WO2006028065A1 - エネルギー貯蔵装置に使用する回転体、回転体の製造方法及びエネルギー貯蔵装置 - Google Patents

エネルギー貯蔵装置に使用する回転体、回転体の製造方法及びエネルギー貯蔵装置 Download PDF

Info

Publication number
WO2006028065A1
WO2006028065A1 PCT/JP2005/016278 JP2005016278W WO2006028065A1 WO 2006028065 A1 WO2006028065 A1 WO 2006028065A1 JP 2005016278 W JP2005016278 W JP 2005016278W WO 2006028065 A1 WO2006028065 A1 WO 2006028065A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating body
energy storage
energy
rotating
storage device
Prior art date
Application number
PCT/JP2005/016278
Other languages
English (en)
French (fr)
Inventor
Terutsugu Oyama
Original Assignee
Six One Kaihatukikou Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Six One Kaihatukikou Co., Ltd. filed Critical Six One Kaihatukikou Co., Ltd.
Priority to EP05776166A priority Critical patent/EP1804361A1/en
Priority to US11/574,689 priority patent/US7977837B2/en
Publication of WO2006028065A1 publication Critical patent/WO2006028065A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/02Additional mass for increasing inertia, e.g. flywheels
    • H02K7/025Additional mass for increasing inertia, e.g. flywheels for power storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C15/00Construction of rotary bodies to resist centrifugal force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/30Flywheels
    • F16F15/305Flywheels made of plastics, e.g. fibre reinforced plastics [FRP], i.e. characterised by their special construction from such materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/30Flywheels
    • F16F15/31Flywheels characterised by means for varying the moment of inertia
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J15/00Systems for storing electric energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J15/00Systems for storing electric energy
    • H02J15/007Systems for storing electric energy involving storage in the form of mechanical energy, e.g. fly-wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/55Flywheel systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49009Dynamoelectric machine
    • Y10T29/49012Rotor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/21Elements
    • Y10T74/2117Power generating-type flywheel
    • Y10T74/2119Structural detail, e.g., material, configuration, superconductor, discs, laminated, etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/21Elements
    • Y10T74/2117Power generating-type flywheel
    • Y10T74/2119Structural detail, e.g., material, configuration, superconductor, discs, laminated, etc.
    • Y10T74/212Containing fiber or filament
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/21Elements
    • Y10T74/2121Flywheel, motion smoothing-type
    • Y10T74/2132Structural detail, e.g., fiber, held by magnet, etc.

