WO2006027875A1 - 前輪操舵制御装置 - Google Patents

前輪操舵制御装置 Download PDF

Info

Publication number
WO2006027875A1
WO2006027875A1 PCT/JP2005/009495 JP2005009495W WO2006027875A1 WO 2006027875 A1 WO2006027875 A1 WO 2006027875A1 JP 2005009495 W JP2005009495 W JP 2005009495W WO 2006027875 A1 WO2006027875 A1 WO 2006027875A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
vehicle
angle
front wheel
control device
Prior art date
Application number
PCT/JP2005/009495
Other languages
English (en)
French (fr)
Inventor
Pongsathorn Raksincharoensak
Masao Nagai
Original Assignee
National University Corporation Tokyo University Of Agriculture And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Tokyo University Of Agriculture And Technology filed Critical National University Corporation Tokyo University Of Agriculture And Technology
Priority to JP2006535035A priority Critical patent/JP4304345B2/ja
Priority to US11/659,204 priority patent/US7668635B2/en
Publication of WO2006027875A1 publication Critical patent/WO2006027875A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/002Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels
    • B62D6/003Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels in order to control vehicle yaw movement, i.e. around a vertical axis

Definitions

  • the present invention relates to a front wheel steering control device that improves the steering stability of a vehicle.
  • steering stability improvement technologies include normal moment control using left / right braking / driving force distribution and front wheel active steering control.
  • This steering gear ratio control changes the gear ratio (steering angle ratio) between the handle angle and the actual steering angle of the tire according to the driving conditions. Therefore, the response of the vehicle can be adapted to the driver's feeling, and as a result, the handling stability is improved.
  • VGR Variab IeGear Ratio
  • VGS Vehicle-Gear-RatioSteriing
  • Steering gear ratio control is aimed at improving the driving stability of automobiles.
  • the present invention has been made in view of these points, and an object of the present invention is to provide a front wheel steering control device that improves the steering stability of the vehicle with respect to the handle angle based on the steering stability theory of the vehicle.
  • the present invention provides a front wheel steering control device that improves the steering stability of a vehicle.
  • First calculating means for calculating the vehicle ⁇ where the bevel angle crossing the center of gravity of the vehicle body is always 0 based on the handle angle read by the reading means and the vehicle speed;
  • a second calculating means for calculating a target front wheel actual steering angle to realize the short rate calculated by the first calculating means
  • Control means for performing steering control of the vehicle based on the target front wheel actual steering angle calculated by the second calculation means
  • the target front wheel actual rudder angle is a feed forward actual rudder angle proportional to the handle angle of the vehicle and a feed forward actual rudder angle obtained by adding a first-order lag element to the differential value of the handle angle. It can be calculated by overlapping.
  • FIG. 1 is a block diagram showing a schematic configuration of a vehicle 100 according to an embodiment of the present invention.
  • Fig. 2 is a flowchart showing the operation of the front wheel active steering controller 9 in the above embodiment.
  • Fig. 3 is a diagram showing an equivalent two-wheel model of automobile plane motion.
  • Fig. 4 is a diagram showing the steering angle ratio between the actual front wheel steering angle and the steering wheel angle, as calculated by the front wheel active steering controller 9, with respect to changes in vehicle speed.
  • Fig. 5 Frequency characteristics of the steering angle ratio of the actual front wheel steering angle to the handle angle at a vehicle speed of 50 km / h.
  • Figure 6 This is a diagram showing the course set for the U-turn test.
  • Figure 7 Comparison of handle angle time-series responses in the U-turn test.
  • Figure 8 Setting course for the lane change test.
  • Fig. 9 is a diagram showing the time series response of the handle angle, front wheel steering motor angle, and vehicle ⁇ in the lane change test when not controlled.
  • Fig. 10 is a diagram showing the time series response of the handle angle, front wheel steering motor angle, and vehicle yorate in a lane change test when front wheel steering control is applied.
  • Fig. 11 A diagram showing the Lissajous curve of the vehicle yorate with respect to the handle angle.
  • FIG. 1 is a block diagram showing a schematic configuration of a vehicle 100 according to an embodiment of the present invention.
  • 1 is a steering sensor
  • 2 is a handle
  • 3 is a steering shaft
  • 4 is a front wheel steering motor
  • 5 and 6 are pulleys
  • 7 is a belt
  • 8 is an electromagnetic clutch mechanism
  • 9 is a front wheel active steering controller (reading means)
  • 1 0 is a vehicle speed sensor
  • 1 1 is a pinion
  • 1 2 is a rack
  • 1 3 and 14 are front wheel tires
  • 20 is a front wheel steering device.
  • Steering sensor 1 converts from the output voltage of a variable resistor (not shown) and detects the handle angle S SW from the rotation angle of handle 2. Output to front wheel active steering controller 9.
  • the vehicle speed sensor 10 converts the rotational speed of the non-driven wheels using an optical speedometer (not shown), and outputs the vehicle speed V detected by the vehicle speed sensor 10 to the front wheel active steering controller 9.
  • the front wheel active steering controller 9 is composed of a digital system, such as a computer (not shown), which is separated from the handle angle S sw input from the steering sensor 1 and the vehicle detected by the vehicle speed sensor 10 ⁇ Based on the speed V, the target front wheel steering motor angle S m * is calculated.
  • the front wheel steering gear 20 is provided at an upper position of the pinion 11 in the steering shaft 3.
  • the front wheel steering gear 20 includes a pulley 6 that is coaxially mounted with the steering shaft 3, a belt 7 that meshes with the pulley 6, a pulley 5 that meshes with the bell shaft 7, and a pulley 5 that rotates.
  • the front wheel steering motor 4 and the front wheel tires 1 3 and 1 4 constitute a steering actuator for actively steering.
