  • FIG. 6 shows the inner plate 5.
  • the inner plate 5 includes a plate body 50 that fits into the plate housing groove 44 of the nut body 4 and positioning flanges 51 provided at both ends of the plate body 50 in the axial direction.
  • the plate body 50 is formed to have substantially the same cross-sectional shape as the plate housing portion 44 of the nut body 4, and the plate body 50 has one endless circulation path 30.
  • a ball return hole 52 constituting the portion is formed penetrating along the longitudinal direction.
  • the ball return hole 52 corresponds to the ball rolling grooves 42a and 42b of the load base portion 41 adjacent to the left and right of the plate housing groove 44, and two ridges are formed therethrough.
  • the depth d of the plate accommodating portion 44 is formed to be larger than the diameter of the ball 3, so that even the plate main body 50 formed through the ball return hole 52 in this way has a nut main body 4. It can be accommodated in the plate receiving groove 44 that is strong enough not to protrude from the plate receiving groove 44.
  • the positioning flange 51 protrudes from the left and right sides of the plate body 50 along the circumferential direction of the nut body 4, and when the inner blade 5 is fitted into the plate receiving groove 44 of the nut body 4.
  • the locating flange 51 is configured to overlap both end surfaces of the load base portion 41 of the nut body 4 in the axial direction.
  • Each positioning flange 51 has a positioning hole 53 that overlaps the plate reference hole 46 of the load base 41. By fitting an end cap 6 side force pin into these holes 46, 53, The inner plate 5 is positioned in the plate receiving groove 44 with reference to the positioning hole 53 of the nut body 4.
  • a semicircular cutout 55 corresponding to the entrance and exit of the load passage 31 of the ball 3 is formed at the end of the positioning flange 51. Further, the cutout 55 and the ball return hole 52 are formed. A semicircular return piece 54 protrudes from the surface of the positioning flange 51 between the two. The return piece 54 moves between the load passage 31 and the ball return hole 52. A ball guide groove 56 having a semicircular cross section is formed on the peripheral surface thereof.
  • a lubricating oil supply groove 57 is formed in the plate body 50 of the inner plate 5 so as to face the inner peripheral surface of the nut body 4.
  • the supply groove 57 extends in four directions from the position where it overlaps with the supply hole 45 formed through the nut body 4, and finally communicates with the ball return hole 52 formed in the plate body 50. Yes. Accordingly, when lubricating oil is injected into the supply hole 45 from the outside of the nut body 4, the lubricating oil reaches the ball return hole 52 via the supply groove 57 of the inner blade 5 and rolls through the ball return hole 52. Lubricating oil will be supplied to Ball 3.
  • the inner 5 is made of a synthetic resin, but may be formed using an aluminum alloy.
  • the ball return hole 52 is formed by a drill cage, and in the case of the inner alloy made of aluminum alloy 5, the ball return hole 52 is formed by drilling or wire cutting. .
  • the inner plate 5 when the inner plate 5 is elongated along the axial direction of the spline shaft 1, machining errors due to drill tip deflection, wire stagnation, and the like cannot be ignored. Therefore, depending on the size of the inner plate 5, it is preferable to manufacture the inner plate 5 by dividing it into a pair of halves at the position indicated by the broken line p in FIG. 6 (a). If the inner plate 5 is manufactured by combining a pair of halves thus divided, even if the inner plate 5 is elongated, it can be formed with high accuracy.
  • the strong supply groove 57 functions as a mark indicating the joint between the pair of halves constituting the inner blade 5. This makes it possible to prevent assembly errors of the inner plate 5.
  • FIG. 7 shows the end cap 6 fitted to the large inner diameter portions 43 formed at both axial ends of the nut body 4.
  • the end cap 6 is formed in a ring shape with a hollow hole 60 through which the spline shaft 1 passes through a slight gap, and the inner surface of the nut body 4 facing the hollow hole 40 is provided with the load passage.
  • a direction changing path 61 that connects 31 and the ball return hole 52 of the inner blade 5 is formed. As shown in FIG. 8, the direction changing path 61 has a substantially U-shaped cross section.
  • the return piece 54 protruding from the lunge 51 is configured to fit! RU
  • a stud 62 that fits into a plate reference hole 46 formed in the load base portion 41 of the nut body 4 is erected on the end cap 6.
  • the stud 62 is configured to pass through a positioning hole 53 formed in the positioning flange 51 of the inner plate 5 and fit into the plate reference hole 46. That is, by fitting the stud 62 of the end cap 6 into the plate reference hole 46 of the nut body 4, the direction change path 61 of the end cap 6, the ball return hole 52 of the inner plate 5, and the ball of the nut body 4 Positioning between the three rolling grooves 42a and 42b is performed at the same time, so that there is no continuity between the load path ⁇ direction change path ⁇ ball return hole ⁇ direction change path ⁇ load path. Is ensured, and smooth circulation of the ball 3 in the infinite circulation path 30 is achieved.
  • the direction switching path 61 connects the load path 31 of the ball 3 and the ball return hole 52 with the shortest distance.
  • the direction change path 61 is positioned in a specific plane including the load path 31 and the ball return hole 52.
  • the ball 3 introduced into the direction change path 61 from the load path 31 changes the rolling direction.
  • the ball is returned to the ball return passage 52 without any change.
  • the resistance acting on the circulation of the ball 3 in the infinite circulation path 30 can be kept small, and in this respect, the circulation of the ball 3 can be facilitated! /.
  • the balls are arranged inside the endless circulation path 30 configured as described above.
  • the force is unlimited between the balls 3 rolling back and forth inside the endless circulation path 30.
  • 32 is installed.
  • Each spacer is formed in a substantially disk shape whose diameter is smaller than the diameter of the ball 3, and concave and spherical surfaces that substantially match the spherical surface of the ball 3 are formed on both front and back surfaces.
  • Each ball 3 rolls in the ball rolling groove while making sliding contact with the concave spherical surface of this spacer. Since the spacers are interposed between the adjacent balls 3 in this manner, the balls are prevented from coming into contact with each other and a lubricating oil film is easily formed on the surface of the balls.
  • the circulation of 3 is smoothed, and the fluctuation of the resistance acting on the movement of the spline nut with respect to the spline shaft can be minimized.
  • the infinite circulation path of the ball is other than a load path where the ball rolls while applying a load, that is, the ball return hole and the direction change path are formed by an inner blade made of synthetic resin and an end cap.
  • the synthetic resin spacer is interposed between the balls, metal contact does not occur when the ball rolls under no load.
  • the ball spline device of the present invention is suitable for use in measuring instruments and various automatic assembly devices in a sealed environment such as a clean room, and for medical equipment.
  • the ball return hole 52 is located outside the load passage 31 of the ball 3 in the radial direction of the spline shaft 1, The formation position of the ball return hole 52 is not at a position where it interferes with the outer diameter of the spline shaft 1.
  • the spline shaft 1 can be formed so that its cross section is close to a circular shape, so that the cross-sectional area of the shaft can be made larger than before and the rigidity of the spline shaft 1 can be increased. Become.
  • the ball rolling grooves 10a, 1 Ob and It is sufficient to grind only the periphery of the spline shaft, which uses an inexpensive round shaft produced by centerless grinding and has excellent straightness and ball rolling grooves 10a and 10b with high precision. Obtainable.
  • the ball return hole 52 is located radially outside the load passage 31 of the ball 3, the positional relationship between the ball return hole 52 and the load passage is such that the ball 3 with respect to the spline shaft 1 It becomes closer to the contact direction, and it becomes possible to smoothly circulate the ball 3 between the load passage 31 and the ball return hole 52.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bearings For Parts Moving Linearly (AREA)
  • Rolling Contact Bearings (AREA)
  • Transmission Devices (AREA)

Abstract

A ball spline device in which rigidity of a spline shaft can be increased without increasing the diameter of a spline nut, the spline shaft can be produced at low cost and high accuracy, and variation in movement resistance of the spline nut can be reduced as much as possible by smoothening circulation of balls in an endless circulation path. In the ball spline device, the spline nut (2) is composed of a metal hollow cylindrical nut body (4), synthetic resin inner plates (5) assembled to the inner peripheral surface of the nut body (4), and synthetic resin end caps (6) fitted to both ends in the axial direction of the nut body (4). A ball return hole (52) formed in an inner plate (5) is positioned closer to the outside, relative to the radial direction of the spline shaft (1), than a load path (31) for balls. The spline shaft (1) has an almost cross-section.