Definitions

  • Rotating body used in energy storage device method of manufacturing rotating body, and energy storage device
  • the present invention relates to a rotating body used for an energy storage device, a method for manufacturing the rotating body, and an energy storage device. More specifically, an energy storage device that stores external energy as rotational kinetic energy of a rotating body that uses a superconductive (superconducting) fishing effect to reduce the frictional resistance of the bearing is extremely small.
  • TECHNICAL FIELD The present invention relates to a rotating body used for an energy storage device, a method for manufacturing the rotating body, and an energy storage device, which enables unprecedented high-speed rotation by improving deformation resistance in the energy storage device and enables storage of larger external energy. .
  • the superconductor that floats and supports using the fusing effect (pinning effect) of the superconductor that can constrain and retain the magnetic lines of force that penetrate the inside, and the frictional resistance of the bearing portion is made extremely small.
  • a flywheel is used.
  • Patent Document 1 An example of this is disclosed in Patent Document 1.
  • the flywheel described in Patent Document 1 is formed in a disk shape or a ring shape.
  • Patent Document 1 Japanese Patent No. 2992578
  • flywheels such as CFRP (Carbon Fiber Reinforced Plastic) It is theoretically possible to increase the energy storage by making the material relatively lightweight and having a high tensile strength, and rotating the flywheel at a higher speed.
  • CFRP Carbon Fiber Reinforced Plastic
  • CFRP is a glass fiber reinforced thermosetting plastic GFRP (Glass made of glass fiber long fibers, woven fabrics, short fibers, etc., hardened with a thermosetting resin such as unsaturated polyester resin, epoxy resin, etc. Similar to Fiber Reinforced Plastics), it is a carbon fiber reinforced thermosetting plastic using carbon fiber.
  • the speed of the outer periphery of the flywheel can be increased to about 1800m per second.
  • An object of the present invention is to provide an energy storage device that stores external energy as rotational kinetic energy of a rotating body that uses a superconducting fishing effect to reduce the frictional resistance of the bearing portion, and is resistant to deformation during rotation of the rotating body.
  • the rotating body is used as a flywheel of the energy storage device, and the rotating body is required in advance in the direction opposite to the centrifugal force when the rotating body rotates.
  • the rotating body is characterized in that a compressive force or compressive stress is applied.
  • the energy storage device is capable of storing energy by rotating a rotating body that is levitated and supported by a superconducting fishing effect and has an extremely small frictional resistance of the bearing portion.
  • the rotating body used in the energy storage device is characterized in that a necessary compressive force or compressive stress is applied in a direction opposite to the centrifugal force direction when the energy is stored.
  • the rotating body has an elongated structure in the direction of centrifugal force when the rotating body rotates.
  • the energy storage according to the second invention is characterized in that It is a rotating body used in the device.
  • the rotating body according to the second or third invention which is supported to float in a low frictional resistance state by the fishing effect by the superconductor, and the rotating body are accommodated.
  • a vacuum chamber capable of maintaining the inside in a high vacuum state
  • An energy storage device comprising: an output device capable of extracting rotational kinetic energy to the outside.
  • a heat insulating container in which superconductors that restrain and hold the magnetic lines of force that enter the inside thereof to generate a fishing effect are housed and arranged, and the inside of the heat insulating container has a criticality of the superconductor.
  • a cooling device for cooling a refrigerant for maintaining the temperature below, a rotating body according to the first or second invention having a magnet that generates a fishing effect in combination with the superconductor, and the heat insulating container are accommodated.
  • the rotary body can be rotatably accommodated, and a rotary chamber can be maintained in a high vacuum state by a decompression device, and a rotational force is applied to the rotary body in the vacuum chamber by external energy to the rotary body.
  • An input / output device that stores the above external energy as the rotational kinetic energy of the rotating body by performing rotational motion in a low frictional resistance state and can extract the rotational kinetic energy to the outside And an energy storage device.
  • the energy storage device according to the fourth or fifth invention is characterized in that a plurality of rotating bodies are stacked in the axial direction of the rotating shaft.
  • a linear body or string-shaped body made of carbon fiber, glass fiber or high-strength fiber is hung between the tension elements, and the linear body or string-shaped body Pull on the body Apply the required tensile force in the direction of the centrifugal force when the rotating body rotates with the tension element to form a bone body, solidify the plastic to the required shape to include the bone body with the tensile force applied, Energy storage device, characterized in that it is created by releasing the tensile force of the tension element It is a manufacturing method of the rotary body used for a.
  • the pulling force to be held on the bone body is not limited to, for example, a force that is a limit value of the fracture strength of the annular body, and can be set as appropriate.
  • the superconductor is not particularly limited, but, for example, an oxide high-temperature superconductor is employed.
  • the magnet provided on the rotating body can subdivide each magnet in the radial direction of the rotating body on which the magnet is disposed so that the magnetic gradient of the magnetic field formed by the magnet is increased.
  • the magnet can be a magnet having a concentric magnetic field line distribution, and a permanent magnet can be adopted as the material.
  • the superconductor may be formed between magnets formed in different radii and formed in multiple layers with different radii.
  • a force capable of adopting liquid nitrogen is not limited to this.
  • superconductors such as high-temperature oxide superconductors can be made below the critical temperature below the boiling point.
  • liquid helium can be adopted as the refrigerant.
  • Liquid helium can also make superconductors such as oxide high-temperature superconductors below the critical temperature below the boiling point.
  • the rotating body is applied with the required compressive force or compressive stress in the direction opposite to the direction of the centrifugal force when the rotating body rotates, so when the centrifugal force is generated by rotation, the compressive force or compressive force is applied.
  • the force that reduces or eliminates strain due to stress is equalized or eliminated, and even if the rotating body is rotated at a high speed like never before, the rotational vibration of the rotating body is difficult to increase and the shaft vibration is difficult to increase.
  • the rotational angular velocity can be increased without causing distortion or deformation of the rotating body to the limit of the material strength such as CFRP, that is, the tensile strength, and the rotational balance of the rotating body is lost. It is possible to prevent the operation from becoming impossible due to the increase of the rotation shaft vibration due to the increase of the rotation angular velocity.
  • the rotation of the rotating body is stable even when the peripheral speed of the rotating body is 800 m or more per second.
  • the peripheral speed of the rotating body is 800 m or more per second.
  • the energy storage amount can be dramatically increased than before. It becomes possible.
  • this rotating body When this rotating body is used as a rotating body of an energy storage device and is rotated by applying external energy to the rotating body by means of input means, the rotating body rotates with a very small frictional resistance, so that the rotating body temporarily rotates. When started, the rotation state can be maintained for a long time. In other words, the external energy can be efficiently stored as the rotational kinetic energy of the rotating body. Also, when necessary, the rotational kinetic energy stored in this rotating body can be taken out by the output means and the rotational force can be used as it is.
  • a power storage device that can be used for a large-capacity 1000KWH load level that is about 100 times larger than the current limit of about 10KWH and has a large energy storage capacity. Is possible.
  • the necessary compressive force or compressive stress is applied in the direction opposite to the centrifugal force direction when the rotating body rotates.
  • the force that reduces the compressive force or distortion caused by the compressive stress is equalized or eliminated by the centrifugal force, and deformation resistance can be improved.
  • the rotating body is rotated at an unprecedented high speed, the shaft vibration that is difficult to break the rotating balance of the rotating body is unlikely to increase. Therefore, for example, it is possible to stably maintain the rotation of the rotating body even when the peripheral speed of the rotating body exceeds 800 m / s.
  • the peripheral speed of the rotating body is limited to the material strength of CFRP, that is, the limit of tensile strength. In the meantime, by setting the speed to 1800 m per second, it becomes possible to dramatically increase the amount of stored energy.
  • the rotating body has a structure that is long in the direction of centrifugal force when the rotating body rotates, so that the rotating body has a rod-like shape, and is a conventional disc-shaped flywheel or ring. Even when rotating at the same weight and rotational angular velocity as compared with a rotating body that is a flywheel, the rotating center of gravity radius of the rotating body can be increased, and the amount of energy stored can be significantly increased. Also, since the pulling direction is on the same straight line during manufacturing, the manufacturing is compared. hardly.
  • FIG. 1 is a perspective view showing a structure of a rotating body according to the present invention.
  • FIG. 2 is a plan view explanatory view showing a method for manufacturing a rotating body.
  • FIG. 3 is an explanatory cross-sectional view showing a first embodiment of an energy storage device according to the present invention.
  • FIG. 4 is a plan view showing a combined structure of rotating bodies.
  • FIG. 5 is a cross-sectional explanatory view showing a second embodiment of the energy storage device according to the present invention. Explanation of symbols
  • FIG. 1 is a perspective view showing the structure of a rotating body according to the present invention.
  • FIG. 2 is a plan view explanatory view showing a method of manufacturing a rotating body.
  • the rotating body 1 is made of solid by CFRP.
  • the rotating body 1 is an elongated plate-like body or a rod-like body.
  • the rotating body 1 has a mounting hole 10 penetrating through the front and back for mounting on the rotating shaft 102 at the center in the length direction serving as the center of rotation.