  • the front tires 1 3 and 14 are provided with a general rack and pinion type steering mechanism. This steering mechanism includes a rack 1 2 connected to the steering shaft (tie rod) of the front tires 1 3 and 1 4, a pinion 1 1 meshing with the rack 1 2, and a steering force applied to the handle 2 by the pinion 1 1. And steering shaft 3 that is rotated by
  • the handle 2 and the front wheel tires 13 and 14 are not mechanically directly connected to prevent interference between the steering input from the driver and the control input from the motor. Therefore, the upper part of the steering shaft 3 is cut.
  • An electromagnetic clutch mechanism 8 is provided at the upper position of the pulley 6. When the front wheel steering motor 4 fails, the electromagnetic clutch mechanism 8 is engaged and the steering applied to the handle 2 is performed. The force is directly input to the front tires 1 3 and 1 4 via the steering shaft 3, the pinion 1 1, and the rack 1 2.
  • the steering sensor 1 detects the handle angle (5 s, and the vehicle speed sensor 10 detects the vehicle speed V.
  • the front wheel active steering controller 9 The detected handle angle ⁇ sw and the vehicle speed V are read (step S 1).
  • the front wheel active steering controller 9 calculates the target ⁇ ⁇ rd by the following formula based on the detected handle angle S sw and the vehicle speed sensor V (step S 2).
  • k r d and r d are the steady gain and time constant of the target normal rate, respectively, and are set as shown in equations (2) and (3) described later.
  • s is a Laplace transform operator.
  • the response of the ⁇ ⁇ ⁇ ⁇ ⁇ to the handle angle is set as a first-order lag characteristic.
  • steady gain krd and time constant yd of the target yorate rd calculated in step S2 are set so as to be the same as the yorate characteristics of the four-wheel steering system with zero side slip angle with excellent steering stability. Therefore, steady gain k and time constant rd can be expressed as follows. Replacement paper (Rule 26) d
  • V is the vehicle speed
  • I is the wheel base
  • N is the gear ratio of the rack and pinion
  • m is the vehicle mass
  • Is the distance between the center of gravity of the rear wheel shafts
  • C f is the cornering part of the front wheel tire
  • ⁇ ⁇ is the inertia moment
  • the front wheel active steering controller 9 calculates the target front wheel actual steering angle necessary to achieve the target short rate calculated in step S2 by the equation (4) (step S3).
  • Figure 3 shows a two-wheel model equivalent to the plane motion of an automobile. This equation of motion is expressed by the following equations (5) and (6).
  • the first term on the right-hand side corresponds to the steering angle ratio between the handle angle and the actual front wheel steering angle in the case of steady handle angle input.
  • the steering angle ratio of the handle angle to the actual front wheel steering angle is expressed by the following formula.
  • FIG. 4 shows the steering angle ratio with respect to changes in vehicle speed, using the specifications of the vehicle in Equation (1 3). From Fig. 4, it is shown that the steering angle ratio is smaller than the gear ratio of the rack and pinion at a vehicle speed of 25 km / h or lower, and that the steering angle ratio is increased at a vehicle speed of 25 km / h or higher.
  • the second term on the right side of equation (12) corresponds to the rudder angle ratio in the case of dynamic handle angle input. Since the second term includes handle angle differential operation, it is called differential steering in the present invention.
  • Fig. 5 shows the frequency characteristics of the steering angle ratio of the actual front wheel steering angle to the handle angle when the vehicle speed is 50 km / h. This indicates that it has a role to increase the steering angle ratio with respect to the high frequency handle angle to compensate for the delay in vehicle response.
  • the front wheel active steering controller 9 calculates the target front wheel steering motor angle ⁇ 5 m * according to the following formula in order to achieve the target front wheel actual steering angle ⁇ 5 f (step S in FIG. 2).
  • m NS f (1 4)
  • the front wheel active steering controller 9 matches the actual motor angle detected by the rotation angle detector in the front wheel steering motor 4 with the target motor angle 5 m * calculated in step S4.
  • the target motor angle S m * is converted into a pulse voltage and output to the front wheel steering motor 4 (step S 5), and the process is terminated.
  • Fig. 9 and Fig. 10 show the driver's handle angle, front wheel steering motor angle, and time rate response in the case of non-control and when the front wheel active steering controller is applied. From the time series response of the handle angle, it can be confirmed that the front wheel motor is steered earlier than the handle angle of the driver as shown in Fig. 10 in the case of control. This is the effect of differential steering.
  • Figure 11 shows the handle angle and the horizontal Lissajous curve when changing lanes.
  • the handle angle and the rate are almost linear compared to the non-controllable o. This means that the phase delay of Yoroi ⁇ ⁇ ⁇ ⁇ with respect to the / angle is improved.
  • the proposed controller makes it possible for the driver to pass through the course with a much smaller handle angle.In this way, the handle angle of the driver and driver and the traveling speed of the vehicle are detected and based on that information.
  • a target yorate (a yorate in which the bevel angle transverse to the center of gravity of the vehicle body is always 0 based on the handle angle and the vehicle speed read by the reading means) is calculated.
  • the target front wheel actual steering angle to achieve the target yorate is calculated, and the vehicle is controlled based on the target front wheel actual steering angle.
  • the handling performance can be greatly improved at low speeds, and the running stability can be ensured at high speeds.
  • the actual steering angle of the front wheel is calculated from the handle angle and the differential value of the handle angle.
  • the actual steering angle of the front wheels is calculated theoretically, so in the case of dynamic handle angle input, the delay in vehicle response to the handle angle is compensated, there is no wobbling, and the driver's intention to operate is A steering control device for a vehicle that moves faithfully can be configured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