Description

明 細 書  Specification
ボールスプライン装置  Ball spline device
技術分野  Technical field
[0001] 本発明は、多数のボールを介してスプライン軸とスプラインナットとが相対的に直線 運動自在に組み合わされ、工作機械や各種産業機械における直線案内部、産業用 ロボットにおけるトルク伝達部等に使用されるボールスプライン装置に関する。  [0001] In the present invention, a spline shaft and a spline nut are relatively linearly combined through a large number of balls, and are used as a linear guide part in a machine tool or various industrial machines, a torque transmission part in an industrial robot, or the like. The present invention relates to a ball spline device used.
背景技術  Background art
[0002] 従来、この種のボールスプライン装置としては、実開昭 61— 179414号公報ゃ特 開昭 58— 137616号公報等に開示されるものが知られている。これらのボールスプ ライン装置は、長手方向に沿って延びる複数条のボール転走溝を備えたスプライン 軸と、多数のボールを介して前記スプライン軸に組み付けられると共に、前記ボール の無限循環路を備えたスプラインナットとから構成されており、ボールの無限循環に 伴って前記スプラインナットがスプライン軸の周囲をその長手方向に沿って自在に移 動し得るように構成されて 、る。  Conventionally, as this type of ball spline device, those disclosed in Japanese Utility Model Laid-Open No. 61-179414 and Japanese Patent Application Laid-Open No. 58-137616 are known. These ball spline devices are provided with a spline shaft having a plurality of ball rolling grooves extending along the longitudinal direction, and assembled to the spline shaft via a large number of balls, and an infinite circulation path for the balls. The spline nut is configured such that the spline nut can freely move along the longitudinal direction of the spline shaft as the ball is infinitely circulated.
[0003] また、スプラインナットに具備されたボールの無限循環路は、ボールがスプラインナ ットとスプライン軸の間に作用する荷重を負荷しながら転走する負荷通路と、この負 荷通路と平行に形成されるボール戻し通路と、これら負荷通路とボール戻し通路とを 連結する U字状の方向転換路とから構成されている。そして、負荷通路とボール戻し 通路の両端に前記方向転換路を配置することにより、ボールの無限循環路が構成さ れるようになっている。  [0003] Further, the infinite circulation path of the ball provided in the spline nut is parallel to the load path in which the ball rolls while applying a load acting between the spline nut and the spline shaft. And a U-shaped direction change path connecting the load path and the ball return path. An infinite circulation path for the ball is configured by arranging the direction change paths at both ends of the load path and the ball return path.
[0004] スプラインナットそれ自体に前記ボール戻し通路を貫通形成すると、かかるスプライ ンナットが肉厚となり大径ィ匕する傾向にあり、し力もボールの直径が小さい場合には ボール戻し孔の直径も小さなものとなり、このボール戻し孔をスプラインナットに対し て直接に貫通形成するのは困難である。このため、前記文献に示されるボールスプ ライン装置では、円筒状に形成されたスプラインナットの内周面とこれを貫通するスプ ライン軸との隙間に合成樹脂製の保持器を介装し、カゝかる保持器とスプラインナット の協働によってボール戻し通路及び方向転換路を形成していた。 特許文献 1:実開昭 61— 179414号公報 [0004] If the ball return passage is formed through the spline nut itself, the spline nut tends to become thick and large in diameter, and when the ball diameter is small, the ball return hole diameter is also small. Therefore, it is difficult to form the ball return hole directly through the spline nut. For this reason, in the ball spline device disclosed in the above-mentioned document, a synthetic resin cage is interposed in the gap between the inner peripheral surface of the spline nut formed in a cylindrical shape and the spline shaft passing through the inner surface. The ball return passage and the direction change passage were formed by the cooperation of the cage and the spline nut. Patent Document 1: Japanese Utility Model Publication No. 61-179414
特許文献 1:特開昭 59 - 155617号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 59-155617
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] しかし、これら文献に開示される従来のボールスプライン装置では、スプライン軸の 軸心力 ボールの負荷通路までの距離力 該軸心力 ボール戻し通路までの距離と 略同じであり、そのためにスプライン軸の軸方向に垂直な断面形状が複雑なものとな つていた。すなわち、軸方向からボールスプライン装置を観察した場合に、前記負荷 通路とボール戻し通路がスプライン軸の軸心に対して周方向に並んでいるため、前 記保持器をスプライン軸とスプラインナットとの間に収容するには、スプライン軸の周 面を削って保持機の収容スペースを設ける必要があり、それ故に従来のスプライン軸 は周方向の 3箇所に長手方向に沿った突条を有し、この突条の両側面にボール転 走溝が形成されていた。  [0005] However, in the conventional ball spline device disclosed in these documents, the axial force of the spline shaft is the distance force to the load passage of the ball. The axial force is substantially the same as the distance to the ball return passage. The cross-sectional shape perpendicular to the axial direction of the spline shaft has become complicated. That is, when the ball spline device is observed from the axial direction, the load passage and the ball return passage are aligned in the circumferential direction with respect to the axis of the spline shaft, so that the cage is connected to the spline shaft and the spline nut. In order to accommodate them, it is necessary to scrape the peripheral surface of the spline shaft to provide a storage space for the holding machine. Therefore, the conventional spline shaft has ridges along the longitudinal direction at three locations in the circumferential direction. Ball rolling grooves were formed on both sides of this ridge.
[0006] もっとも、このような形状のスプライン軸は最大外径が同一の丸軸よりも断面積が小 さいので、ラジアル荷重に対する剛性が小さいものとならざるを得ない。また、そのよ うな形状のスプライン軸を丸軸から形成すると、肖 ijり代が大きくなつてしまうため、従来 は引き抜き加工によってスプライン軸の形状を整え、その後に浸炭焼入れ等の熱処 理を行って力 ボール転走面の研削加工を行って 、たが、熱処理によって発生した スプライン軸の曲げ歪みを矯正する作業が必要となり、加工工程の増加から生産コス トが嵩むと共に、一定の加工精度を維持するための管理も煩雑にならざるを得なかつ た。  [0006] However, since the spline shaft having such a shape has a smaller cross-sectional area than a round shaft having the same maximum outer diameter, the rigidity to the radial load has to be small. In addition, if a spline shaft with such a shape is formed from a round shaft, the allowance increases. Therefore, the shape of the spline shaft is conventionally adjusted by drawing, followed by heat treatment such as carburizing and quenching. However, it is necessary to grind the rolling surface of the ball and correct the bending distortion of the spline shaft caused by the heat treatment. This increases the production process and increases the production cost. The management to maintain it has to be complicated.
[0007] また、負荷通路におけるボールとスプライン軸の接触方向はスプライン軸の周方向 に対して大きく起立しており、スプライン軸のボール転走溝を転走しているボールを 方向転換路内へ円滑に掬い上げてボール戻し孔に誘導するのであれば、ボール戻 し孔と負荷通路との位置関係は前記接触方向に近似していることが好ましい。しかし 、前述した従来のボールスプライン装置では、スプライン軸の周方向に負荷通路とボ ール戻し孔が配列されているため、方向転換路はボールをスプライン軸の周方向に 沿って誘導しており、負荷通路と方向転換路の接続部分でボールの回転方向が急 激に変化せざるを得な力つた。このため、方向転換路内におけるボールの挙動が安 定せず、例えばスプライン軸を鉛直に立てて使用する場合等に、カゝかる方向転換路 内においてボールが詰まり易ぐスプライン軸に対するスプラインナットの移動抵抗が 変動し易 ヽと 、つた現象があった。 [0007] In addition, the contact direction of the ball and the spline shaft in the load passage stands up greatly with respect to the circumferential direction of the spline shaft, and the ball rolling in the ball rolling groove of the spline shaft enters the direction change path. If the ball is smoothly raised and guided to the ball return hole, the positional relationship between the ball return hole and the load passage is preferably approximated to the contact direction. However, in the conventional ball spline device described above, since the load passage and the ball return hole are arranged in the circumferential direction of the spline shaft, the direction change path guides the ball along the circumferential direction of the spline shaft. , The rotation direction of the ball suddenly changes at the connection part of the load path and the direction change path The power that must be changed drastically. For this reason, the behavior of the ball in the direction change path is not stable. For example, when the spline shaft is used in a vertical position, the spline nut against the spline shaft is likely to be clogged in the turning direction change path. The movement resistance fluctuated easily, and there were two phenomena.