  • the shape of the mounting hole 10 is a circular hole in the present embodiment, but may be another shape, for example, a square hole or a hexagonal hole.
  • a bottomed hole may be used instead of a through hole.
  • the rotating body 1 When the rotating body 1 is used as the rotating body of the energy storage device A, it can be used singly or plurally (see FIGS. 3, 4, and 5 described later).
  • a method of manufacturing the rotating body 1 is as follows.
  • the central metal fitting 14 is arranged so as to fit inside the central portion of the string-like body 13 having an elongated ring shape.
  • a circular mounting hole 10 is provided through the center of the center metal fitting 14.
  • the pull metal fittings 11 and 12 are moved in the direction in which the interval is widened to apply a pulling force in the direction of the arrow to the string-like body 13.
  • This pulling force is essentially the same as the direction of centrifugal force when the rotating body rotates.
  • the bone body 130 is obtained by applying a tensile force in the direction of the arrow to the ring-shaped string-like body 13.
  • plastic is poured into the inner space portion 131 so as to include the bone body 130 with the tensile force applied thereto, and solidified.
  • FIG. 3 is an explanatory sectional view showing a first embodiment of the energy storage device according to the present invention
  • FIG. 4 is a plan view showing a combined structure of rotating bodies.
  • the energy storage device A is an energy storage device described in (Fig. 1) of the energy storage device described in Japanese Patent No. 2992578 that is already known. It has a structure replaced with 100.
  • the energy storage device A includes a flywheel 100 in which a plurality of rotating bodies 1 are mounted on a rotating shaft 102 and stacked, a disk-shaped permanent magnet 101 fixed to a lower surface of the flywheel 100, Heat insulation container 3, high-temperature oxide superconductor 30 placed in heat insulation container 3, liquid nitrogen 40 placed in heat insulation container 3, liquid level controller 41 that controls the liquid level of liquid nitrogen to a certain level, liquid nitrogen cooling It includes a device 4, a vacuum chamber 5 for accommodating a flywheel 100, a heat insulating container 3, and the like, a pressure reducing device 50, and an input / output device 6 having an electric motor (input unit) and a power generator (output unit).
  • the oxide high-temperature superconductor 30 is placed and fixed as a Balta block in a heat insulating container 3 containing liquid nitrogen 40, and is superconductive at a boiling point of liquid nitrogen of 77K (Kelvin) or lower. It is in a state.
  • the flywheel 100 inside the vacuum chamber 5 has twelve rotating bodies 1 stacked and mounted so that the mounting hole 10 is fitted into the rotating shaft 102.
  • the rotating shaft 102 penetrates the upper part of the vacuum chamber 5 in an airtight and rotatable manner.
  • Each rotating body 1 is fixed to the rotating shaft 102 by fixing means (not shown) while being sequentially shifted by 30 ° in the axial direction.
  • the number of rotating bodies is twelve, but is not particularly limited.
  • each rotating body 1 may be shifted at the same angle as described above, but the shifting angle is changed respectively. You can do it and try to get rid of it without shifting.
  • the disc-shaped permanent magnet 101 is fixed to the lower surface of the flywheel 100 as described above.
  • the flywheel 100 is disposed on the heat insulating container 3, and when the high-temperature oxide superconductor 30 is in a superconducting state, the flywheel 100 on which the disk-shaped permanent magnet 101 is fixed also has the surface force of the heat insulating container 3 rising.
  • the heat insulating container 3 can be rotated in a non-contact state around a rotating shaft (not shown).
  • this vacuum chamber 5 the internal gas is discharged to the outside by the decompression device 50 and kept in a high vacuum state, effectively preventing the rotational force of the flywheel 100 from being attenuated by the frictional force of the gas.
  • the liquid nitrogen 40 may vaporize or increase in temperature by absorbing external heat, the liquid nitrogen 40 is cooled to a predetermined temperature by the liquid nitrogen cooling device 4, and at least in a liquid phase state to a certain depth in the heat insulating container 3. Is supposed to hold. For this reason, a liquid level control device 41 is provided in communication with the heat insulating container 3. That is, the liquid level control device 41 detects when the amount of liquid nitrogen 40 in the heat insulating container 3 decreases and the liquid level decreases, and automatically detects this from the liquid nitrogen cooling device 4 to the heat insulating container 3. Liquid nitrogen 40 is replenished, and the oxide high temperature superconductor 30 is always immersed in the liquid nitrogen 40 to maintain the superconducting state!
  • the magnetic field lines penetrate into the oxide high temperature superconductor 30 and the impurity phase in the superconducting crystal pierces the magnetic field lines. Pinned and fixed (fishing effect or pinning effect and! / ⁇ ⁇ ). Thereby, a permanent magnet is restrained in the position. Then, the magnetic lines of force in the pinned state work as a pinning force against the permanent magnet, for example, the permanent magnet changes the magnetic field lines in the oxide high-temperature superconductor 30. When this is performed, a force that hinders this acts, that is, a repulsive force acts when the permanent magnet is moved closer, and an attractive force acts when the permanent magnet is moved away.
  • the flywheel 100 when the flywheel 100 is rotated for a certain period of time by the electric motor of the input / output device 6 using electric power supplied from outside, the power supply is stopped (by a clutch device or the like).
  • the flywheel 100 and the disk-like permanent magnet 101 attached to the flywheel 100 can maintain rotation for a long time and store the electric power as rotational kinetic energy. Can do.
  • the rotating body 1 used in the energy storage device A rotates because the required compressive stress is applied in the direction opposite to the centrifugal force direction when the rotating body 1 rotates.
  • the force that reduces the distortion due to the compressive stress by the centrifugal force can be equalized or eliminated, and the deformation resistance can be improved.
  • the rotation speed of the rotating body 1 can be stably maintained even when the peripheral speed of the rotating body 1 becomes 800 m or more per second.
  • the peripheral speed of the rotating body 1 can be adjusted to the material strength of CFRP, that is, the tensile strength. By approaching the limit and setting 1800m per second, the amount of energy storage can be increased.
  • the rotating body 1 since the rotating body 1 has a structure that is long in the direction of centrifugal force when the rotating body 1 rotates, that is, a rod-shaped or thin-plate-shaped structure, a conventional disk-shaped flywheel or ring-shaped frame is used. Even if it rotates with the same weight and the same angular velocity as a rotating body that is a rotating wheel, the rotational center of gravity of the rotating body can be increased and the energy storage amount can be significantly increased. In addition, since the pulling directions are on the same straight line during manufacturing, manufacturing can be performed relatively easily.
  • the flywheel 100 can freely adjust the number of rotating bodies 1 to be used within a range that can be accommodated in the vacuum chamber 5, the amount of energy that can be stored can be set relatively easily.
  • the inside of the vacuum chamber 5 is decompressed to a high vacuum state by the decompression device 50 described above, and the friction resistance due to air is reduced as much as possible. As a result, it is possible to store electric power as external energy with extremely high efficiency.
  • the rotational kinetic energy can be converted into electric energy by the power generation device that also serves as the electric motor of the input / output device 6.
  • the power storage amount E is uniquely determined by the following formula.
  • the power storage amount is about 2.1 ⁇ 10 4 (KWH).
  • this device can store about one day's worth of electrical energy from the 877KW generator.
  • This oxide high-temperature superconductor 30 has been confirmed by experiments to have a levitation force of at least 77 K (Kelvin) and 2 kg / cm 2 or more, whereby the rotating shaft 102 and flywheel 100 under the above conditions are confirmed. It is possible to float the disk-shaped permanent magnet 101. Further, when the temperature of the oxide high-temperature superconductor 30 is lowered to about 60 K by the liquid nitrogen cooling device 4, the pinning force is further improved dramatically, and the levitation force is improved by 2 to 10 times.
  • FIG. 5 is an explanatory cross-sectional view showing a second embodiment of the energy storage device according to the present invention.
  • the energy storage device B is a superconducting radial arranged at two locations on the upper and lower sides of the vacuum chamber 5.
  • the flywheel 100 is subjected to rotation by the bearings 7 and 7a.
  • the rotating shaft 102 penetrates the upper and lower portions of the vacuum chamber 5 in an airtight and rotatable manner.
  • the vacuum chamber 5 is supported by support means (not shown)! Speak.
  • the superconducting radial bearing 7 has a structure equivalent to the non-resistance bearing structure of the energy storage device A using the high-temperature oxide superconductor 30 and the disk-shaped permanent magnet 101.
  • illustration of each incidental device such as a heat insulating container, a liquid nitrogen cooling device, and a liquid level control device is omitted.
  • a motor generator 8 constituting an input / output device is provided above the lower superconducting radial bearing 7a.
  • the motor generator 8 can be made more compact by adopting a type in which the motor generator 8 can be accommodated inside the force rotating shaft 102 provided outside the rotating shaft 102.
  • the operation of the flywheel 100 which is an assembly of the rotating bodies 1, is almost the same as that of the energy storage device A, and thus the description thereof is omitted.
  • the rotating body is rotated at an unprecedented high speed, the shaft vibration that is difficult to break the rotating balance of the rotating body is unlikely to increase. Therefore, for example, it is possible to stably maintain the rotation of the rotating body even when the peripheral speed of the rotating body exceeds 800 m / s.
  • the peripheral speed of the rotating body is limited to the material strength of CFRP, that is, the limit of tensile strength. In the meantime, by setting the speed to 1800 m per second, it becomes possible to dramatically increase the amount of stored energy.
  • the rotating body has a structure that is long in the direction of centrifugal force when the rotating body rotates, so that the rotating body has a rod-like shape so that a conventional disk-like flywheel or ring Even when rotating at the same weight and rotational angular velocity as compared with a rotating body that is a flywheel, the rotating center of gravity radius of the rotating body can be increased, and the amount of energy stored can be significantly increased. Also, since the pulling direction is on the same straight line during manufacturing, the manufacturing is compared. hardly.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