車両の操縦安定性理論に基づいた、ハンドル角に対する車両の操縦安定性を向上させる前輪操舵制御装置を提供する。車両100の操縦安定性を向上させる前輪操舵制御装置において、車両のハンドル角と車速とを読み込む読込手段と、読込手段で読み込んだハンドル角と車速に基づいて、車体重心点横すべり角を常に0とする車両のヨーレイトを算出する第1の算出手段と、第1の算出手段で算出したヨーレイトを実現するための、目標前輪実舵角を算出する第2の算出手段と、第2の算出手段で算出した前記目標前輪実舵角に基づき、前記車両の操舵制御を行う制御手段とを有する。この構成により、理想的車両のステアリングギヤ比および微分操舵ゲインの設定が比較的単純、かつ、理論的に明確になる。

Description

明 細 書 前輪操舵制御装置 技術分野
本発明は、 車両の操縦安定性を向上させる前輪操舵制御装置に関 する。 背景技術
従来、 交通事故低減を目指す予防安全技術の一つと して、 操縦安 定性向上技術の開発が行われている。 操縦安定性向上技術の例と し て、 左右制駆動力配分によるョ一モーメ ン ト制御や前輪アクティ ブ 操舵制御などが挙げられる。
これら技術のうち、 車両の前輪タイヤとハン ドルが機械的に連結 していないものにおける、 前輪アクティ ブ操舵系によるステアリ ン グギヤ比制御技術は、 従来より様々な提案がなされている。
このステアり ングギヤ比制御は、 ハン ドル角とタイヤの実舵角の ギヤ比 (舵角比) を走行条件に応じて変化させる。 よって、 車両の 応答を ドライバの感覚に適合させることができ、 結果と して操縦安 定性が向上する。
一般的に、 低速では舵角比を小さ くすることにより、 操舵量が低 減され、 運転負荷が軽減される。 また、 高速では舵角比を大きくす ることにより、 走行安定性が確保される。
例えば、 ラックアン ドピニオン ( R a c k a n d P i n i o n ) のラック歯中央から終端に向けてかみ合いピッチを大きく し、 ハン ドル角に応じてギヤ比を変化させる V G R ( V a r i a b I e G e a r R a t i o ) という技術がある (特開平 7— 3 2 3 8 5 2号公報参照) 。
また、 車速とハン ドル角でギヤ比を変化させる V G S ( V a r i a b l e G e a r — R a t i o S t e e r i n g ) もある (特 開平 1 1 — 7 8 9 3 7号公報参照) 。
また、 車速と路面摩擦係数でギヤ比を変化させ、 加えて操舵の微 分動作を加える V G R S ( V a r i a b I e G e a r R a t i o S t e e r i n g ) もある (特開平 1 1 — 3 0 1 5 0 7号公報 参照) 。 発明の開示
ステアリ ングギヤ比制御は、 自動車の操縦安定性向上を目的と し ている。 しかし、 その設計は運転者の感応評価などによる試行錯誤 的設計が多く、 本質的に自動車の操縦安定性理論に基づくステアリ ングギヤ比の設計がほとんど見られない。
また、 急なハン ドル操作を行った場合などに、 ハン ドル角の微分 値に応じて前輪タイヤ実舵角を決定するが、 その最適設計も理論に 基づいたものがほとんど見られない。
また、 運転者の制御しやすさの観点から好ましいステアリ ングギ ャ比特性を探る試みもなされているが、 明確で定量的なギヤ特性の 算出はまだ十分とはいえない。
この発明はこのような点に鑑みてなされたもので、 車両の操縦安 定性理論に基づいた、 ハン ドル角に対する車両の操縦安定性を向上 させる前輪操舵制御装置を提供することを目的としている。 上記した目的を達成するために、 本発明は、 車両の操縦安定性を 向上させる前輪操舵制御装置において、
前記車両のハンドル角と車速とを読み込む読込手段と、
前記読込手段で読み込んだハン ドル角と車速に基づいて、 車体重心 点横すベリ角を常に 0とする車両のョーレイ 卜を算出する第 1 の算 出手段と、
前記第 1 の算出手段で算出したョーレイ トを実現するための、' 目 標前輪実舵角を算出する第 2の算出手段と、
前記第 2の算出手段で算出した前記目標前輪実舵角に基づき、 前 記車両の操舵制御を行う制御手段と、
を有することを特徴とする。
本発明では、 前記目標前輪実舵角は、 車両のハン ドル角に比例し たフィードフォワー ド実舵角と、 該ハン ドル角の微分値に一次遅れ 要素を付加したフィー ドフォワー ド実舵角を重ね合わせて算出する ことができる。 図面の簡単な説明