[0008] 更に、従来のボールスプライン装置では、方向転換路及びボール戻し孔が合成榭 脂製の保持器と金属製のスプラインナットとの協働によって形成されていたため、無 負荷状態のボールが方向転換路及びボール戻し孔を転走すると、互いに金属のボ ールとスプラインナットとが接触して騒音を発生し、特にスプラインナットが高速で往 復運動するような使用条件下では、耳障りな高周波音が発生していた。このため、タリ ーンルーム等の密閉された空間での使用や、医療機器等への使用に適さないといつ た問題点もあった。  [0008] Further, in the conventional ball spline device, since the direction changing path and the ball return hole are formed by the cooperation of the synthetic resin cage and the metal spline nut, the ball in the unloaded state is directional. When rolling along the turning path and the ball return hole, the metal ball and the spline nut come into contact with each other to generate noise, especially under operating conditions where the spline nut moves back and forth at high speed. There was a sound. For this reason, there was a problem when it was not suitable for use in a sealed space such as a talin room or for use in medical equipment.
課題を解決するための手段  Means for solving the problem
[0009] 本発明はこのような問題点に鑑みなされたものであり、その目的とするところは、ス プラインナットを大径ィ匕することなしにスプライン軸の剛性を高めることができると共に 、力かるスプライン軸を安価に且つ高精度に生産することが可能であり、しかも無限 循環路内におけるボールの循環を円滑ィ匕することで、スプラインナットの移動抵抗の 変動を可及的に小さくすることが可能なボールスプライン装置を提供することにある。  [0009] The present invention has been made in view of such problems, and an object of the present invention is to increase the rigidity of the spline shaft without increasing the diameter of the spline nut, It is possible to produce such spline shafts at low cost and with high accuracy, and to minimize the fluctuation of the movement resistance of the spline nut by smoothing the circulation of the ball in the infinite circuit. It is an object of the present invention to provide a ball spline device capable of achieving the above.
[0010] また、本発明の他の目的は、ボールが無限循環路内を高速で転走した場合の騒音 の発生を抑え、クリーンルーム等の密閉された空間での使用や、医療機器等への使 用に適したボールスプライン装置を提供することにある。  [0010] Further, another object of the present invention is to suppress the generation of noise when the ball rolls in an infinite circulation path at high speed, to be used in a sealed space such as a clean room, or to a medical device. The object is to provide a ball spline device suitable for use.
[0011] 前記目的を達成するために、本発明のボールスプライン装置は、軸方向に沿って 複数のボール転走溝が形成されたスプライン軸と、無限循環する多数のボールを介 してこのスプライン軸に組付けられ、前記スプライン軸に沿って往復運動自在なスプ ラインナットとから構成され、更に、前記スプラインナットは、金属製の円筒状ナット本 体と、このナット本体の内周面に組付けれ、前記ボール無限循環路の一部を構成す る複数のインナブレートと、前記ナット本体の軸方向の両端に装着され、前記インナ プレートと相まって前記ボールの無限循環路を形成する合成樹脂製エンドキャップと 力 構成されている。前記ナット本体の内周面には、該内周面を周方向に均等に分 断するように負荷ベース部が突出形成されると共に、これら負荷ベース部の間には前 記インナプレートを収容するプレート収容部が形成され、更に、前記負荷ベース部に はスプライン軸のボール転走溝に対向してボールの負荷通路を構成するボール転 走溝が形成され、前記インナブレートにはボール転走溝と平行にボール戻し孔が貫 通形成され、前記エンドキャップには前記負荷通路とインナプレートのボール戻し孔 とを連結してボールの無限循環路を完成させる u字状の方向転換路が形成されてい る。 In order to achieve the above object, a ball spline device according to the present invention includes a spline shaft in which a plurality of ball rolling grooves are formed along an axial direction, and the spline via a plurality of balls that circulate infinitely. The spline nut is assembled to a shaft and is reciprocally movable along the spline shaft. The spline nut is assembled to a metal cylindrical nut body and an inner peripheral surface of the nut body. And a plurality of inner blades constituting a part of the ball endless circulation path, and synthetic resin ends that are attached to both ends of the nut body in the axial direction and form an endless circulation path of the ball together with the inner plate. Cap and force are composed. The inner peripheral surface of the nut body is evenly divided in the circumferential direction. A load base portion is formed so as to be cut off, and a plate housing portion for housing the inner plate is formed between the load base portions. Further, a ball rolling of a spline shaft is formed on the load base portion. A ball rolling groove constituting a ball load passage is formed facing the groove, a ball return hole is formed through the inner plate in parallel with the ball rolling groove, and the end cap is connected with the load passage. A u-shaped direction change path is formed to connect the ball return hole of the inner plate to complete the infinite circulation path of the ball.
[0012] このような技術的手段によれば、ナット本体の内周面に負荷ベース部を突出形成す る一方、互いに隣接する負荷ベース部の間にインナブレートの収容部を形成した。ま た、負荷ベース部にはボールが転走するボール転走溝を形成する一方、インナプレ 一トにはボール戻し孔を貫通形成した。このため、ボール戻し孔はスプライン軸の半 径方向に関してボールの負荷通路よりも外側に位置しており、力かるボール戻し孔の 形成位置はスプライン軸の外径と干渉する位置にない。従って、スプライン軸はその 断面が円形状に近くなるように形成することができ、軸の断面積を従来よりも大きくす ることかできるので、スプライン軸の剛性を高めることができる。  [0012] According to such technical means, the load base portion protrudes from the inner peripheral surface of the nut body, while the inner-blade accommodating portion is formed between the load base portions adjacent to each other. In addition, a ball rolling groove in which the ball rolls is formed in the load base portion, while a ball return hole is formed through the inner plate. For this reason, the ball return hole is located outside the ball load passage in the radial direction of the spline shaft, and the formation position of the forceful ball return hole does not interfere with the outer diameter of the spline shaft. Accordingly, the spline shaft can be formed so that its cross section is close to a circular shape, and the cross sectional area of the shaft can be made larger than before, so that the rigidity of the spline shaft can be increased.
[0013] また、スプライン軸の断面形状をより円形に近づけることができるので、かかるスプラ イン軸の製作にあたっては、丸軸に対してボール転走溝及びその周辺のみを研削加 ェすれば足り、センタレス研削によって生産された熱処理済の安価な丸軸を利用し つつ、高精度に加工されたスプライン軸を製作することが可能となる。  [0013] Further, since the cross-sectional shape of the spline shaft can be made closer to a circular shape, it is sufficient to grind only the ball rolling groove and its periphery with respect to the round shaft when manufacturing such a spline shaft. It is possible to manufacture spline shafts that are machined with high precision while using inexpensive round shafts that have been heat-treated and produced by centerless grinding.
[0014] また、ボール戻し孔がボールの負荷通路よりも半径方向の外側に位置しているので 、これらボール戻し通路と負荷通路との位置関係はスプライン軸に対するボールの接 触方向により近似したものとなり、負荷通路とボール戻し孔との間におけるボールの 循環を円滑ィ匕することが可能となる。  [0014] In addition, since the ball return hole is located radially outside of the ball load passage, the positional relationship between the ball return passage and the load passage approximates the contact direction of the ball with respect to the spline shaft. Thus, it is possible to smoothly circulate the ball between the load passage and the ball return hole.