 超伝導によるフィッシング効果を利用して軸受部の摩擦抵抗を極めて小さくした回転体の回転運動エネルギーとして外部エネルギーを貯蔵するエネルギー貯蔵装置において、回転体の回転時における耐変形性を向上させることによって従来にない高速回転を可能とし、より大きい外部エネルギーの貯蔵を可能にした、エネルギー貯蔵装置に使用する回転体を提供する。  超伝導によるフィッシング効果を利用して浮上支持され軸受部の摩擦抵抗を極めて小さくした回転体を回転させることによりエネルギーが貯蔵できるエネルギー貯蔵装置に使用する回転体であって、回転体1はCFRPでつくられており、回転体1が回転するときの遠心力方向と逆方向にあらかじめ所要の圧縮応力が加えられている。回転体1は、回転体1が回転するときの遠心力方向に長尺な棒状構造を有している。

Description

エネルギー貯蔵装置に使用する回転体、回転体の製造方法及びエネル ギー貯蔵装置
技術分野
[0001] 本発明は、エネルギー貯蔵装置に使用する回転体、回転体の製造方法及びエネ ルギー貯蔵装置に関する。更に詳しくは、超伝導 (超電導)によるフィッシング効果を 利用して軸受部の摩擦抵抗を極めて小さくした回転体の回転運動エネルギーとして 外部エネルギーを貯蔵するエネルギー貯蔵装置にぉ 、て、回転体の回転時におけ る耐変形性を向上させることによって従来にない高速回転を可能とし、より大きい外 部エネルギーの貯蔵を可能にした、エネルギー貯蔵装置に使用する回転体、回転 体の製造方法及びエネルギー貯蔵装置に関する。
背景技術
[0002] 従来から、余剰電気工ネルギーなどを利用して、軸受で支持されるフライホイール を回転させ、エネルギーをフライホイールの回転運動エネルギーとして貯蔵しようとす る試みがなされている。このためには、フライホイールの回転抵抗を限りなく小さくして 本質的に無抵抗状態で回転させなければならない。
[0003] 実際には、内部に侵入する磁力線を拘束'保持することができる超伝導体のフイツ シング効果 (ピン止め効果)を利用して浮上支持し、軸受部の摩擦抵抗を極めて小さ くしたフライホイールが使用されて 、る。
この一例として、特許文献 1に開示されているものがある。特許文献 1記載のフライ ホイールは、円盤状またはリング状に形成されている。
[0004] 特許文献 1 :特許第 2992578号
発明の開示
発明が解決しょうとする課題
[0005] し力しながら、従来のような円盤状あるいはリング状のフライホイールでは、次のよう な課題が生じる。
すなわち、フライホイールを、例えば CFRP(Carbon Fiber Reinforced Plastic)などの 比較的軽量で引っ張り強度の強い材料で製造し、フライホイールを更に高速で回転 させるようにしてエネルギー貯蔵量を増加させることは理論上は可能である。
[0006] CFRPは、ガラス繊維の長繊維,織布,短繊維等を不飽和ポリエステル榭脂ゃェポ キシ榭脂などの熱硬化性榭脂で固めたガラス繊維強化熱硬化性プラスチック GFRP (Glass Fiber Reinforced Plastics)と同様にカーボン繊維を使った炭素繊維強化熱硬 化性プラスチックである。
また、 CFRP材料の引っ張り強度をもとに計算すると、フライホイールの外周部の速 度を毎秒 1800m程度まで増加させることが可能である。
[0007] しかし、円盤状あるいはリング状のフライホイールでは、フライホイールの外周部の 速度が毎秒 800m程度になると、回転による遠心力によってフライホイール自体に歪 みが発生して変形し、これによりフライホイールの回転バランスが崩れて軸振動が増 加し、それ以上回転速度を上げることができなくなる。
このように、フライホイールの外周部の速度が毎秒 800m程度以上になるよう回転 速度を上げることは技術的に困難である。
[0008] (本発明の目的)
本発明の目的は、超伝導によるフィッシング効果を利用して軸受部の摩擦抵抗を 極めて小さくした回転体の回転運動エネルギーとして外部エネルギーを貯蔵するェ ネルギー貯蔵装置において、回転体の回転時における耐変形性を向上させることに よって従来にない高速回転を可能とし、より大きい外部エネルギーの貯蔵を可能にし た、エネルギー貯蔵装置に使用する回転体、回転体の製造方法及びエネルギー貯 蔵装置を提供することである。
課題を解決するための手段
[0009] 第 1の発明にあっては、エネルギー貯蔵装置のフライホイールとして使用する回転 体であって、回転体には、回転体が回転するときの遠心力方向と逆方向にあらかじ め所要の圧縮力または圧縮応力が加えられていることを特徴とする、回転体である。
[0010] 第 2の発明にあっては、超伝導によるフィッシング効果を利用して浮上支持され軸 受部の摩擦抵抗を極めて小さくした回転体を回転させることによりエネルギーが貯蔵 できるエネルギー貯蔵装置に使用する回転体であって、回転体は、回転体が回転す るときの遠心力方向と逆方向にあら力じめ所要の圧縮力または圧縮応力が加えられ て 、ることを特徴とする、エネルギー貯蔵装置に使用する回転体である。
[0011] 第 3の発明にあっては、回転体は、回転体が回転するときの遠心力方向に長尺な 構造を有していることを特徴とする、第 2の発明に係るエネルギー貯蔵装置に使用す る回転体である。
[0012] 第 4の発明にあっては、超伝導体によるフィッシング効果により低摩擦抵抗状態で 回転可能に浮上支持されている第 2または第 3の発明に係る回転体と、当該回転体 を収容し、内部を高真空状態で維持することができる真空槽と、上記回転体に外部 エネルギーを与えて回転させ、外部エネルギーを回転体の回転運動エネルギーとし て貯蔵させる入力手段と、上記回転体の回転運動エネルギーを外部へ取り出すこと ができる出力装置と、を備えていることを特徴とする、エネルギー貯蔵装置である。
[0013] 第 5の発明にあっては、内部に侵入する磁力線を拘束'保持してフィッシング効果 を発生させる超伝導体を収納配列した断熱容器と、当該断熱容器内を上記超伝導 体の臨界温度以下に保持するための冷媒を冷却する冷却装置と、上記超伝導体と 相まってフィッシング効果を発生させる磁石を有する第 1または第 2の発明に係る回 転体と、上記断熱容器を収容するとともに、上記回転体を回転自在に収容し、内部を 減圧装置によって高真空状態で維持することができる真空槽と、当該真空槽内の回 転体へ外部エネルギーにより回転力を付与し、回転体に低摩擦抵抗状態での回転 運動を行わせて上記外部エネルギーを回転体の回転運動エネルギーとして貯蔵す るとともに、その回転運動エネルギーを外部へ取り出すことができる入出力装置と、を 備えて 、ることを特徴とする、エネルギー貯蔵装置である。
[0014] 第 6の発明にあっては、回転体は、回転軸の軸線方向に複数重ねられて 、ることを 特徴とする、第 4または第 5の発明に係るエネルギー貯蔵装置である。
[0015] 第 7の発明にあっては、炭素繊維、グラスファイバまたは高張力繊維でつくられた線 状体または紐状体を引つ張り要素の間に掛け回し、当該線状体または紐状体に引つ 張り要素で回転体が回転したときの遠心力方向に所要の引っ張り力を加えて骨体と し、引っ張り力を付与したままの骨体を含むようプラスチックを所要形状に固化し、引 つ張り要素による引っ張り力を解除してつくることを特徴とする、エネルギー貯蔵装置 に使用する回転体の製造方法である。
[0016] 骨体にカ卩える引っ張り力は、例えば環状体の耐破断強度の限界値である力 これ に限定はせず、適宜設定が可能である。
[0017] 超伝導体としては、特に限定はしないが、例えば酸化物高温超伝導体が採用され る。
回転体に設けた磁石は、磁石により形成する磁界の磁気勾配が高まるように、磁石 が配設される回転体の半径方向について各磁石を細分割することができる。
磁石は同心円状の磁力線分布を有する磁石とすることができ、その材料として永久 磁石を採用することができる。
[0018] 超伝導体は、互いに異なる半径で形成され、かつ互いに異なる半径で多数層に形 成された各磁石間に配設することができる。
冷媒としては、例えば液体窒素を採用することができる力 これに限定するものでは ない。液体窒素によれば、沸点以下で酸化物高温超伝導体などの超伝導体を臨界 温度以下にすることができる。
また、冷媒として液体ヘリウムを採用することができる。液体ヘリウムによっても、沸 点以下で酸ィ匕物高温超伝導体などの超伝導体を臨界温度以下にすることができる。
[0019] (作 用)
本発明に係る回転体及びエネルギー貯蔵装置の作用を説明する。
回転体は、回転体が回転するときの遠心力方向と逆方向にあら力じめ所要の圧縮 力または圧縮応力が加えられているので、回転して遠心力が発生したときに圧縮力 または圧縮応力による歪みが低減される力、均等化するか、またはなくなり、従来に ないような高速で回転させても回転体の回転バランスが崩れにくぐ軸振動も増加し にくい。