図 1 : 本発明の一実施形態における車両 1 0 0の概略構成を示す ブロック図である。
図 2 : 同上の実施形態における前輪ァクティ ブ操舵制御器 9の動 作を示すフローチヤ一 トである。
図 3 : 自動車平面運動の等価 2輪モデルを示す図である。
図 4 : 前輪アクティブ操舵制御器 9で算出する、 車速の変化に対 する前輪実舵角とハンドル角との舵角比を示す図である。 図 5 : 車速 50km/h のときのハン ドル角に対する前輪実舵角の舵角 比の周波数特性を示す図である。
図 6 : Uターン試験の設定コースを示す図である。
図 7 : U ターン試験におけるハン ドル角の時系列応答の比較を示 す図である。
図 8 : 車線変更試験の設定コースを示す図である。
図 9 : 非制御時の場合の車線変更試験におけるハン ドル角、 前輪 操舵モータ角度、 車両のョーレイ 卜の時系列応答を示す図である。
図 1 0 : 前輪操舵制御を適用したときの車線変更試験におけるハ ン ドル角、 前輪操舵モータ角度、 車両のョーレイ トの時系列応答を 示す図である。
図 1 1 : ハン ドル角に対する車両のョーレイ トのリサージュ曲線 を示す図である。 発明を実施するための最良の形態
以下、 図面を参照して本発明の実施の形態を説明する。
図 1 は、 本発明の一実施形態に係る車両 1 0 0の概略構成を示す ブロック図である。 1 はステアリ ングセンサ、 2はハン ドル、 3は ステアリングシャフ ト、 4は前輪操舵モータ、 5、 6はプーリ、 7 はベル ト、 8は電磁クラッチ機構、 9は前輪アクティ ブ操舵制御器 (読込手段、 第 1 の算出手段、 第 2の算出手段、 制御手段、 第 3の 算出手段、 出力手段) 、 1 0は車速センサ、 1 1 はピニオン、 1 2 はラック、 1 3、 1 4は前輪タイヤ、 2 0は前輪操舵器である。
ステアリ ングセンサ 1 は、 図示しない可変抵抗器の出力電圧から 換算しており、 ハン ドル 2の回転角からハン ドル角 S SW を検出して 前輪ァクティブ操舵制御器 9に出力する。
車速センサ 1 0は、 図示しない光学式速度計を用いて非駆動輪の 回転速度から換算しており、 この車速センサ 1 0で検出された車速 Vを前輪ァクティブ操舵制御器 9に出力する。
前輪アクティ ブ操舵制御器 9は、 図示しないコンピュータ等の離 散化されたディ ジタルシステムで構成され、 ステアリ ングセンサ 1 から入力されたハン ドル角 S sw と、 車速センサ 1 0で検出された車 -速 Vに基づいて、 目標前輪操舵モータ角度 S m*を算出する。
前輪操舵器 2 0は、 ステアリ ングシャフ ト 3におけるピニオン 1 1 の上部位置に設けられている。 前輪操舵器 2 0は、 ステアリ ング シャフ ト 3 と同軸に取り付けられたプーリ 6 と、 プーリ 6 と嚙合い するベル ト 7 と、 ベル卜 7 と嚙合いするプーリ 5 と、 プーリ 5を回 転駆動する前輪操舵モータ 4とから成り、 前輪タイヤ 1 3、 1 4を アクティブに操舵するための操舵ァクチユエータを構成している。 前輪タイヤ 1 3 , 1 4には、 一般的なラックアン ドピニオン式の 操舵機構が設けられている。 この操舵機構は、 前輪タイヤ 1 3、 1 4の操舵軸 (タイロッ ド) に接続されるラック 1 2 と、 これに嚙合 するピニオン 1 1 と、 このピニオン 1 1 をハン ドル 2に与えられる 操舵力で回転させるステァリングシャフ ト 3とを備えている。
本発明で取り扱う操舵機構は、 ドライバからの操舵入力とモータ からの制御入力の干渉を防ぐため、 ハン ドル 2 と前輪タイヤ 1 3、 1 4が機械的に直結していない。 そのため、 ステアリ ングシャフ ト 3の上部を切断している。 なお、 プーリ 6の上部位置には、 電磁ク ラッチ機構 8が設けられており、 前輪操舵モータ 4が故障した際に は、 電磁クラッチ機構 8が締結され、 ハン ドル 2に与えられた操舵 力がそのままステアリ ングシャフ 卜 3、 ピニオン 1 1 、 ラック 1 2 を介して前輪タイヤ 1 3、 1 4に入力される。
次に、 上記構成の前輪アクティブ操舵制御器 9の動作について図 2を参照して説明する。 この動作は、 0 . 1 msec 毎のサンプリ ング タイムで実行される。