[0015] また更に、ボールの無限循環路を構成する負荷通路、方向転換路及びボール戻し 孔のうち、ボール戻し孔はインナブレートに貫通形成されると共に、方向転換路もェ ンドキャップによって形成されており、仮にこれらインナプレート及びエンドキャップを 合成樹脂により製作すれば、負荷通路以外は総て合成樹脂によってボールの無限 循環路が形成されていることになる。このため、ボールの循環の円滑ィ匕とも相まって、 ボールの循環に伴って生じる騒音を低減ィ匕することができるものである。カロえて、前 後して走行するボールの間に合成樹脂製のスぺーサを介装すれば、更なる騒音の 低減ィ匕を図ることもできる。 [0015] Furthermore, of the load path, the direction changing path, and the ball return hole that constitute the infinite circulation path of the ball, the ball return hole is formed through the inner blade, and the direction changing path is also formed by the end cap. If these inner plates and end caps are made of synthetic resin, the endless circulation path of the ball is formed of synthetic resin except for the load passage. For this reason, coupled with the smooth circulation of the ball, Noise generated with the circulation of the ball can be reduced. If a synthetic resin spacer is interposed between the balls that run ahead and behind, further noise reduction can be achieved.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]本発明を適用したボールスプライン装置の実施形態を示す斜視図である。  FIG. 1 is a perspective view showing an embodiment of a ball spline device to which the present invention is applied.
[図 2]図 1に示すボールスプライン装置の正面断面図である。  2 is a front sectional view of the ball spline device shown in FIG.
[図 3]スプラインナットの分解斜視図である。  FIG. 3 is an exploded perspective view of a spline nut.
[図 4]スプライン軸の正面断面図である。  FIG. 4 is a front sectional view of a spline shaft.
[図 5]スプラインナットを構成するナット本体を示す正面図である。  FIG. 5 is a front view showing a nut body constituting a spline nut.
[図 6]スプラインナットを構成するインナプレートを示す図であり、分図(a)は平面図、 分図 (b)は分図 (a)の b矢視図、分図 (c)は分図 (a)の c c線断面図、分図 (d)は位 置決めフランジの詳細を示す拡大図、分図 (e)は分図(d)の e— e線断面図である。  [Fig. 6] Diagram showing the inner plate that constitutes the spline nut, with a partial view (a) showing a plan view, a partial view (b) showing a partial view (a) as viewed from the arrow b, and a partial view (c) showing a partial view. A cross-sectional view taken along the line cc of FIG. (A), an enlarged view (d) is an enlarged view showing details of the positioning flange, and a cut-away view (e) is a cross-sectional view taken along the line ee of the divided view (d).
[図 7]スプラインナットを構成するエンドキャップを示す図であり、分図(a)は内側面を 示す背面図、分図 (b)は側面図である。  FIG. 7 is a view showing an end cap that constitutes a spline nut, wherein a partial view (a) is a rear view showing an inner surface, and a partial view (b) is a side view.
[図 8]エンドキャップの方向転換路とインナブレートのリターンピースの嵌合状態を示 す分解図である。  [FIG. 8] An exploded view showing a fitting state of the direction change path of the end cap and the return piece of the inner blade.
符号の説明  Explanation of symbols
[0017] 1…スプライン軸、 2…スプラインナット、 3…ボール、 4…ナット本体、 5…インナプレ ート、 6…エンドキャップ、 10a, 10b…ボール転走溝 (スプライン軸)、 30…無限循環 路、 31 · · ·負荷通路、 41 · · ·負荷ベース部、 42a, 42b…ボール転走溝 (ナット本体)、 44…プレート収容部、 52· · ·ボール戻し孔、 54· · ·リターンピース、 61 · · ·方向転換路 発明を実施するための最良の形態  [0017] 1 ... Spline shaft, 2 ... Spline nut, 3 ... Ball, 4 ... Nut body, 5 ... Inner plate, 6 ... End cap, 10a, 10b ... Ball rolling groove (spline shaft), 30 ... Infinite circulation , 31 · · · Load passage, 41 · · · Load base, 42a, 42b… Ball rolling groove (nut body), 44… Plate receiving portion, 52 ·· Ball return hole, 54 ·· Return piece , 61 · · · turnaround route BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下、添付図面を参照しながら本発明のボールスプライン装置を詳細に説明する。 Hereinafter, the ball spline device of the present invention will be described in detail with reference to the accompanying drawings.
[0019] 図 1及び図 2は本発明を適用したボールスプライン装置の実施形態を示すものであ る。このボールスプラインは、長手方向に沿って複数条のボール転走面 10が形成さ れたスプライン軸 1と、このスプライン軸 1が貫通する中空孔を有して略円筒形状に形 成されると共に多数のボール 3を介して前記スプライン軸 1に組付けられたスプライン ナット 2とから構成されて 、る。前記スプラインナット 2はボール 3の無限循環路 30を 複数備えており、前記スプライン軸 1のボール転走面 10を転走したボール 3がスプラ インナット 2に具備された無限循環路 30を循環することにより、力かるスプラインナット 2がスプライン軸 1に沿って自在に直線往復運動することが可能となって 、る。 FIG. 1 and FIG. 2 show an embodiment of a ball spline device to which the present invention is applied. The ball spline is formed in a substantially cylindrical shape having a spline shaft 1 in which a plurality of ball rolling surfaces 10 are formed along a longitudinal direction and a hollow hole through which the spline shaft 1 passes. The spline nut 2 is assembled to the spline shaft 1 through a large number of balls 3. The spline nut 2 is connected to the endless circulation path 30 of the ball 3. A plurality of balls 3 rolling on the ball rolling surface 10 of the spline shaft 1 circulate in an infinite circulation path 30 provided in the spline nut 2, so that the spline nut 2 is applied along the spline shaft 1. It is possible to freely reciprocate linearly.
[0020] 図 4に示すように、前記スプライン軸 1は軸方向に垂直な断面が略円形状に形成さ れると共に、その外周面には長手方向に沿った 6条のボール転走溝 10が形成されて いる。これらボール転走溝 10は 2条のボール転走溝 10a, 10bが 1組となって 3組形 成されており、 3組のボール転走溝がスプライン軸 1の周面を 3等分するように設けら れて 、る。ボール転走溝 1 Oaとボール転走溝 1 Obはスプライン軸 1の周面に対する形 成方向が異なっており、ボール転走溝 10aは軸の周面に対して右回り方向に傾斜し て形成される一方、ボール転走溝 10bは左回り方向に傾斜して形成されている。また 、 1組となった 2条のボール転走溝 10a, 10bの外側には、これらボール転走溝に隣 接して平坦なボール逃げ面 11a, l ibが形成されている。このボール逃げ面 11a, 1 lbはスプラインナット 2に具備されたボール無限循環路 30と該スプライン軸 1が干渉 するのを防止するために形成されて 、る。  [0020] As shown in FIG. 4, the spline shaft 1 has a substantially circular cross section perpendicular to the axial direction, and six ball rolling grooves 10 along the longitudinal direction are formed on the outer peripheral surface thereof. Is formed. These ball rolling grooves 10 are formed as two sets of two ball rolling grooves 10a and 10b, and three sets are formed, and the three sets of ball rolling grooves divide the peripheral surface of the spline shaft 1 into three equal parts. It is provided as follows. The ball rolling groove 1 Oa and the ball rolling groove 1 Ob have different formation directions with respect to the circumferential surface of the spline shaft 1, and the ball rolling groove 10a is formed by tilting clockwise with respect to the circumferential surface of the shaft. On the other hand, the ball rolling groove 10b is formed to be inclined in the counterclockwise direction. Further, on the outside of the two ball rolling grooves 10a and 10b that form one set, flat ball relief surfaces 11a and ib are formed adjacent to these ball rolling grooves. The ball flank surfaces 11a and 1 lb are formed to prevent the spline shaft 1 from interfering with the ball infinite circulation path 30 provided in the spline nut 2.