[0020] 従って、例えば CFRPなどの材料強度、すなわち引っ張り強度の限界まで、回転体 に歪みや変形を本質的に生じることなく回転角速度を増カロさせることができ、回転体 の回転バランスが崩れることによる回転軸振動が回転角速度の増加とともに増加する ことによって運転ができなくなることを防止できる。
[0021] 具体的には、回転体の周速が毎秒 800m以上になっても回転体の回転を安定的 に維持することが可能であり、例えば回転体の周速を CFRPの材料強度、すなわち 引っ張り強度の限界に近い毎秒 1800mにすることにより、エネルギーの貯蔵量を従 来より飛躍的に増大させることが可能になる。
[0022] この回転体をエネルギー貯蔵装置の回転体として使用し、入力手段で回転体に外 部エネルギーを与えて回転させると、回転体は極めて小さな摩擦抵抗状態で回転す るため、一旦回転を開始すると長時間にわたり回転状態を維持することができる。い V、かえれば、上記外部エネルギーを回転体の回転運動エネルギーとして効率的に 貯蔵することができる。また、必要時にはこの回転中の回転体に貯蔵されている回転 運動エネルギーを出力手段によって外部へ取り出して、回転力をそのまま利用したり
、または電気などの他のエネルギーに変換して利用することができる。
[0023] 本発明によれば、現在限界といわれている 10KWH程度と比較して 100倍程度ェ ネルギー貯蔵量の大きい大容量の 1000KWH級の負荷平準にも利用できる電力貯 蔵装置を製造することが可能になる。
発明の効果
[0024] (a)本発明によれば、回転体が回転するときの遠心力方向と逆方向にあら力じめ所 要の圧縮力または圧縮応力が加えられているので、回転して遠心力が発生したとき に、その遠心力によって圧縮力または圧縮応力による歪みが低減される力、均等化 するか、またはなくなり、耐変形性を向上させることができる。
これにより、回転体を従来にないような高速で回転させても回転体の回転バランス が崩れにくぐ軸振動も増加しにくい。従って、例えば回転体の周速が毎秒 800m以 上になっても回転体の回転を安定的に維持することが可能であり、例えば回転体の 周速を CFRPの材料強度、すなわち引っ張り強度の限界に近 、毎秒 1800mにする ことにより、エネルギーの貯蔵量を従来より飛躍的に増大させることが可能になる。
[0025] (b)回転体が、回転体が回転するときの遠心力方向に長尺な構造を有して 、るもの は、回転体がいわば棒状となり、従来の円盤状のフライホイールあるいはリング状の フライホイールである回転体と比較して同重量、同回転角速度で回転しても、回転体 の回転重心半径を大きくすることができ、エネルギー貯蔵量を格段に増加させること ができる。また、製造時において引っ張り方向が同一直線上にあるため製造が比較 的容易にできる。
[0026] (c)エネルギー貯蔵装置において、回転体が回転軸の軸線方向に複数重ねられて いるものは、例えば同じ形状のものを使用しその数を調節することにより、貯蔵可能な エネルギー量の設定が比較的容易にできる。
図面の簡単な説明
[0027] [図 1]本発明に係る回転体の構造を示す斜視図。
[図 2]回転体の製造方法を示す平面視説明図。
[図 3]本発明に係るエネルギー貯蔵装置の第 1実施の形態を示す断面説明図。
[図 4]回転体の組み合わせ構造を示す平面図。
[図 5]本発明に係るエネルギー貯蔵装置の第 2実施の形態を示す断面説明図。 符号の説明
[0028] A エネルギー貯蔵装置
1 回転体
10 取付孔
11、 12 引っ張り金具
13 紐状体
130 骨体
131 空間部
14 中心金具
15 切断線
100 フライホイール
101 円盤状永久磁石
102 回転軸
3 断熱容器
30 酸化物高温超伝導体
4 液体窒素冷却装置
40 液体窒素
41 液面制御装置 5 真空槽
50 減圧装置
6 入出力装置
B エネルギー貯蔵装置
7、 7a 超伝導ラジアル軸受
8 モーター発電機
発明を実施するための最良の形態
[0029] 図 1は本発明に係る回転体の構造を示す斜視図、
図 2は回転体の製造方法を示す平面視説明図である。
[0030] 回転体 1は、 CFRPにより中実に製造されている。回転体 1は、細長い板状体また は棒状体である。回転体 1は、回転中心となる長さ方向中央に、回転軸 102に取り付 けるための表裏に貫通した取付孔 10を有している。
[0031] なお、取付孔 10の形状は本実施の形態では円孔であるが、他の形状、例えば四 角や六角などの角孔でもよい。また、単数で使用する場合は貫通孔ではなく有底孔 でもよい。更には、回転体に回転中心となる回転軸を直接設けることもできる。
回転体 1をエネルギー貯蔵装置 Aの回転体として使用する際は、単数でも複数 (後 述する図 3、図 4、図 5参照)でも使用可能である。
[0032] 回転体 1の製造方法は次の通りである。
図 2を参照して説明する。
[0033] (1)引っ張り要素である二個の円形の引っ張り金具 11、 12を所要間隔で配する。
(2)炭素繊維でつくられた紐状体 13を用意し、紐状体 13を引っ張り金具 11、 12間 に必要回数だけ掛け回す。
[0034] (3)細長い環状となった紐状体 13の中央部の内側に収まるように中心金具 14を配 する。中心金具 14の中心には円形の取付孔 10が貫通して設けられている。
(4)引っ張り金具 11、 12を、その間隔が拡がる方向に動かして紐状体 13に矢印方 向の引っ張り力を付与する。この引っ張り力は、回転体が回転したときの遠心力方向 と本質的に同じになる。また、環状となった紐状体 13に矢印方向の引っ張り力を付 与した状態のものが骨体 130となる。 [0035] (5)引っ張り力を付与したままの骨体 130を含むよう、骨体 130を型部としてその内 側の空間部 131にプラスチックを流し込み、固化させる。固化した後、引っ張り金具 1 1、 12による引っ張り力を解除することにより、回転体 1に対して回転体 1が回転する ときの遠心力方向と逆方向にあら力じめ所要の圧縮応力が加えられることになる。 (6)そして、回転体 1の回転バランスがとれるように、両端部を切断部 15において適 宜切断して回転体 1とする。
[0036] 図 3は本発明に係るエネルギー貯蔵装置の第 1実施の形態を示す断面説明図、 図 4は回転体の組み合わせ構造を示す平面図である。
[0037] エネルギー貯蔵装置 Aは、すでに公知となっている特許第 2992578号に記載され ているエネルギー貯蔵装置の(図 1)に記載されているエネルギー貯蔵装置において 、重量物(2)をフライホイール 100と入れ替えた構造を有して ヽるものである。
[0038] エネルギー貯蔵装置 Aは、図 3に示すように、回転体 1を回転軸 102に複数装着し て重ねたフライホイール 100、フライホイール 100の下部の面に固定した円盤状永久 磁石 101、断熱容器 3、断熱容器 3内に配された酸化物高温超伝導体 30、断熱容器 3内に入れられる液体窒素 40、液体窒素の液面を一定に制御する液面制御装置 41 、液体窒素冷却装置 4、フライホイール 100や断熱容器 3などを収容する真空槽 5、 減圧装置 50、及び電動機 (入力部)と発電装置(出力部)を有する入出力装置 6を備 えている。
[0039] 酸化物高温超伝導体 30は、液体窒素 40の入った断熱容器 3の中にバルタ (塊)状 のブロックとして配置固定され、液体窒素の沸点温度 77K (ケルビン)以下において は超伝導状態になって 、る。
[0040] 真空槽 5の内部にあるフライホイール 100は、図 4に示すように 12本の回転体 1を 回転軸 102に取付孔 10を嵌め入れるようにして重ねて装着して 、る。回転軸 102は 真空槽 5上部を気密にかつ回転可能に貫通させてある。各回転体 1は軸周方向に 3 0° ずつ順にずらしながら回転軸 102に固定手段(図示省略)によって固着されてい る。
なお、本実施の形態では、回転体の数は 12個であるが特に限定はしない。また、 各回転体 1は上記のように等角度でずらしてもよいが、ずらす角度をそれぞれ変える ことちできるし、ずらさずに撤免るようにしてちょい。
[0041] また、フライホイール 100には、上記のように下面に円盤状永久磁石 101が固定さ れている。フライホイール 100は断熱容器 3の上に配され、酸化物高温超伝導体 30 が超伝導状態では、円盤状永久磁石 101が固定されたフライホイール 100は断熱容 器 3上面力も浮上しており、回転軸(図示省略)を中心として断熱容器 3に無接触状 態で回転できる。なお、この真空槽 5は、内部の気体が減圧装置 50によって外部へ 排出され高真空状態に保持されており、気体による摩擦力でフライホイール 100の回 転力が減衰されるのを有効に防止するようになって!/、る。