まず、 運転手が運転中にハン ドル 2を回転させると、 ステアリ ン グセンサ 1 がハン ドル角(5 s を検出し、 車速センサ 1 0が車速 V を 検出する。 前輪アクティブ操舵制御器 9は、 検出したハン ドル角 δ swと車速 Vを読み込む (ステップ S 1 ) 。
次に前輪アクティブ操舵制御器 9は、 検出したハン ドル角 S sw、 車速センサ V に基づいて目標ョーレイ 卜 r dを下記の式により算出 する (ステップ S 2 ) 。
Figure imgf000008_0001
ただし、 k r d、 て r d はそれぞれ目標ョ一レイ トの定常ゲインと 時定数であり、 後述の式(2 )、 (3 )に示すように設定している。 s はラプラス変換の演算子である。 なお、 本発明では、 高速安定性を 向上させるため、 ハン ドル角に対するョーレイ 卜の応答を 1 次遅れ 特性とする。
ステップ S 2で算出される目標ョーレイ ト r dの定常ゲイン k r d および時定数 y d は、 操縦安定性の優れる車体横滑り角零化四輪 操舵方式のョーレイ ト特性と同じとなるように設定する。 よって、 定常ゲイン k および時定数て r dは下記の式のように表せる。 差替え用紙(規則 26) d二
Figure imgf000009_0001
一 iy 一
Yd mlrV2 + 211 fCf ( 3 ) ただし、 V は車速、 は前輪軸重心点間距離、 I はホイ一ルベー ス、 N はラックアン ドピニオンのギヤ比、 m は車両質量、 し は後輪 軸重心点間距離、 Cf は前輪タイヤのコーナリングパヮ、 Ιζ はョ一慣 性モーメ ン トである。
次に前輪アクティ ブ操舵制御器 9は、 ステップ S 2で算出された 目標ョーレイ ト を達成するために、 必要な目標前輪実舵角 を、 式 (4 ) により算出する (ステップ S 3 ) 。
Sf(s) = Gff(s)Ssw s) (4) ただし、 フィー ドフォワードコン トローラ Gf f (s)は、 後述する式 ( 1 1 ) で与えられる。
ここで、 フィー ドフォワードコン トローラ Gf f (s)の算出方法を以 下に示す。 図 3は自動車の平面運動等価 2輪モデルである。 この運 動方程式は、 下記の式 ( 5 ) (6 ) のように表される。
差替え用紙(規則 26) + 二 2C f r-β ( 5 )
Figure imgf000010_0001
, /,
Ij = 2lfCf δ f「 -β 21 C ( 6 ) ノ
Figure imgf000010_0002
ノ ただし、 Gr は後輪タイヤのコーナリ ングパヮ、 /Sは車体横すベリ 角である。 また、 ステアリ ングシャフ ト 3の回転角度 <5 sw と前輪タ ィャ 1 3、 1 4の実舵角 <5 f は比例関係で、 まった〈遅れがないも のとすると、 以下の関係式が成り立つ。
Figure imgf000010_0003
式(1 ) ~ (2)をラプラス変換して整理すると、 ハン ドル角に対す るョ一レイ 卜応答は以下の式のようになる。
Figure imgf000010_0004
ただし、 ョーレイ トの定常ゲインおよび時定数は下記の式のよ に求まる。
Figure imgf000010_0005
差替え用紙 (規則 26)
Figure imgf000011_0001
前輪アクティ ブ操舵制御器 9を適用 したとき、 車体ョーレイ トが 目標ョ一レイ トと完全に一致するとすれば、 式(1 )と式 ( 8 ) よ り 、 フィー ドフォワー ド制御器の伝達関数 Gff (s〉は下記の式と して算 出できる。
( 1 1 )
Figure imgf000011_0002
式(1 1 )をさらに整理すると、 下記のように記述できる。
Figure imgf000011_0003
( 1 2 )
上記の式において、 右辺の第 1 項は定常的なハン ドル角入力の場 合のハン ドル角と前輪タィャ実舵角の舵角比に相当する。
ハン ドル角の微分動作を考慮しない場合、 前輪実舵角に対するハ ン ドル角の舵角比は下記の式で表される。
L
丄 'N
I ( 1 3 )
Figure imgf000011_0004
差替え用紙(規則 26) 式(1 3 )において、 当該車両の諸元を用い、 車速の変化に対する 舵角比を図 4に示す。 図 4より、 車速 25km/h 以下では、 舵角比がラ ックアン ドピニオンのギヤ比より小さく、 車速 25km/h 以上では、 そ の舵角比が大きくなることを示す。