[0021] このようにボール転走溝 10a, 10b及びボール逃げ面 11a, l ibが形成された結果 として、スプライン軸 1はその外周面にあた力も 3条の突部 12が形成されたかのような 断面形状をなしている力 互いに隣接するボール逃げ面 11a, l ibに挟まれた基準 外径部 13と前記突部 12の外径は同一であり、突部 12が基準外径部 13よりも外側に 突設されたものではない。従って、このスプライン軸 1はその断面が極めて円形に近く 、ボール転走溝 10a, 10bやボール逃げ面 11a, 1 lbを形成する際の削り代が小さい ことから、丸軸の周面に対して前記ボール転走溝 10a, 10b及びボール逃げ面 11a, l ibを直接研削加工して形成することができる。ボール転走溝 10a, 10b及びボール 逃げ面 11a, l ibの研削加工には総型砥石が用いられる。素材の丸軸としては、熱 処理がなされセンタレス研削されたものを使用することができ、カゝかる丸軸に研削加 ェで直接ボール転走溝 10a, 10bを形成することから、極めて真直度に優れた高精 度のスプライン軸 1を製作することができるものである。  [0021] As a result of the formation of the ball rolling grooves 10a and 10b and the ball flank 11a and ib in this way, the spline shaft 1 has a force applied to its outer peripheral surface as if three protrusions 12 were formed. The force having a cross-sectional shape The outer diameter of the reference outer diameter portion 13 and the protrusion 12 sandwiched between the ball flank surfaces 11a and l ib adjacent to each other is the same, and the protrusion 12 is greater than the reference outer diameter portion 13. Is not projected outwards. Therefore, this spline shaft 1 has an extremely circular cross section, and the machining allowance for forming the ball rolling grooves 10a, 10b and the ball flank 11a, 1 lb is small. The ball rolling grooves 10a and 10b and the ball flank 11a and l ib can be formed by direct grinding. A grinding wheel is used for grinding the ball rolling grooves 10a and 10b and the ball flank 11a and l ib. As the round shaft of the material, heat treated and centerless ground can be used, and the ball rolling grooves 10a, 10b are formed directly on the round shaft by grinding, so it is extremely straight. It is possible to manufacture a spline shaft 1 with excellent accuracy.
[0022] 一方、前記スプラインナット 2は、図 3に示すように、中空孔 40を有して円筒状に形 成された金属製のナット本体 4と、このナット本体 4の中空孔 40の内周面に装着され る 3枚の合成樹脂製インナブレート 5と、前記ナット本体 4の中空孔 40の両端部に嵌 合する一対の合成樹脂製エンドキャップ 6とから構成されて 、る。このスプラインナット 2の組立は、先ずは 3枚のインナプレート 5をナット本体 4の中空孔 40の所定の位置 に嵌め込み、この後に前記エンドキャップ 6をナット本体 4の両側から中空孔 40内に 嵌合させて行われるが、エンドキャップ 6を嵌合させた際にナット本体 4、インナブレー ト 5及びエンドキャップ 6の三者間における位置決めがなされると共に、インナプレート 5のナット本体 4に対する固定がなされ、スプラインナット 2の組立が完了するようにな つている。 On the other hand, as shown in FIG. 3, the spline nut 2 includes a metal nut body 4 having a hollow hole 40 and formed into a cylindrical shape, and a hollow hole 40 in the nut body 4. Mounted on the circumference And three synthetic resin inner blades 5 and a pair of synthetic resin end caps 6 fitted to both ends of the hollow hole 40 of the nut body 4. To assemble the spline nut 2, first, three inner plates 5 are fitted into predetermined positions of the hollow holes 40 of the nut body 4, and then the end cap 6 is fitted into the hollow holes 40 from both sides of the nut body 4. However, when the end cap 6 is fitted, the nut body 4, inner blade 5 and end cap 6 are positioned among the three members, and the inner plate 5 is fixed to the nut body 4. Assembling of the spline nut 2 is now complete.
[0023] 図 5は前記ナット本体 4を軸方向から観察した正面図である。このナット本体 4の中 空孔 40の内周面には 3つの負荷ベース部 41が突出形成されており、これらの負荷 ベース部 41はナット本体 4の内周面を 3等分する位置に設けられている。中空孔 40 の中心に向けて突出した各負荷ベース部 41の先端面 42は緩やかな円弧状をなして おり、この先端面 42にはスプライン軸 1に形成された 1組のボール転走溝 10a, 10b に対向するボール転走溝 42a, 42bが形成されている。スプライン軸 1にスプラインナ ット 2が組付けられた状態では、スプライン軸 1のボール転走溝 10aと負荷ベース部 4 1のボール転走溝 42aと力 スプライン軸 1のボール転走溝 10bと負荷ベース部 41の ボール転走溝 42bとが夫々対向し、ボール 3が荷重を負荷しながら転走する 2条の負 荷通路 31が形成されるようになっている。尚、図 3から把握されるように、中空孔 40の 軸方向の両端には前記エンドキャップ 6を嵌合させるための一対の大内径部 43が形 成されており、前記負荷ベース部 41はこれら大内径部 43の間においてのみ中空孔 40の内周面に形成されている。  FIG. 5 is a front view of the nut body 4 observed from the axial direction. Three load base portions 41 project from the inner peripheral surface of the inner cavity 40 of the nut body 4, and these load base portions 41 are provided at positions that divide the inner peripheral surface of the nut body 4 into three equal parts. It has been. The tip surface 42 of each load base portion 41 protruding toward the center of the hollow hole 40 has a gentle arc shape, and the tip surface 42 has a set of ball rolling grooves 10a formed on the spline shaft 1. , 10b, ball rolling grooves 42a, 42b are formed. When the spline nut 2 is assembled to the spline shaft 1, the ball rolling groove 10a of the spline shaft 1 and the ball rolling groove 42a of the load base 41 and the force rolling ball 10b of the spline shaft 1 The ball rolling groove 42b of the load base 41 faces each other, and two load passages 31 are formed in which the ball 3 rolls while applying a load. As can be seen from FIG. 3, a pair of large inner diameter portions 43 for fitting the end cap 6 are formed at both ends of the hollow hole 40 in the axial direction, and the load base portion 41 is Only between these large inner diameter portions 43 is formed on the inner peripheral surface of the hollow hole 40.
[0024] また、前記中空孔 40の内周面において、互いに隣接する負荷ベース部 41の間に は、前記インナブレート 5を収容するためのプレート収容部 44が形成されている。一 対の負荷ベース部 41に挟まれるようにして形成されたこのプレート収容部 44の深さ d はボール 3の直径よりも深く設定されており、ボール直径 dよりも厚く形成されたインナ プレート 5を前記プレート収容溝 44に嵌合させても、該インナブレート 5とスプライン軸 1との干渉を防止できるようになつている。尚、各プレート収容部 44にはナット本体 4 を貫通するようにして潤滑油の供給孔 45が開設されて 、る。 [0025] 更に、前記負荷ベース部 41の軸方向の両端面には、前記エンドキャップ 6及びイン ナプレート 5を位置決めするためのプレート基準孔 46がー対ずつ形成されている。こ れらのプレート基準孔 46は負荷ベース部 41の各ボール転走溝 42a, 42bの近傍に 形成されており、各ボール転走溝 42a, 42bに対してインナプレート 5及びエンドキヤ ップ 6を高精度で位置決めできるように配慮されている。 [0024] In addition, on the inner peripheral surface of the hollow hole 40, a plate accommodating portion 44 for accommodating the inner blade 5 is formed between the load base portions 41 adjacent to each other. The depth d of the plate accommodating portion 44 formed so as to be sandwiched between the pair of load base portions 41 is set to be deeper than the diameter of the ball 3, and the inner plate 5 formed thicker than the ball diameter d. Can be prevented from interfering with the inner blade 5 and the spline shaft 1 even if they are fitted in the plate receiving groove 44. Each plate accommodating portion 44 is provided with a lubricating oil supply hole 45 so as to penetrate the nut body 4. Furthermore, plate reference holes 46 for positioning the end cap 6 and the inner plate 5 are formed on each end face of the load base portion 41 in the axial direction. These plate reference holes 46 are formed in the vicinity of the respective ball rolling grooves 42a and 42b of the load base 41, and the inner plate 5 and the end cap 6 are connected to the respective ball rolling grooves 42a and 42b. Consideration is given to positioning with high accuracy.
[0026] 一方、図 6は前記インナプレート 5を示すものである。このインナプレート 5は、前記 ナット本体 4のプレート収容溝 44に嵌合するプレート本体 50と、このプレート本体 50 の軸方向の両端に設けられた位置決めフランジ 51とを具備している。図 6 (c)に断面 図を示すように、前記プレート本体 50はナット本体 4のプレート収容部 44と略同一の 断面形状に形成されており、このプレート本体 50には無限循環路 30の一部を構成 するボール戻し孔 52が長手方向に沿って貫通形成されている。かかるボール戻し孔 52は、プレート収容溝 44の左右に隣接する負荷ベース部 41のボール転走溝 42a, 42bに対応し、 2条が貫通形成されている。前述の如くプレート収容部 44の深さ dは ボール 3の直径よりも大きく形成されて 、ることから、このようにボール戻し孔 52を貫 通形成したプレート本体 50であっても、ナット本体 4のプレート収容溝 44から突出す ることなぐ力かるプレート収容溝 44内に収めることができるようになつている。  On the other hand, FIG. 6 shows the inner plate 5. The inner plate 5 includes a plate body 50 that fits into the plate housing groove 44 of the nut body 4 and positioning flanges 51 provided at both ends of the plate body 50 in the axial direction. As shown in the cross-sectional view of FIG. 6 (c), the plate body 50 is formed to have substantially the same cross-sectional shape as the plate housing portion 44 of the nut body 4, and the plate body 50 has one endless circulation path 30. A ball return hole 52 constituting the portion is formed penetrating along the longitudinal direction. The ball return hole 52 corresponds to the ball rolling grooves 42a and 42b of the load base portion 41 adjacent to the left and right of the plate housing groove 44, and two ridges are formed therethrough. As described above, the depth d of the plate accommodating portion 44 is formed to be larger than the diameter of the ball 3, so that even the plate main body 50 formed through the ball return hole 52 in this way has a nut main body 4. It can be accommodated in the plate receiving groove 44 that is strong enough not to protrude from the plate receiving groove 44.