[0042] 液体窒素 40は、外部の熱を吸収することにより気化或いは温度が上昇するおそれ 力あるので、液体窒素冷却装置 4で所定温度まで冷却し少なくとも断熱容器 3内では 一定深さまで液相状態を保持するようになっている。このため、断熱容器 3と連通して 液面制御装置 41が設けられている。すなわち、この液面制御装置 41は、断熱容器 3 内の液体窒素 40の量が減少し、液面が低下すると、これを検知して自動的に液体窒 素冷却装置 4から断熱容器 3内へ液体窒素 40を補給し、酸化物高温超伝導体 30を 常時液体窒素 40内に浸漬させ超伝導状態を保持するようになって!/ヽる。
[0043] ここで、本発明に係るエネルギー貯蔵装置 Aに使用されている酸化物高温超伝導 体 30の作用につ 、て説明する。
酸化物高温超伝導体 30は、永久磁石等を近づけると、磁力線が酸化物高温超伝 導体 30の内部に入り込み、超伝導結晶内にある不純物相によって磁力線カ^、わば ピンを刺すようにピン止め固定される(フィッシング効果またはピン止め効果と!/ヽぅ)。 これにより、永久磁石はその位置に拘束される。そして、このピン止めされた状態にあ る磁力線が逆に永久磁石に対してピン止め力として働き、例えばその永久磁石がこ の酸化物高温超伝導体 30中の磁力線に変化を与えるような動作を行う場合にはこ れを妨げる力が働き、つまり永久磁石を近付けた場合には反発力、遠ざけた場合に は吸引力が働く。
[0044] 特に、この実施例の円盤状永久磁石 101のように同心円状に磁束分布を形成した ものを使用すると、円盤状永久磁石 101のセンタにある回転軸 102を中心に回転さ せても酸化物高温超伝導体 30を貫く磁束分布には変化がないので、回転を阻むよう な抵抗力や横ずれ等を起こす反発力や吸引力は働力ない。つまり、円盤状永久磁 石 101がそのセンタ位置にピン止めされた状態のまま、いいかえれば横ずれをおこさ ずその位置に浮上した状態で無接触無抵抗のまま永続的回転することが可能な回 転体が得られる。
[0045] (作 用)
従って、本実施の形態に係るエネルギー貯蔵装置 Aによれば、外部から供給する 電力により入出力装置 6の電動機でフライホイール 100を一定時間回転させた後そ の給電を停止すると (クラッチ装置などで機械的入'切を併せて行ってもよい)、フライ ホイール 100及びこれに取付けた円盤状永久磁石 101が長時間にわたり回転を維 持することができ、上記電力を回転運動エネルギーとして貯蔵することができる。
[0046] また、エネルギー貯蔵装置 Aに使用される回転体 1は、回転体 1が回転するときの 遠心力方向と逆方向にあら力じめ所要の圧縮応力が加えられているので、回転して 遠心力が発生したときに、その遠心力によって圧縮応力による歪みが低減される力、 均等化するか、またはなくなり、耐変形性を向上させることができる。
[0047] これにより、フライホイール 100を従来にないような高速で回転させても回転体 1及 びその集合体であるフライホイール 100の回転バランスが崩れにくく、軸振動も増加 しにくい。従って、例えば回転体 1の周速が毎秒 800m以上になっても回転体の回転 を安定的に維持することが可能であり、例えば回転体 1の周速を CFRPの材料強度、 すなわち引っ張り強度の限界に近 、毎秒 1800mにすれば、エネルギーの貯蔵量を 従来より増大させることが可能になる。
[0048] また、回転体 1が、回転体 1が回転するときの遠心力方向に長尺な構造、つまり棒 状または細板状であるので、従来の円盤状のフライホイールあるいはリング状のフラ ィホイールである回転体と比較して同重量、同回転角速度で回転しても、回転体の 回転重心半径を大きくすることができ、エネルギー貯蔵量を格段に増カロさせることが できる。また、製造時において引っ張り方向が同一直線上にあるため製造が比較的 容易にできる。
更に、フライホイール 100は使用する回転体 1の数を真空槽 5に収容可能な範囲で 自由に調節できるので、貯蔵可能なエネルギー量の設定が比較的容易にできる。 [0049] この場合、空気中では気体との摩擦抵抗があるため先に説明した減圧装置 50より 真空槽 5内を高真空状態に減圧し、空気による摩擦抵抗を極力減少させてある。こ れにより、外部エネルギーである電力を極めて高効率に貯蔵することができる。
[0050] また、電力が必要な場合には、入出力装置 6の電動機を兼ねる発電装置により回 転運動エネルギーを電気工ネルギ一に変換することができる。
この場合の電力貯蔵量 Eはほぼ下記の計算式により一義的に決定される。
E= (1.3 X 10— 7) p D4hR2 (KWH) 但し、
D:回転体の直径 (m)
h:回転体の高さ (m)
P:磁石を含む回転体の平均密度 (g/cm3)
R:回転体の回転数 (rpm)
[0051] 例えば D = 5,h = 4, p =5,R=3600の場合の電力貯蔵量は約 2.1 X 104(KWH)になる 。つまりこの装置で 877KWの発電機の約 1日分の電気エネルギーを貯蔵することが できる。
なお、この酸化物高温超伝導体 30は、実験により少なくとも 77K (ケルビン)で 2kg/c m2以上の浮上力を有することが確認されており、これにより上記条件下の回転軸 102 、フライホイール 100、円盤状永久磁石 101を浮上させることが十分可能である。また 、酸化物高温超伝導体 30の温度を液体窒素冷却装置 4によって 60K程度に下げた 場合には、さらにピン止め力は飛躍的に向上し、浮上力は 2〜10倍程向上する。
[0052] 図 5は本発明に係るエネルギー貯蔵装置の第 2実施の形態を示す断面説明図であ る。
なお、本実施の形態では、図面において上記エネルギー貯蔵装置 Aと同等箇所に 同一符号を付して示し、構造について重複する説明は基本的に省略する。
[0053] エネルギー貯蔵装置 Bは、真空槽 5の上下側の二箇所に配された超伝導ラジアル 軸受 7、 7aによってフライホイール 100の回転を受けるようになつている。回転軸 102 は真空槽 5上部と下部を気密にかつ回転可能に貫通させてある。また、真空槽 5は 支持手段 (図示省略)で支持されて!ヽる。
超伝導ラジアル軸受 7は、上記エネルギー貯蔵装置 Aの酸ィ匕物高温超伝導体 30と 円盤状永久磁石 101による無抵抗軸受構造と同等の構造を有している。なお、断熱 容器や液体窒素冷却装置、液面制御装置などの各付帯装置の図示は省略している
[0054] また、下側の超伝導ラジアル軸受 7aの上方には入出力装置を構成するモーター発 電機 8が設けてある。なお、本実施の形態ではモーター発電機 8を回転軸 102の外 部に設けている力 回転軸 102の内部へ収容できるタイプを採用してよりコンパクトに つくることちでさる。
なお、回転体 1の集合体であるフライホイール 100などの作用については、上記ェ ネルギー貯蔵装置 Aとほぼ同様であるので、説明は省略する。
産業上の利用可能性
[0055] (a)本発明によれば、回転体が回転するときの遠心力方向と逆方向にあら力じめ所 要の圧縮力または圧縮応力が加えられているので、回転して遠心力が発生したとき に、その遠心力によって圧縮力または圧縮応力による歪みが低減される力、均等化 するか、またはなくなり、耐変形性を向上させることができる。
これにより、回転体を従来にないような高速で回転させても回転体の回転バランス が崩れにくぐ軸振動も増加しにくい。従って、例えば回転体の周速が毎秒 800m以 上になっても回転体の回転を安定的に維持することが可能であり、例えば回転体の 周速を CFRPの材料強度、すなわち引っ張り強度の限界に近 、毎秒 1800mにする ことにより、エネルギーの貯蔵量を従来より飛躍的に増大させることが可能になる。
[0056] (b)回転体が、回転体が回転するときの遠心力方向に長尺な構造を有して 、るもの は、回転体がいわば棒状となり、従来の円盤状のフライホイールあるいはリング状の フライホイールである回転体と比較して同重量、同回転角速度で回転しても、回転体 の回転重心半径を大きくすることができ、エネルギー貯蔵量を格段に増加させること ができる。また、製造時において引っ張り方向が同一直線上にあるため製造が比較 的容易にできる。
(c)エネルギー貯蔵装置において、回転体が回転軸の軸線方向に複数重ねられて いるものは、例えば同じ形状のものを使用しその数を調節することにより、貯蔵可能な エネルギー量の設定が比較的容易にできる。