また、 式(1 2 )の右辺の第 2項は動的なハン ドル角入力の場合の 舵角比に相当する。 この第 2項はハン ドル角の微分動作が含まれて いるため、 本発明では微分操舵と呼ぷ。 一例として、 車速 50km/h の 場合、 ハン ドル角に対する前輪実舵角の舵角比の周波数特性を図 5 に示す。 これは、 車両応答性の遅れを補償するために、 高周波数の ハン ドル角に対して、 舵角比を増す役割を持つことを示す。
次に前輪アクティ ブ操舵制御器 9は、 前記目標前輪実舵角 <5 f を 達成するために、 目標前輪操舵モータ角度 <5 m*を下記の式にょリ算 出する (図 2のステップ S 4 ) 。 m = NSf ( 1 4 )
次に前輪ァクティ ブ操舵制御器 9は、 前輪操舵モータ 4内の回転 角検出器で検出している実角度を、 ステップ S 4で算出した目標モ —タ角度 5 m*に一致させるように、 目標モータ角度 S m*をパルス電 圧に変換して前輪操舵モータ 4に出力し (ステップ S 5 ) 、 処理を 終了する。
低速域の取り回し性向上を確認するために、 図 6に示す U ターン 試験を行った。 車速は一定 3km/h と した。 図 6に示すコースを通過 できるために必要なハン ドル角を計測した。 図 7より、 非制御時の 差替え用紙(規則 26) 場合は、 ドライバが 6 5 0度以上も操舵していることを示す。 一方 、 図 4に示すような舵角比を制御した場合、 約 1 回転(3 6 0度)で Uターンできていることから、 ドライバの操作性が大幅に向上して いることがわかった。
また、 高速域での動的操舵入力における前輪アクティ ブ操舵制御 器の効果を確認するため、 図 8に示す車線変更試験を行った。 実験 は車速一定 30km/h で行った。 非制御時と前輪ァクティブ操舵制御器 を適用した場合の ドライバのハン ドル角、 前輪操舵モータ角度、 ョ 一レイ トの時系列応答を図 9、 図 1 0にそれぞれ示す。 ハン ドル角 の時系列応答から、 制御時の場合、 図 1 0に示すように、 ドライバ のハン ドル角より前輪モータの方が早めに操舵していることが確認 できる。 これは微分操舵の効果である。 また、 車線変更時のハン ド ル角とョ一レイ トのリサージュ曲線を図 1 1 に示す。 リサージュ曲 線より、 非制御時に比べ、 ハン ドル角とョーレイ トが線形に近い関 係を示している o これは/ \ンドル角に対するョーレイ 卜の位相遅れ が改善されることを意味する o た、 提案した制御器により、 ドラ ィバがよリ少ないハン ドル角でコースを通過することが可能となる このように、 ド、ラィバのハン ドル角と車両の走行速度を検出し、 その情報に基づいて前輪タィャの実舵角とハン ドル角との舵角比を モータ制御で可 、にすることによリ、 全車速領域において優れた操 縦安定性を持つ車両を実現できる。
以上、 本発明の実施形態について図面を参照して詳述してきたが 、 具体的な構成はこの実施形態に限られるものではなく、 本発明の 要旨を逸脱しない範囲の設計変更等も含まれる。 例えば、 前記目標前輪実舵角の算出手段では、 フィー ドフォヮ一 ド制御の設計手法を示したが、 本発明はこれに限定される者ではな く、 フィードバック制御等、 他の制御手法であってもよい。 産業上の利用可能性
以上の説明で明らかなように、 本発明によれば、 車両のよりよい 操縦安定性を図ることができる。
本発明では、 車両のハン ドル角と車速に基づき、 目標ョーレイ ト (読込手段で読み込んだハン ドル角と車速に基づいて、 車体重心点 横すベリ角を常に 0とするョーレイ ト) を算出し、 目標ョーレイ ト を実現するための目標前輪実舵角を算出し、 目標前輪実舵角に基づ いて車両の操舵制御を行う。 これにより、 車両の操縦安定性理論に 基づいた操舵制御の設計を行う ことができ、 低速域においてはハン ドル角と前輪実舵角の舵角比を小さ くすることができ、 優れた操縦 安定性を有する車両のョ一レイ 卜特性を目標ョーレイ トとするので
、 低速域においては取り回し性が大幅に向上でき、 高速域において は走行安定性が確保される。
また、 前輪実舵角をハン ドル角と該ハン ドル角の微分値にょリ算 出する。 これにより、 前輪実舵角を理論的に算出するため、 動的ハ ン ドル角入力の場合にハン ドル角に対する車両応答の遅れが補償さ れ、 ふらつきがなく、 かつ、 運転者の操作意図に忠実に動く車両の 操舵制御装置を構成できる。