[0027] また、前記位置決めフランジ 51はプレート本体 50の左右両側からナット本体 4の周 方向に沿うようにして張り出しており、インナブレート 5をナット本体 4のプレート収容溝 44に嵌合させた際に、力かる位置決めフランジ 51がナット本体 4の負荷ベース部 41 の軸方向の両端面に重なるように構成されている。また、各位置決めフランジ 51には 負荷ベース部 41のプレート基準孔 46に重なる位置決め孔 53が形成されており、こ れら孔 46, 53に対してエンドキャップ 6側力 ピンを嵌合させることにより、インナプレ ート 5がナット本体 4の位置決め孔 53を基準としてプレート収容溝 44内で位置決めさ れるようになっている。  In addition, the positioning flange 51 protrudes from the left and right sides of the plate body 50 along the circumferential direction of the nut body 4, and when the inner blade 5 is fitted into the plate receiving groove 44 of the nut body 4. In addition, the locating flange 51 is configured to overlap both end surfaces of the load base portion 41 of the nut body 4 in the axial direction. Each positioning flange 51 has a positioning hole 53 that overlaps the plate reference hole 46 of the load base 41. By fitting an end cap 6 side force pin into these holes 46, 53, The inner plate 5 is positioned in the plate receiving groove 44 with reference to the positioning hole 53 of the nut body 4.
[0028] 前記位置決めフランジ 51の端部にはボール 3の負荷通路 31の入り口及び出口に 対応した半円状の切欠き部 55が形成されており、更にこの切欠き部 55とボール戻し 孔 52の間における位置決めフランジ 51の表面には半円状のリターンピース 54が突 出している。このリターンピース 54は負荷通路 31とボール戻し孔 52との間で往来す るボール 3を誘導するものであり、その周面には断面が半円状に切り欠かれたボール 案内溝 56が形成されている。 [0028] A semicircular cutout 55 corresponding to the entrance and exit of the load passage 31 of the ball 3 is formed at the end of the positioning flange 51. Further, the cutout 55 and the ball return hole 52 are formed. A semicircular return piece 54 protrudes from the surface of the positioning flange 51 between the two. The return piece 54 moves between the load passage 31 and the ball return hole 52. A ball guide groove 56 having a semicircular cross section is formed on the peripheral surface thereof.
[0029] 更に、このインナプレート 5のプレート本体 50にはナット本体 4の内周面と対向する ようにして潤滑油の供給溝 57が形成されて 、る。この供給溝 57はナット本体 4に貫 通形成された供給孔 45と重なった位置から四方に向けて伸びており、最終的にはプ レート本体 50に形成されたボール戻し孔 52と連通している。従って、ナット本体 4の 外側から供給孔 45に対して潤滑油を注油すると、かかる潤滑油がインナブレート 5の 供給溝 57を経由してボール戻し孔 52に達し、ボール戻し孔 52を転走するボール 3 に潤滑油が供給されることになる。  Furthermore, a lubricating oil supply groove 57 is formed in the plate body 50 of the inner plate 5 so as to face the inner peripheral surface of the nut body 4. The supply groove 57 extends in four directions from the position where it overlaps with the supply hole 45 formed through the nut body 4, and finally communicates with the ball return hole 52 formed in the plate body 50. Yes. Accordingly, when lubricating oil is injected into the supply hole 45 from the outside of the nut body 4, the lubricating oil reaches the ball return hole 52 via the supply groove 57 of the inner blade 5 and rolls through the ball return hole 52. Lubricating oil will be supplied to Ball 3.
[0030] この実施例にぉ 、て、前記インナブレート 5は合成樹脂製であるが、アルミ合金を 用いて形成しても良い。合成樹脂製のインナブレート 5の場合、前記ボール戻し孔 5 2はドリルカ卩ェにより形成され、アルミ合金製のインナブレート 5の場合、前記ボール 戻し孔 52はドリル加工やワイヤーカット加工により形成される。  In this embodiment, the inner 5 is made of a synthetic resin, but may be formed using an aluminum alloy. In the case of the inner resin made of synthetic resin 5, the ball return hole 52 is formed by a drill cage, and in the case of the inner alloy made of aluminum alloy 5, the ball return hole 52 is formed by drilling or wire cutting. .
[0031] 一方、インナプレート 5がスプライン軸 1の軸方向沿って長尺化すると、ドリル先端部 の振れや、ワイヤーの橈み等に伴う加工誤差が無視できない大きさとなる。従って、ィ ンナプレート 5の大きさによっては、図 6 (a)中に破線 pで示す位置において、かかる インナブレート 5を一対の半体に 2分割して製作するのが好ましい。このように 2分割 にされた一対の半体を組み合わせてインナブレート 5を製作すれば、インナブレート 5 が長尺化した場合であっても、これを精度良く形成することができる。また、四方に延 びる潤滑油の供給溝 57の中央と分割面 pを合致させているので、力かる供給溝 57が インナブレート 5を構成する一対の半体の合わせ目を示すマークとして機能し、イン ナプレート 5の組み立て間違いを防止することが可能となる。  [0031] On the other hand, when the inner plate 5 is elongated along the axial direction of the spline shaft 1, machining errors due to drill tip deflection, wire stagnation, and the like cannot be ignored. Therefore, depending on the size of the inner plate 5, it is preferable to manufacture the inner plate 5 by dividing it into a pair of halves at the position indicated by the broken line p in FIG. 6 (a). If the inner plate 5 is manufactured by combining a pair of halves thus divided, even if the inner plate 5 is elongated, it can be formed with high accuracy. Further, since the center of the supply groove 57 for the lubricating oil 57 extending in all directions and the dividing surface p are aligned, the strong supply groove 57 functions as a mark indicating the joint between the pair of halves constituting the inner blade 5. This makes it possible to prevent assembly errors of the inner plate 5.
[0032] 次に、図 7は前記ナット本体 4の軸方向の両端に形成された大内径部 43に嵌合す るエンドキャップ 6を示すものである。このエンドキャップ 6は前記スプライン軸 1が僅か な隙間を介して貫通する中空孔 60を有してリング状に形成されており、ナット本体 4 の中空孔 40に面した内側面には前記負荷通路 31とインナブレート 5のボール戻し孔 52とを連結する方向転換路 61が形成されている。この方向転換路 61は、図 8に示 すように、その断面が略 U字状に形成されており、前記インナブレート 5の位置決めフ ランジ 51に突出形成したリターンピース 54が嵌合するように構成されて!、る。 Next, FIG. 7 shows the end cap 6 fitted to the large inner diameter portions 43 formed at both axial ends of the nut body 4. The end cap 6 is formed in a ring shape with a hollow hole 60 through which the spline shaft 1 passes through a slight gap, and the inner surface of the nut body 4 facing the hollow hole 40 is provided with the load passage. A direction changing path 61 that connects 31 and the ball return hole 52 of the inner blade 5 is formed. As shown in FIG. 8, the direction changing path 61 has a substantially U-shaped cross section. The return piece 54 protruding from the lunge 51 is configured to fit! RU
[0033] そして、エンドキャップ 6をナット本体 4の大内径部 43に嵌合させると、前記リターン ピース 54が方向転換路 61に嵌合して、ボール 3の直径よりも僅かに大きな内径の通 路、すなわち U字状の方向転換路 61が完成し、この方向転換路 61によってボール 3 の負荷通路 31とボール戻し孔 52とが連通連結される。つまり、ナット本体 4に対して 前記インナプレート 5及びエンドキャップ 6を装着することにより、ボール 3が循環する 無限循環路 30が完成するようになって 、る。 [0033] Then, when the end cap 6 is fitted to the large inner diameter portion 43 of the nut body 4, the return piece 54 is fitted to the direction change path 61, and the inner diameter slightly larger than the diameter of the ball 3 is passed. A path, that is, a U-shaped direction change path 61 is completed, and the load change path 31 of the ball 3 and the ball return hole 52 are connected to each other by the direction change path 61. That is, by attaching the inner plate 5 and the end cap 6 to the nut body 4, the infinite circulation path 30 through which the ball 3 circulates is completed.