Claims

請求の範囲
[1] エネルギー貯蔵装置のフライホイールとして使用する回転体であって、
回転体には、回転体が回転するときの遠心力方向と逆方向にあら力じめ所要の圧 縮力または圧縮応力が加えられていることを特徴とする、
回転体。
[2] 超伝導によるフィッシング効果を利用して浮上支持され軸受部の摩擦抵抗を極め て小さくした回転体を回転させることによりエネルギーが貯蔵できるエネルギー貯蔵 装置に使用する回転体であって、
回転体には、回転体が回転するときの遠心力方向と逆方向にあら力じめ所要の圧 縮力または圧縮応力が加えられていることを特徴とする、
エネルギー貯蔵装置に使用する回転体。
[3] 回転体は、回転体が回転するときの遠心力方向に長尺な構造を有していることを特 徴とする、
請求項 2記載のエネルギー貯蔵装置に使用する回転体。
[4] 超伝導体によるフィッシング効果により低摩擦抵抗状態で回転可能に浮上支持さ れている請求項 2または 3記載の回転体と、
当該回転体を収容し、内部を高真空状態で維持することができる真空槽と、 上記回転体に外部エネルギーを与えて回転させ、外部エネルギーを回転体の回 転運動エネルギーとして貯蔵させる入力手段と、
上記回転体の回転運動エネルギーを外部へ取り出すことができる出力手段と、 を備えて 、ることを特徴とする、
エネルギー貯蔵装置。
[5] 内部に侵入する磁力線を拘束'保持してフィッシング効果を発生させる超伝導体を 収納配列した断熱容器と、
当該断熱容器内を上記超伝導体の臨界温度以下に保持するための冷媒を冷却す る冷却装置と、
上記超伝導体と相まってフィッシング効果を発生させる磁石を有する請求項 1また は 2記載の回転体と、 上記断熱容器を収容するとともに、上記回転体を回転自在に収容し、内部を減圧 装置によって高真空状態で維持することができる真空槽と、
当該真空槽内の回転体へ外部エネルギーにより回転力を付与し、回転体に低摩 擦抵抗状態での回転運動を行わせて上記外部エネルギーを回転体の回転運動ェ ネルギ一として貯蔵するとともに、その回転運動エネルギーを外部へ取り出すことが できる入出力装置と、
を備えて 、ることを特徴とする、
エネルギー貯蔵装置。
[6] 回転体は、回転軸の軸線方向に複数重ねられていることを特徴とする、
請求項 4または 5記載のエネルギー貯蔵装置。
[7] 炭素繊維、グラスファイバまたは高張力繊維でつくられた線状体または紐状体を引 つ張り要素の間に掛け回し、当該線状体または紐状体に引っ張り要素で回転体が回 転したときの遠心力方向に所要の引っ張り力を加えて骨体とし、引っ張り力を付与し たままの骨体を含むようプラスチックを所要形状に固化し、引っ張り要素による引っ張 り力を解除してつくることを特徴とする、
エネルギー貯蔵装置に使用する回転体の製造方法。
PCT/JP2005/016278 2004-09-06 2005-09-05 エネルギー貯蔵装置に使用する回転体、回転体の製造方法及びエネルギー貯蔵装置 WO2006028065A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05776166A EP1804361A1 (en) 2004-09-06 2005-09-05 Rotary body used for energy storage apparatus, method of manufacturing rotary body, and energy storage apparatus
US11/574,689 US7977837B2 (en) 2004-09-06 2005-09-05 Rotary body used for energy storage apparatus, method of manufacturing rotary body, and energy storage apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004293113 2004-09-06
JP2004-293113 2004-09-06

Publications (1)

Publication Number Publication Date
WO2006028065A1 true WO2006028065A1 (ja) 2006-03-16

Family

ID=36036346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016278 WO2006028065A1 (ja) 2004-09-06 2005-09-05 エネルギー貯蔵装置に使用する回転体、回転体の製造方法及びエネルギー貯蔵装置

Country Status (4)

Country Link
US (1) US7977837B2 (ja)
EP (1) EP1804361A1 (ja)
KR (1) KR20070104328A (ja)
WO (1) WO2006028065A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006028065A1 (ja) * 2004-09-06 2006-03-16 Six One Kaihatukikou Co., Ltd. エネルギー貯蔵装置に使用する回転体、回転体の製造方法及びエネルギー貯蔵装置
US10247262B2 (en) 2007-05-16 2019-04-02 Douglas P. Arduini Variable and centrifugal flywheel and centrifugal clutch
US8766500B2 (en) * 2010-07-28 2014-07-01 James M. Porter, SR. System and method for power purifying
RU2601590C1 (ru) * 2015-04-23 2016-11-10 Федеральное государственное автономное образовательное учреждение высшего образования "Южно-Уральский государственный университет (национальный исследовательский университет)" (ФГАОУ ВО "ЮУрГУ (НИУ)") Электромеханический сверхпроводящий накопитель энергии
BE1025885B9 (fr) * 2017-12-14 2019-08-29 Euro Diesel S A Generateur d’energie electrique

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0814249A (ja) * 1994-06-27 1996-01-16 Mitsubishi Rayon Co Ltd 高速回転体及びその製造方法
JPH08200470A (ja) * 1995-01-27 1996-08-06 Koyo Seiko Co Ltd フライホイール装置
JPH11337240A (ja) * 1998-05-27 1999-12-10 Mitsubishi Heavy Ind Ltd フライホイール電力貯蔵装置の冷却方法
JP2002095208A (ja) * 2000-09-18 2002-03-29 Mitsubishi Rayon Co Ltd 繊維強化プラスチック製ロータ及びフライホイールバッテリー装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5563035A (en) 1978-11-02 1980-05-12 Japan Atom Energy Res Inst Flywheel
JP2992578B2 (ja) * 1990-07-08 1999-12-20 小山 央二 エネルギー貯蔵装置
JPH04135721A (ja) 1990-09-27 1992-05-11 Mazda Motor Corp 繊維強化樹脂成形品の成形方法
JPH06233479A (ja) 1993-02-02 1994-08-19 Nippon Seiko Kk 電力貯蔵装置
JPH1092627A (ja) 1996-09-19 1998-04-10 Toshiba Corp 超電導電力貯蔵システム
DE19726341A1 (de) * 1997-06-20 1999-01-07 Paul Mueller Gmbh & Co Kg Welle einer motorisch angetriebenen Spindel
US5929548A (en) * 1997-09-08 1999-07-27 Active Power, Inc. High inertia inductor-alternator
JP2000158476A (ja) 1998-11-30 2000-06-13 Ibiden Co Ltd インサート成形品
WO2006028065A1 (ja) * 2004-09-06 2006-03-16 Six One Kaihatukikou Co., Ltd. エネルギー貯蔵装置に使用する回転体、回転体の製造方法及びエネルギー貯蔵装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0814249A (ja) * 1994-06-27 1996-01-16 Mitsubishi Rayon Co Ltd 高速回転体及びその製造方法
JPH08200470A (ja) * 1995-01-27 1996-08-06 Koyo Seiko Co Ltd フライホイール装置
JPH11337240A (ja) * 1998-05-27 1999-12-10 Mitsubishi Heavy Ind Ltd フライホイール電力貯蔵装置の冷却方法
JP2002095208A (ja) * 2000-09-18 2002-03-29 Mitsubishi Rayon Co Ltd 繊維強化プラスチック製ロータ及びフライホイールバッテリー装置

Also Published As

Publication number Publication date
US20080032894A1 (en) 2008-02-07
EP1804361A1 (en) 2007-07-04
US7977837B2 (en) 2011-07-12
KR20070104328A (ko) 2007-10-25

Similar Documents

Publication Publication Date Title
JP6466537B2 (ja) 開心形フライホイール構成体
JP7093758B2 (ja) フライホイールアセンブリのエネルギーを貯蔵および放出するための方法
JP6281922B2 (ja) 可撓性磁石の方向性のある剛化方法
JP2992578B2 (ja) エネルギー貯蔵装置
WO2006028065A1 (ja) エネルギー貯蔵装置に使用する回転体、回転体の製造方法及びエネルギー貯蔵装置
JP2008038605A (ja) 高温超電導体により浮上させた円筒型風力発電機
JP4577898B2 (ja) エネルギー貯蔵装置に使用する回転体
US20220034363A1 (en) Hts bearing and flywheel systems and methods
Takahata et al. Characterization of superconducting magnetic bearings (runnout performance at high speed rotation)
JP2003004041A (ja) フライホイール型超電導磁気軸受及びそのシステム
Werfel et al. Flywheel challenge: HTS magnetic bearing
Lee et al. Experimental estimation on magnetic friction of superconductor flywheel energy storage system
JP2013150499A (ja) 電力貯蔵装置の制振構造
JP2014190503A (ja) 電力貯蔵装置におけるフライホイール構造
JPH08200470A (ja) フライホイール装置
JP2023529739A (ja) Hts軸受、フライホイールシステム及び方法
KR101181932B1 (ko) 와이어 단열을 이용한 초전도 베어링
Werfel High–Speed Wheel Systems with HTS Bearings for Electric Power Applications
JPH08284957A (ja) ラジアル軸受

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005776166

Country of ref document: EP

Ref document number: 1020077007819

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11574689

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005776166

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11574689

Country of ref document: US