Claims

1 . 車両の操縦安定性を向上させる前輪操舵制御装置において、 前記車両のハンドル角と車速とを読み込む読込手段と、
前記読込手段で読み込んだハン ドル角と車速に基づいて、 車体重心 点横すベリ角を常に 0 とする車両のョーレイ トを算出する第 1 の算 青
出手段と、
前記第 1 の算出手段で算出したョーレイ トを実現するための、 目 標前輪実舵角を算出する第 2の算出手段と、
前記第 2の算出手段で算出した前記目標前輪実舵角に基づき、 前 記車両の操舵制御を行う制御手段と 囲 を有することを特徴とする前輪操舵制御装置。
2 . 前記目標前輪実舵角は、 車両のハン ドル角に比例したフィー ドフォワー ド実舵角と、 該ハン ドル角の微分値に一次遅れ要素を付 加したフィー ドフォワー ド実舵角を重ね合わせて算出することを特 徴とする請求項 1 に記載の前輪操舵制御装置。
PCT/JP2005/009495 2004-08-06 2005-05-18 前輪操舵制御装置 WO2006027875A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006535035A JP4304345B2 (ja) 2004-08-06 2005-05-18 前輪操舵制御装置
US11/659,204 US7668635B2 (en) 2004-08-06 2005-05-18 Front wheel steering control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004230241 2004-08-06
JP2004-230241 2004-08-06

Publications (1)

Publication Number Publication Date
WO2006027875A1 true WO2006027875A1 (ja) 2006-03-16

Family

ID=36036169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009495 WO2006027875A1 (ja) 2004-08-06 2005-05-18 前輪操舵制御装置

Country Status (3)

Country Link
US (1) US7668635B2 (ja)
JP (1) JP4304345B2 (ja)
WO (1) WO2006027875A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008006952A (ja) * 2006-06-29 2008-01-17 Toyota Motor Corp 車両の操舵装置
JP2009173279A (ja) * 2008-01-28 2009-08-06 Textron Inc 動的限定的ステアリングフィードバック
JP2013052834A (ja) * 2011-09-06 2013-03-21 Nissan Motor Co Ltd 規範応答演算装置およびそれを用いた車両用操舵装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009028181B4 (de) * 2009-08-03 2016-01-28 Ford Global Technologies, Llc Pull-Drift-Kompensation mittels AFS
KR20120063301A (ko) * 2010-12-07 2012-06-15 현대자동차주식회사 MDPS의 자동 Full-Turn 작동 제어방법
DE102011122772A1 (de) * 2011-11-02 2013-05-02 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Elektrische Begrenzung eines Lenkeinrichtungsstellweges
US8798865B1 (en) 2013-02-05 2014-08-05 Ford Global Technologies, Llc Pull-drift compensation enhancements
JP6112303B2 (ja) * 2013-10-31 2017-04-12 マツダ株式会社 車両用挙動制御装置
US10259496B2 (en) * 2017-02-07 2019-04-16 Ford Global Technologies, Llc Steering-wheel feedback mechanism
US10538268B2 (en) 2017-02-07 2020-01-21 Ford Global Technologies, Llc Steering-wheel control mechanism for autonomous vehicle
JP7202930B2 (ja) * 2018-03-20 2023-01-12 Ntn株式会社 ステアリングシステムおよびそれを備えた車両
CN109305144B (zh) * 2018-09-18 2023-07-14 华东交通大学 一种车辆快速转向辅助装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03235761A (ja) * 1990-02-14 1991-10-21 Nissan Motor Co Ltd 車両の舵角制御装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161256A (ja) * 1984-01-31 1985-08-22 Nissan Motor Co Ltd 車両の補助操舵方法
JPH0615340B2 (ja) * 1985-12-27 1994-03-02 日産自動車株式会社 操舵反力制御装置
JPH0725307B2 (ja) * 1987-09-25 1995-03-22 本田技研工業株式会社 前輪転舵角の制御方法
JP3179271B2 (ja) * 1993-12-01 2001-06-25 本田技研工業株式会社 前後輪操舵装置の制御方法
US6301534B1 (en) * 1998-05-19 2001-10-09 The Texas A&M University System Method and system for vehicle directional control by commanding lateral acceleration
US6240350B1 (en) * 1998-07-24 2001-05-29 Nsk Ltd. Control apparatus for electric power steering system
US6499559B2 (en) * 1999-12-29 2002-12-31 Delphi Technologies, Inc. Method and system for improving motor vehicle stability incorporating an electric power steering system
JP3650714B2 (ja) * 2000-02-08 2005-05-25 光洋精工株式会社 車両用操舵装置
JP4660883B2 (ja) * 2000-05-24 2011-03-30 日本精工株式会社 電動パワーステアリング装置の制御装置
JP2003154960A (ja) * 2001-09-04 2003-05-27 Honda Motor Co Ltd 車両の操舵制御装置
US7143864B2 (en) * 2002-09-27 2006-12-05 Ford Global Technologies, Llc. Yaw control for an automotive vehicle using steering actuators

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03235761A (ja) * 1990-02-14 1991-10-21 Nissan Motor Co Ltd 車両の舵角制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WATANABE S. ET AL: "Steering Control of Steer-by-Wire Vehicle for Enhancing Handling and Stability", SOCIETY OF AUTOMOTIVE ENGINEERS OF JAPAN 2005 NENSHUNKI TAIKAI GAKUJUTSU KOENKAI MAEZURISHU, no. 33-04, 19 May 2004 (2004-05-19), pages 17 - 22, XP002996669 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008006952A (ja) * 2006-06-29 2008-01-17 Toyota Motor Corp 車両の操舵装置
JP2009173279A (ja) * 2008-01-28 2009-08-06 Textron Inc 動的限定的ステアリングフィードバック
JP2013052834A (ja) * 2011-09-06 2013-03-21 Nissan Motor Co Ltd 規範応答演算装置およびそれを用いた車両用操舵装置

Also Published As

Publication number Publication date
US7668635B2 (en) 2010-02-23
US20070299582A1 (en) 2007-12-27
JP4304345B2 (ja) 2009-07-29
JPWO2006027875A1 (ja) 2008-05-08

Similar Documents

Publication Publication Date Title
WO2006027875A1 (ja) 前輪操舵制御装置
JP6476235B2 (ja) 三輪自動車のための操舵および制御システム
US8255120B2 (en) Steering apparatus, automotive vehicle with the same, and steering control method
CN107685767B (zh) 多轴轮毂电机驱动车辆后轮线控转向驱动装置及转向方法
CN109641620B (zh) 车辆和用于车辆转向的方法
CN110466602B (zh) 轮毂电机驱动电动汽车的分时四轮转向系统及其控制方法
JP2641743B2 (ja) 四輪操舵車の後輪制御方法
US7740102B2 (en) Steering control device for vehicle
CN105966263B (zh) 一种轮毂电机驱动的电动轮汽车差动转向路感控制方法
EP2213547B1 (en) Rear-wheel steering vehicle
CN107738691A (zh) 一种适时四驱复合转向系统及其多目标优化方法
JP4807164B2 (ja) 車両の操舵装置
WO2009140883A1 (zh) 轮式机动车数字控制转向的方法及系统
CN106218708A (zh) 车辆转向控制装置
JP2008239115A (ja) 車両の運動制御装置
JP4751874B2 (ja) 車両の後輪舵角制御装置および後輪舵角制御方法
JP4211056B2 (ja) 自動車の操舵フィーリング設定装置
JP3582334B2 (ja) パワーステアリング装置
JP4211053B2 (ja) 自動車の操舵フィーリング設定装置
JP4211054B2 (ja) 自動車の操舵フィーリング設定装置
JP4211052B2 (ja) 自動車の操舵フィーリング設定装置
JP2005059688A (ja) 自動車の操舵フィーリング設定装置
Takashima et al. Development of Steering Control Method for Steer-by-Wire System Requiring No Changes in Steering Wheel Hand Position
JP4211055B2 (ja) 自動車の操舵フィーリング設定装置
JPH04283167A (ja) 車両の後輪操舵装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006535035

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11659204

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11659204

Country of ref document: US