[0034] また、前記エンドキャップ 6にはナット本体 4の負荷ベース部 41に形成されたプレー ト基準孔 46に嵌合するスタッド 62が立設されている。このスタッド 62はインナプレート 5の位置決めフランジ 51に形成された位置決め孔 53を貫通して、前記プレート基準 孔 46に嵌合するように構成されている。すなわち、エンドキャップ 6のスタッド 62をナ ット本体 4のプレート基準孔 46に嵌合させることによって、エンドキャップ 6の方向転 換路 61、インナプレート 5のボール戻し孔 52、ナット本体 4のボール転走溝 42a, 42 bの三者間の位置決めが同時に行われるようになっており、これによつて負荷通路→ 方向転換路→ボール戻し孔→方向転換路→負荷通路の間断のない連続性が確保 され、無限循環路 30内におけるボール 3の円滑な循環が達成されるようになっている In addition, a stud 62 that fits into a plate reference hole 46 formed in the load base portion 41 of the nut body 4 is erected on the end cap 6. The stud 62 is configured to pass through a positioning hole 53 formed in the positioning flange 51 of the inner plate 5 and fit into the plate reference hole 46. That is, by fitting the stud 62 of the end cap 6 into the plate reference hole 46 of the nut body 4, the direction change path 61 of the end cap 6, the ball return hole 52 of the inner plate 5, and the ball of the nut body 4 Positioning between the three rolling grooves 42a and 42b is performed at the same time, so that there is no continuity between the load path → direction change path → ball return hole → direction change path → load path. Is ensured, and smooth circulation of the ball 3 in the infinite circulation path 30 is achieved.
[0035] 更に、図 2に示すボールスプライン装置の断面図から明らかなように、前記方向転 換路 61はボール 3の負荷通路 31とボール戻し孔 52を最短距離で連結しており、換 言すれば方向転換路 61は負荷通路 31とボール戻し孔 52とを含む特定平面内に位 置しており、例えば負荷通路 31から方向転換路 61内に導入したボール 3を転走方 向を変化させることなくそのままボール戻し通路 52へ送り込むように構成されて 、る。 このため、無限循環路 30内におけるボール 3の循環に対して作用する抵抗を小さく 抑えることができ、この点にお 、てもボール 3の循環の円滑化が図られて!/、る。 Further, as is clear from the cross-sectional view of the ball spline device shown in FIG. 2, the direction switching path 61 connects the load path 31 of the ball 3 and the ball return hole 52 with the shortest distance. In this case, the direction change path 61 is positioned in a specific plane including the load path 31 and the ball return hole 52. For example, the ball 3 introduced into the direction change path 61 from the load path 31 changes the rolling direction. The ball is returned to the ball return passage 52 without any change. For this reason, the resistance acting on the circulation of the ball 3 in the infinite circulation path 30 can be kept small, and in this respect, the circulation of the ball 3 can be facilitated! /.
[0036] ボールはこのようにして構成された無限循環路 30の内部に配列されるのだ力 無 限循環路 30内を前後して転走するボール 3の間には合成樹脂製のスぺーサ 32が介 装されている。各スぺーサは直径がボール 3の直径よりも小さな略円盤状に形成され ると共に、その表裏両面にはボール 3の球面に略合致した凹球面が形成されており、 各ボール 3はこのスぺーサの凹球面と摺接しながらボール転走溝を転走する。このよ うに互いに隣接するボール 3の間にスぺーサを介装したことにより、ボール同士の接 触が防止されると共にボールの表面に潤滑油膜が形成され易くなり、無限循環路 30 内におけるボール 3の循環が円滑ィ匕して、スプライン軸に対するスプラインナットの移 動に対して作用する抵抗の変動を可及的に小さくすることができる。 [0036] The balls are arranged inside the endless circulation path 30 configured as described above. The force is unlimited between the balls 3 rolling back and forth inside the endless circulation path 30. 32 is installed. Each spacer is formed in a substantially disk shape whose diameter is smaller than the diameter of the ball 3, and concave and spherical surfaces that substantially match the spherical surface of the ball 3 are formed on both front and back surfaces. Each ball 3 rolls in the ball rolling groove while making sliding contact with the concave spherical surface of this spacer. Since the spacers are interposed between the adjacent balls 3 in this manner, the balls are prevented from coming into contact with each other and a lubricating oil film is easily formed on the surface of the balls. The circulation of 3 is smoothed, and the fluctuation of the resistance acting on the movement of the spline nut with respect to the spline shaft can be minimized.
[0037] また、ボールの無限循環路は該ボールが荷重を負荷しながら転走する負荷通路以 外、すなわちボール戻し孔と方向転換路は合成樹脂製のインナブレート及びエンド キャップによって形成されており、し力もボールの間には前述のように合成樹脂製ス ぺーサが介装されているので、ボールが無負荷状態で転走する際に金属接触が生 じることはなぐボールの循環によって生じる騒音を低減ィ匕することができる他、金属 摩耗による発塵を低減ィ匕することが可能となるものである。これにより本発明のボール スプライン装置は、例えばクリーンルーム等の密閉された環境下における計測機器 や各種自動組立器への使用や、医療機器等への使用に適したものとなって 、る。  [0037] Further, the infinite circulation path of the ball is other than a load path where the ball rolls while applying a load, that is, the ball return hole and the direction change path are formed by an inner blade made of synthetic resin and an end cap. As described above, since the synthetic resin spacer is interposed between the balls, metal contact does not occur when the ball rolls under no load. In addition to reducing noise generated, it is possible to reduce dust generation due to metal wear. As a result, the ball spline device of the present invention is suitable for use in measuring instruments and various automatic assembly devices in a sealed environment such as a clean room, and for medical equipment.
[0038] そして、以上のように構成された本発明のボールスプライン装置によれば、ボール 戻し孔 52はスプライン軸 1の半径方向に関してボール 3の負荷通路 31よりも外側に 位置しており、力かるボール戻し孔 52の形成位置はスプライン軸 1の外径と干渉する 位置にない。これにより、スプライン軸 1はその断面を円形状に近くなるように形成す ることができるので、軸の断面積を従来よりも大きくすることかでき、スプライン軸 1の 剛性を高めることが可能となる。  [0038] According to the ball spline device of the present invention configured as described above, the ball return hole 52 is located outside the load passage 31 of the ball 3 in the radial direction of the spline shaft 1, The formation position of the ball return hole 52 is not at a position where it interferes with the outer diameter of the spline shaft 1. As a result, the spline shaft 1 can be formed so that its cross section is close to a circular shape, so that the cross-sectional area of the shaft can be made larger than before and the rigidity of the spline shaft 1 can be increased. Become.
[0039] また、前述したように、スプライン軸 1の断面形状をより円形に近づけることができる ので、力かるスプライン軸 1の製作にあたっては、丸軸に対してボール転走溝 10a, 1 Ob及びその周辺のみを研削加工すれば足り、センタレス研削によって生産された安 価な丸軸を利用しつつ、真直度に優れ、し力もボール転走溝 10a, 10bが高精度に 加工されたスプライン軸を得ることができる。  [0039] Further, as described above, since the cross-sectional shape of the spline shaft 1 can be made closer to a circular shape, the ball rolling grooves 10a, 1 Ob and It is sufficient to grind only the periphery of the spline shaft, which uses an inexpensive round shaft produced by centerless grinding and has excellent straightness and ball rolling grooves 10a and 10b with high precision. Obtainable.
[0040] 更に、ボール戻し孔 52がボール 3の負荷通路 31よりも半径方向外側に位置してい るので、これらボール戻し孔 52と負荷通路との位置関係はスプライン軸 1に対するボ ール 3の接触方向により近似したものとなり、負荷通路 31とボール戻し孔 52との間に おけるボール 3の循環を円滑ィ匕することが可能となる。  [0040] Furthermore, since the ball return hole 52 is located radially outside the load passage 31 of the ball 3, the positional relationship between the ball return hole 52 and the load passage is such that the ball 3 with respect to the spline shaft 1 It becomes closer to the contact direction, and it becomes possible to smoothly circulate the ball 3 between the load passage 31 and the ball return hole 52.

Claims

請求の範囲 The scope of the claims
[1] 軸方向に沿って複数のボール転走溝が形成されたスプライン軸と、無限循環する多 数のボールを介してこのスプライン軸に組付けられ、前記スプライン軸に沿って往復 運動自在なスプラインナットとから構成され、更に、  [1] A spline shaft in which a plurality of ball rolling grooves are formed along the axial direction and a plurality of balls that circulate infinitely. The spline shaft is assembled to the spline shaft, and can reciprocate along the spline shaft. A spline nut, and
前記スプラインナットは、金属製の円筒状ナット本体と、このナット本体の内周面に 組付けれ、前記ボール無限循環路の一部を構成する複数のインナブレートと、前記 ナット本体の軸方向の両端に装着され、前記インナブレートと相まって前記ボールの 無限循環路を形成するエンドキャップとから構成されるボールスプライン装置におい て、  The spline nut includes a metal cylindrical nut body, a plurality of inner blades that are assembled to an inner peripheral surface of the nut body, and constitute a part of the ball infinite circulation path, and both ends of the nut body in the axial direction. And a ball spline device configured with an end cap that forms an infinite circulation path of the ball together with the inner blade.
前記ナット本体の内周面には、該内周面を周方向に均等に分断するように負荷べ ース部が突出形成されると共に、これら負荷ベース部の間には前記インナブレートを 収容するプレート収容部が形成され、更に、前記負荷ベース部にはスプライン軸のボ 一ル転走溝に対向してボールの負荷通路を構成するボール転走溝が形成され、 前記インナブレートにはボール転走溝と平行にボール戻し孔が貫通形成され 前記エンドキャップには前記負荷通路とインナブレートのボール戻し孔とを連結し てボールの無限循環路を完成させる u字状の方向転換路が形成されていることを特 徴とするボールスプライン装置。  On the inner peripheral surface of the nut body, a load base portion is formed so as to divide the inner peripheral surface evenly in the circumferential direction, and the inner blade is accommodated between the load base portions. A plate housing portion is formed, and further, a ball rolling groove constituting a ball load passage is formed in the load base portion so as to face the ball rolling groove of the spline shaft, and the inner plate has a ball rolling groove. A ball return hole is formed in parallel with the running groove, and the end cap is formed with a u-shaped direction change path that connects the load passage and the ball return hole of the inner blade to complete the infinite circulation path of the ball. A ball spline device characterized by
[2] 前記ナット本体の負荷ベース部の両端面にはプレート基準孔が形成される一方、前 記インナブレートの軸方向の両端には前記負荷ベース部の前後両端面に重なり合う 位置決めフランジが形成され、前記エンドキャップにはインナプレートの位置決めフラ ンジを貫通して負荷ベース部のプレート基準孔に嵌合するスタッドが形成されている ことを特徴とする請求項 1記載のボールスプライン装置。  [2] Plate reference holes are formed on both end surfaces of the load base portion of the nut body, while positioning flanges are formed on both end portions of the inner base in the axial direction so as to overlap the front and rear end surfaces of the load base portion. 2. The ball spline device according to claim 1, wherein the end cap is formed with a stud that penetrates a positioning flange of the inner plate and fits into a plate reference hole of the load base portion.
[3] 前記インナブレートの位置決めフランジには、前記方向転換路の内周側案内面を形 成するリターンピースが突出していることを特徴とする請求項 1記載のボールスプライ ン装置。  3. The ball spline device according to claim 1, wherein a return piece that forms an inner peripheral side guide surface of the direction changing path protrudes from the positioning flange of the inner blade.
[4] 前記エンドキャップの方向転換路はボール戻し孔と負荷通路とを含む特定平面内に 位置していることを特徴とする請求項 1記載のボールスプライン装置。  4. The ball spline apparatus according to claim 1, wherein the direction changing path of the end cap is located in a specific plane including the ball return hole and the load path.
[5] 前記インナブレート及びエンドキャップは合成樹脂製であることを特徴とする請求項 1 記載のボールスプライン装置。 [5] The inner braid and the end cap are made of synthetic resin. The ball spline device described.
[6] 無限循環路内を前後して転走するボールの間には合成樹脂製のスぺーサが介装さ れていることを特徴とする請求項 1記載のボールスプライン装置。  6. The ball spline device according to claim 1, wherein a spacer made of a synthetic resin is interposed between balls that roll back and forth in the endless circulation path.
PCT/JP2005/016435 2004-09-08 2005-09-07 Ball spline device WO2006028141A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006535793A JP4675326B2 (en) 2004-09-08 2005-09-07 Ball spline device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004260486 2004-09-08
JP2004-260486 2004-09-08

Publications (1)

Publication Number Publication Date
WO2006028141A1 true WO2006028141A1 (en) 2006-03-16

Family

ID=36036423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016435 WO2006028141A1 (en) 2004-09-08 2005-09-07 Ball spline device

Country Status (2)

Country Link
JP (3) JP4675326B2 (en)
WO (1) WO2006028141A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011017448A (en) * 2004-09-08 2011-01-27 Thk Co Ltd Ball spline device
CN102359489A (en) * 2011-10-22 2012-02-22 威海利奥泰儆自动化设备有限公司 Ball spline pair with low friction force and low weight
JP5570217B2 (en) * 2007-09-27 2014-08-13 Thk株式会社 Linear guide device
TWI708903B (en) * 2019-07-25 2020-11-01 上銀科技股份有限公司 Ball spline with lubricating device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234686A (en) * 2012-05-07 2013-11-21 Thk Co Ltd Motion guide device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10184681A (en) * 1996-12-27 1998-07-14 Thk Kk Linear guide device using ball chain
JPH10196652A (en) * 1997-12-01 1998-07-31 Thk Kk Rolling element connector
JPH1172119A (en) * 1997-06-16 1999-03-16 Thk Kk Linear motion guide device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928773B2 (en) * 1982-02-12 1984-07-16 博 寺町 Ball spline bearing for infinite sliding
JPS59155617A (en) * 1983-02-21 1984-09-04 Tsubakimoto Seikou:Kk Ball spline
JPS636507Y2 (en) * 1985-04-30 1988-02-24
JPS62237113A (en) * 1986-04-05 1987-10-17 Nippon Thompson Co Ltd Ball spline bearing
JPS63140111A (en) * 1986-12-03 1988-06-11 Nippon Thompson Co Ltd Ball spline bearing with drive device
JP4675326B2 (en) * 2004-09-08 2011-04-20 Thk株式会社 Ball spline device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10184681A (en) * 1996-12-27 1998-07-14 Thk Kk Linear guide device using ball chain
JPH1172119A (en) * 1997-06-16 1999-03-16 Thk Kk Linear motion guide device
JPH10196652A (en) * 1997-12-01 1998-07-31 Thk Kk Rolling element connector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011017448A (en) * 2004-09-08 2011-01-27 Thk Co Ltd Ball spline device
JP2011017447A (en) * 2004-09-08 2011-01-27 Thk Co Ltd Ball spline device
JP5570217B2 (en) * 2007-09-27 2014-08-13 Thk株式会社 Linear guide device
CN102359489A (en) * 2011-10-22 2012-02-22 威海利奥泰儆自动化设备有限公司 Ball spline pair with low friction force and low weight
TWI708903B (en) * 2019-07-25 2020-11-01 上銀科技股份有限公司 Ball spline with lubricating device

Also Published As

Publication number Publication date
JPWO2006028141A1 (en) 2008-05-08
JP2011017448A (en) 2011-01-27
JP5026575B2 (en) 2012-09-12
JP4675326B2 (en) 2011-04-20
JP2011017447A (en) 2011-01-27

Similar Documents

Publication Publication Date Title
US4444443A (en) Unlimited sliding ball bearing spline assembly
JP5026575B2 (en) Ball spline device
US4634296A (en) Ball spline bearing
WO2007013266A1 (en) Method of producing screw device, and screw device
WO2008065878A1 (en) Ball spline device
JP2019014358A (en) Steering device and method of manufacturing steering device
JPS62237113A (en) Ball spline bearing
US4695170A (en) Endless ball spline
CN203835970U (en) Ball spline group and ball retainer thereof
JP2007016966A (en) Shaft coupling and in-wheel motor system using same
TWM467770U (en) Ball screw
TWM554527U (en) Roller spline assembly
JPH1151145A (en) Side lid type ball screw device
WO2018207625A1 (en) Ball reduction gear
JPWO2009037931A1 (en) Rolling body circulation type linear guide device
JP2006105296A (en) Roller type linear guide way
WO2023188058A1 (en) Ball screw device
JPS58142023A (en) Ball spline for combined motion
JP3244374B2 (en) Ball spline
US11668376B2 (en) Cam transmission mechanism with ball followers
WO2023188057A1 (en) Ball screw device
KR102021026B1 (en) Ball screw device and electric power steering device
JP4578111B2 (en) Shaft coupling
JP2004293711A (en) End cap for ball screw, and ball screw
JP6485181B2 (en) Friction roller reducer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006535793

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase